MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo 548 . September, 1979

LEARNING DISJUNCTIVE CONCEPTS FROM EXAMPLES
. by
Glenn A. Iba

Abstract

- This work proposes a theory for machine learning of disjunctive concepts. The paradigm followed
is one of teaching and testing, where the teaching is accomplished by presenting a sequence of
positive and negative examples of the target concept. The core of the theory has been implemented
and tested as computér programs. The theory addresses the problem of deciding when it is
. appropriate to merge descriptions and when it is appropriate to form a disjunctive split. The
approach outlined has the advantage that it allows recovery from overgeneralizations. It is
observed that negative examples play an important role in the decision making process, as well as
in detecting overgeneralizations and instigating recovery. Because of the ability to recover from
overgeneralizations when they occur, the system is less sensitive to the ordering of the training
sequence than other systems. The theory is presented in a domain and representation independent
format A few conditions are presented, which abstract the assumptions made about any
representation scheme that is to be émploye& within the theory. The work is illustrated in several

different domains, illustrating the generality and flexibility of the theory.

This report describes research done at the Arificial Intelligence Laboratory of the Massachusetts
Institute of Technology. _Support for the laboratory's artificial intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Defense under Office of
Naval Research contract NOOOI4-75-C-0643.

@ MASSKCHUSETTS INSTITUTE OF TECHNOLOGY 1979

Glenn Iba 2 Learning Disjunctive Concepts

LEARNING DISJUNCTIVE CONCEPTS FROM EXAMPLES .
TABLE OF CONTENTS ‘

1.0 INTRODUCTION

LI Overview :

1.2 The Phenomenon of Disjunctive Concepts

13 The Problem of Learning Disjunctive Concepts
L4 ustrative Scenarios

1.4.1 Scenario |

1.4.2 Scenario II

1.4.3 Scenario 111

. 20 AFRAMEWORK FOR A GENERAL CONCEPT LEARNING SYSTEM
21 Overview and description of performance

2.2 Parameters of the system

2.2.1 Descriptions and concept models
- 222 Memory '

223 The LEARN operator

30 A BASIC THEORY FOR HANDLING DISJUNCTIVE CONCEPTS

3.1 Domains to which the theory applies

3.2 Presentation of the theory

321 Overview

3.2.2 Data Structures and Types

3.2.21 The concept model

3222 Concept Memory

3.23 The LEARN operator

3231 Summary

3.232 Updating the model

32321 Treatment of positive examples ;
32322 Treatment of negative examples i
3.2.4 Remaining parameters of the theory ')

40 APPLICATION AND ILLUSTRATION OF THE BASIC THEORY
4.1 Feature Sets and the Attributes World o

4.2 A sample teaching sequence ' -
4.3 Variations in order of the teaching sequence ¥
43.1 An alternative ordering of the sample teaching sequence

4.3.2 Convergence of models after an additional exampie

4.4 Using networks as descriptions

4.4.1 network descriptions .

442 GREATER-GENERALITY? predicate

443 MERGE operator

444 The monotonicity restriction on concepts

4.45 Tlustration with disjunctive ARCH in Blocks World

4.46 Ilutration with UNCLE-NESS concept in Kinship Relations Domain

50 SYMMETRIC TREATMENT OF POSITIVE AND NEGATIVE EXAMPLES
51 Outline of the approach '

5.2 Nlustrations of the symmetric theory in the attributes world
(using feature sets as descriptions)

6.0 A LIMITED MEMORY VERSION OF THE THEORY
/70 CURRENT STATE OF THE IMPLEMENTATION

8.0 CRITICISM OF THE THEORY
8.1 Advantages

8.2 Disadvantages

8.3 Discussion of related work

8.4 Directions for future work

Glenn Iba 3 Learning Dis junctive Concepts

L0 INTRODUCTION

11 Overview

This paper extends the concept learning work of Winston (18] so as to treat a broader

- range of concepts. The class of concepts dealt with here is that obtairied by forming dlsjunctxons of

~ basic conjunctive descriptions. A theory is presented, and implemented as a computer program,

that enables the learning of such disjunctive concepts from a presented series of positive and
neganve examples.
| - Two central problems are addressed by the theory. The first involves decxdmg when to
merge descriptions and when to split them off to form additional disjunctive terms. The second is
the problem of recovering from overgeneralizations. The theory presents a solution to each of
these issues. It is found that negative examples play a key role in the solutions presented for each
of these problems. The theory has the additional advantage that it is quite robust with respect to
the ordering of the teaching sequence. Given sufficient additional examples, the system will
converge to a single concept model, independently of the ordering of the initial teaching sequence.
The theory and the implementation are independent of the representation scheme used to
describe concepts. A small set of criteria is presented in section 3.1, and any representation scheme
satisfying these criteria are suitable for use within the theory (and the implemented system).
Chapter 2 introduces the framework of a general learning system. This abstract system

assumes the Winston paradigm of learning from a presented sequence of positive and negative

~examples. It creates a model for every target concept, and updates the model on the basis of each

additional example. This component of the theory is independent of domain, representation, and
specific theory of maintaining and updating the concept model. In particular, 1t is independent of
the specific theory for handling disjunctive concepts.

Chapter 3 presents the basic theory for handling disjunctive concepts. This theory is
presented and implemented within the general learning system framework presented in Chapter 2.
This theory is still independent of domain and representation system. Thus the system should
enjoy a potential for wide applicability.

Chapter 4 illustrates the theory in several different domains using various representation 7
schemes. Scenarios IT and 11l are elaborated so as to explicate the functioning of the system. The
effects of varying the ordering of the teaching sequence are discussed.

" Chapter 5 extends the basic theory to allow symmetric treatment of positive and negative

examples. Under this scheme, the system is simultaneously building a model of the target concept

Glenn Iba 4 Learning Disjunctive Concepts

and a model of its negation. The interactions of the two models are explored.
o Chapter B presents a version of the theory which relaxes some of the memory
requlrements assumed in the basic and symmetric versions of the theory. A typical time-space
tradeoff is encountered. The system can get by with smaller memory cost, but only at the rlsk of
taking longer to attain the desired model of the target concept.

Chapter 7 reviews the current state of the implementation of the system described in the
preceding chapters.

Chapter 8 concludes with a criticism of the theory. Comparison is made with other

existing wOrk. Some problems for additional work are proposed.

1.2 The Phenomenon of Disjunctive Concepts

There are certain concepts which cannot be described or defined in terms of a simple
conjunction of features. At some level they seem to require the use of an "or" or disjunction, hence
I label them "disjunctive concepts”. Their form is more like: <conjunctive-description-1> OR
<conjunctive-description-2>. More generally there can be any finite number of conjunctive terms in
the disjunctive combination. This form is analogous to the "sum of products” form for boolean
functions.

Some examples are in order. In the blocks world the concept of PRISM defined as a
BRICK or a WEDGE (but not a PYRAMID for example), is a disjunctive concept. In the kinship
“relations domain the relation UNCLE-OF is disjunctive, either (BROTHER -OF a PARENT- OF)
OR (HUSBAND-OF a SISTER-OF a PARENT-OF). There is no way to merge the two
conjunctive descriptions into a single conjunctive description without the aid of an auxﬂlary'
concept to hide the disjunctiveness within it (eg, def:mng EXTENDED -BROTHER as
BROTHER OR BROTHER-IN-LAW). In the domain of orthoganal gnds the concept of
ORTHOGONAL-DIRECTION can be’ expressed as NORTH or SOUTH or EAST or WEST.

1.3 The Problem of Learning Disjunctive Concepts
The question arises as to how a concept learning system might deal with disjunctive
concepts. Winston’s system could not learn such concepts because it represented each concept as a
single conjunctive description. Every new example could lead to changes or updates of this model,
but none could ever lead-to a disjunctive splitting into two or more conjunctive descriptions.
Winston's system did represent certain disjunctive concepts such as PRISM, but these

were implicitly described in terms of AKO links (eg BRICK and WEDGE were both AKO

Glenn Iba 5 Learning Disjunctive Concepts

PRISM). Such concepts were built into the initial memory structure. There was no facility to
~enable these concepts to be learned in terms of already available concepts,
_ Where the possibility exists of encountering disjunctive concepts, there are two possible
ways of handling a new positive example. Either the new example can be mefged into the
previous model, or it can be split to form a new (additional) branch of a disjunction. The problem
of handling disjunctive concepts can be reformulated as the problem of deciding whether merging
or splitting is appropriate. ‘
‘ Another problem that can arise is that of overgeneralization. Winston's learning system
18] was a conservative generalizer. It moved cautiously only in the direction of greater generality.
-+ Its basic generalizing mechanism was a merging process which combined networks. If presented by
two positive examples taken from separate branches of a disjunctive concept, this system would
apply a merge, resulting in an over-general model. Winston’s program lacked the ability to use
negative examples to recover from such over-generalizations. If a system for handling disjunctive
concepts is to be flexible in terms of permissible sequencing of teaching examples, then it must be

capable of recovering from overgeneralizations,

1.4 Illustrative Scenarios

Three example scenarios will serve to illustrate the behavior of the program which
implements the theory presented in this paper. The first demonstrates the basic ability to recover
from overgeneralization and to form disjunctions. The second gives a more complex example, still

using feature sets as the representation. The third shows the system using a network representation

scheme to learn a relational concept.

1.4.1 Scenario I

The first scenario is for the target concept of PRISM defined as having either the feature
BRICK or the feature WEDGE. Here the exampie (PYRAMID) will serve as a negative example.
Note that for this illustration examples are presented as sets of features enclosed in parentheses,

Positive examples are indicated by POSITIVE and negative examples by NEGATIVE.
- Example . PRISM: (BRICK) POSITIVE

This causes the system to create the model (BRICK). If the system were given some test questions

it would classify (RED BRICK), (BRICK), and (SMALL THIN GREEN BRICK) all as examples

Glenn Iba 6 Learning Disjunctive Concepts

of PRISM. It would judge (PYRAMID), (GREEN WEDGE), (WEDGE), and (LARGE BLUE
WEDGE) as not being examples of PRISM.

Example 2. PRISM: (WEDGE) POSITIVE

This example leads to the overgeneralization (), the empty feature set, which means that

everything is considered to be a PRISM. Any test questions at all at this point would result i

acceptance as examples of PRISM.

Example 3. PRISM: (PYRAMID) NEGATIVE

On the basis of this negative example, the system recovers from its overgeneralization and arrives
at the desired model: (OR (BRICK) (WEDGE)). Testing at this point, yields the desired correct
behavior: (RED BRICK), (THIN SMALL WEDGE), (BRICK), (LARGE BLUE THICK
WEDGE) are all classified as PRISM's; and (PYRAMID), (LARGE CREEN PYRAMID),
(DODECAHEDRON) would be rejected as non-PRISM's.

1.4.2 Scenario II

The target concept here is RED-OR- -TRIANGLE, that is, anythmg that either has the
feature RED or the feature TRIANGLE. Examples are again presented as sets of features.

Example I. RED-OR-TRIANGLE: (RED SQUARE THIN LARGE) POSITIVE
Resulting model: (RED SQUARE THIN LARGE)

Example 2. RED-OR-TRIANGLE: (BLUE TRIANGLE THIN SMALL) POSITIVE

Resulting model: (THIN)

Example 3. RED-OR-TRIANGLE: (BLUE CIRCLE THIN SMALL) NEGATIVE
Resulting model: (OR (BLUE TRIANGLE THIN SMALLXRED SQUARE THIN LARGE))

Example 4. RED-OR-TRIANGLE: (RED SQUARE THICK SMALL) POSITIVE
Resulting model: (OR (BLUE TRIANGLE THIN SMALLXRED SQUAREY))

Glenn Iba 7 Learning Disjunctive Concepts

Example 5. RED-OR-TRIANGLE: (GREEN THICK LARGE TRIANGLE) POSITIVE
Resulting model: (OR (TRIANGLEYXRED SQUARE))

Example 6. RED-OR-TRIANGLE: (RED CIRCLE THIN LARGE) POSITIVE
Resulting model: (OR (TRIANGLEXRED))

This scenario will be explained in much greater detail in section 4.2.

1.4.8 Scenario III
In this scenario, the target concept is UNCLE-NESS, which can be represented
disjunctively as either a brother of a parent, or a husband of a sister of a parent. The three

examples used in this scenario are represented as networks of nodes and relations:

<UNCLE-I> ::=
(NODES (A B C))

(LINKS (AKO A PERSON)
(AKO B PERSON)
(AKO C PERSON)
(MALE C)
(B PARENT-OF A)
(C BROTHER-OF B)))

<UNCLE-2> =
((NODES (A B C D))

(LINKS (AKO A PERSON)
(AKO B PERSON)
(AKO C PERSON)
(AKO D PERSON)

'(MALE D)

(B PARENT-OF A)
(C SISTER-OF B)
(D HUSBAND-OF C))

Glenn Iba 8 Learning Disjunctive Concepts

- <NON-UNCLE> := _
((NODES (A B C)) : _ ' !
(LINKS (AKO A PERSON)
(AKO B PERSON)
(AKO C PERSON)
(MALE C)
(B PARENT-OF A)
(C PARENT-OF B)))

Example . UNCLE-NESS: <UNCLE-I> POSITIVE
Resulting model: <UNCLE-I>

Example 2. UNCLE-NESS: <UNCLE-2> POSITIVE
Resulting model: <DESCR-1>
where <DESCR-1> :=
((NODES (A B C))
(LINKS (AKO A PERSON)
(AKO B PERSON
(AKO C PERSON
(B PARENT-OF A)
(MALE C))).

)
)

Note that this is an incorrect overgeneralization.

Example 3. UNCLE-NESS: <NON-UNCLE> NEGATIVE
Resulting model: (OR <UNCLE-1> <UNCLE-25)

Again the presentation of a negative example leads to recovery from an overgeneralization, and

results in a disjunction. This scenario will be discussed in greater detail in section 4.4.6.

Glenn Iba 9 Learning Disjunctive Concepts

20 A FRAMEWORK FOR A GENERAL CONCEPT LEARNING
- SYSTEM

2.1 Overview and description of performance

In this section a presentation will be given of a concept learning system in an abstracted
form. In the subsequent section certain parameters of this system will be specified to provide a
theory for leafning disjunctive concepts.

The present framework for a learning system follows the traditional teaching/testing
paradigm of Winston [I8] Teaching takes place by the presentation of a sequence of positive and
negative examples of the concept to be learned. Learning is demonstrated by testing the system
with new (or old) examples of the concepts it is expected to have learned.

More specifically the system performs two operations: LEARN and TEST. The LEARN
operator takes three arguments: name example value. The name argument can be any string and
serves only as an identifier for the concept. The example argument is a description of an object or
situation. It must be described in some description language. This description language is one
parameter of the general learning system. The value is either POSITIVE or NEGATIVE,
indicating whether the example represents a positive or negative instance of the concept. The
LEARN operator causes the system to update the model based on the newly presented example, or
to create a new model if no model is currently known for the named concept. The functional
definition of LEARN is left open, thus this procedure constitutes one of the parameters of the
learning-system.

The TEST operator takes two arguments: name example. These are the concept name
and a description, respectively, as in the case of LEARN. The TEST operator returns as its value
either YES or NO, according to whether or not the system expects the given des.c'ription is or is not
an example, based on its current model of the concept. It makes this prediction by calling a
function SATISFIES-MODEL? which takes two arguments: description model. This predicate
returns TRUE if the description argument satisfies the concept model argument, otherwise FALSE.
The SATISFIES-MODEL? predicate is another parameter of the learning system. Its definition
must be provided in order to use the system. The definition of the TEST operator is fixed,
however, and therefore is not a parameter of the learning system.

The system has a capability to learn as a result of its testing activities. After responding
to a TEST command, the system asks the teacher for feedback. The teacher can then tell the

system whether or not the prediction was correct. The system computes the true value of the

Glenn Iba 10 Learning Disjunctive Concepts

current example (simply the predicted value if the feedback was positive, or the negation of the
‘predicted value in case of negative feedback). Based on this correct value, the system updates its
model of the concept just as if the command had been

(LEARN CONCEPT-NAME CURRENT-EXAMPLE CCRRECTED—VALUE): By "

this simple means the system can learn from its mistakes.

2.2 Parameters of the system
The following are 'parameters of the general learning system, that is, they are left open in

designing‘the general system but must be specified or defined in order to completely specify a

particular learning system.

2.2.1 Descriptions and concept models

It is necessary for the system to have some way of describing examples. Therefore a

representation scheme must be provided. Associated with the description scheme must be a

predicate operator SATISFIES-DESCRIPTION? which can determine of a given example

whether it satisfies a given description.

The system must also have a convention for the structure of models of concepts. This
structure may be different than the convention for representing descriptions, for exarriple, it could
be a set or list of descriptions. Thus a second predicate, SATISFIES-MODEL?, must be provided
to determine whether an example satisfies a particular model. This predicate may make use of
SATISFIES-DESCRIPTION? in making its determination. R

2.2.2 Memory.

The system must have a memory facility, herein called the CONCEPT-MEMORY, for
storing concept models for later retrieval. The operators associated with this are
STORE-CONCEPT and RETRIEVE-CONCEPT. STORE-CONCEPT takes two arguments: a
concept name and a concept model. It creates an association of the given name and the given
model in CONCEPT-MEMORY, 5o that subsequent calls to RETRIEVE-CONCEPT with the
same concept name will return the given concept model. RETRIEVE-CONCEPT takes a single
argument: the name of the concept to be retrieved. It returns the current concept model

corresponding to that concept name if it exists, otherwise it returns CONCEPT-UNDEFINED.

- 2.2.3 The LEARN operator

Glenn Iba 1l Learning Disjunctive Concepts

A definition must be provided for the operator LEARN mentioned above in section 21
Its three arguments are: name example value. This operator is responsible for retrieving the old
concept model (if it exists), creating a new model based on the old model and the new example and
storing the new model for the concept in CONCEPT-MEMORY.

SUMMARY OF SYSTEM PARAMETERS:
Data Structures:
CONCEPT-MEMORY
Data Types:
concept model
description
Predicates:
SATISFIES-MODEL?
SATISFIES-DESCRIPTION?
Operators:
STORE-CONCEPT
RETRIEVE- CONCEPT
LEARN

Glenn Iba 12 Learning Disjunctive Concepts

30 A BASIC THEORY FOR HANDLING DISJUNCTIVE CONCEPTS

3.1 Domains to which ‘the theory applies
The present theory of learning disjunctive concepts is applicable to a broad range of
domains. There are just a few assumptions and constraints that must be satisfied. Any domain
with a concept representation scheme that satlsﬁes these constraints is suitable for use in this
theory.
The basic constraints that must be satisfied by the representation scheme are:
1. The set of possiblé descriptions is partially-ordered according to increasing generality |
by a binary predicate called GREATER- GENERALITY?
(GREATER-GENERALITY? A B) is true if and only if the descrlptlon A is at least
as general as the description B. [Intuitively, anything described by B could also be
described by Al. Note that (GREATER-GENERALITY? A A) is assumed to be true
since a concept is at least as general as itself.
2. There is an operation MERGE that takes two descriptions as arguments and returns
a description which is at least as general as each argument in turn. Thus
- (GREATER-GENERALITY? (MERGE A B) A) and (GREATER- GENERALITY?
(MERGE A B) B) are always true.
3. An additional assumption is made about the structure of the concept space: that it is
MONOTONIC with respect to positive examples. Under this assumption, if a given
description is a positive example of a concept, then so also is every description that is

e

more specific (less general) than the given description.

As an illustration of these ideas consider the very simple ATTRIBUTES- -WORLD in
which descriptions are merely finite sets of features or attributes. Some representative feature sets
are (RED SQUARE), (RED), (LARGE RED),). (SQUARE), and (SMALL BLUE CIRCLE). A
description set is satisfied by those objects which possess all the features of the set.

The GREATER-GENERALITY? predicate corresponds to the "subset” relation applied
to sets. For example (GREATER-GENERALITY? (RED) (RED SQUARE)) is true since (RED)
is a subset of (RED SQUARE).

The MERGE operation is performed by intersecting the two arguments. Since the
intersection of two sets is a subset of each of them, condition 2 above is satisfied. The resuit of
{MERGE (RED SQUARE) (LARGE RED)) is the descrip‘tion set (RED), which has greater

Glenn Iba 13 Learning Disjunctive Concepts

. generality than both (RED SQUARE) and (LARGE RED).

It must be emphasized that this simple domain is merely used for illustration because of
its clarity and simplicity, and that much richer representations such as frames or networks can be
used by defining suitable GREATER-GENERALITY? and MERGE functions. Any
 representation scheme that can be made to satisfy the specified conditions is valid for the purposes
of the theory.

3.2 Presentation of the theory
3.2.1 Overview , _

This theory solves the~probl¢m (of deciding whether to merge or split) by assuming that
merging is the appropriate choice unless evidence explicitly indicates otherwise. This may lead to
incorrect generalizations in some teaching sequences, but the system has the ability to recover from
these when later evidence points to a contradiction. Such over-generalization is detected when a
negative example satisfies a description resulting from a merge. The response in such a case is to
split up the merged description into a disjunction of descriptions, each of which is compatible with
the negativé example. This is possible because the System maintains a record of the positive
examples that contributed to the merge. A record is also maintained of the negative examples
encountered. These serve to inhibit overgeneralizations that might otherwise result from

subsequent positive examples.

3.2.2 Data Structures and Types
3.2.2.1 The concept model

The concept model will be structured into two parts - a POSITIVE-PART and a
NEGATIVE-PART. The POSITIVE-PART will be a set of CLUSTERS. Clusters are
structured objects with two parts - DESCRIPTION and EXAMPLES. The EXAMPLES partisa
list of one or more descriptions, and the DESCRIPTION part is a description-set obtained by ‘
MERGEing all of the descriptions in the EXAMPLES part to obtain a description that is more
general than each ‘of them. Since MERGE may fail to be associative, assume a left to right order
of application. In case of a single example description the result is just that description, no
MERGEs being necessary. The NEGATIVE-PART of the’concept model will merely be a set of
descriptions.

~In summary:

Glenn Iba : 4 Learning Disjunctive Concepts

CONCEPT-MODEL := POSITIVE-PART NEGATIVE-PART
POSITIVE-PART = CLUSTER-SET

CLUSTER-SET -:= set with elements of type CLUSTER

CLUSTER z= DESCRIPTION-PART EXAMPLES-PART

DESCRIPTION-PART := DESCRIPTION o

EXAMPLES-PART set with elements of type DESCRIPTION

NEGATIVE-PART := set with elements of type DESCRIPTION

" The positive-part of the model corresponds to a disjunctive form in which the clusters
correspond to terms. The concept can be considered to be (OR CLUST-DESCR-I
CLUST-DESCR-2 .. CLUST-DESCR-n) where CLUST-DESCR-i is just the description part of
the i-th cluster. The examples that contribute to a cluster are kept around since they may be
needed at a later time, Specifically, it may turn out that a cluster is overly general. In such a case,
it is necessary to split the cluster up, and the constituent examples are quite helpful in this recovery
process.

Itis the intention that every known positive example of the concept will be represented in
(at least) one cluster of the cluster-set. The clusters serve to group the positive examples into
MAXIMAL, CONSISTENT groups. In testing a new description to see if it satisfies the model, an
affirmative result is obtained if there is any cluster whose description-part has greater-generality
than the description being tested. This is where the disjunctive nature of the cluster set is
evidenced. - ‘ ,

The clusters must be CONSISTENT with the known negative examples of the concept.
If the description-part of a cluster has GREATER-GENERALITY than any one of the known
negative examples, then there is a contradiction. The description from the cluster would be judged
a positive example by the SATISFIES-MODEL test. Then by the MONOTONICITY condition
(assumption 3 of section 3.) the negative example, being less general than the given description,
should also be positive. Such a contradiction will be termed an INCONSISTENCY. Inconsistency
results from over-generalization. By maintaining the consistency of the clusters, this theory uses
negative examples to inhibit overgeneralization (and to recover from it when it happens due to
ordering of the teaching sequence).

The clusters will also be. MAXIMAL with respect to the negative examples. A cluster is
said to be MAXIMAL when no other cluster description can be MERGEd into it without vio‘la“trihgk
the CONSISTENCY condition. This condition insures that it is feally nécésﬁéfy t(';t have splits into

Glenn Iba 15 Learning Disjunctive Concepts

as many clusters as are present. If two clusters can be combined (by mtersectmg their descriptions)

wrthout violating the consistency condition, then they are not maximal.

(RED)

(SMALL RED) (RED BIG) (RED CIRCLE)

+ + -

Consider the above diagram as an example. If the positive examples (SMALL RED)
and (RED BIG) were merged to form a single cluster with description (RED), there would be an
inconsistency (since (RED CIRCLE) contradlcts the theory that anything red is an instance or the
concept). The negative example forces a disjunctive split of the two positive examples into separate
clusters. These clusters, consisting of just one example each, are also maximal, since their
combination would lead to the inconsistency just cited.

The negative-part of the model serves simply to record the negative examples of the

concept that have been _presented thus far. They are needed in order to prevent future

over- generahzanon as a result of positive examples. This should all be clearer when the treatment
of examples by the system is dealt with,

Associated with concept models is the SATISFIES-MODEL? predicate. For the
structured concept model described above, the SATISFIES-MODEL? predicate is defined by the
following procedure. First the set of descriptions is collected from the clusters forming the posmve
part of the model. Then for each description (SATISFIES-DESCRIPTION? example description)
is computed. The value returned is just the OR of these computed values. So an example satisfies
such a disjunctive model if and only if it satisfies at least one of the cluster descriptions in the

positive part of the model.

3.2.2.2 Concept Memory

CONCEPT-MEMORY s implemented triViaIIy as a list of pairs, each pair consisting of
a concept name and a concept model. There should only be one pair containing any given name.
The RETRIEVE-CONCEPT function simply searches for a pair whose name matches the

argument supplied. It returns as its value the concept model from this pair. If no pair is found

- then the value CONCEPT- -“UNDEFINED is returned. The STORE- -CONCEPT function finds

Glenn Iba 16 - Learning Disjunctive Concepts

the pair corresponding to its name argument and substitutes the new concept model for the old

model. If no pair is found with the given name then a new pair is formed from the name and

“model supplied, and this pair is added to the list.

3.2.3 The LEARN operator
3.2.3.1 Summary

The Learn operator takes three arguments: name example value. These were described

in section 21. This operator retrieves the old concept model (if one exists) corresponding to the
* name supplied. It then updates this model based on the information of the new example, If no

_ Previous model exists, then a new model is constructed based on the new example. Finally, the

updated model is stored in memory as the current model of the named concept. The core of this
operator is the procedure for updating the concept model. This will be described in the next

section.

3.2.3.2 Updating the model
3.2.3.2.1 Treatment of ‘positive examples

When the value argument of LEARN indicates a positive example of a concept, the
LEARN procedure tries to add the example into each cluster of the positive part of the concépt :
model. It does this by merging the description of the example with the description from the cluster.
If this merge is satisfied by any of the known negative examples, then the example is incompatible
with the cluster, tha; is, an inconsistency would result. In such a case the cluster is left unchanged
(retaining the description it had prior to the consideration of the merge). If, on the other hand, the
resultant description is not satisfied by any known negative example, then the example is consistent
with the cluster and will be added to it. This addition consists of ’
(1) replacing the description part of the cluster by the new (merged) description, and
(2) adding the new example to the set of examples in the examples part of the cluster. _

If the positive example is compatible with more than one cluster, it will be added to each
of them. If there is no cluster with which the example is compatible, then the example will be
"split” off to form a cluster of its own. This new cluster will take its description part from the
example’s description, and its example péxrt will contain just one element - the example ijtself.

It can be readily observed that these procedures maintain the MAXIMALITY and
CONSISTENCY conditions on the clusters, '

Glenn Iba 17 Learning Disjunctive Concepts

3.2.83.2.2 Treatment of negative examples ’

o Wh’en’ a r’ieg’étive ekafnple i$ encoﬁntered, the skysrtem undertakes two éctions. (1) It adds
the example to the negative part of the model. (2) It checks each of the clusters in the positive part’
of the model to see if any are inconsistent with the new negative example. Any clusters that are
inconsistent must be split up into a set of clusters which are maximal, consistent, and which include
ambng them all of the examples of the original cluster.

To do this, a new cluster set is formed by adding the positive examples of the old cluster
one at’ a time to a null cluster set, subject to the constraint of the negative example in questioh.
The addition of the examples to the cluster set is done following the procedure outlined above for
handli‘ng positive examples. The clusters in this newly formed set replace the old inconsistent
cluster in the positive part of the model.

This process of breaking up clusters may result in clusters that are no longer maximal
with respect to the set of negative examples, (though they will all be consistent). This is because
certain of the clusters arising from the splitting process may be MERGE-able with other clusters in
the cluster set. Thus as a final step the entire cluster set is examined for possible simplifications
through the combining of clusters. The simplified cluster set replaces the old cluster set in the

. positive part of the concept model.

3.2.4 Remaining parameters of the theory

By specifying some of the parameters of the general learning framework I have
specialized it to a theory for learning disjunctive concepts. In doing so, I héve not explicitly
specified the particular representation scheme that is to be used. Any representation scheme
. satisfying the criteria of section 3.1 can be used. Thus the final parameters are the format for
description and representation, the SATISFIES-DESCRIPTION? predicate, the
GREATER-GENERALITY? predicate,and the MERGE operator. These must be supplied for a
particular domain in order to apply the theory. Some illustrations will be given in the next

chapter.

SUMMARY OF DISJUNCTIVE THEORY PARAMETERS:
DESCRIPTION SCHEME '
SATISFIES-DESCRIPTION?
GREATER-GENERALITY?

MERGE |

Glenn Iba 18 Learning Disjunctive Concepts

4.0 APPLICATION AND ILLUSTRATION OF THE BASIC THEORY

4.1 Feature Sets and the Attributes World

' In order to illustrate the basic functioning and capabilities of the theory, 1 introduce a
particularly simple domain called ATTRIBUTES WORLD. Examples and descrlptlons in this
world consist merely of sets of features or attributes. The name is motivated by the set of learning
toys called "attribute blocks”, which are a set of plastic blocks with varying shape, color, size, and

thickness. In schools these blocks are frequently used to teach concepts of set theory A block

: mlght be described as (LARGE RED THIN TRIANGLE). The features are treated as a set 504

the order of features in the list representation is not s:gmfxcant In 1ts more general form, an
example in ATTRIBUTES WORLD can be described as an arbltrary set of mdependent features.

The SATISFIES- DESCRIPTION? and the GREATER-GENERALITY? predicates
will both be implemented as the boolean predicate testing for set contamment The forms
(SATISFIES-DESCRIPTION? A B) and (GREATER- GENERALITY? B A) are specnfled to be
true if A contains B (that is, B is a subset of A) where A and B are feature sets. Note the reversed
order of the arguments - B is more general than A implies that description A satisfies description
B, that is, anything satisfying the first description will also satisfy the second.

The MERGE operator will be implemented as set intersection. Thus (MERGE A B) will
return those features shared by A and B. The intersection is contained in each set individually,
thus satisfying the condition that the merged descnptxon be more general than each of the sets

bemg merged. Refer to section 3..

4.2 A sample teaching sequence
Consider the following illustrative teaching sequence for the concept

"RED-OR-TRIANGLE": .

I (LEARN RED-OR-TRIANGLE (RED SQUARE THIN LARGE) POSITIVE)

2. (LEARN RED-OR-TRIANGLE (BLUE TRIANGLE THIN SMALL) POSITIVE)

3. (LEARN RED-OR-TRIANGLE (BLUE CIRCLE THIN SMALL) N"EC‘ATNE}’ -

. (LEARN RED-OR-TRIANGLE (RED SQUARE THICK SMALL) Posmvz)

5 (LEARN RED-OR-TRIANGLE (GREEN THICK LARGE TRIANGLE) POSITIVE)

6. (LEARN RED-OR-TRIANGLE (RED CIRCLE THIN LARGE) POSITIVE)

On being presented with the first example the system tries to look up the concept

- Glenn Iba . 19 Learning Disjunctive Concepts

RED-OR-TRIANGLE. No model is currently known, so a new one is created. The positive part
will consist of one cluster whose description and sole example will be (RED SQUARE THIN

LARGE). The negative part will be empty. Thus after step 1 the concept model structure appears
as follows: '

_ "RED-OR-TRIANGLE"
© POSITIVE-PART
 'CLUSTER

DESCRIPTION
(RED SQUARE THIN LARGE)

EXAMPLES
(RED SQUARE THIN LARGE)

NEGATIVE-PART | | N

The second example is also positive so the system tries to add it to each cluster in the positive part

of the model. There is only one cluster at this time. The example is merged (intersected) with the

description of the cluster. (MERGE (BLUE TRIANGLE THIN SMALL) (RED SQUARE THIN

LARGE)) is evaluated yielding the description (THIN). Since there are no negative examples (the
negative part of previous model is empty) to contradict this description (consistency condition), the

example may be added to the cluster. Thus the new description is (THIN) and both examples are

listed. The resulting concept structure is:

"RED-OR-TRIANGLE"
POSITIVE-PART
CLUSTER
DESCRIPTION
(THIN)
EXAMPLES
(BLUE TRIANGLE THIN SMALL)

(RED SQUARE THIN LARGE)
NEGATIVE-PART

At this stage, "thin" is the essential model held by the system. Anything having the feature THIN

Glenn Iba 20 Learning Disjunctive Concepts

will be viewed by the system as satisfying this model. This illustrates how the system performs as a

simple conjunctive generalizer in the absence of evidence “forcing” a disjunction.

The third example is a nega'tiv.e example. It indicates to the system that overgeneralization has
occurred and that a disjunctive split is necessary. The system compares the description of the
- hegative example to the description of each cluster. It notes that the cluster description (THIN) is
satisfied by the negative examp!e (BLUE CIRCLE THIN SMALL). Thus it is necessary to split
up the cluster (as it violates the consistency condition). Two separate clusters are formed from the
‘ -examples of the old cluster. These clusters in turn, replace the old cluster. Finally the negative

example is added to the negative-part of the model. After the third example:

"RED-OR-TRIANGLE"
POSITIVE-PART
' CLUSTER
DESCRIPTION
(BLUE TRIANGLE THIN SMALL)
EXAMPLES
(BLUE TRIANGLE THIN SMALL)
CLUSTER
DESCRIPTION
(RED SQUARE THIN LARGE)
EXAMPLES
(RED SQUARE THIN LARGE)
NEGATIVE-PART |
(BLUE CIRCLE THIN SMALL)

At this point the model may interpreted as "either a (thin small blue triangle) or a (large thin red

square)”,

The fourth example illustrates the treatment of a positive example in the case of a non-trivial
disjunction of clusters. It also demonstrates how knowledge of negative examples can inhibit

- over-generalization. The system tries to add the example to each cluster. With the first cluster,

Glenn Iba 2 Learning Disjunctive Concepts

(MERGE (RED SQUARE THICK SMALL) (BLUE TRIANGLE THIN SMALL)) yields the
description (SMALL). This descnptxon s satisfied by the negative example (BLUE CIRCLE
THIN SMALL), so the example cannot be added to the ﬁrst cluster. With the second cluster,
(MERGE (RED SQUARE THICK SMALL) (RED SQUARE THIN LARGE)) yields the
description (RED SQUARE). This description is consistent with all the known negative examples

' (there is only one so far), so the example can be added to the second cluster. The result is:

"RED-OR-TRIANGLE"
POSITIVE-PART
CLUSTER
DESCRIPTION
(BLUE TRIANGLE THIN SMALL)
EXAMPLES
(BLUE TRIANGLE THIN SMALL)
CLUSTER
DESCRIPTION
' (RED SQUARE)
EXAMPLES
(RED SQUARE THICK SMALL)
(RED SQUARE THIN LARGE)
NEGATIVE-PART
(BLUE CIRCLE THIN SMALL)

In words "either a small thin blue triangle or a red square”.

The fifth example works in a similar way to loosen restrictions on the first cluster, resulting in the
model:

"RED-OR-TRIANGLE"
POSITIVE-PART
CLUSTER
~ DESCRIPTION

~ Glenn Iba 22 Learning Disjunctive Concepts

(TRIANGLE)
EXAMPLES
(GREEN THICK LARGE TRIANGLE)
(BLUE TRIANGLE THIN SMALL)
CLUSTER
DESCRIPTION
(RED SQUARE)
EXAMPLES
(RED SQUARE THICK SMALL)
(RED SQUARE THIN LARGE)
NEGATIVE-PART S
(BLUE CIRCLE THIN SMALL)

“either a triangle or a red square”

The attempt to add (GREEN THICK LARGE TRIANGLE) to the second cluster failed because
- the merge (intersection) led to an empty feature set. The empty feature set is satisfied by any other
feature set, and in particular by the negative example (BLUE CIRCLE THIN SMALL).

The sixth and final example, (red circle thin large), removes the square constraint from the second

cluster. The final model appears:

"RED-OR-TRIANGLE"
POSITIVE-PART
CLUSTER
DESCRIPTION
(TRIANGLE)
EXAMPLES
(GREEN THICK LARGE TRIANGLE)
(BLUE TRIANGLE THIN SMALL)
CLUSTER
DESCRIPTION
(RED)

Glenn Iba 23 Learning Disjunctive Concepts

EXAMPLES
(RED CIRCLE THIN LARGE)
(RED SQUARE THICK SMALL)
(RED SQUARE THIN LARGE)
NEGATIVE-PART
(BLUE CIRCLE THIN SMALL)

“either a triangle or something red”

4.3 Variations in order of the teaching sequence

One of the features of this theory of learning disjunctive concepts is that it is less
dependent on the order of presentation of examples than was Winston’s system. This is due to its
ability to recover from overgeneralization. Winston's system did not derive any information from a
negative example if it was the first item in the teaching sequence. In addition, it was necessary to
carefully order the teaching Sequence so as not to mislead the program. The currently proposed
system for disjunctive concepts does not suffer these restrictions.

There is some dependency on the specific ordering of the teaching sequence, but it is not .
irrevocable. Given two teaching sequences, one a permutation of the other, they niay result in

slightly different models. With the presentation of an appropriate sequence of additional examples,
the models will converge.

4.3.1 An alternative ordering of the sample teaching sequence
In this section, an alternative ordering will be considered for the teaching sequence
presented in section 4.2. Assume that the negative example from that sequence were not presented

until after all of the positive examples. The sequence would then appear as:

RED-OR-TRIANGLE:
L (LEARN RED-OR-TRIANGLE (RED SQUARE THIN LARGE) POSITIVE)

2, (LEARN RED-OR-TRIANGLE (BLUE TRIANGLE THIN SMALL) POSITIVE)

3. (LEARN RED-OR-TRIANGLE (RED SQUARE THICK SMALL) POSITIVE)

4, (LEARN RED-OR-TRIANGLE (GREEN THICK LARGE TRIANGLE) POSITIVE) |
5. (LEARN RED-OR-TRIANGLE (RED CIRCLE THIN LARGE) POSITIVE)
.

(LEARN RED-OR-TRIANGLE (BLUE CIRCLE THIN SMALL) NEGATIVE)

Glenn Iba : 24 Learning Disjunctive Concepts

. Through step 5 the system would conjunctively accumulate the examples in a single cluster, there

not being any negative examples to indicate a need for disjunctive splitting. The model after the

" first five examples would be:

"RED-OR-TRIANGLE"
POSITIVE-PART
' 'CLUSTER
'~ DESCRIPTION -
-0
EXAMPLES

' (RED CIRCLE THIN LARGE)
(GREEN THICK LARGE TRIANGLE)
(RED SQUARE THICK SMALL)
(BLUE TRIANGLE THIN SMALL)
. (RED SQUARE THIN LARGE)
NEGATIVE-PART

"anything”

At this point the system believes that anything satisfies the concept. This is not unreasonable since
it has yet to encounter a negative example. This is a typical case of overgeneralization. Note that
the cluster description formed by merging the examples is empty, since there are no features shared
by all five positive examples. ‘

When the system is given a negative example in step 6, it successfully recovers from the
overgeneralization, arriving at a model similar to that attained through the different teaching
sequence discussed in section 4.2. The recovery process is instigated by discovery that the new
negative example satisfies the cluster description of the one cluster in the positive part of the old
concept model. This causes the cluster to be broken up to re-establish consistency of the clusters

with the negative example.

The procedure for splitting up is called REBUILD-CLUSTER. This procedure takes
two arguments: cluster and negative-example. The task of REBUILD-CLUSTER is to restructure .

Glenn Iba 25 Learning Disjunctive Concepts

_ the examples from the cluster into a set of clusters which are maximal and consistent with respect to
the _hegative-example. It does this by taking the examples from the example set of the cluster being

'rebunt and inserting them one by one into ANSWER, which is initially an empty cluster-hst This

is done by the INSERT-IN-CLUSTER-LIST procedure which adds an example to a set of clusters,4 '
subject to the constraint of a single negative example. In this case the negative example is the
same one that initiated the call to REBUILD-CLUSTER (and was passed to it as the second
argument). INSERT- IN-CLUSTER-LIST insures that the cluster-list stays maximal and consistent

(wnth respect to the negative example) with the insertion of each addmonal example.

REBUILD-CLUSTER returns the value of ANSWER, which is a cluster list of max:mal
consistent clusters, which include among them all the examples of the input cluster. The clusters of
the cluster list which is returned are substituted for the single overgeneral cluster.

Taking the concrete example at hand, there is one cluster:

CLUSTER
DESCRIPTION
.0
EXAMPLES
~ (RED CIRCLE THIN LARGE)
(GREEN THICK LARGE TRIANGLE)
(RED SQUARE THICK SMALL)
(BLUE TRIANGLE THIN SMALL)
(RED SQUARE THIN LARGE)

- and the negative example:

(BLUE CIRCLE THIN SMALL) Because the negative example satisfies the
(empty) description of the cluster, it is necessary to rebuild the cluster. ANSWER is initialized to
the empty cluster list. Then the first example, (RED CIRCLE THIN LARGE), is added subject to

the constraint of the negative example. This first example forms a single cluster, resulting in:

ANSWER
CLUSTER
DESCRIPTION
(RED CIRCLE THIN LARGE)

Glenn Iba 26 Learning Disjunctive Concepts

EXAMPLES
(RED CIRCLE THIN LARGE) .

The second example, (GREEN THICK LARGE TRIANGLE), is merged with the description of
the cluster in ANSWER to yield (LARGE). This is compatible with the negative example, that is
(BLUE CIRCLE THIN SMALL) does not sausfy (LARGE), 5o the second: example is added to the
cluster yielding: o LT e e

' A’NSWER e e e
CLUSTER
DESCRIPTION
.(LARCE)
EXAMPLES

(GREEN THICK LARGE TRIANGLE)
(RED CIRCLE THIN LARGE)

‘The third example, (RED SQUARE THICK SMALLY), when merged with (LARGE), yields the
empty description (). This is inconsistent since the negative example satisfies it, thus this third

example cannot be added to the cluster. Instead it goes to start a new cluster, resulting in:

ANSWER
CLUSTER
DESCRIPTION
(LARGE)
EXAMPLES
(GREEN THICK LARGE TRIANGLE)
(RED CIRCLE THIN LARGE)
CLUSTER
DESCRIPTION
(RED SQUARE THICK SMALL)
EXAMPLES
(RED SQUARE THICK SMALL)

~ Glenn Iba 27 Learning DiSjunctive Concepts

~ The fourth example, (BLUE TRIANGLE THIN SMALL), fails to be added to the first cluster
since the merged descnpuon would be (. which is inconsistent. It fails to be added to the second
cluster since the merged descnptlon (SMALL) is inconsistent with the negative example (BLUE'
CIRCLE THIN SMALL). Since the fourth example cannot be added to either of the two exxstlng

clusters, it will be added to the cluster set as a new cluster, resulting in:

ANSWER ,
CLUSTER
' - DESCRIPTION
(LARGE)
EXAMPLES
(GREEN THICK LARGE TRIANGLE)
(RED CIRCLE THIN LARGE)
CLUSTER
DESCRIPTION
(RED SQUARE THICK SMALL)
EXAMPLES
- (RED SQUARE THICK SMALL)
CLUSTER
DESCRIPTION .
(BLUE TRIANGLE THIN SMALL)
EXAMPLES
(BLUE TRIANGLE THIN SMALL)

Finqlly, the fifth example, (RED SQUARE THIN LARGE), is added. It can be added to the first
cluster since it merges with (LARGE) to yield (LARGE). It can also be added to the second cluster,
since the merge is (RED SQUARE). It fails on the third cluster since the merge would be (BLUE
THIN), which is contradicted by the negative example (BLUE CIRCLE THIN SMALL). Thus

the new cluster set'is:

ANSWER
CLUSTER
DESCRIPTION

Glenn Iba 28 Learning Disjunctive Concepts

(LARGE)
EXAMPLES | :
(RED SQUARE THIN LARGE)
(GREEN THICK LARGE TRIANGLE)
(RED CIRCLE THIN LARGE)
CLUSTER |
DESCRIPTION
' (RED SQUARE)
EXAMPLES o
(RED SQUARE THIN LARGE)
(RED SQUARE THICK SMALL)
CLUSTER -
" DESCRIPTION
(BLUE TRIANGLE THIN SMALL)
EXAMPLES
(BLUE TRIANGLE THIN SMALL)

- This is the final cluster set. Each of the examples is now represented in at least one of the clusters.

This new cluster set restores consistency of the clusters with the negative examples. The model

generating procedure now replaces the old inconsistent cluster by this new set of clusters to yield the
model:

"RED-OR-TRIANGLE"
POSITIVE-PART

CLUSTER

DESCRIPTION
(LARGE)

EXAMPLES
(RED SQUARE THIN LARGE)
(GREEN THICK LARGE TRIANGLE)
(RED CIRCLE THIN LARGE)

" CLUSTER

.DESCRIPTION

Glenn Iba 29 Learning Disjunctive Concepts

(RED SQUARE)
EXAMPLES
(RED SQUARE THIN LARGE)
(RED SQUARE THICK SMALL)
CLUSTER |
DESCRIPTION
(BLUE TRIANGLE THIN SMALL)
EXAMPLES |
(BLUE TRIANGLE THIN SMALL)
NEGATIVEPART S tielme
| (BLUE CIRCLE THIN SMALL)

"either large or a red square or a small thin blue triangle”

. The last step of the model generating process is to check the clusters for maximality. The clusters
are maximal as they stand, since the merging of any two of the clusters of the positive part would
. result in the empty description (), which would be contradicted by the known negative example.

Since the clusters check out as maximal, the above model is returned unchanged as the final model.

4.3.2 Convergence of models after an additional example

As a result of the variation in the ordering teaching of the teaching sequence, the models
~are shghtly dxfferent In particular, the second model has a spurious cluster corresponding to the
term "large” in the disjunction. One additional example, however, suffices to bring the models to
convergence.

Suppose the negative example (BLUE SQUARE THIN LARGE) were presented to the
. System after each or the foregoing sequences. In the first case the positive part of the model
remains unchanged since there are no inconsistencies. The negative example is merely added to
the negative part of the model. In the second case, the example contradicts the cluster whose
description is (LARGE). This cluster is broken up by a call to REBUILD-CLUSTER " using the‘ 3
' example (BLUE SQUARE THIN LARGE) as the constraint. The result is two clusters:

CLUSTER
DESCRIPTION

Glenn Iba 30 Learning Disjunctive Concepts

(RED THIN LARGE)
EXAMPLES =~
(RED CIRCLE THIN LARGE)
(RED SQUARE THIN LARGE)
CLUSTER '
DESCRIPTION _
(GREEN THICK LARGE TRIANGLE)
EXAMPLES .
(GREEN THICK LARGE TRIANGLE) "~ -

These two clusters replace the old cluster in the positive part of the model:

POSITIVE-PART
CLUSTER
DESCRIPTION
(RED THIN LARGE)
- EXAMPLES
~ (RED CIRCLE THIN LARGE)

(RED SQUARE THIN LARGE)
CLUSTER

DESCRIPTION
(GREEN THICK LARGE TRIANGLE)
EXAMPLES | |
(GREEN THICK LARGE TRIANGLE)

CLUSTER
DESCRIPTION
(RED SQUARE)
EXAMPLES
(RED SQUARE THIN LARGE)
(RED SQUARE THICK SMALL)
CLUSTER

DESCRIPTION
- (BLUE TRIANGLE THIN SMALL)

Glenn Iba 31 Learning Disjunctive Concepts

i

EXAMPLES o
} “(BLUE TRIANGLE THIN SMALL)
NEGATIVE-PART
" (BLUE SQUARE THIN LARGE)
(BLUE CIRCLE THIN SMALL)

The other clusters, (RED SQUARE) and (BLUE TRIA.N:GLE THIN SMALL) are consistent with
- the négative example (BLUE SQUARE THIN LARGE), so they need not be brkokenﬁup. Note
that thé ﬁegative example has been added to the negative part of the model. The final stage of the
- model updating vprocess is to check for maximality of the clusters in the positive part.

This process can be described as follows. The current set of clusters form one set, and the
answer will ultimately be in a second set. This second is initialized to the empty set. One by one
the clusters will be moved from the first to the second set. Before it is added to the second set, the
cluster is compared with each of the clusters already in the set. If the two clusters are compatible,
that is, if their descriptions can be merged consistently, then the clusters are combined by-
substituting the merged description for the original descriptions, and the union of the examples
lists for the original example lists. The cluster being moved over is combined in this way with

vkever'y cluster in the answer set with which it is compatible. Only when a cluster is not compatible
with ANY of the clusters already there, is it added as an additional cluster to the answer set.

In taking the union of two example sets it is helpful to have some means of identifying
equal or redundant examples. This can be done by defining a special function for testing equality.
A general approach is to define equivalence of examples in terms of the

- GREATER-GENERALITY? predicate. A is equivaient to B if and only 1f both
(GREATER-GENERALITY? A B)and (GREATER-GENERALITY? B A) are true. Equivalent
examples can then be considered equal for purposes of the set union operator.

Let us illustrate this process with the cluster set above. For Simplicity the clusters will be
represented merely by their descriptions. The clusters start out on the left, and will be moved to

the answer set on the right. The following is the initial state:

CLUSTER R cemptysets -
(RED THIN LARGE) . ‘
CLUSTER ‘
(GREEN THICK LARGE TRIANGLE)

R

Glenn Iba 32 Learning Disjunctive Concepts

CLUSTER
| (RED SQUARE)
CLUSTER.
(BLUE TRIANGLE THIN SMALL)

The first cluster is simply moved across:

CLUSTER - CLUSTER ,
7 (GREEN THICK LARGE TRIANGLE) = . . . (RED THIN LARGE) .
CLUSTER | | | |
~ (RED SQUARE)
CLUSTER

(BLUE TRIANGLE THIN SMALL)

The second cluster is moved next. It is paired with the cluster on the right, and checked for -

compatibility. The merged description is (LARGE). This is inconsistent with the first example

. (BLUE SQUARE THIN LARGE). Note that consistency in this context means consistent with

each of negative examples in the negative part of the model. Because of the inconsistency of this

merge the clusters are not combined, and the new cluster is added as a second element to the

answer set:
CLUSTER CLUSTER
(RED SQUARE) ' (GREEN THICK LARGE TRIANGLE)
CLUSTER CLUSTER ‘ ‘
’ (BLUE TRIANGLE THIN SMALL) (RED THIN LARGE)

When the (RED SQUARE) cluster is moved across it is compared with each of the two clusters on

the right. ‘When merged with (GREEN THICK LARGE TRIANGLE) it yields the empty
description, which' is inconsistent with each of the two negative examples. When merged with
(RED THIN LARGE) the resu!ting description is simply (RED). This is conksikstent with both
negative examples, so the two clusters are combined. The union of their respective examples lists
is:

(RED CIRCLE THIN LARGE)

Glenn Iba 33 Learning Disjunctive Concepts

(RED SQUARE THIN LARGE)
| - (RED SQUARE THICK SMALL)
- since the example (RED SQUARE THIN LARGE) occurs in both clusters. Thus the new (RED)

cluster has these three examples as its examples set. The resulting state of the process is:

CLUSTER ~ CLUSTER
(BLUE TRIANGLE THIN SMALL) (GREEN THICK LARGE TRIANGLE)
' CLUSTER '
(RED)

The final cluster from the left is compared with each of the clusters on the right. The merge of
(BLUE TRIANGLE THIN SMALL) with (GREEN THICK LARGE TRIANGLE) yields the
description (TRIANGLE). This is consistent with each of the negative examples. The merge of
(BLUE TRIANGLE THIN SMALL) with (RED), however, yields the empty description (). This
is not consistent with the negative examples. v

Thus only the (BLUE TRIANGLE THIN $MALL) and (GREEN THICK LARGE
| TRIANGLE) clusters are combined. The union of their examples lists is simply:

- (GREEN THICK LARGE TRIANGLE)
(BLUE TRIANGLE THIN SMALL)

since there are no redundant examples in this case.

" The final state is:

<empty-set> CLUSTER
(TRIANGLE)
CLUSTER
(RED)

At every stage the clusters in the answer set (on the right) are maximal. Thus in the final answer,
which incorporates each of the original clusters, the clusters are all maximal. Nothing was done in
this process to violate consistency, either, so the resultant set of clusters is both maximal and
consistent.

These clusters are substituted for the positive part in the final model:

Glenn Iba +34 Learning Disjunctive Concepts

"RED-OR-TRIANGLE"
POSITIVE-PART - - o

CLUSTER
DESCRIPTION
(RED)
EXAMPLES
(RED CIRCLE THIN LARGE)
(RED SQUARE THIN LARGE)
(RED SQUARE THICK SMALL)
CLUSTER
DESCRIPTION
(TRIANGLE)
EXAMPLES

(GREEN THICK LARGE TRIANGLE)

, (BLUE TRIANGLE THIN SMALL)

NEGATIVE-PART
(BLUE SQUARE THIN LARGE)
(BLUE CIRCLE THIN SMALL)

- "either a red thing or a triangle”

This model is the same as the one arrived at by the first teaching sequenice presented in section 4.2.
augmented by the one additional example. Both models have the same cluster descriptions and
will therefore cause the system to recognize the same set of examples as being "red-or-triangle”

using either model. In this case the models were made to converge by just one additional example.

4.4 Using networks as descriptions

Feature sets are not the only description scheme that can be used with this theory. As
mentioned in section 3.1, any scheme that satisfies the basic assumptions:

monotinicity of. concepts .

existence of generality predicate

existence of merge operation

e rr—

Glenn Iba 35 Learning Disjunctive Concepts

can be employed. As a further illustration these notions will be worked out for some examples

using networks as the descriptions.

4.4.1 Network descriptions
A network will be described as a set of variables (nodes) and a set of assertions (n-ary
~links) about these variables. For a naive first treatment, AKO links will not be treated any
~ differently than other links or assertions. A Winston arch example might be described as follows:
((NODES (A B C))
" (LINKS (AKO A BRICK)
(AKO B BRICK)
(AKO C BRICK) '
(SUPPORTS A C) ,
(SUPPORTS B C))) where any atom not specified as a node is assumed to be a
known constant (such as BRICK, AKO, and SUPPORTS).

4.4.2 GREATER-GENERALITY? predicate

. One way of supplying a greater-generality? predicate is by means of a subgraph
isomorphism. That is, descriptiqn A is more general than description B if and only if Ais a
subgraph of B under some suitable identification of nodes. Observe that for graphs the subgraph
_ relation is directly analogous ta the subset relation for sets, ’

One simple implementation of this operator has been tested out. A brute force mafcher
tries out all possible node identifications and checks to see whether the assertion sets satisfy the
subset relation (where assertions are considered the same if they match term for term, considering
nodes to match if they are paired in the specific identification selected).

Thus the description

((NODES (A B))
(LINKS (AKO A BRICK)
(AKO B WEDGE)))

would be considered of greater generality than

((NODES (X Y 2))

Glenn Iba ' 36 Learning Disjunctive Concepts

(LINKS (SUPPORTS Y X) »
(AKO X WEDGE)
(AKO Y BRICK)))

because under substitution of the node identifications (A Y) and (B X), the assertions of the first
description become (AKO Y BRICK) and (AKO X WEDGE), both of which are contained in the
assertion set of the second descnptnon

The following pomts should be noted. It is not necessary for a node to have any AKO
~'asseruon about it at all, since for the present AKO is being treated just like any other assertion or
feature. In identifying the nodes of the two descriptions, it is sufficient that the nodes of the first
description be paired with some subset of the nodes of the second, not necessarily all of them. Of
course the brute force identifier must consider all possible identifications with all pdssible subsets.
The procedure for substituting nodes has to be smart about detecting possible variable conflicts

and avoiding these, or on the other hand the system can be restricted by requiring that the node

names of different descriptions will always be distinct. Finally, the brute force approach to '

matching is cumbersome and inefficient, and certainly heuristic approaches can be tried that might

provide vast improvement, but efficiency of matching is not the issue being addressed here.

4.4.3 MERGE operator
For feature sets, set intersection was employed as the MERGE operator. For networks the
MERGE operator can be implemented as network intersection, that is, the finding of maximal

common subgraphs. As with the GREATER-GENERALITY? predicate, the procedure first

considers all pairings of nodes, substitutes accordingly for the nodes in the first set, then intersects

the two assertion sets (sets of links). The largest intersection set is the winner (since it is guaranteed
to be maximal both numerically and relatively). The node set is then pruned so as to include only
those nodes that actually appear among the assertions in the intersection. This node set and the
intersection set of assertions make up the new MERGEd description. This description is
guaranteed to be more general than each of the descriptions which contributed to the merge. In
the case of greater-generality the procedure could terminate as soon as one identification of nodes
was found that led to containment of the assertion sets. With the merge, it is necessary to search all
the identifications, at least until an intersection is found that has size equal to the minimum of the
two separate assertion sets. '

Applying the above procedure to the descriptions of a "tower”

Glenn Iba ‘ 37 Learning Disjunctive Concepts

{(NODES (A B C))
(LINKS (AKO A BRICK)
(AKO B BRICK)
(AKO C BRICK)
(SUPPORTS A B)
(SUPPORTS B C)))
and an "arch"” '
((NODES (X Y 2))
(LINKS (AKO X BRICK)
(AKO Y BRICK)
(AKO Z BRICK)
(SUPPORTS X 7)
(SUPPORTS Y Z))

yields a description including four assertions:
((NODES (X Y 2))
(LINKS (AKO X BRICK)
(AKO Y BRICK)
(AKO Z BRICK)
(SUPPORTS X 2))

which was obtained by the node identifications (A XXB ZXC Y). There were some other possible
_merges with the same size of the resultant assertion set. These arise from alternative pairings of
nodes. So one is chosen arbitrarily.

The MERGE operator is not unique, and it is not symmetric. Its result may depend on
idiosyncracies of the order of nodes or assertions. But it is guara.riteed to always provide a
maximal network infersection that is more general than each of its arguments, which is all the

disjurictive learning theory requires.

. 4.4.4 The monotonicity restriction on concepts
The monotonicity condition requires that for all concepts, any specialization of a positive
example will also be a positive instance. This excludes cases where the lack of a feature is critical,

that is, the presence of the feature would make the description a negative example. Such a case

Glenn Iba » 38 Learning Disjunctive Concepts

occurs in the Wmston arch where the lack of the TOUCH]NG feature for the two support bricks
is critical (but the feature is not explnc:tly included in the description of the positive example).

Possible ways to handle this kmd of situation will be discussed in. section 8.2.

4.4.5 Illustration with disjunctive ARCH in Blocks World

| Winston's system learned that an ARCH could have either a brick or a wedge as a
crosspiece. The only reason this was possible was that the system already knew about the concept
PRISM, which was a common generalization of brick and wedge. The disjunction was therefore
flmphcxt in thls PRISM concept. Without this device Winston's system would fail on such an
example. _

The disjunctive Ieammg system proposed here does handle such cases. Instructed thh

(LEARN ARCH <ARCHI> POSITIVE), where <ARCHI> is the decnptlon

((NODES (X Y Z))
(LINKS (AKO X BRICK)
(AKO Y BRICK)
(AKO Z BRICK)
(SUPPORTS X 2)
(SUPPORTS Y AN

- the system constructs a simple model with just one cluster:

ARCH
POSITIVE-PART |
 CLUSTER .
DESCRIPTION
‘ <ARCHI>
EXAMPLES

<ARCHI>
NEGATIVE-PART '

With a second example (LEARN ARCH <ARCH2> POSITIVE), where <ARCH2> is the same

- description except with a wedge for the supported crosspiece,

Glenn Iba 39 Learning Disjunctive Concepts

((NODES (A B C))
(LINKS (AKO A BRICK)
(AKO B BRICK)
(AKO C WEDGE)
(SUPPORTS A C)
(SUPPORTS B C))),

the system merges the new example into the one cluster resulting in the overgeneralization:

ARCH

POSITIVE-PART
CLUSTER _ ;
~ DESCRIPTION o
<DESCRI> ‘
EXAMPLES
<ARCHI>
<ARCH?2>

NEGATIVE-PART
where <DESCRI> is the description

{(NODES (A B C))

(LINKS (AKO A BRICK)
(AKO B BRICK)
(SUPPORTS A C)
(SUPPORTS B C))).

The AKO feature for C has been dropped. Now the syStem will judge as instances of ARCH
anything regardless of what c is, as fong as the other features are satisfied. Suppose that there are
somethings like that that are not intended to be arches, such as if ¢ was a pyramid, a foo, a person,
or a theory. Then even though bricks A and B supported C the feature (AKO C PYRAMID) or

foo, person, etc., would make the example a noninstance.

The instruction (LEARN ARCH <NON-ARCH> NEGATIVE) is given, where

Glenn Iba 40 Learning Disjunctive Concepts

~ <NON-ARCH> is the description
| ((NODES (A B C))
(LINKS (AKO A BRICK)
(AKO B BRICK)
(AKO C PYRAMID)
(SUPPORTS A C)
(SUPPORTS B C))).

Since this negative example satisfies the descnptxon <DESCRI> of the cluster, the cluster must be
- broken up. This results in the disjunctive mode!:
ARCH

POSITIVE-PART
CLUSTER
DESCRIPTION
<ARCHI>
EXAMPLES
. <ARCHI>
CLUSTER
DESCRIPTION
<ARCH2>
EXAMPLES

_ <ARCH2>
NEGATIVE-PART

<NON-ARCH>

"<ARCHI> or <ARCH?2>"

The system does not at present have the ability to form partial disjunctions. Disjunctions are so far

either all or nothing. A facility for partial dlSjUnCtlonS would be an /interesting and useful
extension.

4.4.6 Illutration with UNCLE-NESS concept in Kinship

Gienn Iba 41 Learning Disjunctive Concepts

Relations Domain

The concept of UNCLE-ness is also dxsjuncnve This provides yet another ijllustration of
networks used for descriptions within the disjunctive learning theory.

Given the instruction (LEARN UNCLE <UNCLE-I> POSITIVE) where <UNCLE-I> is

((NODES (A B C))
(LINKS (AKO A PERSON)
(AKO B PERSON)
(AKO C PERSON)
(MALE C)
(B PARENT-OF A)
(C BROTHER-QF"B)))

the system creates the straightforward model with one cluster. :
Given the second instruction (LEARN UNCLE <UNCLE 2> POSITIVE) where .‘
<UNCLE-2> is

((NODES (A B C D))
(LINKS (AKO A PERSON)

(AKO B PERSON)
(AKO C PERSON)
(AKO D PERSON)
(MALE D)
(B PARENT-OF A)
(C SISTER-OF B) *
(D HUSBAND-OF C)))

the system merges the two descriptions to form the model:

UNCLE
POSITIVE-PART
CLUSTER
DESCRIPTION

- Glenn Iba ‘ 42 Learning Disjunctive Concepts

<DESCR-I>
EXAMPLES
<UNCLE-I>

‘ . <UNCLE-2> ,
NEGATIVE-PART ‘

- where <DESCR-I> is the description

" ((NODES (A B C)
_ (LINKS (AKO A PERSON)
| (AKO B PERSON)
(AKO C PERSON)
(B PARENT-OF A)
(MALE C))).

The concept has been overgeneralized to the description "3 persons, one a parent of the second, and

~ the third a male”.

A counterexample to this is then supplied by the instruction
(LEARN UNCLE <NON-UNCLE> NEGATIVE)
where <NON-UNCLE> stands for the description

((NODES (A B C))
(LINKS (AKO A PERSON)
(AKO B PERSON)”
(AKO C PERSON)
(MALE C)
(B PARENT-OF A)
'(C PARENT-OF B)))

The system discovers that this negative example satisfies the description of the cluster in the old

model. Thus the old model's cluster must be split up, yielding the new model:

Glenn Iba 43 Learning Disjunctive Concepts

UNCLE |
 POSITIVE-PART
CLUSTER
DESCRIPTION
 <UNCLE->
EXAMPLES | ,
<UNCLE-> | - =

CLUSTER |
" DESCRIPTION | B

<UNCLE-2>
EXAMPLES
<UNCLE-2>
NEGATIVE-PART
<NON-UNCLE>

“either <UNCLE-I> or <UNCLE-2>"

Of course the system also has the tapability to eliminate extraneous features through the merging
process. If the above descriptions were more complicated, for example, including extraneous
features such as age, genders of persons for which their gender is not relevant to the concept,
proper names, etc,, the system could still acquire the concept. It would naturally require additional

examples to eventually eliminate the extraneous features from each of the terms of the disjunction.

Glenn Iba 44 Learning Disjunctive Concepts

5.0 SYMMETRIC TREATMENT OF POSITIVE AND NEGATIVE'
EXAMPLES

5.1 Outline of the approach

Certain concepts are more compactly expressible as negations of disjunctions than as
direct disjunctions. An example is:

"anything that is not either blue or a circle”. To express this concept as a direct |

disjunction could lead to a possnbly infinite number of terms, since there is no limit to the
“descriptions that might lack blue-ness and circle-ness. _
‘ This situation suggests that it might be desirable to simultaneously build a model of the
negation of a concept while developmg the model of the concept itself. This parallel model
constructing could be completely symmetric with respect to the handlmg of positive and negative
examples. If it was observed that the negative model was compact and efficient while the positive
modél was cumbersome, then greater weight could be given to the simpler negative model.

In the original theory, the positive-part of a model was structured as a cluster-set while
the negative-part was simply a set of examples. In the symmetric version of the theory, both the
positive-part and the negative-part will be structured as cluster sets. Implicit in each of these
cluster sets is an example set, which can be recovered by taking the union of the examples from
each of the clusters in the set. The intention is that the clusters will satisfy a symmetric or double
maximality and consistency condition. The clusters of the positive-part will be maximal and
consistent with respect to the examples in the negative part. Similarly, the clusters in the
negative-part will be maximal and consistent with the examples of the positive part. To guaranteé

that these conditions are maintained, it is hecessary to modify the operations that update the model.

Before, there were two basic operations performed when updating a model:

L INSERTION = Adding a new example into a cluster list .(subject to the constraints of
the known negative examples).
2. SPLITTING = Using a new negative example to break up any positive clusters

which'had become overgeneralized.

Operation | was used when a positive example was encountered, and operation 2 when there was a

negative example.

In the symmetric version of the theory both operations 1 and 2 will be performed for

Glenn Iba 45 Learning Disjunctive Concepts

every example, posmve or negative. For a posmve example operation | is applied to add the
“example to the posmve part cluster set SUbJECt to the consistency constraint with the examples
~implicit in the negative- part, and operation 2 is used to break up over-general clusters in the
negative-part cluster set. Symmetrically, for negative examples, operation | is used to add the
example to the negative cluster set relative to the positive examples, and operation 2 uses the new

negative example to break up any over-general clusters in the positive-part.
POSITIVE-PART: NEGATIVE-PART:

cluster-set cluster-set

implicit examples implicit examples
In this diagram the lines indicate the constraint relationships for consistency and maximality.

In order to be certain that the symmetric version of the system will work properly, it is
necessary to strengthen the monotonicity assumption of section 3.1, Previously, it was only assumed
for positive examples that all descriptions of lesser generality would also be positive examples.'
Now it is necessary in addition to assume the analog for negative examples: that any examples of
lesser generality (that is, having all tHe same features plus some additional ones) will also be

negative examples.

5.2 Illustrations of the symmetric theory in attributes world
(using feature sets as descriptions) _
Suppose the concept to be learned is "neither a circle nor a square™. The concept can be

taught using the following sequence of examples:

Glenn Iba 16 Learning Disjunctive Concepts

L (LEARN "NEITHER-CIRCLE-NOR-SQUARE" (RED CIRCLE THIN) NEGATIVE)
2 (LEARN "NEITHER-CIRCLE-NOR-SQUARE" (RED TRIANGLE THICK SMALL)
POSITIVE)

3 (LEARN "NEITHER-CIRCLE-NOR-SQUARE" (BLUE TRIANGLE THICK LARGE)
- POSITIVE) -
4 (LEARN "NEITHER-CIRCLE-NOR- “SQUARE" (RED SQUARE LARGE THIN)
NEGATIVE)

5. (LEARN "NEITHER-CIRCLE-NOR-SQUARE" (RED RECTANGLE THIN SMALL)
POSITIVE)

6. (LEARN "NEITHER-CIRCLE-NOR- SQUARE (BLUE CIRCLE LARGE) NEGATIVE)

7. (LEARN "NEITHER-CIRCLE-NOR-SQUARE” (GREEN THICK SQUARE SMALL)
NEGATIVE)

Example 1 "NEITHER-CIRCLE-NOR-SQUARE" (RED CIRCLE THIN) NEGATIVE

The system builds a model with a single cluster in the negative-part. Note that the
system, just like the asymmetric version, can make use of negatlve examples even when they occur
" at the beginning of the teaching sequence.

The two basic operations of INSERTION and SPLITTING are trivial in this case, since
at the start both parts are empty.

"NEITHER-CIRCLE-NOR-SQUARE"
POSITIVE-PART

NEGATIVE-PART)
CLUSTER
DESCRIPTION
(RED CIRCLE THIN)
EXAMPLES
(RED CIRCLE THIN)

Example 2 "NEITHER-CIRCLE-NOR-SQUARE" (RED TRIANGLE THICK SMALL)
POSITIVE

Glenn Iba 47 Learning Disjunctive Concepts

With this the system creates a single cluster in the positive-part of the model:

"NEITHER-CIRCLE-NOR- SQUARE"
POSITIVE-PART
CLUSTER
DESCRIPTION
' (RED TRIANGLE THICK SMALL)
EXAMPLES |
R _(RED TRIANGLE THICK SMALL)
NEGATIVE-PART
CLUSTER
DESCRIPTION
(RED CIRCLE THIN)
EXAMPLES
(RED CIRCLE THIN)

Again the operations proceed in a very straightforward manner. The insertion is done relative to
the negative constraint of the single negative example (RED CIRCLE THIN). The splitting
- operation simply checks that the new positive example does not contradict any of the negative

© clusters (the trivial smgle cluster in this case).

Example 3 NEITHER CIRCLE-NOR-SQUARE" (BLUE TRIANGLE THICK LARGE)
POSITIVE

The insertion operator adds the new example to the poSitive-part, relative to the
constraint of the negative example (RED CIRCLE THIN). This leads to a new cluster with
description (TRIANGLE THICK), which is consistent with the negative example.

The splitting operation again leads to no action.

"NEITH ER-CIRCLE-NOR-SQUARE"
POSITIVE-PART
CLUSTER

Glenn 1ba 448 Learning Disjunctive Concepts

DESCRIPTION
(TRIANGLE THICK)
EXAMPLES ’
" (BLUE TRIANGLE THICK LARGE)
(RED TRIANGLE THICK SMALL)
NEGATIVE-PART
CLUSTER
‘DESCRIPTION
| (RED CIRCLE THIN)
EXAMPLES'
(RED CIRCLE THIN)

Example 4 "NEITHER-CIRCLE-NOR-SQUARE" (RED SQUARE LARGE THIN)
NEGATIVE

The insertion operation adds the new negative example to the negative-part of the model |
subject to the constraint of the two positive examples (BLUE TRIANGLE THICK LARGE) and
(RED TRIANGLE THICK SMALL). The example merges into the cluster to form the descnpuon“
(RED THIN), which is consistent with the two examples given as constraints.

“The splitting operator checks the clusters (one in this case) of the positive-part to see if
consistency is violated. Smce the cluster description (TRIANGLE THICK) is not satisfied by the

new negative example, no splitting is necessary.

"NEITHER-CIRCLE-NOR-SQUARE"
POSITIVE-PART |
CLUSTER
DESCRIPTION
(TRIANGLE THICK)
EXAMPLES
(BLUE TRIANGLE THICK LARGE)
(RED TRIANGLE THICK SMALL)
NEGATIVE-PART '
CLUSTER

"Glenn Iba 49 Learning Disjunctive Concepts

DESCRIPTION
(RED THIN) |

EXAMPLES
(RED SQUARE LARGE THIN)
(RED CIRCLE THIN)

Example 5 NEITHER CIRCLE NOR- SQUARE (RED RECTANGLE THIN SMALL)
POSITIVE

Since the example is positive, it must be added to the positive-part of the model.
Merging with the cluster description (1"RIANGLE THICK) would yield the empty description (),
which is contradicted by the negative constraints (RED SQUARE LARGE THIN) and (RED
CIRCLE THIN) Therefore this new example goes to start a new cluster.

The splitting operator notes that the negative cluster (RED THIN) is satisfied (and
therefore contradicted) by the new, positive example. Thus this cluster needs to be split up, using

the new example as the consistency constraint. This yields the model:

"NEITHER-CIRCLE-NOR-SQUARE" -
POSITIVE-PART
CLUSTER
DESCRIPTION
(TRIANGLE THICK)
EXAMPLES
(BLUE TRIANGLE THICK LARGE)

(RED TRIANGLE THICK SMALL)
CLUSTER

DESCRIPTION
(RED RECTANGLE THIN SMALL)
EXAMPLES

(RED RECTANGLE THIN SMALL)
NEGATIVE-PART ’

CLUSTER

i

Glenn Iba 50 Learning Disjunctive Concepts

DESCRIPTION ,
(RED SQUARE LARGE THIN)
EXAMPLES
(RED SQUARE LARGE THIN)
CLUSTER
DESCRIPTION
(RED CIRCLE THIN)
EXAMPLES
N (RED CIRCLE THIN)

Example 6 "NEITHER-CIRCLE-NOR-SQUARE" (BLUE CIRCLE LARGE) NEGATIVE

This negative example is added to the second cluster yielding the description (CIRCLE),
but it is not added to the first since the merged description would be (LARGE), whlch is
contradlcted by the positive example (BLUE TRIANGLE THICK LARGE). -

The sphtting operator has no effect here smce the positive clusters are both consistent

" with the new example.

The new model is:

"NEITHER-CIRCLE-NOR-SQUARE"
POSITIVE-PART
CLUSTER
DESCRIPTION
(TRIANGLE THICK)
EXAMPLES
(BLUE TRIANGLE THICK LARGE)
(RED TRIANGLE THICK SMALL)
CLUSTER ' o N
DESCRIPTION
(RED RECTANGLE THIN SMALL)
 EXAMPLES

R S

Glenn Iba 51 Learning Disjunctive Concepts

- (RED RECTANGLE THIN SMALL)
NEGATIVE-PART | S

CLUSTER'
DESCRIPTION
(RED SQUARE LARGE THIN)
EXAMPLES
(RED SQUARE LARGE THIN)
CLUSTER -
DESCRIPTION -
~ (CIRCLE)
EXAMPLES
(BLUE CIRCLE LARGE)
(RED CIRCLE THIN)

Example 7 "NEITHER-CIRCLE-NOR-SQUARE" (GREEN THICK SQUARE SMALL)
NEGATIVE

The new negative example is here added to the first cluster of the negative-part of the

. model but not the second. The resulting description for the first cluster is simply (SQUARE).

- There are no splittings of clusters in the positive part since both are consistent with the

new negative example.

The final mode! after the above teaching sequence:
"NEITHER-CIRCLE-NOR-SQUARE"
POSITIVE-PART
CLUSTER
' DESCRIPTION
(TRIANGLE THICK)
EXAMPLES

(BLUE TRIANGLE THICK LARGE)
(RED TRIANGLE THICK SMALL)

Glenn Iba 52 Learning Disjunctive Concepts

CLUSTER ,
DESCRIPTION
(RED RECTANGLE THIN SMALL)
EXAMPLES
(RED RECTANGLE THIN SMALL)
NEGATIVE-PART
 CLUSTER
'DESCRIPTION
(SQUARE)
EXAMPLES
(GREEN THICK SQUARE SMALL)
(RED SQUARE LARGE THIN)
CLUSTER
DESCRIPTION
(CIRCLE)
EXAMPLES
(BLUE CIRCLE LARGE)
" (RED CIRCLE THIN)

positive: "either a thick triangle or a small thin red rectangle”

negative: "neither a square nor a circle”

kThere are now two viewpoints for the concept model, a positive view and a negative one. Either
viewpoint (or both) could be disjunctive in character. The above illustrative teaching sequence led
to a2 model where both the positive arid negative parts were d|51unct1ve It would be easy to
implement various schemes for selecting one of the viewpoints as bemg simpler or more economical
than the other. One such scheme would favor the smaller number of terms (clusters) in the
disjunction, and in case of ties choose the one with the smaller number of total features summed
over all terms. This scheme, in particular, would select the negative point of view for the above
concept example. For purposes of identification, an example would then be judged a positive
instance only if it did not satisfy any of the terms (clusters) of the negative-part of the model.

Note also how the operations of insertion and splitting worked to always maintain mutual

maximality and consistency of positive clusters with negative examples and negative clusters with

L R
R S

Glenn Iba 53 Learning Disjunctive Concepts

positive examples.

Glenn Iba 54 Learning Disjunctive Concepts

6.0 A LIMITED MEMORY VERSION OF THE THEORY

The system as described implicitly remembers all the examples (both positive and

negative) ever presented to it for each concept it has‘learned. This assumption is perhaps a little

unrealistic. Although people do show a memory for certain examples presented, they certainly do
not have perfect memory.

It would be interesting to explore alternative schemes with weaker memory requirements.
This is additionally motivated by the fact that as the number of examples goes up, so does the
combinatorics of the Fnanipufatioh employed in updating the model.

One proposal is to have the system remember only concepts that lead to a change in the
model. There are two informal arguments in favor of this. First, examples leading to
contradictions of expectations are, from a psychological perspective, more likely to be noticed, and
more processing time will be devoted to them, hence they might have a greater likelihood of being
remembered. From the Viewpo’int of the system, counterexamples are more likely to be useful in the
future, while examples which are consistent with the model are more likely to be redundant with
other examples, and therefore, less worthy of being remembered explicitly.

Such a scheme has the distinct advantage that the size of the representatlon of a concept

will tend to stabilize as the model of the concept converges “Under the orlgmal memoryw h

assumpnon the model would continue to grow, even after the model was in “perfect agreement”
with the given concept. Sometimes, though, the system using the limited memory scheme would

reject potentially relevant examples, simply because they were redundant with the "wrong™ model.

Then the system would have to be given a similar example later, or be reminded of the particular ‘

"forgotten” example. This seems a small price to pay for the great overall reduction of memory

requirements.

Glenn Iba ' 55 Learning Disjunctive Concepts

70 CURRENT STATE OF THE IMPLEMENTATION

The framework learning system described in chapter 2 has been fully implemented,
including the feedback mechanism, whereby the system learns from the teacher’s feedback
regairding correctness of response to identification requests. All programming was done using the
language LISP. ’

Both the asyhmetric and symmetric versions of this theory of learning disjunctive
concepts have been programmed and tested. A decision procedure has not been lmplemented for
se!ectmg a posmve or negative viewpoint for the symmetnc model, though this is not for reasons of
difficulty. ’

' Both the basic and the symmetric versions of the disjunctive theory have been tested
using (1) feature sets and (2) networks (as described in chapters 4 and b) as the representational (or
descriptive) scheme. The brute force approach used for the network merging was very inefficient
for more complicated examples.

The limited memory version of the theory described in chapter 6 has not been
implemented at this.point. It should not be a difficult project, and the results of testing it and

comparing it to the other system should be interesting.

Glenn Iba 56 Learning Disjunctive Concepts

80 CRITICISM OF THE THEORY

8.1 Advantages

The primary strengths of the proposed theory are that it allows 'recovery from
overgeneralization and that it enables the learning system to acquire disjunctive as well as the more
usual conjunctive concepts. ’

The system is relatively immune to variations in the order of the teaching sequence
Although such vanatlons do exert some influence on the form of the model, they never cause the
system to get stuck in a nonrecoverable way. If two different sequences for teaching the same
concept lead to different models, then by presenting appropriate additional examples, the two
‘models can be made to converge to equivalent models.

The ability to treat positive and negative examples in a symmetric manner seems useful

and appealing. Further exploration is necessary to determine if this is, in fact, a good idea.

8.2 Disadvantages

One disadvantage of this system over previous systems, is its somewhat heavy reliance on
_memory of the specific examples presented. In chapter 6 a proposal was made for reducing this
‘dependence on memory, whxch leads to a somewhat more plausible memory reqmrement
Nevertheless, this proposal is not yet implemented, and it is uncertain just how effective the
modified theory would be.

Another criticism concerns efficiency of computation. Some of the operations of model
updating, in particular the operations for restructuring cluster lists by breaking up clusters, and for
guaranteeing maximality of clusters, require a fair number of MERGE operations. The MERGE
. operator is likely to be the most expensive of all the basic operations, especially in the case of more
complex descriptive schemes such as nétworks or frames. When checking maxnmallty there are
O(n::2) MERGES where n is the number of clusters (or terms of the disjunction). For the
restructuring operation the requirement for MERGE operations is roughly O(n) in the number of
examples so far remembered.

Still another limitation of the theory is its reliance on the monotonicity assumptions about
the concept space. In some cases the system still works despite violations of this condition, but the
condition is essential to any attempt ta prove the correctness of the system’s behavior. In particular,

one of the examples employed by Winston does not conform to the monotonicity criterion. This is

the famous ARCH example where the arch description:

Glenn Iba 57 Learning Disjunctive Concepts

 (NODES(ABC)
~ (LINKS (BRICK A)
(BRICK B)
(BRICK C)
(SUPPORTS A C)
(SUPPORTS B C)))
is a positive example and the more specialized description:
((NODES (A B C)) | |
AL (LINKS (BRICK A) -~ - - - e
(BRICK B)
(BRICK C) .
(SUPPORTS A C)
(SUPPORTS B C)
- (TOUCHES A B))
fails to be positive because of the additional feature (touches a b). One way of viewing this
problem is to assume there was an "imp!icit" (does-not-touch a b) feature in the first description.
Then the monotonicity condition would not have been violated. The result of presenting the
negative example is then to bring into relief such implicit features, so the system can then treat
them just as any other feature. This line of thought suggests a way of incorporating certain of
Winston’s ideas within the framework of the current theory for learning disjunctive concepts.
Another problem, which 1 consider to be a major one, shared by this sytem and many
previous ones, is that the system assumes that the description of an example presented to it will
include every one of the features potentially relevant to learning that concept. A truly flexible
learning system must be able to invent new features, redescribe examples in novel ways, and decide
which classes of features are relevant td learning a given concept, and which should be ignored.
The case of the "hidden" features described in the fast paragraph is just one special case of this
general phenomenon. In Winston's descriptions {of arches for example) the fact that certain of the
bricks were supported by the table might be relevant to learning a concept different from arch. I'm
not suggesting that it is possible to include every possible feature in advance, (probably it is not
possible), but I believe that it is important for a learning system to have the capability to go back
to an example or scene and reexamine it for new features that it might have overlooked or simply
not included in the initial description. This issue becomes clearer in systems that are themselves

.responsible for creating descriptions of scenes which are given to them. It would then be nice for

1

Glenn Iba 58 Learning Disjunctive Concepts

the system to go back for a second look at a scene to create a new or modxﬁed description for
k purposes of reﬁnmg the concept model. Such an action would certainly be necessary if the system
ended up with the same descnpnon for a positive scene and a negative one. This is another
challenging problem for further work. .

The final limitation to be listed here is that the system has no capability for forming
partial disjunctions. Sometimes all the descriptions will correspond (and be merge-able) except for
one feature. In such cases it might be more reasonable to localize the disjunction to the single
feature where the variation takes place. The system as it stands would form two completely
' separate descnpt:ons such as
(A and B and C) or (A and B and D)
 rather than the slightly more economical

| (Aand Band (Cor D).
Another examples is that of the Brick and Wedge ARCHES presented in section 4.4.5.

Certainly the representation of partial disjunctions leads to a more complex representation scheme,

but it also may provide sufficient additional flexibility and economy as to justify the trade-off. A

compromise solution could be the induction of auxiliary disjunctive concepts such as the PRISM

concept that Winston’s system had within its AKO hierarchy.

8.3 Discussion of related work

Systems such as Winston[18] and Hayes-Roth(6] are essentially generalizing programs.
They move only in the direction of greater generality. Winston's program actually did have a
limited ability to recover from certain overgeneralizations by backtracking to choice points and
following an alternative branch. Nevertheless, the overall flavor is one of pure generalization.
Hayes-Roth’s system is a particularly pure example of the "generalization only” approach to concept
learning. He employed a network representation scheme which he called "parameterized structural
descriptions”. leen a set of examples, his system employed heuristic network matching to find a
maximal common subgraph. This description corresponds to the most conservative conjunctive
generalization of the set of examples.

Neither of these systems had the capability of learning disjunctive concepts. Winston's
system did include a facility for representing disjunctive concepts, but it could not form its own
disjunctions, thus it could never learn new disjunctive concepts. Hayes-Roth's system did not even

include a mechanism for representing disjunctive concepts. It dealt exclusively with conjunctive

st

Glenn Iba 59 Learning Disjunctive Concepts

descripttons , ;

-One of the sxmllantes of the present work with that of Winston [18), is the important role
played by negative examples in each. In Winston’s ARCH learning program, negative examples
were crucial to introducing emphatic, or "MUST-BE" pointers, into the concept model. In the
present work, negative examples play a dual role, inhibiting overgenerahzanons and initiating

disjunctive splitting. Hayes-Roth’s induction system [6] made no use of negative examples.

One very important difference between the present system and previous systems such as

those of Wmston (18] and Hayes -Roth [6], is with respect to memory requirements. Winston and
~Hayes-Roth mamtam only a single concept model after any sequence of examples. The examples
themselves are forgotten. My system, on the other hand, remembers the examples which led to the
current concept model. These examples were necessary in order to enable recovery from
overgeneralizations. Chapter 6 proposed a method for reducing the extent of this memory burden,
but. it was still necessary to remember some of the examples, though the number of these was
greatly reduced as the model converged. 1 conjecture that some memory of examples is necessary in
order to enable the learning of disjunctive concepts. Perhaps this is the price that must be paid to
enable recovery from overgeneralizations in situations where disjunctive concepts are a possibility.
| Ancther interesting induction system is that of Vere [17). He proposes a mechanism
called "Counterfactuals". Concepts are described by a general rule modified by a description of the
- exceptions. Vere extends this to "multilevel counterfactuals” where there may be exceptions to the
exceptions, and so forth. Such a mechanism has an appealing flavor of "homihg in” or converging
to a correct model. Discovering and enumerating exceptions is one very important way of
recovering from overgeneralizations. In some situations it is also clearly the most efficient method.
For example, in learning the formation of the past tense of verbs, it is efficient to represent a

general rule of adding the "-ed" ending, and then explicitly list the irregular verbs that are

“exceptions to this rufe.

An important way in which the system of counterfactuals prdposed by Vere differs from
the other systems mentioned is in the way it is taught.. The previous systems all learn from a
sequence of examples which are presented one at a time. Each new example leads to an updated
model of the concept. Vere's system assumes that all of the examples are presented simultaneously
as a set. The model building process is not incremental. If an additional example is later
encountered that does not conform to the induced model, it is necessary to start over completely to

generate a new model using all the previous examples as well as the smgle new example

Vere’s COUNTERFACTUAL 'system is nevertheless quite xnteresung in that it does deal

sesa

Glenn Iba 60 Learning Disjunctive Concepts

with disjunctive concepts. Vere's approach is analogous with the minimization of Boolean

functions as a minimal sum of products. A single conjunctive description corresponds to a product

term in a sum of products expression. A disjunctive description can be thought of as the sum of its
conjunctive terms. This system for the representation of disjunctive concepts is very Similar to that
employed in the present work, where the clusters are the structures analogous to the terms of the
disjunction. The important difference lies in the fact that my approach is incremental whereas
Vere's is not. My system, like Winston’s and Hayes-Roth’s, builds a model which can be
incrementally updated on the basis of subsequént individual examples.

" Sherman and Ernst [15] present a very different approach to the problems of concept
learning in general and the learning of disjunctive concepts in particular. Their work is an
extension of the EPAM discrimination net learning model proposed by Feigenbaum [3] in the
context of learning conjunctive concepts such as strings of letters. The approach is one of concept
differentiation or discrimination, as opposed to generalization. What is seen as important is not the
defining of a cohcept in isolation, but discriminating between a given concept and other learned

concepts.

The memory of their system is organized as a discrimination net with tests at each node.

‘The nét,is actually a binary tree. The test associated with each node, when applied to a presented

example, decides which branch of the tree should be followed, and thus which further tests should

be applied. A given input example is classified by starting at the top of the tree, applying the test

associated with that node, selecting a subtree according to the result, and recursively classifying the

_input according to the subtree thus selected. This process leads to a unique terminal node selected

by the tests applied. The terminal nodes of the tree have category labels instead of tests. Thus,

any input can be classified into one of the categories labelled at a terminal node of the tree. This is

the basic recognition process.

Note that more than one label may exist at a single terminal node. This may occur either
when the concepts corresponding to the labels have not yet been discriminated, or when there is
more than one name for a single concept. Also, a single label may reside at more than one terminal
node. This feature allows the representation of disjunctive concepts. Each terminal node
corresponds to a conjunctive description, formed from the results of the tests applied on the path
leading to it. By repeating a single category label at different terminal nodes, it is possible to
achieve the effect of a disjunctive sum of conjunctive terms.

Learning proceeds by adding new tests and branches to the tree, in order to permit

discrimination of a larger number of concepts. When told that it has incorrectly classified a given

Glenn Iba 61 Learning Disjunctive Concepts

input, the system creates a new test to discriminate between the new input and the former concept
category. This approach is very appealing in certain respects. It eliminates the necessity of having
a complete. description of each example immediately upon its initial presentation. Rather, the
description of a concept can be built up slowly as more and more features are discovered to be
necessary to differentiate it from other concepts. Such an approach also has important
psychological plausibility. People often start out with crude or vague definitions of concepfs. The
definitions become more precise as it becomes necessary to make finer and finer discriminations.

" One of the drawbacks of this approach is that the model of a concept is not collected in a

single place, but rather is distributed throughout the network in terms of the various tests. This -

makes it more difficult for the system to make generalizations. It is unclear how to observe
similarities between different descriptions. The common features may be distributed along different
paths in different branches of the tree. _

Yet another restriction is that the tests must be applied in a fixed order. Thus if one test
«could not be applied due to insufficient information being available, the system could not proceed
to recognize it at all. It is desirable for a recognition system to degrade more gracefully than this.
Humans seem able to recognize things even when a few of the features are missing or obscured.

Due to the strengths of this approach, further investigation is warranted. In particuldr,
the representation system is accompanied by a natural recognition procedure, learning does not
presuppose complete descriptions of examples, concepts are learned in relation to one another and

disjunctive concepts are no more difficult to learn than simple conjunctive ones.
8.4 Directions for future work

There are numerous directions in which further exploration is needed. One important
area is that of composite or compound cdncepts. This is the study of how concepts combine to form
more complex concepts. Such a compounding mechanism would also contribute to the learning of
disjunctive concepts by allowing the localization of disjunctions. If two descriptions matched
exactly except for a few features, they could be merged by means of an auxiliary dlSjUﬂCthe concept
that collected the differing features. In this way the common features can be exploited, and the
disjunction can be confined or localized, rather than extending to the complete descriptions. Such a
mechanism would also permit the nesting of disjunctions, which has not been addressed in this

work.

Another important issue is that of the discovery and invention of new descriptive

Glenn Iba 62 Learning Disjunctive Concepts

features. It is unrealistic to assume that all the relevant features of a concept are present in the
' initial descnpuon glven toa learmng system. An important aspect of learning is the invention of
new ways of describing things, using new features, or other newly acquired concepts.
The organization of concepts in the memory store presents still more problems for further
" inquiry. How should concept models be stored so as to economize on space by exploiting
similarities and common structures? How can the memory organization support efficient retrieval
and recognition processes?
How can the leammg system be designed so as to generate its own auxiliary or mternal
"'_‘concepts wnthout the prodding of an external teacher? That is, how can an intelligent system be
made to recognize important or regularly occurring patterns, and initiate its own concept

generalization and concept composition processes, in the course of its normal activity?

Glenn Iba 63 Learning Disjunctive Concepts

Bibliography

L. Brown, .S, "Steps Toward Automatic Theory Formation", Proc. 3rd IJCAL, Stanford, Calif,, 1973, -
pp- 121-129,

2. Bruner,].S., The Process of Education, Cambridge: Harvard University Press, 1960.

3. Feigenbaumm, E., "The Simulation of Verbal Learning Behavior”, in Feigenbaum, E.,; and
Feldman,], eds.,, Computers and Thought, New York: McGraw-Hill, 1963, pp. 297-309.

4. Fikes, R, Hart, P, and Nilsson, N., "Learning and Executing Generalized Robot Plans”,
Technical Note 70, SRI, Menlo Park, Calif,, July 1972,

5. Hayes-Roth, F., "Patterns of Induction and Associated Knowledge Acquisition Algorithms", Dept.
of Computer Science, Carnegie-Mellon University, May 13, 1976.

6. Hayes-Roth, F., and McDermott, J., "Knowledge Acquisition from Structural Descriptions”,

Working Paper, Dept. of Computer Science, Carnegie-Mellon University, Feb. 11, 1976.

7. Jones, T.L., A Computer Model of Simple Forms of Learning, Ph.D. Thesis, MIT, (Project MAC
Technical Memorandum 20), January, 1971.

8. McMaster, 1, A Proposal for Computer Acquisition of Natural Language, TR-75-3, Dept. of
Computing Science, Univ. of Alberta, Edmonten, Alberta, May 1975, '

9. Michalski, R.and Negri, P., "An Experiment on Inductive Léarning in Chess Endgames”, in
Elcock, E., and Michie, D., eds,, Machine Intelligence 8, Halstead Press, New York, 1977, pp.175-192.

10. Miller, P.L., "An Adaptive Natural Language System that Listens, Asks, and Learns™, Proc. 4th
International Joint Conference on Artificial Intelligence held at Thilisi, Georgia, USSR, 1975, voll,

pp.406-413.

1. Minsky, M.."'A framework for representing knowledge”, Al Memo 306, MIT Artificial

Glenn Iba 64 Learning Disjunctive Concepts

Intelligence Laboratory, 1974.

12. Negri, P., "Inductive Learning in a Hierarchical Model for Representing Knowledge in Chess
End Games", in Elcock, E., and Michie, D., eds,, Machine Intelligence 8, Halstead Press, New York,
1977, pp.193-204,

13. Rumelhart, D., and Norman, D., "Accretion, Tuning, and Restructuring: Three Modes of
Learning”, Technical Repor't 63, Center for Human Information Processing, Univ. of Calif, San

" Diego, August, 1976.

14. Salveter, S, "Learning Structures to Represent Verb Meaning”, Computer Sciences Technical

Report #294, Computer Sciences Deptartment, University of Wisconin-Madison, March 1977.

15. Sherman, R., and Ernst, G., "Learning Patterns in Terms of Other Patterns”, Pattern
Recognition, voll (1969), pp.301-313,

16. Smith, R., Mitchell, T., Chestek, R, and Buchanan, B, "A Model for Learning Systems",
Stanford Heuristic Programming Project, Memo HPP-77-14, Computer Science Department,
Stanford University, March 1977.

17. Vere, S., "Multilevel Counterfactuals for Generalizations of Relational Concepts and

Productions”, Dept. of Information Engineering, University of Hlinois at Chicago Circle, 1978.

18. Winston, P, Learning Structural Descriptions from Examples, Ph.D. Thesis, MIT, Al TR-231,
1970. ’

'19. Winston, P., "Learning By Creating and Justifying Transfer Frames”, Al memo AIM-4l4a, Al
Laboratory, M. T., Cambridge, Mass., January, 1978. ’

20. Winston, P., "Learning by Understanding Analogies”, Al Memo AIM-520, Al Laboratory,
M.LT, Cambridge, Mass,, June 1979.

