e ,vf‘Massachusetts lnstltute of Technology
o Artltlctal lntelllgence Laboratory

. MECHANlCAL ARM CONTROL
e by
Rlchard C Waters

Abstract

‘Thls paper dlscusses three mam problems assoccated wuth the control of the motron of a"r”" :
chamcal arm ‘ :

| 1) Transformatlon between dlfferent coordmate systems assocuated wrth the arm. oo

. 2) Calculatlon ot detalled trajectorles for the arm to follow.

3) Calculatron of the forces which must be applred to the jomts of the arm in order to _ e
- make |t move along a specrfred path ‘
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l. Introduction |

This paper is concerned with the motion control portion of a mechanical arm control system, anq
the kinds of computations it needs to perform. Figure 1 is a partial schematic of the flow of
information in a robot system containing an arm. The solid arrows in the figure indicate the principle

~ kinds of information used by the motion controller.
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Figure 1: The flow of information in an arm control system.,

In this discussion it is assumed that the mechanical arm is made up of a series of links connected

by one degree of freedom joints. Further, it is assumed that the motion of the arm is caused by

forces applied to these joints. The force control inputs to the arm control the magnitude of these
forcefs. ‘ ' .
Typically an arm will have internal sensors which measure the position (and perhaps the
velocity) of each joint. The outputs of these sensors make up the internal sensation information
coming from the arm to the motion controller. A generalized coordinate system based on these
values is a "natural™ way for the motion controller to represent the state of the arm.
The control signals from the rest of the robot system to the motion control system are not

constrained by the way in which the arm is constructed, but rather by the fact that they need to be
concise and convenient from the point of view of the higher levels of the robotic system. This

means that in general these signals will be neither complete specifications of the path of an arm
motion, nor expressed in the coordinate system natural to the arm. Rather, they will contain only

'essent_ial information about the motion, expressed in a coordinate system which is easily usable by

the rest of the robot system. :
In order to control the motion of the arm, the motion controller must take these control signals
along with feedback from the arm’s internal sensors and produce signals to the force transducers in

the arm. This paper discusses three main aspects of this process:

A) Coordinate Transformation: Section II develops methods which can be used to transform
between joint oriented generalized coordinates for arm position, and other coordinate
systems.

B) Trajectory Calculation: The motion controller must‘develdp a completely specified

1 detailed trajectory from the partial information in the external control signals. This

‘problem is discussed in Section 111 ]
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C) Force Calculation: Once a path has been selected, the arm must be moved along this
path. To do this the arm controller needs to calculate what forces must be applied to
the joints in order to obtain the required accelerations. Section IV develops a set of

- equations for doing this.

“Each of the above problems is amenable to exact solution. However, the resulting equations are,
in general, quite complex and difficult to compute. This paper explores three ways for dealing with
this problem. First, it is sometimes possible to express the equations in a form which makes it
possible to calcu'ate them rapidly. Second, there are a variety of methods available for obtaining
approximate solutions to the equations. Third, it is sometimes possible to design the arm in such a
way that the equations are Slmpllfled

Il. Describing the State of a Mechanical Arm

In order to facilitate analyhca! treatment of the arm, the first part of this sectuon develops a
mathematical method for describing the joints and links in a mechanical arm and the relative
. orientation of successive links. This gives precise meaning to the notion of a generalized coordinate
~ system based on the positions of the joints. The remainder of the section discusses methods for
converting from one coordinate system to another.

Describing the Relationships Between the Joints and Links In an Arm

Following the development in [Uicker 1965] the links in a mechanical arm are numbered starting
with the reference frame as link 8 and proceeding outward with links 1, 2, .. ,n. The joints are
' numbered correspOndmgty, with joint i connecting link i-1 and link i. For example, joint 1 connects
- link 8 to link 1.

Associated with each link is an orthogonal coordinate system fixed in the link (see Figure 2). The

: ,:v axes of the coordinate system for link i are chosen as follows:

Z lies along the axis of joint i+, It can be chosen to go in either of two directions. (The
choice of Z, is arbitrary.)

X;: lies along the common normal between Z;_y and Z;. Its direction is chosen to go from
Zi_y to Z, (XB can be chosen freely as any vector normal to Zy)

Y;: completes a right-handed coordinate system whose origin is the point where the X; and
Z; axes intersect.

Given the constraints above, the relative position of two adjacent links is completely described
' by four parameters as follows (see Figure 2):

a;: the distance between the orlgms of the coordmate systems i-1 and i measured along X .
(This parameter is a fixed quantity determined by the geometry of link i.)

's;: the distance between the origins of the coordinate systems i-1 and i measured along
Z, 1- (If joint i is a linear joint then s; varies during the motion of the joint and is
called the joint vanable Otherwise, it is a fixed quantity determined by the geometry
of link i)
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Figure 2: Schematic of a three joint arm.

b;: the angle between the Z;_y and Z axes measured in a rlght ~-handed sense about X
(This parameter is a fixed quantity determmed by the geometry of link i.)

9 the angle between X;-1 and X; measured in a right-handed sense about Z;i_y. (If joint i
is a rotary joint then 8, varies during the motion of the joint and is called the joint
~ variable. Otherwise, it is a fixed quantity determined by the geometry of link i.)

The symbol q; is used to refer to the joint variable no matter whether it is s; or 6, The column
vector Q of generalized coordinates

Q=g g7 ... an)

éompl'etely specifies the position of the arm at a given moment.

Transforming BetWeen Link Coordinate Systems

In order to make it easier to state the equations which transform between the different
coordinate systems associated with the arm, the position of a point p in link j, as measured in the _
coordinate system fixed in link i, will by represented by the four element column vector 'Rj:

iRj - xy z)

~ where x, y, and z are the coordinates of point p (in link j} measured in coordmate system i. For
convemence, ’R (the coordmates of p measured in the coordinate system of the link it is in) is

' abbreviated as’ rj, and R (the coordinates of p measured in the frxed reference frame coordinates
of link 8) is abbreviated as R

The coordinate systems of adjacent links are related by the following matrix equatlon
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?-1Rj - A 'R;

where Ai is the following 4x4 transformation matrix derived from a, s vbi, and Oi:

1 ] 0 7]
A a;cos8; cosB; —sineicosb; sineisinbi
[ ajsing; sinB; ' cosB;cosb; -sind;sinb;

s; %] sinbi cosb;

‘Note that A, is a function of the joint variable q; (8; or s;) and that therefore it will change with

time as the joint moves. As a result, i'lRi will in general change with time even though, since point
p is fixed in link i, r; will not change. ‘ :
"The transformation process can be extended to non-adjacent coordinate systems as follows:

Ry = TWIR, Cigisk)
where in is the 4x4 transformation matrix derived by multiplying together Aivt through Aj.
| Ui = AigaAign oo Ajogh;
aWi is abbrévia_fed as W, so that:

R.

i= Wir;

Velocity of the Arm

< In the ’(non—inerfial) coordinatbe system fixed in a link, all of the points in that link have velocity
~zero. The velocity in the reference frame (link 8) of any point in the arm can be expressed in terms
-, of the rate of change of the joint variables by differentiating the above equation for Ri.

: dd:r)  du: dr:
Ri =~ = S i = Viry e - o
. dW: n 3W; dg: i . 3.
V., = —L o [N A, - L = if i<
where »v| - 151371—-& j§1U”qJ [F(H B if i<j]
au; C3A; A, e
uhevre‘U” = yq"‘ = NJ_lgq—j-JN' . [E‘:T =0 if ;#J]

J
- Hand Oriented Coordinates .
~ Since the sensors in a mechanical arm typically directly measure the joint variables g;, the
generalized coordinates are a natural way to specify the position and velocity of the arm. However,
from the point of view of a system using the arm, this specification is not very useful. Some
specification (such as the hand oriented coordinates presented here) in terms of the cartesian
coordinate system fixed in the reference frame the arm is attached to is much more likely to be -
useful. The motion controller has to be able to convert between these specifications.
In order to make the following discussion more concrete, it is based on a specific arm design, the
- Scheinman arm [Scheinman 1969] (see Figure 3). There are many convenient systems for specifying
, the‘po'sition and velocity of a 6 degree of freedom arm such as this one. The one considered here
(see Figure 4), is referred to as "hand oriented". In this system, the state of the arm is described by
- the pdsitiorr, orientation, velocity, and angular velocity of the hand as follows:




. Figure 3: The Scheinman arm design.
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Py the positien vector, gives the coordinates, in the reference frame, for the point H

a: the orientation angle vector, specifies the angles between the axes of the reference
frame () and the axes of a frame (H) fixed in the hand with origin at H as follows:
o, is the angle between the Yp and Y}, axes measured about Xp-
oy is the angle between the Zg and Z}; axes measured about YG
®, is the angle between the Xg and Xy axes measured about Zy.

Py is the velocity of point H

a: is the angular velocity of the hand about H.

Together these four vectors give 12 parameters that specify the posltlon and velocity of the
hand exactly, just as the 6 q; and their 6 derivatives g g; do.
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Flgure 4: Hand onented coordinates for the Scheinman arm.

Convertmg Generahzed to Hand Oriented Coordinates

In order to transform from generahzed coordinates to the hand oriented coordinates presented
f above, one heed only know hg (the position of point H expressed in the coordinates of the hand) and
6 (the position of another point in the hand) along with Wg and Vg (which are functions of q; and q,

as shown above) and then calculate:

e
x
]

Hghg
Pu = Vehg
Vghg X NB(h'B—hG) [X: is the cross product]

j

The orientation angles o can be calculated from the coordinates of three non-colinear points in the
hand. The transformations above are cumbersome, but not excessively so.
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Converting From Hand Oriented to Generalized Coordinates

The reverse transformation from hand oriented coordinates to generalized coordinates is
considerably more difficult. The process outlined above can be inverted. Unfortunately, the
resulting equations are in general very complex because Wg and Vg are complex functions of q; and
&i. (It should be noted that there may be more than ome set of generalized coordinates
corresponding to a given hand position.) :

First, consider the problem of calculating the g; corresponding to Py and oo This problem is
* discussed by Pieper [1968] and is quite complex in the general case. However, with an arm like
Scheinman’s where the axes of the last three joints intersect, the problem can be divided into two
much simpler ones. '

Referring'to Figure 4, note that it is possible to calculate the wrist position vector Py, directly
- from Py and o without calculating any of the va!ues of the g;. This is posmble because the distance
between W and H does not depend on any of the q; and because the ‘orientation of the vector
(Pw-Py) depends only on a. (This in turn is true because joints 5 and 6 are rotary joints whose
axes intersect, and because point W was chosen to be at the intersection of these axes, while point
H was chosen to be on the axis of joint 6.) Further note that the value of da does not affect the
position of W. (This is because the axis of joint 4 also passes through W)

These facts can be used to decouple the transformation problem as follows: First, qp, ap, and a3
can be calculated separately based on Py, alone. (Note that these coordinates are nearly the
spherical coordinates for W. They would be if the axes of the first three joints mtersected)
Second, qg, dg, and qG can be calculated from « and the orientation of lmks 3 and 4. This is an
example of the fact that an arm can be designed in such a way that the calculatlons which need to
be performed are greatly simplified.

Now ‘consider the problem of calculating the q, from PH and & Unfortunately, it is not possnble
to break this problem up into subproblems. However, Whatney [1972] has developed a method for
~ finding thev&i based on the equation: ' ‘

$ - Ja
where S, Q, é, and Q are the six element column vectors:

S

(PHX PHg PHZ dx «g «Z) ﬂ = (ql se e qs)

.

g dz) Q = (al LY as)

S (PH.X PHg PHZ dx [+
and KQ) is defined by

. qj

. It turns out that the pvartial derivatives are easy to evaluate, and that therefore it is easy to
calculate J(Q). Q can then be calculated by inverting J(Q):

J@;; -

a=J-1s

Unfortunately, inverting a 6x6 matrix is relétivvely'time cbnsuming, and since the values of 6 '
calculated are ‘accurate only at the one point Q, XQ) has to be reevaluated and reinvert often,
There is a sumple approximation method which can be used to calculate Q Given a position S and
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~ a velocity S a new position $'=5+Sdt can be calculated based on the assumphon that § will remain
~ constant for some small time dt. The corresponding generalized coordinates Q and Q' can then
~ computed. Finally, Q can be estimated by the equation:

: {Q'-Q)
- dt

[Since the writing of this paper, Horn and Inoue [1974] have treated the transformation problem

i much more detail.]

lll. Trajectory Selection

Referring back to Figure 1, the primary control signals'from the robotic system to the mbtion

~ controller are requests to move the arm from one configuration to another. For the convenience of
- the robotic system, each request should be concise, containing no more information than is necessary

to state the goal, and constrain the trajectory so that the arm does not strike any obstacles. In
order for the robotic system to exercise control over the velocity as well as the position of the arm, _
these requests must contain specifications of velocity as well as position.

A list of position-velocity configurations the arm is constrained to pass through is a convenient
form for a motion request from the robotic system to take. By varying the number and spacing of

»the configurations in the request, the robotic system can vary the amount of control it exercises

over the exact details of the trajectory. Additional flexibility can be gained by allowmg some of the
velocities to be left unspecified. For instance, a request to move the arm from position A to position

B whlle avoiding an obstacle might specify that the arm should pass through a point C, and come to

rest at B but not specify what velocity the arm should have at C.

Criteria For a Good Trajectory

The motion controller must expand the trajectory description it receives into a completely

specified trajectory. There are several requirements which the resulting detailed trajectory should
satisfy.

CIOSeness to intended trajectory: The most important criterion is that the trajectory selected

" must be close to the one intended by the robotic system. In particular it must be close enough so

that the arm does not strike any obstacles when it moves. The essence of this requurement boils
down to three subcriteria:

1) There must be some easy to compute algorithm known to both the motion controller and
the robotic system which specifies what the intended trajectory is. For example, the
intended trajectory might be taken as the piecewise linear trajectory through the
posmons specified. Alternatively, if the algorithm used by the motion controller is
s:mple enough it could be used by the robotic system when planning the trajectory.

2) There should be some agreed upon notion of closeness. For example, requiring that the
actual trajectory not make any excursions outside of an envelope centered on the
mtended one.

3) There must be some way for the robotic system to exercise more preccse control over
the motion when it has to in order to maneuver the arm in a tight spot To this end,

the trajectory selection algorithm used by the motion controller should have the
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property that the difference between the selected trajectory and the intended one
decreases when the points in the trajectory description get closer together.

Physical Limitations: The range of motion, velocity, and acceleratlon of the arm are all bounded
by the design of the arm. Further, the physical reality is that all these variables take on continuous
values. As a result of this, it is not possible for the arm to actually follow the piecewise linear
trajectory through the points. The robotic system must be aware of these limitations, and not ask
for impossible motions.

Optimal Time: All things being equal, the fastest trajectory through the requested points should
be selected. However, there are two problems with this. First, the fastest trajectory between two
points may be quite different from the intended one. Second, it is not easy to compute what the
optimal trajectory is. In order to get from one point to another in minimal time, one must use bang
bang control (where the force on each joint is either zero, maximally positive, or maximally negahve
at each instant of time). With this kind of control the trajectory is completely specified by the
points at which the forces are switched. Unfortunately, in order to find the switching points, a set of

partial differential equations must be solved (see Kahn [1969]). The key problem is that the
relationship between force and acceleration (see the next section) varies depending on what the
position and velocity of the arm is. Kahn develops some ‘approximate methods for determmmg the
switching points. However they are still too complex for use in a real time application. _

Computational limitations: The detailed trajectory should be easy to compute and concasely
representable In parhcular, it should be possible to compute the trajectory i in real time.

Constant Maximum Acceleration Trajectones

A stmple trajectory calculation method results from applymg bang bang control while assuming
that the maximum acceleration of the arm is a constant independent of the position and velocity of
the arm. This constant value must be chosen 50 that it can always be achieved. This method
produces suboptimal trajectories because it ignores the fact that larger accelerations are possible in
most positions. o

The algorithm for finding the points at which the acceleration should be switched is based on
representing a trajectory for the arm as a curve in phase space. Phase space for a 6 link arm has
12 dimensions: 6 for the joint variables, and 6 for their derivatives. The method is illustrated in
Figure 5. The figure is a phase space graph of trajectories for a one link arm. The vertical axis is
made proportional to the square root of the velocity so that tra;ectones with constant acceleration .

become straight lines. The box around the figure signifies that the position and velocity are both .
~ bounded by: -1 <x <9 and -3 <x <3 Itis assumed that the acceleration is bounded by ~%— <X < %

Referring to the figure, assume that the arm is at ‘point A (position 1, velocity 1) and that the
- robot system has requested that the motion controller move the arm to point B. Any tra;ectory
leavmg A must go out through the horizontally shaded region, and any trajectory approachmg B
must go through the vertically shaded region (arrows on the trajectories indicate direction of trave|)
" Such a trajectory is A-E-F-B. The acceleration changes at E, there is no trajectory with constant
acceleration from A to B. (There is no change of acceleration at F.) Under the assumption of
constant maximal acceleration, The time optimal trajectory is A-C-D-B. This trajectory accelerates
from A to C and then decelerates from C to B through D. v

It can be shown that the optimal trajectory between any two points has at most one p_lace




Mechanical Arm Control . -10 - Richard C. Waters

B S PR YRR UG SOnS SIun] i SR TR O e

PRI L |

gz oYy

asVg

“““““

Figure 5: Phase space graph 'for trajectories.

“where the acceleration changes. As a result, this change point, together with the end pomts
completely specifies the tra;ectory The problem of finding the change point can be reduced to
finding where straight lines mtersect on the graph. Using points A and B as an example, the optimal
trajectory must leave A on one of the two extremal acceleration lines. Similarly it must enter B on
one of the two extremal acceleration lines terminating on B. The optimal trajectory can be found by
seemg which of the extremal lines leaving A intersect which of the extremal lines entermg B. (There
can be two intersecting pairs.) The algorithm can be easily extended to arms with more than one
jomt The trajectory can be found for each joint separately, and then modified to synchronize the
‘motions with each other by adding segments of zero acceleration into the motions of individual
. joints.

This method of calculating a detailed trajectory meets the criteria set forth above very well. It
is fast to calculate, and the trajectory can be concisely represented by the acceleration switching
points. The trajectories produced are reasonably fast, and do not violate any of the physical
limitations of the arm. The only problem with the trajectories produced is that they are not very
close to piecewise linear trajectories through the requested points. However, they do have the '
property that as the points get closer together, they do get closer to the piecewise linear paths.
Further, the trajectory planning algorithm is simple enough that it could be used as the definition of

. intended trajectory. [Since the writing of this paper, this approach to trajectory calculatuon was

used in the robot control system descrnbed in [Waters 1974]]
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IV. Dynamics

Once a trajectory has been determined, the arm has to be guided along the trajectory. At each
time interval, it is easy to determine, from the position and velocity of the joints, what accelerations
should be applied to the joints so that the arm will be on the trajectory at the next time interval.
However, the motors which move the joints produce forces not accelerations. The controller must
determine what force F; should be applied to joint i in order to produce the required acceleration ti.

- Due to the way the joints are interconnected, the force which needs to be applied at a given joint

depends not just on the acceleration desired at that joint, but also on what is happening at the rest
of the joints. One way to take this interaction into account is to use the equations of motion for the
arm in order to calculate the forces. It should be noted that the equations of motion devélop_ed
below are based on an idealized model of the arm, and that therefore they do not model the arm
exactly. For example, they ignore the forces generated by friction in the joints. If the friction

forces are large, then the dynamic equations alone may not be adequate to control the arm.

The Lagrangian Equations of Motion

Following the development of Uicker [1965] as presented in Kahn [1969], the n equations of motion -

for the arm can be obtained through the use of Lagrange’s equations for a nonconservative system.
d L A _f a2, .

—— T e

dt 3g; " da; " i PhZoeeenn

where the Lagrangian L is the difference between the kinetic and pdtential energies.
L =K —'P

The kmehc energy of a parhcle of infinitesimal mass dm on fink i havmg coordinates

: R Wr =(1XYZ)|s

L2925y
dk; = Z(Xi+Yi+Z.')dm

'or - dk; = %tr(VirirTiV{)dm [tr: is the tracel
o ' dl; i . !
uhere Vir; = -a—t—'- ry = ‘.ZlUqu"”i [see Section Il |
J= ‘

The total kinetic energy of the link can be found by integrating over the mass of the link.

= HrtevirieVhan = Lte v fe e oD = bteoviuvh

: V; is independent of dm allowing the integral to be shifted inward. The‘ inner integral can be

precalculated due to the fact that r; does not depend on g; or q, and the fact that the mass
distributions of the links in the arm do not change with time (with the notable exception of the hand,
see below). The result, the inertia tensor (designated Jj), is a complete description of the inertial
properties of the link.
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: Where m; is the mass of the lmk (1% y, Z: )= r is the position of the center of mass, and kuk is the
square of the jkth radius of gyration about the origin of coordinates in link i. 7
: When the hand picks up something, its inertial characteristics change, parhcularly if the object

picked up is either heavy or long. In this formulahon, it is possible to take account of the object in

. the hand by changing the J matrix for the hand. This could be done in several ways. First, a priori
knowledge of the object’s inertial characteristics could be used to alter Jhand Second, partial
. information about the object such as its mass and longest dimension could be used to make an
‘ approximate correction to Jhang: For instance, if the hand picks up a block which has relatively
- small dimensions, then probably only its mass has to be taken into account. If the mass is also small
" the the object can probably be ignored. Third, the arm system could be used to discover the inertial
. characteristics of the object it is holding. This could be done by applying small canonical forces to
~ the joints' near the hand, and observmg the accelerations produced. These experiments could then ‘ V
be used to estimate the components of Jhand:

The total kinetic energy of the arm is given by:

k-L1% tr(v;JvD
Z- o1

The potential energy of the system is equal to the sum of the work required to dlsplace the center
of mass of each link from a horizontal reference plane.

'P ﬁ- chu
i-1

where G = (8 G, Gy ‘c)

The row vector G is the acceleratlon due to gravity, 7 riis the position of the center of mass of link i, ’
and P is a constant which depends on the particular reference plane chosen.

Performing the differentiations in Lagranges equations and smphfymg gives the following n
equations of mohon

Fi" Z(tr‘(U J(P+L))—Gl

_ J=i
where:
i J . )
P; = kElUJ-kak: The reaction forces due to the inertial properties of the links.
JoJ o .
L; = kZuZlUJklékc}l: The forces produced by the interaction of the link velocities.

Gji =m;GU;;F;: The forces due to gravity.

: al: ,
U; i= ga:- The effect of the motion of one joint on the position of another.
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Cauy; A,
ik = aq'kJ = 3a; éc;k : The iﬁteraction of joint motions.

. A aAi aZAi The fundamental effects of movin joint
i* 3a.°’ —2-: e ftundamental effects moving a joint.
' qi aq; gal

U

G, Jj, mj, F;: The static properties of the arm.

i thé equations are evaluated straightforwardly just as written they require an inordihate
amount of computation. The dominant computational cost comes from doing 4x4 matrix multiplications
each of which requires 43-64 scalar multiplications. A secondary cost comes from doing 4x4 matrix
additions and other operations of order 42=16 (such as multiplying a scalar times a matrix,
multiplying a vector times a matrix, and multiplying two matrices where only the trace of the answer
is required). Lower order operations such as adding scalars will be ignored in the discussion below.
For a 6 link arm, a naive calculation of the forces requires 2254 matrix multiplications and 973 order
42 operations. (For convenience, this kind of calculation estimate will be abbreviated as
2254m+973a in the discussion below.) This would take 8 seconds in floating point on a PDP/11-45.

Methods For Speeding Up the Calculations

This section describes five approaches to speedihg up the calculation of the required forces:
reformulating the equations so that they can be evaluated faster, simplifying the equations by
‘eliminating terms, using direct acceleration servoing of the arm, using extrapolation and interpolation;
and using precomputed values of the equations.

Reformulating the Equations More Efficiently

There is a large amount of structure in the equations which can be used to speed up their
evaluation by several orders of magnitude. The key insight is that there are many subexpressions
which appear over and over again during the computation. To start with, in a naive evaluation of the
equat_ions‘ USS iscomputed 12 times and Lg is computed 6 times. If the values Pj, L, Gji’ U_ij' and
Y; jk are recorded when they are evaluated so that they are never evaluated more than once, then
the computation is reduced to 486m+275a, a savings by a factor of 5. ;
 Deeper levels of repetitiveness are illustrated by the calculation of the Uij' Section 11 showed
that:

R o - BA; .

Uij = “j—-l gq—:;JHi i2J | ,
The fact that Uij = B when i<j has already been used to simplify the equations of motion by making
the upper limits of the inner sums j instead of n and the lower limit of the outer sum i instead of 1
so that only instances of Uij where i2j appear. These reductions in range save a great deal of
useless computation. The formula above in conjunction with the formula for jWi can be used to
derive the following recurrence relations:

IR TR Wi = 1 [the identity matrix]
Yii = Wi gg

Uij = Ui_lei i>j
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The key advantage of this formulation is that it makes it possible to compute all of the I _.(D.tll U in
the same amount if time it takes to compute the n U,

nj:
The recurrences above can be used to develop a recurrence relation for Pj as follows:

P; = Z Uik

k=1
R |
= ZIUJ 1kKIA; + U;;d;
= P;_1A; + Uj;4;

Py = U1151

A similar approach can be taken to the calculation of Uuk and Lj. Since U”k=0 if i<j or i<k and

dA,
a; =0 if i#j the qu have the following typical form:
J
‘ dA . dA A, L
| ~Ui.ik Bi-(NJ 13—-"‘4 ) =UJ IB—-JNk lﬁ;ku J<k<i
: Th'ev fo"oWing recurrence relations can be derived for the Uijk‘
Uiik = Uiky
‘ 32, :
Uiii = Wi 1“‘—7
' Z-JA L
Ui = Ui-lJa‘f i>5
Ui;ik = Ui—ljkAi ,i>k and i>Jj
These can be used to get recurrence relations for Lj.
WS I8 ST
iTs 151 JkL9kaL
i-1i-1 i-1 i-1 2
= ( 21 ZIUJ lqukql)A + ZIUJququ + ZIUJququ + Uj;5a;
=LAy + 2‘k§1UJ-1qu’§a;qj +Uj 58,2
Ly = Up118,°

Note that in this formulahon, only the U have to be calculated. The other U| K do not need to be
calculated at all. The sum in.the mlddle term is the quantity Vj 1 mtroduced in Section II. It also
has a recurrence relation.

Vi = §1Umqk

Vic1Aj + Ujja;

L}

Vi = Ujag

Using these relations the forces can be computed using only 78m+186a. This is an additional

improvement by a factor of 6. This reduces the computation time to around .25 second.
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- [Since the writing of this paper, Luh [1978], working.with' the Newton-Euler equations of mbtion,'
came up with an additional recurrence relation. Hollerbach [1979] has applied this relation to the .
_Lagrangian formulation used above. The new recurrence relation is based on the quantity D;:

Fi {r(U;iDi) - JZ'G

n i T
Di YZ. “ij(Pj+Lj)
. J=1

1]

n . T T
A'+1( §+1'+1uJJJ(PJ+LJ) )+ J;(PyaLy)

= A i+1Di+1 +Jj (Pt
Dp = Jp Pl )T

This reduces the computation to 60m+81a. The reason the impact is not greater is that the U i#j
still need to be calculated in order to calculate G (This was not an issue in the derivations of Luh
and Hollerbach because they chose to i ignore the gravcty forces.)]

~ The technique used by Luh and Hollerbach to derive a recurrence relation for D; can be
: straughtforwardly applied in order to derive an anologous recurrence relation for the gravnty forces.

G-=ZU

| J J
J=i

n
(Z'*lurm)+r~m
o+1JH_l RARALR]

= AipGiyg + mym;

G, = [

With this reformulation, the U, i#) no longer have to be calculated at all. The calculation is
reduced further to 45m+77a. This gives an overall improvement by a factor of 58. Another aspect
of the way the efficiency of the calculation has been increased is that while the effort involved in a
naive calculation is proportional to the cube of the number of links, the eﬂort in the improved
formulation is linear in the number of links. _

Before going on to other methods for improving the calculation consider how this computation is
divided between the three basic parts of the computation. The computation needed ‘solely to
compute the contribution of the gravity forces is 17a (6%). The computation needed solely to
compute the contribution of the second order forces L (this mcludes the computations of V and
: U ) is 28m+38a (46%). The remaining computation needed to compute the contribution of the basuc‘
merha| forces P is 25m+22a (48%).

[Hollerbach [1979] has noted that a further improvement by a factor of 2 can be gamed by
reformulahng the equations using 3x3 matrices instead of 4x4 matrices. The x4 matrices A; are a v
mathematically convenient way to express the relationship between adjacent coordmate systems. but
. they are computahonally inefficient. The resulting formulation has essentlaﬂy the same number of
matrix multiplies and adds, but each one only takes about half as long]

It is probably pOSslble to compute the equations in fixed point rather than in floating pomt This
gives an added 'mprovement by a factor of 4 on a PDP/11-45 Puttmg all these factors together,
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- the calculation is speeded up 400 times, and the time required is reduced to 28ms on a PDP/11-45.
Though it would be nice if the time could be reduced by another order of magnitude, this is really
quite fast, and it makes it hard for approximation techniques to compete with complete evaluation.

Simplifying the Dynamic Equations

One way to speed up the evaluation of the equations is to simplify them by omitting some of the
terms in the expressions. This can be done in two basic ways. First, the arm can be designed so
that sbme of the terms in the equations vanish. Second, nonvanishing terms can be ignored yielding
approximate values. . - ' _

Caunterbalancing: If an arm is counterbalanced in order to eliminate the effects of gravity, then
all of the G; will be zero, and need not be calculated. However, as shown above, the G; are so easy
. to compute that almost nothing is saved by omitting them. 1If the arm is not counterbalanced, then it
is usually not possible to ignore the G; because they are some of the largest forces on the arm.

Joint locking: If the arm is designed so that individual joints can be physically locked with a pin

. or with friction so that they cannot move, then this can be used to speed up calculation. If locking is
 used when a joint is to be kept motionless, then the joint is in effect eliminated from the arm. No ‘ ‘
© force has to be calculated for it, and it does not contribute to the forces required at the other joihfs.-
If the c/ompu'tation is properly arranged, the links before and after the locked joint can be
. consolidated into one link, and the calculations can be performed ‘as if the arm had only n-1 links.
. For example, if three of the links of a six link arm were locked, the calculation would be reduced to
19m+34é; a savings of 57%. ,

Ignoring Li: If the arm is moving slowly, the terms L,- will be small and can be ignored. This

saves 46% of the calculation required. If the arm is moving rapidly, the Lj can be quite large and
cannot be ignored. ' ; :

Reducing joint interaction: The arm can be designed so that interaction between joints is
: 'minimized_ and some of the Uij become zero. For example, if the first three joints are mutually
- perpendicUlar linear joints, then the motion and acceleration of one will not affect the others.
& Unfortq'nately, making a few U“- zero will not speed up the computation any because recurrence
relations are being used to compute the terms in the equations, and no computation is saved in this
- process unless the last term in a series can be eliminated. One approximation approach would be to
design the arm so that each link is significantly smaller and lighter than the prévibus link and then
ignore all of the effects of a link on the links before it. This would have the effect of eliminating the
oufermost sum in the equations so that:

Fi =trU;;J; (4L T) - Gjj

Due to the efficient way in which D; and G; are computed, this saves ohly 5m+ba. As a result, the
approximation required is not worth the savings obtained.

Direct Acceleration Servoing

One way to calculate the dynamic equations very rapidly would be to use special purpose-
hardware such as fast matrix multipliers. This is expensive, but would solve all problems. It is
ihteresting to note that there is one piece of hardware around (thé arm itself) which can very
rapidly compute the inverse of the equations. Namely, given a particular force some accelerationv is
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produced. This yields a force-acceleration pair satisfying the equations.
' The most direct method to utilize this information would be to use high speed servoing to
directly control the acceleration of the joints. (The time delay in the servo loop must be quite small
in order to keep the error acceptably small.) This approach requires almost no computahon and
would be very effeclwe It is mherenlly better than using the equations above, because the
dynamic equations ignore friction and describe the arm only in an idealized sense.

There is however a problem with this approach. In order for it to work, it must be pOSSIble to
obtain accurate measurements of the actual acceleration over short time intervals. (Note that the
dynamic equations do not require that you be able to measure acceleration, bul only that you know

~ what acceleration you want.) The most direct way to obtain acceleration measurments would be to

put accelerometers on the joints. This is complicated by the fact that the sensors must be arranged
so that lhey measure the angular (rather than linear) acceleration of rotory joints. Further, the
measurements must be converted so that they give the acceleration of a joint in terms of the
(non -inertial) frame the joint is in, rather than in terms of the reference frame. This would probably
require two sets of accelerometers at each joint: one to measure the accleratlon of the frame, and
one to measure the acceleration of the joint.

If accelerometers are not used, then the acceleration must be eshmated by using differences in
veloc:ly, or second order differences in position. This requires very high accuracy in the velocity
(posnhon) measurements. Consider the kind of typical values of position, velocity, and acceleration
one might find in a joint. A rolary joint might have a range of motion of 3 radians, a maxvmum
veloculy of I radian/sec, and a maximum acceleration of 1 radlan/sec2 If the sampling interval is T
then the smallest change (A) in acceleration which can be detected by differences in velocity
measurements is related to the smallest change (V) in velocity which can be detected by the formula
A=-T— Similarly V—; where P is the smallest change in position which can be detected.

If T was as large as 18 3sec and only 7 bits of accuracy in acceleration were needed (A=19'2),
then if accelerometers were not available at the joint, V would have to be equal to 10'5 (17 bits of
velocity). If tachometers were not available either, then P would have to be equal to 19-8 (29 bits

of position information). It would be prohibitively expensive to obtain that much accuracy in position

measurement, and very difficult to obtain the required accuracy in velocxty measurement. As a
result, this approach is probably not possible without accelerometers on the ;omts, and certamly not
possible without accurate tachometers.

Extrapolation and Interpolatlon

Extrapolation and interpolation can be used to compute the forces for one set of paramelers to
the equation based on the values for other sets of parameters. The values to extrapolate from could
come either from some data base of values (see below), from evaluating the equations directly, or

- from the arm itself. (As discussed above, the arm itself can only be used if it is possible to measure
o accelerahon accuralely) The purpose of doing extrapolation is to spread the cost of evaluating the
' equahons over more data points.

In order to get first order accuracy (for a 6 link arm), the partial denvahves of each force with
respect to the 18 parameters (q,, q', and q ) to the equations must be estimated. In order to do this
quickly 18 pairs of function values are needed, where only one input varies in each pair. If the
values are coming from the recent behavior of lhe arm or recent evaluahons of the equations then
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such parrs will not be avanlable, and the estimation will have to be based on whatever pairs are
available. (At a minimum, 7 different function values are required in order to have 18 palrs of
‘values.) In order to estimate the derivatives using random pairs, 6 18x18 matrices have ‘to be

inverted. This approach is impractical because inverting such large matrlces takes much more time

than computmg the exact equations. Further, if the 7 points are very far apart in parameter space,
the resulting estimates may not be very accurate at all.

Path length extrapolation: Full first order extrapolation is only possible usmg stored data. In
order for extrapolation from dynamic data to be fast enough to be preferable to just computing the

equations, very low order extrapolahon would have to be used. The problem with first order‘

extrapolation is that there are just too many parameters to the equations. The logical limit of the
extrapolation approach is to view the equations for the forces as functions of a single parameter
(distance along the tra;ectory) rather than 18. If Q, 0, and Q are all slowly varying, then the F; will

be slowly varying functions of path length. F can then be approxrmated by extrapolatmg from prior '

points on the path. 1t is important to note that in general, Q tends to change abruptly, and that
extrapolation is not accurate beyond such a change. This problem is reduced when working with the
kind of trajectones discussed in the last section where there are relatively large periods of constant
acceleration. [Since the writing of this paper, path length extrapolation of computed force values
was used in the arm control system described in [Waters 1974]]

Precomputaton of the Equations

One way to deal with the problem of computing the dynamac equations in real tlme is to compute o

them off line and create a data base of function values. There are two main ways to use
precomputation: create a tabular representation of the function over its entire domain, or

preCOmpute just those values which will be used. In either case interpolation has to be used in
~ order to apply the precomputed data to the actual situations which arise.

Complete coverage: Trying to obtain complete coverage is impractical. The key difficulty is that o

a huge number of values has to be stored because the equations have so many parameters. As
discussed above, in order to be able to efficiently interpolate between the stored data points, the
- stored points must be orthogonal in that each point is surrounded by other pomts whrch differ from
it in only one parameter With a 6 joint arm, if the stored data covered just 5 dlfferent values for
each parameter there would have to be 518-ax1p!12 sets of 6 values. It is not possible to

precompute that much data, nor to store it. Also note that if the information was precomputed, it

becomes obsolete as soon as the hand pickes something up because this changes the inertial
properties of the arm.

It is possible that it might be more efficient to store the 6x18=108 partial derivatives with each -

~ point explicitly, and to store fewer points. However, it is unlikely that this approach would lead to
the required reduction of 9-1@ orders of magnitude in the number of data points stored. (A
reduction of 2 orders of magnitude is needed just in order to break even.)

The storage problem can be partly ameliorated by storing partial precomputahon information

.whvch factors out some of the parameters. The dynamic equations can be rearranged (see

~ Paul [1971)) so that:

F =000+ E@,0
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This fdrmulalion'makes it inherently easier to adjust for changes in acceleration. Complete coverage
with this information at 5 values per parameter requires 512-2¢108 sets of 42 values. (If

- derivatives are stored, 42x12= 584 more values are required at each point.) This is still much to

much data to be practical.
Covering only a single trajectory: One way to solve the space problem is to store only the

v mformahon which is actually going to be needed. Paul [1971], who apparently evaluated the

equatlons as written rather than by using recurrence relations, evaluated them off line before a
motion was started. He planned a detailed trajectory consisting of the exact position and veloculy of
the arm in each time interval. Then he precomputed the matrix D and the vector E at each time
interval, He did not use interpolation, but rather just used the DE pair closest to the current phase
space position. ' ' 7

v With this method, small errors in trajectory can be corrected by varying the accelerations.
However, if a large error ever develops then the controller is unable to get the arm back on the
correct tra)ectory because its precomputed D’s and E’s are accurate only in the vicinity of the points

~ for which they were calculated. Note that this method has the additional defect that overall there is

no time saved. The arm can move very fast, but then it must sit and wait while the D’s and E’s for
|ts next trajectory are computed off line.

Storing Typical Trajectories: A compromise between the two methods above is to store
precomputed information about small restricted areas of the domain. This is predicated on the idea

Athat most of lhe motions of the arm are stereotyped, and follow a reasonably small number of typlcal,

tra;eclorles Further, any non-standard motions the arm makes can be made slowly Introspechon ,
suggests that this could be true of human motions. One of the prime tenents of sports is lhal you
should always get into a standard position before performing a motion in order to increase your

" precision.

One way to store information about typical trajectories is to describe the regions of the domain
they pass through. If interpolation is to be used rather than just using ‘the nearest available data

- point, derivatives would have to be stored with the points. It is interesting to note that if

information about typical trajectories is stored this way, then it is clear how the arm controller can
learn about a new trajectory by doing it, and remembering the properties of that region of phase
space. [Since the writing of this paper, this basic approach to arm control was taken by
Raibert [19771]

Another way of storing typical trajectories would be to use a procedural form. There would be

a procedure for each motion, and the procedure would be parameterized by values approprvate to
the motion. For instance, throwing a ball would be parameterized by the velocity the ball was
supposed to have, and the point at which it was to be released However, it is not obvious how
these procedures can be derived.
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