© MASSACHUSETTS INSTITUTE OF TECHNOLOGY
: ARTIFICIAL INTELLIGENCE LABORATORY |

ALMEMO 543 | 30 AUGUST 1979

PROCEDURAL ATTACHMENT
LUC STEELS

ABSTRACT

A frame-based reasoning sysfem is extended to deal with procedural attachment.

Arguments are given why procedural attachment is needed in a symbolic reasoner. The

- notion of an infinitary concept is introduced. Conventions for representing procedures and

a control structure regulating their execution i's‘discussed. Examples from electrical
engineering and music illustrate arithmetic constraints and constraints over properties of

- strings and sequences.

- This report describes research done at the Artificial Intelligence
- Laboratory of the Massachusetts Institute of Technology. Support

for the laboratory's artificial intelligence research is provided
in part by the Advanced Research Projects Agency of the Department
of Defense under Office of Naval Research contract N00014-75-C-0643.

VISSRCHUSETTS INSTITUTE OF TECHNOLGGY 1979

Page - 1

TABLE OF CONTENTS
1. INTRODUCTION
2. INFINITARY CONCEPTS
3. PROCEDURAL ATTACHMENT
3.1, REPRESENTING PROCEDURES AND VALUES
3.2. EVALUATION |
4. EXAMPLES
4.1, ELECTRONIC CIRCUITS
4.2. MUSIC
5. CONCLUSION
6. REFERENCES

Page - 2

1. INTRODUCTION

We will study problems of procedural attachment within the context of an existing
reasoning system. By procedural attachment we will mean that a procedure is used
instead of a description to constrain a particular object in the model of a certain problem

- si tuation

The reasoning system which we will use as basis for the discussion is the XPRT-system

- extensively discussed in Steels (1979). The XPRT-system (pronounced expert-system) is

a package designed to serve as a foundation for constructing knowledge-based expert
systems. It features a natural language like description language (called XPRTESE) and a
reasoning component. For each of the concepts he wants to use, the user defines a
frame. A frame contains aspects for each important question to be asked about the class
of situations to which the concept applies. The frame also contains constraints in the form
of natural language like descriptions which are partial answers or ways to find the
answer to each question posed by a frame.

- Given such a series of frames, the user then specifieé a problem situation by (partially)
- describing it. Based on these initial specifications the reasoner will build up a model

which contains the objects in the situation, the initial properties and relations, and all
properties and relations which are deduced by antecedent-reasoning over the constraints
attached to the instantiated frames or by goal-directed (consequent) reasoning based on

- so called method-frames associated with each concept. New specifications can be added
~ interactively and questions (including requests for justification) can be asked. '

S0 far the user of the XPRT-system does not have to introduce procedures at all. Evéry
~activity consists of a deductive operation such as decomposition, instantiation, distribution
~of descriptions, application of modus ponens, etc. Moreover the system is an open

system in the sense that this system is adequate to deal with any domain and allows for

‘sophisticated problem solving. All this contrasts of course with other frame-based
“knowledge representation efforts (such as FRL (Goldstein and Roberts ,1977)) where the

amount of deductive support is minimal and the user is expected to use procedural -
attachment if he wants to see reasoning be performed This contrasts also with the
procedural embedding of knowledge paradigm (Hewitt, 1971) which postulates that every

piece of knowledge is embedded in a procedure specifying its usage. However, although

we reject the use of procedures for deductive purposes, this somewhat extreme

- position has its own flaws. Basically there are two reasons why procedures are needed:

to deal with infinitary concepts and to allow ‘black boxing’.

Consider the integers. Integers are concepts. Because there are infinitely many integers
we need an infinite number of concepts. And because each concept needs to be defined,
we would get an infinite number of frames! This is of course impossible in a concrete
system, so some other way must be found to work with infinite sets of concepts. In
particular we need mechanisms, i.e. procedures, that will generate concepts as needed.
Concepts like integers will be called infinitary concepts. Infinitary concepts are the first
reason why we need procedural attachment.

INTRODUCTION

Here is the second reason. In certain situations we want to create a ‘black box’ fhat

does a particular task in a way which is nontransparant for the reasoner. A typical

- example of such a task is arithmetic. In principle it is possible to feed a particular

axiomatization of number theory to the reasoner and perform arithmetic operations by
performing deductions. It is also possible to create a system based on tables and

- methods mimicing the way humans do arithmetic. But these approaches are only

appropriate when we want to study axiomatic number systems or the way humans
perform arithmetic. In most cases we just want the number crunching to be done by a

~ ‘black box’ as efficiently as possible. The way to create such a black box is to use a

'pragramrhing language as the device to construct boxes with. A particular box is then

17 invoked by associating a procedure with an aspect in a frame. Each time an instantiation

... of the frame is created, an instance of the box is put at work. Another example where
~such a black box approach might be useful is in dealing with ‘low level’ tasks such as
_ vision or sensori-motor behavior. The black box in this case is a channel that returns a

T piece of information or a mechanism that performs a possibly complex action.

~In order to accomodate these capabilities we have extended the XPRT-system so that it

is possible to use both procedures and descriptions as constraints on what the answer to
a question posed by a certain aspect in a frame can be.

The rest of the paper is organized in four parts. The first part deals with infinitary

concepts. Then we turn to procedures. We discuss the notion of a value, the

~ representation of procedures, and the way procedures are evaluated. The third part

~~ contains some examples of reasoning based on arithmetic constraints and on constraints
~ over strings and sequences. These examples are taken from the domains of electronic
~ circuits and music. In a final part we discuss the relation to other work. '

Page - 4

INFINITARY CONCEPTS

2. INFINITARY CONCEPTS

Before we turn to the subject-matter of procedural attachment, some more clarification
is needed on the notion of an infinitary concept. An infinitary concept is the

generalization of an infinite series of concepts. Because we are dealing with a system ~
that is constrained in time and space, and because we cannot know in advance which

element of the set will be needed, we need mechanisms generating specializations of an
infinitary concept based on a constructive definition. Typical examples of infinitary
concepts are numbers and strings, lists, sequences and sets.

It is important to keep in mind that the specializations of an infinitary concept are also
concepts. That means that if we say of a certain quantity that it is 5, we really mean
that this quantity is an instance of the concept ‘the quantity 5. This is different from
ordinary mathematics (and programming) where these objects are considered to be
constants. In such a framework to say that a certain quantity is 5 means that this
quantity Is co-referential with the unique individual 5. Our position is however not

- unusual from a logical point of view. Indeed since Frege it has been customary to view a

number n as a concept expressing the notion of a class of n members.

in order to deal with the problems of reading, printing and internally representing
infinitary concepts we will use the mechanisms already available in the programming
- language in which the reasoning system is implemented (i.e. LISP). Macro’s have been
created that translate an occurrence of an infinitary concept into a new one that makes

- reference to the frame of the generic concept. All properties can then be attached to
that frame. For example, if [and] are used to represent sequences, then each

 occurrence such as
" [123])
will be translated into a new description roughly of the fo|lowmg form:
(AND (A SEQUENCE)
[r23n

so that it becomes known to the reasoner that the object described as [1 2 3] is a

sequence. All properties of sequences in general are associated with the frame for

SEQUENCE and will therefore be inherited by the instances of [1 2 3].

~For the rest of the text, the following conventions will be used for infinitary concepts:

(i) Lists are represented with quotes and round-brackets as in (A B C)

(ii) Numbers are represented in the usual way: 1,2,...

(iiiy Sequences are represented with angular brackets as in [1 2 3]

(iv) Strings are represented as quoted atoms as in *John. The string itself is the atom’s
p-name. .

(v) Sets are represented with curly brackets as in {1 2 3}.

When a user wants to introduce his own class of infinitary concepts, he can introduce
“appropriate read-macro’s and a generic frame for the whole class.

Page - 5

PROCEDURAL ATTACHMENT

3 “PROCEDU‘RAL ATTACHMENT

We now turn to procedures. Two issues need to be considered. How to represent
procedures and how to organize their evaluation.

3. 1. REPRESENTING PROCEDURES AND VALﬂES

- It makes sense to use the language that was used to |mplement the reasonmg system, i.e.

LISP, itself as the language to represent procedures. A procedure call is represented in

. LISP by writing the name of the procedure followed by its arguments, as in

(+12)

i A procédbre takes as arguments the values of its actual parameters and returns
~something as its value We will allow two kinds of thmgs to be arguments or returned as
+values:

e occurrences of infinitary concepts, like , |

* numbers : ‘ i
‘strings

- lists, sequences or sets of occurrences of infinitary concepts

+ + lists, sequences or sets of objects in the model of the problem situation.
' What do we mean here by an ob;ect in the model of the problem situation ?

o As mentloned earlier on, the XPRT-system buxlds up a model of the problem s:tuahon it
is dealing with. This model consists of objects, descriptions of objects and rules which
- are working on the expansion of the model. An object is the analogue of an individual in
- the domain of discourse. A description states the role an object plays in one of the

relations which holds in the problem situation. Another way to say that an object is
described by a certain description is to say that the object is a referent of that

- description (not necessarily the only one). In order to identify an object in a particular
 model, each object has a unique name which is vieWed as one of its descriptions. -

 The necessdy of havmg a list or sequence or set of names of objects as value of
- another object is best illustrated by an example. Suppose we want to talk about the set
~ of children of a family. Then we will have an object in the model (say CHILDREN-1) which

denotes the set of children. If we now want to describe this set by enumeratlon we need

the ability to say something like

{JOHN-1, MARY-1, GEORGE-1} .

where JOHN-1, MARY-1 and GEORGE-1 are the names of the objects which are
individuals in the set of children.

Now note that everything which can be a value, i.e. can function as the result of a
procedure or as one of its arguments is a description. This fact constitutes the bridge
between symbolic reasoning and the execution of procedures. When a procedure is
attached to a particular object in the domain of the model, this means the same as saying

that the result of this procedure is a descnptwn of this object.

Page - 6

REPRESENTING PROCEDURES AND VALUES

in order to talk about the value of an object in a particular model of a problem situation,
we adopt the convention that an object can have only one value. When an object has
more than one value, a contradiction has been reached.

But now there is an ambiguity problem: When we use a certain description it is unclear
whether we mean the object denoted by the description or the value of this object.
Ambiguities are resolved by adopting additional conventions. The most useful convention
seems to be that inside a procedure call a description refers to the value of the object
referred to by the description (and there is an error if this description has no unique
referent) and outside a procedure call a description refers to the object itself.

So an expression of the form
~ {+ (= the-first-arg) 10)
denotes the result of calling the LISP-procedure + with the value of the referent of (=
THE-FIRST-ARG) as first argument and the value 10 as second argument. Recall {from
Steels,1979) that (= THE-FIRST-ARG) refers to the filler of the FIRST-ARG aspect in the
frame where this description occurs. For example, if there would be a frame Ilke
(NAME -OF -FRAME _

_ (WITH FIRST-ARG ...)) _ ,
then the expression (= THE-FIRST-ARG) anywhere in this frame refers to the filler of
the first-arg in the instantiation of the frame under consideration. :

. Here is another example illustrating the procedural conventions. We introduce a frame
- for SUM which holds between a sum, an addend and an augend:
(FRAME SUM
(WITH SELF
: (+ (= THE-ADDEND) (= THE- AUGEND)))
- {(WITH ADDEND
(- (= THE-SELF) (= THE-AUGEND)))
- (WITH AUGEND ,
{- (= THE-SELF) (= THE-ADDEND))))
The SELF, ADDEND and AUGEND aspects all have procedures attached to them For
example the procedure attached to the SELF-aspect, in particular

{+ (= THE-ADDEND) (= THE-AUGEND)),
says that the value of the object which fills the SELF-aspect is described as the result
of a procedure. This procedure is the LISP +, which takes two arguments. The first
argument is the value of the referent of the description (= THE-ADDEND), i.e. the filler of
the addend-slot in the instance of SUM, and the second argument is the value of the '
referent of the description (= THE-AUGEND), i.e. the filler of the augend-slot in the
instance of SUM. .
Suppose an instance of SUM has the following fillers:
SuUH
((WITH SELF SUM-1)
{WITH ADDEND ADDEND-1)
{(WITH AUGEND AUGEND-1))
then the procedure attached to the SELF aspect, i.e. SUM-1, would in this case be
(+ ADDEND-1 AUGEND-1)

So that when the values of ADDEND-1 ahd AUGEND-1 are 2 and 3, then we know that

Page -7

REPRESENﬁNG PROCEDURES AND VALUES

" the value of SUM-1 is 5.

~Although the adopted convention is very natural it fails in cases where we want to refer
to the value outside a procedure call or to the object itself inside a call. The second
case is necessary in circumstances where we want a list, a set or a sequence of objects
in the domain of the model. For example, we might want to talk about a set which
contains John, the father of Mary and George.

' " To resolve this problem we adopt the convention that inside a procedure call we write

<0> before a description if we need the object referred to by the description rather
. than the value of the object and outside a procedure call we write <v> if we need the
value of the object of the description rather than the object itself. The o in <o> stands
for object whereas the v in <v> stands for va|ue.

Here is an example where this convention is useful. Suppose we want to talk about

: ‘ , ‘telephone-numbers and make a distinction between the object itself and the numerical

‘value of the number. (A telephone-number can consist of Ietters') Suppose we have a
_ frame for telephone-number as
‘{FRAME TELEPHONE-NUMBER

{WITH SELF) ‘

(WITH NUMBER)

(WITH OWNER))

then we can say that the number is the value of the self of the telephone-number by
- writing:
(FRAME TELEPHONE - NUMBER

{(WITH SELF)

{WITH NUMBER (v>(- THE -SELF))
~ (WITH OWNER))
~ So if we now want to say
34265 IS JOHN'S TELEPHONE -NUMBER »

- or stated in terms of the description language
> 34265 IS {A TELEPHONE-NUMBER (WITH OWNER JOHN))

- then the NUMBER-aspect of this instance will be filled with the number 34265

5 Note that in a system hke that of Sussman and Steele (1978) this problem does not

occur because there a description always refers to the value of its object.

3. 2. EVALUATION

ideally we want any procedure to be evaluated as soon as possible. This is a problem
however because of the following points:

(i) The values of the arguments to the procedure are not necessarlly known at the time
we know that the procedure i is to be executed. For example, given

> L-1 IS (A SUM
(WITH ADDEND L-2)
(WITH AUGEND L-3))

then it could be that we do not know the values . of L-2 and L 3 at the time this

Page -8

EVALUATION

predication is performed :
(i) The values of the various objects become known in an arbltrary order. This is
especially true because we are operating in a parallel processing context where no

.decision should be based on the time when something becomes known.

Based on this analysis we propose the following scheme to incorporate procedural
- attachment into the XPRT-reasoning system. Recall that a model in this system consists

of a set of active objects called experts. An expert is a special kind of actor (Hewitt,
Bishop and Steiger (1973)). Experts communicate with each other and thus perform

- reasoning behavior. Each of these experts is responsible for one object or individual in
- the problem situation covered by the model. An expert has a set of descriptions which

specify the roles that the object covered by the expert plays in various instantiations.
- The expert also has a set of rules which wait for descriptions that enter as messages in
the expert and will respond in an appropriate way.

We now extend this picture as follows. First of all an expert keeps track of which

~ description in its description set is the value. (It can be that an expert does not yet have

a value) Second an expert also maintains a special set of rules further called procedural
rules. Procedural rules are responsible for the procedures that have been predicated for
the expert’s object. Such a rule can be thought of as a lambda-expression

(LAMBDA (X) (procedure ...))

~ The procedural rules wait untu! the value of the expert in which they are Iocated is
known. If so ‘a lambda-conversion is performed with the value of the expert as the
.~ value of the lambda-variable. Then the body of the rule is executed. This body will -
 consist either in a new procedural-rule to be sent to an expert or in a value to another
' expert to be predicated of an object in the model.

When an expert receives a descnptlon which is marked as its value, then all waiting
procedural-rules have to be executed. When an expert receives a procedural-rule and a
- value is known, the procedural-rule is executed When an expert receives a

procedural-rule and no value is known yet, the expert adds the rule to its list of
procedural rules.

All this means that an expression like
(+ ADDEND-1 AUGEND- 1)

- predicated for SUM-1 has to be decomposed in the following way: A procedural rule

must be sent to the ADDEND-1 expert. The body of this rule is another procedural-rule
to be sent to the AUGEND-1 expert. The body of the latter rule contains a specification
to send the result of the evaluation of + to SUM-1.
The following account, albeit unrealistic, will give a clearer idea of what is meant here.
Suppose ADDEND-1 receives the following procedural rule:
(LAMBDA (X)
" (SEND-PROCEDURAL-RULE

AUGEND-1 ' ,

(LAMBDA (Y) (SEND-DESCRIPTION SUM-1 (+ X Y)))))
Suppose ADDEND-1 receives the value 2, then after lambda-conversion the following
transmission occurs:

Page - 9

i

EVALUATION

~ (SEND-PROCEDURAL-~RULE
~~ AUGEND-1 ’ ,
(LAMBDA (Y) (SEND-DESCRIPTION SUM-1 (+ 2 Y)))))

So AUGEND-1 gets the following rule:
(LAMBDA (Y) (SEND-DESCRIPTION SUM-1 (+ 2 Y)))

~ Suppose AUGEND-1 has or receives the value 3, then after lambda-conversion the
following transmission takes place:
(SEND-DESCRIPTION SUM-1 (+ 2 3))

~ After evaluation of (+ 2 3), SUM-1 will be described as having 5 as its value.

Page - 10

EXAMPLES

4. EXAMPLES

We will now go through several examples. The first example is taken from the domain of
electrical engineering and illustrates reasoning with based on arithmetic constraints. The
second example illustrates the use of strings and sequences and comes from the domain
of musical reasoning.

4. 1. ELECTRONIC NETWORKS

In order to make compansons easy, we will redo the examples of Sussman and Steele
(1978). First we need some frames for arithmetic constraints.
(FRAME SUM

(WITH SELF

{PLUS (= THE- ADDEND) (= THE- AUGEND)))

(VITH ADDEND

: ’ (DIFFERENCE (= THE-SELF) (= THE- AUGEND)))

(WITH AUGEND

. (DIFFERENCE (= THE-SELF) (= THE-ADDEND))))

SELF is the name of an aspect that introduces the object (situation, relahon, quallty,)
of the frame itself. ‘ :

(FRAME PRODUCT |
(WITH SELF o ‘
(TIMES (= THE-MULTIPLICAND)(= THE-MULTIPLIER)))

(wtm MULTIPLICAND

(QUOTIENT (= THE- SELF)(- THE-MULTIPLIER)))
~ (WITH MULTIPLIER
(QUOTIENT (= THE-SELF) (= THE-MULTIPLICAND)))).

PLUS, DIFFERENCE, TIMES, and QUOTIENT are LISP-functions. Observe that whenever

sufficient information is available the other aspects of the constraint will be computed.

Next we introduce frames for components of circuits. First comes a frame for a terminal.
A terminal has a potential (represented by the voltage-aspect) and a current:
(FRAME TERMINAL

(WITH SELF)

(WITH VOLTAGE)

~(WITH CURRENT) :

(CRITERIAL (SELF))) ‘
We can put two terminals together into a two-terminal node or 2-node. In a 2-node the
potentials of the two terminals are equal and the sum of the currents has to be 0.0.
Graphically thls is represented as L

Yo &t

Q9

Yo
-~

Page - 11 .

This can be expressed in descriptions by saying that a 2-node is an object with aspects

ELECTRONIC NETWORKS

for two terminals: terminall and terminal2. The terminal2 is described as a terminal
whose voltage is equal to the voltage of the terminall and whose current is the augend

- of a sum whose result is 0.0 and whose addend is the current of terminall:
' (FRAME 2-NODE . !

(WITH SELF)
(WITH TERMINAL1)
(WITH TERMINALZ
(A TERMINAL
(WITH VOLTAGE
(THE VOLTAGE OF A TERMINAL v
(WHICH IS (= THE-TERMINALL))))
(WITH CURRENT
(THE AUGEND OF A SUM
(WHICH IS 0.0)
(WITH ADDEND
(THE CURRENT OF A TERMINAL
o (WHICH IS (= THE-TERMINAL1))))))))
(CRITERIAL (SELF))) :

A resistor involves two terminals and a reswtahce which are related via two
SUM—constramts and a PRODUCT-constraint as illustrated i in the following diagram:
T/_L

4)

3

—

HeS\STofl

The resistor-frame itself has aspects for the resistor itself, two terminals called
terminall and terminal2 and a resistance. The current of the first terminal is described
as the augend of a sum whose result is 0.0 and whose addend is the current of the other
terminal. The voltage of the first terminal is described as a sum with the voltage of the
other terminal as addend and the product of the resistance and the current of the fcrst
terminal as augend. :

Page - 12

© "

ELECTRONIC NETWORKS

(FRAME' RESTSTOR
(WITH SELF)
(WITH TERMINALZ)
(WITH RESISTANCE)
(WITH TERMINALI
(A TERMINAL |
- (WITH CURRENT (= THE-CURRENT-OF-TERMINAL1)
(THE AUGEND OF A SUM |
~ (WHICH IS 0.0)
(WITH ADDEND
(THE CURRENT OF A TERMINAL |
| (WHICH IS (= THE-TERMINAL2)))))) ¥
(WITH VOLTAGE .
(A SUM
(WITH ADDEND :
(THE VOLTAGE OF A TERMINAL
(WHICH IS (= THE-TERMINALZ2))))
(WITH AUGEND 1
(A PRODUCT . o
(WITH MULTIPLICAND (= THE-RESISTANCE))
(WITH MULTIPLIER
| (= THE-CURRENT-OF-TERMINAL1))))))))
(CRITERIAL (SELF))) |

We will now look at a simple-circuit which involves two resistors connected by a 2-node
as illustrated in the following diagram:

N i
Mswum,i“wz Ne3iSon L | |]

In other words the terminal2 of the first resistor is connected to the terminall of the

~2-node and the 'terminal2 of the 2-node is connected to the terminall of the second

resistor. This information can be represented easily by describing the first resistor of a

~ simple-circuit as a resistor whose terminal2 is the terminall of the 2-node and by

describing the second resistor as a resistor whose' terminall is the terminal2 of the
2-node. -

Page - 13 7

ELECTRONIC NETWORKS

’ (FRAME SIMPLE- CIRCUIT

(WITH SELF)
(WITH RESISTORI
(A RESISTOR
(WITH TERMINALZ
(THE TERMINAL1 OF A 2-NODE
(WHICH IS (= THE-2-NODE)))))) "

(WITH RESISTOR? | ‘ . |
(A RESISTOR | o | | Lo

- (WITH TERMINALI | | !

(THE TERMINAL2' OF A 2-NODE |

(WHICH IS (= THE-2-NODE)))))) |
(WITH 2-NODE) -

(CRITERIAL (SELF))) 1

Here is a dialogue with the current mplementatton of the reasoner based on these

frames. First we create an instantiation for a snmple—cnrcutt and call it S-C.

>> §-C is (a. simple-circuit)

One thing we can do is inquire whether S-C is mdeed a circuit:
>> 1Is s-c (a simple circuit) ?
YES
S-C IS (A SIMPLE-CIRCUIT
(WITH 2-NODE 2-NODE-1) ‘
(WITH RESISTOR2 RESISTOR2-1) P s ‘ :
(WITH RESISTOR1 RESISTORI-1)) ' f

g

| . RESISTORI -1, RESISTOR2-1, etc. are the internal names of the object-experts that have

been created for the various components of the circuit. Each of these components is
worked out completely as illustrated by the following queries:
>> Is resistorl-l (a resistor) ? : . :
YES | | - . | {
RESISTOR1-1 IS (A RESISTOR '

(WITH RESISTANCE RESISTANCE- 2) :

(WITH TERMINAL2 TERMINAL1-1) ' f

(WITH TERMINALL TERMINAL1-2)) . R
2> Is Terminall-1 (a terminal) ? “
YES ' L
TERNINALI 1 IS (A TERMINAL : '

' (WITH VOLTAGE VOLTAGE-1)
{(WITH CURRENT CURRENT-1))

ete; ‘ , o

 Now we start supplying values to certain parts of the circuit. Flrst we specify the

voitage of the first terminal of the first resistor in the circuit:

. >> (the voltage of a terminal

(which is the terminall of a resistor
(which is ,
+ (the resistorl of a simple-circuit
(which is s-c)))))
is 10.0

Next we specify some of the parts of the second resistor in the cifcuit:

Page - 14

» (the res1stor2 of a simple circu1t

(which is s-¢))
is
(a resistor
(with resistance 9.0)

(with terminall (a terminal (with voltage 3.0)))
(with terminalZ (a terminal (with voltage 0.0))))

ELECTRONIC NETWORKS

At this point sufficient information is available to deduce the values of all the
components of the circuit. Let us probe for one
>> What is (the resistance of a resistor

(which is (the resistorl of a simple-circuit
{which is s-c)))) ?

21.0

3 wWhy

RESISTANCE-1 IS

(THE RESISTANCE OF A RESISTOR
(WITH TERMINAL1 TERMINAL1-1)
(WITH TERMINAL2 TERMINAL2-1))

Further justmcatlons will show how this value was obtained.
' RESISTANCE-Z IS 21.0
‘BECAUSE
1. : CURRENT-4 IS 0.333333332
2. : AUGEND-1 IS 7.0 ' - '
3. : RESISTANCE-2 IS (QUOTIENT AUGEND-1 CURRENT-4)
>> Why ? .
CURRENT-4 IS 0.333333332
- BECAUSE ' :
1. : CURRENT-2 IS -0.333333332
2. : SUM-2 IS 0.0
3. :'CURRENT-4 IS (DIFFERENCE SUM-2 CURRENT-2)
2> Why ?
- CURRENT-2 IS -0.333333332
BECAUSE
1. : CURRENT l IS 0. 333333332
2. : SUM-1 IS 0.0 '
S 3. : "CURRENT-2 IS (DIFFERENCE SUM-1 CURRENT-1)
O wny ?
CURRENT-1 IS 0.333333332
BECAUSE
1. ¢ RESISTANCE 115 9.0
2. : AUGEND-2 IS 3.0
3. : CURRENT-1 IS (QUOTIENT AUGEND 2 RESISTANCE -1)
>> Why ?
RESISTANCE-1 IS 9.0
BECAUSE

Page - 15

ELECTRONIC NETWORKS

3> Why ?

BECAUSE

RESISTANCE-1 IS (THE RESISTANCE OF A RESISTOR
(WHICH IS RESISTORZ2-1)

(WITH TERMINAL1 TERMINALI-1)
(WITH TERMINAL2 TERMINAL2-1))

" RESISTOR2-1 IS (A RESISTOR

CTEE

(WITH RESISTANCE 9.0)

(WITH TERMINALL (A TERMINAL (WITH VOLTAGE 3.0)))
. , (WITH TERMINAL2 (A TERMINAL (WITH VOLTAGE 0.0))))
>> Why ? ' '
RESISTOR2-1 IS (A RESISTOR
B -~ (WITH RESISTANCE 9.0)
(WITH TERMINAL1 (A TERMINAL (WITH VOLTAGE 3.0)))
(WITH TERMINAL2 (A TERMINAL (WITH VOLTAGE 0.0))))

* 'BECAUSE YOU TOLD ME SO

4. 2. MUSIC

;
i
|

The second example illustrates the use of strings and sequences. The external
representation of a sequence makes use of square brackets, as m
(12 3]

This representation is translated internally such that the object which is described in
- terms of a sequence is now known to be a sequence based on the followmg frame: -
. (FRAME SEQUENCE

(WITH SELF)
(CRITERIAL (SELF)))

The value of an object which is described as a sequence is a hst-representatlon

_ contammg all the members of the sequence. .

: Tt\e frame for string looks like this:

* (FRAME STRING

(WITH SELF (STRING-MAKER (= THE- PARTS)))
- {(WITH PARTS)
(CRITERIAL (SELF)))

STRING-MAKER is a LISP-functions which makes a string out of the p~names of a list of

v‘atoms Note that an object that is described as a string has this string as its value.

Let us now illustrate the use of these frames with an example from the domain of music.
In particular we consider the problem of constructing the name of a pitch given the name
of the octave and the name of the tone.

A pitch has an octave and a tone, so that we can start from the following basic frame:
{FRAME PITCH

{WITH SELF)

(WITH OCTAVE)

(WITH TONE)

(CRITERIAL (SELF) (OCTAVE TONE)))

Page -'16

MUSIC

We want a numerical representation for musical objects to perform efficient arithmethic
computations on them if necessary. Thus a tone has as value a number ranging from O to
11. An octave has a value ranging (in the present discussion) from O to 8. Pitch has a
value which ranges from 0 to 107. The first thing we will do is establish the constraint
between these different values.
(FRAME PITCH
(WITH SELF) ‘
(WITH OCTAVE ' ' !
(AN INTEGER-QUOTIENT '
(WITH DIVIDEND (= THE-SELF))
(WITH DIVISOR 12)

(WITH REMAINDER (= THE-TONE))))
(VITH TONE)

~ (CRITERIAL (SELF) (OCTAVE TONE)))

‘We made use here of a frame for integer-quotient which looks like this
(FRANE INTEGER-QUOTIENT
(WITH DIVIDEND
~ (+ (* (= THE-SELF) (= THE- DIVISOR))
. (= THE- REMAINDER)))
(WITH SELF

(// (= THE-DIVIDEND) (= THE-DIVISOR)))
(WITH DIVISOR

(// (- (= THE-DIVIDEND) (= THE-REMAINDER))
: (= THE-SELF)))
(WITH REMAINDER

~{ (= THE-DIVIDEND) (— THE DIVISOR)))
(CRITERIAL (SELF))) '

Now we turn to the names of pitches. We will assume that octaves are names and tones
have expllmt names. (How you derive the names of the tones is a comphcated story). So
- frames for TONE and OCTAVE wnH look like this
(FRAME TONE
(WITH SELF)
(WITH NAME))
“and

(FRAME OCTAVE
(WITH SELF))

The names of tones and octaves are strings. Thus the tone A can be defined as follows
(FRAME A-TONE
(WITH SELF
(AND (A TONE (WITH NAME 'A))
0)))

| Note that O is the value of the A-tone.

Here is thén the frame for pitchégain, this time with a constraint for the name :

Page - 17

MUSIC

(FRAME PITCH

(WITH SELF)
(WITH NAME
(A STRING
(WITH PARTS
[(THE NAME OF A TONE
(WHICH IS (= THE-TONE)))
.
(= THE-OCTAVE)1))) -
(WITH OCTAVE
~ (AN INTEGER-QUOTIENT
(WITH DIVIDEND (= THE-SELF))
(WITH DIVISOR 12)
(WITH REMAINDER (= THE-TONE))))
(WITH TONE) |
(CRITERIAL (SELF)(OCTAVE TONE)))

The constraint makes use of the STRING-frame introduced earlier on. The parts of this =

frame form a sequence, which will be composed together in a single string.

Let us now experlment with these frames.

>> (P-1 is {(a pitch
(with tone (a tone {with name 'c)))
(with octave 2)))

>> What is (the name of a pitch

(which is p-1))
c-2 v
>> Why ?
NAME-1 IS C-2

- BECAUSE
1. : PARTS-1 IS (C - 2.)

2. : NAME-1 IS (STRING-MAKER PARTS- l)
>> Why ?
PARTS-1 IS (C - 2.)

~ BECAUSE

1. : OCTAVE-1 IS 2.

2. i NAME-2 1S C
3. ¢ PARTS-1 TS (SEQUENCE-FUNCTION (THE NAME OF A TONE (WHICH IS TONE-1))

- OCTAVE-1))

 Seduence functuon creates a sequence by taking the values of each description in the

sequence.

We now illustrate the computation of the numerical representation of a pitch, by
supplying the missing piece of information: the value of the tone C:
>> (the tone of a pitch
(which is p-1))
is 3

The value of the pitch has now been computed:

Page - 18

27.

>> Why ?

P-1 IS 27.
BECAUSE :
1. : TONE-1 IS 3.

$> What is p-1 7

2. : DIVIDEND-1 IS 12.

3. : OCTAVE-1 1S 2.

4. : P-1 IS (PLUS (TIMES OCTAVE-1 DIVIDEND-1) TONE-1))

Page - 19

MUSIC

CONCLUSION

5. CONCLUSION

~In this paper we have extended the XPRT-system in order to deal with procedural
constraints on what things can be the fillers of the slots in a frame. It turned out that
incorporating this new capability was a fairly straightforward matter, given the way the
XPRT-system was designed and implemented. v
In a second part of the paper a number of examples from the domains of electronic
circuuts, and music were discussed. These examples illustrate arithmetic constramts and
processing with strings and sequences.

The efforts documented in this paper are part of ongoing research in message passing
systems and description systems (in particular frame-systems). Our frames have become
similar to the classes of Simula (Dahl, et.al. 1973) and Smalltalk (Kay,1976) in the sense
~ that information is organized in units who have components and procedures attached to
 these components and who are related to each other via inheritance relations. Qur
. system is on the other hand of a higher level because the user no longer has to specify
- explicitly the message passing that should occur. Instead he has the ability to specify

“constraints which translate (in a dynamic way) into collections of messages. In this sense
our efforts are similar to the ones of Borning (1979). The same effect has also been

 obtained in the constraint system of Sussman and Steele (1978). This system is even

~ more powerful than ours because it has retraction capacities which we have not yet
- implemented. _

On the other hand the system discussed in this paper goes beyond the constraint
systems of Borning and Sussman and Steele because we are able to do symbolic
reasoning. For example, in the constraint system of Sussman and Steele (1978) it is not
possible to ask a conditional question like ‘ls this object a resistor”. It is therefore not

possible to perform qualitative reasoning. -

A system similar in capacity to the one discussed here is proposed in Hewitt, Attardi and
Lieberman (1979). The major difference lies in the fact that this system is not
_ frame-based and is not mternally organized around objects but around descriptions.

~ Finally it must be stated that this work forms part of a continuing development of

frame-based systems. In comparison to earlier systems like KRL (Bobrow and Winograd,
1977) and FRL (Roberts and Goldstein,1977), we see that although the approach to the
organization of knowledge is the same, the methods for activating it are radically
different. KRL relies on a matching mechanism, whereas FRL expects the user to attach
procedures whenever he wants to see reasoning be performed.

6. ACKNOWLEDGEMENT

| am indebted to many members of the MIT Artificial Intelligence Laboratory for their help
in shaping the ideas expressed in this paper and in getting them on paper. In addition, W.
Martin, C. Hewitt, R. Duffey and G. Attardi have contributed o this particular paper.

Page - 20

ACKNOWLEDGEMENT

7. REFERENCES

BOBROW, D. AND T. WINOGRAD (1977) An overview of KRL - A Knowledge
Representation Language. Cognitive Science, 1.1.

BORNING, A. (1979) THINGLAB -- An object -oriented system for building
simulations using constraints. STANFORD Al-Lab. Ph.D. thesis

DAHL, O. and Nygaard, K. (1968) Class and Subclass Declarations. In
- Simulation Programming Languages.‘J.N. Buxton (ed.) North Holland.

- G’OLDSTEIN | and B. ROBERTS (1977) The FRL-manual. MIT-Al memo 409.

- _ HEWITT, C. (1971) Procedural Embedding of knowledge in PLANNER

IJCAI-71. London

" HEWITT C., P. BISHOP AND R STEIGER (1973) A Universal Actor Formalism for
Artnfucnal Intelligence. IJCAI-73. Stanford Umversuty

» HEWlTT C G ATTARDI AND H. LIEBERMAN (1979) Specnfymg and Provmg
' Propertles of Guardians for Distributed Systems.
in: Semantics of Concurrent Computation. Springer-Verlag, New York.

'STEELE, G.L. AND G.J. SUSSMAN (1978) Constraints. MIT-Al memo 502.

 STEELS, L. (1979) Reasoning Modeled as a Society of Commumcatmg Experts.
MIT-AlI TR 542.

Page - 21

