Massachusetts Institute of Technology

Artificial Intelligence Laboratory

Al Memo No. 551 August 1980

AN OUTLOOK ON TRUTH MAINTENANCE

by

David A. I\'Ic;\llcstcr*

Abstract:

Truth maintenance systems have been uscd in several recent problem solving systems to record
justifications for deduced assertions, to track down the assumptions which underlie contradictions when they
arise. and to incrementally modify assertional data structures when assumptions are retracted. A TMS
algorithm is described here that is substantially different from prcvibus systems. This algorithm performs
deduction in traditional propesitional logic in sucha way that the premise set from which deduction is being
done can be easily manipulated. A novel approaéh is also taken to the role of a TMS in larger deductive
systems. In this approach the TMS performs all propositional deduction in a uniform manner while the larger

system is responsible for controlling the instantiation of universally quantified formulac and axiom schemas.

Keywords: Theorem Proving, Automated Deduction. Truth Maintenance, Backtracking. Dependencies,

Assumptions, Likelihood, Demonic Invocation, Hierarchy

This report describes work done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligence research is provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office of Naval Rescarch contract
N00014-7S'-C-06-:13.and in part by National Science Foundation Cranl MCS77-04828.

* IBM Fellow

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1980

oo
1"

Acknowledgments

There are many people who supported and encouraged this work. Gerald Sussman and Jon Doyle
originally guided me into the arca of truth maintenance and belicf revision, Chuck Rich, Jerry Roylance,

Howic Shrobe, and Ken Forbus provided many stimulating discussions.

e
s

CONTENTS

1. Introduction resenssernenas 1
2. The TMS rsssasmerssssaressasatssen s nasssammansnst . 2
2.1 Propositional Constraint Propagation ... ssssssssssiesssnns 2

2.2 JUSHFICALIONS cooverrreeceeecerreercnscssesereesesensenins eeveresrert e enge s tanara s s ans OSSR S
2.3 ROIFACLION uvrvverriviveeriseerirseresseesssssaesserassasessssessssessessesssensesssssgesssonassasassesesesansssssnesensssssssessassssssssnss 6
2.4 Backtracking and Refutation rreresrsrsrrereeerersereresansantares reeeeereererererereeteanesretsassnasnnsserenerasas 7
3. Premise Control eeesserssnesessesassansnassrsnassasesassssssssnssassasss 10
3.2 LiKelihood Classesocueererereessereersessessesasssvassannes eeesesresbersersessesesesisenaee a s essastrenten s s anseeseats 11
3.3 Likelihood Assertions eeeseeninesenersearaenensrssasnenesesentases ceretstessrensenissaenensasusteesassrsassenssassssns 13
4. Instantiation Control T 14
4.1 FOr-All ASSEIHONSoeevevirereereererireresssssssesassesesessesssessssnsses reverneenesrresaasresnnassensens S cevenns 14
4.2 Taxonomic Hicrarchics: An EXAmPIE ...cveeeciinenmrenre s s sssssssssessstsnsnssssses 15
4.3 Arcas for Further Researchivveecveervernreceesrennesssenene erreesarensresesenes eeetessreresessesseasrennan 17
4.3.1 Demonic INVOCALION ..c.vveeeeererererereseriscnsisesssessisessssssensnssssssnssssssasssssssnens 17
4.3.2 Special Purpose SUDSYSICIMSccccrircnmmieicissmensennsiinssscsseissinesssessanssssens 18
5. Relation to Other Work 19
Appendix I: The TMS Code 21
Appendix II: Utility Procedures 32
Function Index . 40

References

42

1. INTRODUCTION -1- August 1980

1. INTRODUCTION

Recently there has been some interest in dependency structures which can be used in recasoning and
problem solving systems. Such dependency structures can be used to make rcasoning systems more
incremental during retraction and backtracking and better able to explain their results [Fikes 75)[Stallman &
Sussman 77){Shrobe 77]. This has given rise to special purpose systems for handling logical dependencics,
and even the notion of non-monotonic logics, i.c. logics in which larger premise scts can have fewer valid
conscquences [Doyle 77)[Reiter 79]. 1 have borrowed the term truth maintenance system (TMS) from Jon

Doyle to describe any system with the following four characteristics:
a) It performs some form of propositional deduction from a sct of premises.
b) It maintains justifications and explains the results of its deductions.
c) It incrementally updates its beliefs when premises are added or removed.

d) It does dependency directed backtracking: i.e. when a contradiction arises it uses the

recorded justifications to track down the premiscs which underlic that contradiction.

Two major points about truth maintenance are made here. First a TMS can be based on deduction
in traditional propositional logic. Second, a TMS can be used as an active deductive component of general
deductive systems.

The TMS algorithm described here is based on "propositional constraint propagation” which was
originally described, in essence, by Davis and Putnam [Davis & Putnam 60]. This technique is related to the
algebraic constraint propagation of Sussman [de Kleer & Sussman 78] and the graph labeling algorithms of
Waltz [Waltz 72]. Scction two describes the details of this technique, and the way in which the basic TMS
functions listed above can be integrated into it.

The ability to incrementally manipulate the premise set allows a great deal of flexibility.
Assumptions can be made which can later be retracted if they are found to support contradictions. Some
basic techniques for controlling assumptions, and for controlling the premisc set in gencral, are described in
chapter three.

The TMS can be uscd to perform all propositional deduction in a general deduction framework. The
primary aspect of general deduction which cannot be performed by a TMS is the instantiation of quantified
formula and axiom schema. The position is taken here that those problems which are of a purely propositional
nature can be solved to such a degree that the only difficult issues remaining in automated deduction involve

the control of instantiation.

2. THE'TMS -2- August 1980

2. THE TMS

The TMS described here operates on an assertional data base. Traditionally an assertional data base
has been cither a simple set of assertions or a collection of "contexts” cach of which could be thought of as a
set of assertions [Hewitt 72) [McDermott 74]. The TMS algorithm developed here operates on a data base in
which assertions are assigned to one of the three states, "true”, "false”, and "unknown". It is possible to map
this data base to a simple sct of assertions by first taking the set of assertions which arc "true” and then adding
the negations of the asscrtions which arc "false™. Thus the data base can be simultancously viewed as a

"

traditional sct of assertions, and as an assignment of the states “true”, "false”, and "unknown" to
non-traditional assertions.

These different outlooks on the assertional data base can lead to some confusion in terminology. For
example suppose one wants to assert that Fred is not a fish. One can speak of "adding the premisc” (not (fish
Fred)). But this act of "adding a premise” may actually involve putting the assertion (fish Fred) in a "false”
state. The remainder of this paper relies on context for the proper interpretation of such terminology.

There arc four primary functions performed by this TMS. First it performs propositional deduction
via a deduction technique which is termed here "propositional constraint propagation™. Sccond it generates
justifications for cach deduced truth value. Next it is capable of incrementally updating the data base when
premises are removed. Finally it is capable of dependency directed backtracking. The technique used in

backtracking is easily extended to a refutation mechanism which adds to the deductive power of the TMS.
2.1. Propositional Constraint Propagation

In general a constraint propagation system has a sct of "cells” which can take on valucs, and a set of
"constraints” which constrain those values. Whenever a new value follows from the previously determined
values and a single constraint, this value is deduced. In what will be termed "simple"” constraint propagation
these are the only deductions which are made. Constraint propagation terminates when there are no further
deductions which can be made from single constraints, and the set of constraints is said to be "relaxed”. If the
number of values which can be determined by a single constraint is bounded then this process can take no
longer than lincar time in the number of constraints.

In propositional constraint propagation the assertions in the data base are viewed as cells or "TMS
nodes” which can take on onc of the valucs "true” or "false”. All logical relations (constraints) in the TMS
take the form of disjunctive clauses such as (v (p . false) (q . true)). This constraint says that is impossible for
both P to be true and Q to be false. Therefore whenever P is true the constraint could be used to deduce .that
Q must be true. Likewise whenever Q is false the constraint could be used to deduce that P must be false. As
in the case of general constraint propagation, the TMS will deduce any truth value which follows from the
truth values already present and a single constraint (clause). This process is iterated until the constraint set is
relaxed. It is possible to add premises and constraints incrementally and the TMS has no difficulty performing
the additional deduction needed to relax the constraint set. |

2. THE TMS

Table 1. Axioms for Propositional Logic

or (v ((orpaq).
(v ({orpgq).
(v((orpaq).
and (v ({(and pq)

(v ((andpaq)
(v ((andpq)

-> (v((->pa).
(v((->pa).
(v((->pa).

not (v ((not p)
(v ({notp) .

false) (p . true) (g . true))
true) (p . false))
true) (q . false))

. true) (p . false) (q . false))
. false) (p . true))
. false) (q . true))

false) (p . false) (q . true))
true) (p . true))
true) (q . false))

. true) (p .true))

false) (p . false))

August 1980

It is important to note that not all deductions which follow logically from a set of constraints are
deduced by this algorithm. For example, p follows from the two constraints, (v (p . true) (q . true)) and (v (p .
true) (q . false)). However the system can make no deductions from these constraints. Some of the
implications of this obscrvation, and some ways of dealing with such situations are discusscd in later sections
of this chapter.

The TMS performs propositional deduction from a set of propositional premises. These premises
take the form of assignments of truth values to assertions. The constraints in the TMS are derived from basic
axioms of propositional logic. Each of the logical symbols or, and, ->, and not has an associated axiom sct
which can be used to generate clausal constraints. The axioms for cach of these symbols are given in table 1.
Fer each assertion in the data base which involves one of the basic logical symbols the axioms for that symbol
are used to generate the clausal constraints relevant to that assertion. In reading these axioms it is important
to remember ihat cach clausc gives a means by which cach term in that clause might be deduced.

To get some feel for the deductive power of a propositional constraint propagator some cxamples
need be developed. For convenience the scenarios use an assert function which takes an assertion

Scenario 1. A Deduction Involving or

(assert '(not r))
{NOT R)

(assert '(or r s))
(OR R S)

(truth °'s)

TRUE

2. THE'TMS -4- August 1980

represented as an s-expression and gives the corresponding TMS node a truth value of "true” as a premise. In
the scenarios things typed by the user will appear in lower case while responses by the system will appear in
upper case.

To understand scenario 1 consider the constraints which are created when the assertions (or r s) and
(not 1) are created. Among the constraints gencrated for (not r) is the clause (v ((not r) . false) (r . false)).
When (not r) is made true r is deduced to be false via this constraint. In gencral the axioms for not guarantee
that an assertion and its ncgation always have opposite truth values. Among the constraints generated for (or
r s) is the clause (v ((or r s) . false) (r . true) (s . true)). When (or r s) is made true this clause is used to deduce
that s must be true. V

In general there are three assertions which are relevant to an application of one of the logical
symbols and, or, and ->. The first assertion is the application itsclf, such as (or r s). The second two assertions
arc the arguments in this asscrtion, such as r and s. The propositional axioms guarantee that whenever a truth
value of one of these assertions can be deduced from truth values assigned to the other two, that deduction is
made by the TMS. Scenario 2 is another example of the type of deduction which is carried out by the TMS.

2.2. Justifications

Whenever a deduction is made a justification for the deduced value is constructed. Every deduction
made by the TMS involves only a single clause, along with the truth values of assertions in that clause. Thus
the clause involved in a deduction carries all the information nceded for a justification. Therefore in the TMS
a justification for a deduced truth value is simply a pointer to the clause which was used to deduce that value.

Every deduced truth value can be associated with a set of supporting truth values via its justification.
If any of these valucs were deduced by the system (i.c. they are not premiscs) then they will in turn have
supporting values. By searching down such support structures it is always possible to find the set of premises
from which any deduced value was derived. A query function, why, has been defined to give the set of
supporting values for any deduced truth value. Scenario 3 gives an example of the use of why and figure 1
diagrams the support structure involved. The function why can take a numeric argument which refers to the

Scenario 2. A Deduction Involving ->
(assert '(-> r s))
(-> R S)

(assert '(-> s t))
(->ST)

(assert '(not t))
(NOT T)

(truth 'r)
FALSE

~

2. THE TMS

Scenario 3. An example of the use of why

(assert "(-> r s))

(-> R S)

(assert '(-> s t))

(> S T)

(assert '(not t))

(NOT T)

(why °r)

((R IS FALSE FROM)

(1 (-> R S) IS TRUE)

(2 S IS FALSE))

(why 2)

((S IS FALSE FROM)

(1 (-> S T) IS TRUE)

(2 T IS FALSE))

(why 2)

((T IS FALSE FROM)

(1 (NOT T) IS TRUE))

(WHY 1)

((NOT T) IS TRUE AS A PREMISE)

August 1980

Fig. 1. The Support Structure for Scenario 3

R truth
justification —-l
clause
(->RS) | false
false
true
Y
(->RS) truth
justification

truth truth f
S TS e T
justification justification
clause ¢
f————————
(->ST) talse clause
S talse (NOTT) | talse
T true T false
s e (NOTT) |iiuth !
justification justification |/

2. THETMS -6- August 1980

assertion which was associated with that number in the last explanation given.

Premises are distinguished in the system as truth values with no justification. At any time the user of
the TMS may add any truth value as a premise other than the opposite of a truth value alrcady present as a.
premise. If the added premisc is a truth value which was alrcady deduced by the system then the justification
for the deduced value is simply removed. If the added truth value is the opposite of onc already deduced by
the system then the deduced value is retracted and the opposite value is assigned. The details of how this is
done and how the resulting contradiction is handled arc discussed in the next two sections.

It is important that support structures be "well founded”. That is to say that no deduced truth value
can depend on itself. For the deduction process as defined so far this is guarantced since justifications are
determined at the instant at which a value is deduced and no value in the system yet depends on the deduced
value. However some care need be taken during incremental retraction to see that supports remain well

founded. This will be discussed in the next section.
2.3. Retraction

Onc of the fundamental operations of truth maintenance is incrementally updating the assertional
data base when premiscs are retracted. This should be done in such a way that all deductions are made which
would have been made if the system had started with the new premise set, and that every deduced truth value
(every onc which is not a premise) has a well founded support structure. There are two stages in the rctraction
process. First all deduced truth values which depended on the removed premise are removed. This is done by
checking all clauses which contain any assertion whosc truth value was retracted to see if it now invalidly
supports some other value. If it does then that value is recursively retracted. The sccond phase of the
retraction process involves checking all assertions which had truth values retracted to sec if some value can be
deduced for them in some other way. Because all deduction is done in an environment in which all
justifications are valid and well founded, the justifications resulting from any deduction must be valid and
well founded.

Retraction is also involved when the user adds a premise which the system has already deduced to
be false; i.c. the user wishes to assign a truth value to an assertion as a premise but the system has already
deduced the opposite valuc for that assertion. In this case phase one of the retraction process is applicd to the
deduced truth value so that the deduced value is removed along with all of its consequences. Then the truth
value being given that assertion as a premise is added. Finally phase two of the retraction process is applied to
perform any deduction which can done via standard propositional constraint propagation. Of course the data
base will then be in a state of contradiction, which is discussed in the next section.

2. THE TMS -7- August 1980

2.4. Backtracking and Refutation

The term "contradiction” will be used here to refer to a clause in the TMS all of whose terms are
false. For example the clause (v (p . false) (q . truc)) would be a contradiction in any situation in which p was
truc and q was false. Contradictions can come into existence at any time during deduction or the addition of
premises. The premise sct underlying a contradiction is the union of the premise sets for the truth values
directly involved. To ensure that backtracking does not interfere with deduction or retraction, all processing
of contradictions is done outside any of these processes. When contradictions arise the system asks the user
(or the system using the TMS) to choose one of the premises underlying the contradiction for retraction. This
process has been termed "dependency directed backtracking” [Stallman & Sussman 77] and a simple cxample
is given in scenario 4. '

When a premise which underlies a contradiction is retracted it is important that its ncgation be
deduced to prevent a re-occurrence of the same contradiction at a later time. This can sometimes be done by
the propositional constraint propagation algorithm alrcady discussed. However there are cases where this is
not so. For example consider what happens in scenario 5. The assertion ¢ logically follows from the assertions
(-> a c), (-> b ¢), and (or a b), but the system is incapable of deducing this. When (not c) is asscrted the system
deduces that both a and b must be false which leads to the clause (v ((or a b) . false) (a . true) (b . true))
becoming a contradiction (a clause involving one of the the implications could just as casily become a
contradiction if deduction was done in a different order). The asscrtion (not ¢) is onc of the premises

underlying this contradiction. Without somc additional mechanism however the system is incapable of

Scenario 4. A Simple Example of Backtracking

(assert '(or r s))
(OR R S)

(assert '(not r))
(NOT R)

(assert '(not s))
((THERE IS A CONTRADICTION FROM
((OR R S) BEING TRUE)
(R BEING FALSE)
(S BEING FALSE))
(THE UNDERLYING PREMISES ARE
(1 (OR R S) IS TRUE)
(2 (NOT R) IS TRUE)
(3 (NOT S) IS TRUE))
(WHICH PREMISE SHOULD BE RETRACTED >)) 3

(why 's)

(S IS TRUE FROM

(1 (OR R S) IS TRUE)
(2 R IS false))

2. THE TMS ' -8- August 1980

deducing that (not ¢) must be false when the truth of (not ¢) is retracted.
Onc simple solution is to add a clause which contains the negations of all the premises underlying

the contradiction. In the casc of scenario S this clause is:
(v ((or a b) . false) ((-> a c) . false) ((-> b ¢) . false) ((not ¢) . false))

Any such generated clause is guaranteed to be a logical tautology because all of the involved premises lead to
a contradiction given the clauses alrcady in the system, which are themselves all logical tautologies. Once
such a clause is added it can be uscd to deduce the negation of any one of the premises whenever all the
others arc believed. Thus when a single premise is retracted its negation is guaranteed to be deducible by the
system.

Actually the TMS uses a more complex algorithm which performs local clause resolution. 'This

Scenario 5. Another example of backtracking

(assert '(-> a c))
(-> AC)

(assert '(-> b c))
(-> B C)

(assert '(or a b))
(OR A B)

(why 'c)
(I DONT KNOW WHETHER C IS TRUE OR FALSE)

(assert '(not c¢))
((THERE IS A CONTRADICTION FROM
(A IS FALSE)
(B IS FALSE)
((OR A B) IS TRUE))
(THE UNDERLYING PREMISES ARE
(1 (-> A C) IS TRUE)
(2 (-> B C) IS TRUE)
(3 (OR A B) IS TRUE)
(4 (NOT C) IS TRUE))
(WHICH PREMISE SHOULD BE RETRACTED >)) 4

(why 'c)
(C IS TRUE FROM
(1 (NOT C) IS FALSE))

(why 1)

((NOT C) IS FALSE FROM
(1 (-> A C) IS TRUE)
(2 (-> B C) IS TRUE)
(3 (OR A B) IS TRUE))

2. THETMS -9- August 1980

Scenario 6. An Fxample of Refutation

(assert '(-> a b))
(-> A B)

(assert '(-> b c))
(-> B C)

(why '(-> a c))
(1 DONT KNOW WHETHER (-> A C) IS TRUE OR FALSE)

(try-to-show '(-> a c))
T

(why '(-> a c))

((-> A C) IS TRUE FROM
(1 (-> A B) IS TRUE)
(2 (-> B C) IS TRUE))

produces more local constraints which are deductively more powerful and give shorter, more structured
justifications when they are used in deductions. However the details of this more sophisticated procedure are
irrclevant to the current discussion and the interested reader is referred to appendix one for the Lisp code
which performs backtracking in the implemented TMS.

The backtracking mechanism can be used in a refutation techniqué which increases the deductive
power of the system. In refutation the system attempts to deduce a specific truth value for an assertion by first
adding the negation of that valuc as a premise. If no contradiction arises then the attempted deduction fails
and the added truth value is removed. If a contradiction does arisc then the added value must underlie it and
the system deduces the negation of this value in the standard backtracking manner. Thus the desired truth
value gets deduced. Scenario 6 gives an cxample of the use of a try-to-show function which invokes the

refutation mechanism,

3. PREMISE CONTROL -10- August 1980

3. PREMISE CONTROL

The TMS can be thought of as an instrument which allows one to view the consequences of a
prcmisc set. Being similar to other instruments of examination, the TMS is uscful not only in examining
given premise sets, but also in determining those premises which are of interest. This Chapter investigates
some ways in which the TMS can be used to feed back information from the assertional data base in
manipulating the premise set under examination.

A premisc controller can be used to automate some manipulations of the premise set. This premise
controller can have data structures which are completely independent of the assertional data base. For
cxamblc the premise controller might associate likelihoods with cach potential premise. The user could then
manipulate these likelihoods leaving the actual premisc control up to the controller. The first two sections of
this chapter investigate some methods for doing this type of automatic premise control.

The premise controller can also make use of the assertional data basc when choosing premiscs. For
example suppose that the TMS has deduced that the assertion (taller Bill John) is true, which is interpreted as
saying that Bill is taller than John. In this case it might be uscful to assume that Bill is heavier than John. The

last section of this chapter describes a technique for having this kind of premise control done automatically.
3.1. Assumptions

A simple premisc controller can be constructed by making a distinction between solid facts and
assumptions. In this system the user would specify a set of solid facts and a set of assumptions. The premise
controller would then put both in the premise set. If contradictions arise then the premise controller will
always retract an assumption before retracting a solid fact. If there is more than one assumption underlying a
contradiction then the user is asked to choose one for retraction. Similarly if a contradiction arises which has
no underlying assumptions then the user must choose some "solid fact” for retraction.

An example of the use of assumptions in premise control is given in Scenario 7. In this scenario, and
all those that follow, the user is interacting with a premise controller which in turn deals directly with the
TMS. Thus the assert function tells the premise controller that the given assertion is a solid fact, and the
assume function tells it that the given assertion is an assumption.

In scenario 7 the premise controller is given two assumptions. First r is assumed, which leads to a
deduction that t is false. Then t is assumed and the premise controller makes t a premise. This causes the
clause which justified t being false to become a contradiction. When this contradiction occurs only the
assumptions underlying the contradiction are presented to the user, thus the two implications, (-> rs) and (->
s (not t)), are not considered for retraction. When the assumption r is retracted its negation is automatically
deduced.

Another example of premise control via assumptions is given in scenario 8. In this scenario three
assumptions arc made. Logical constraints are placed on these assumptions such that any one of them can be
true, but any two of them lcad to a contradiction. When r and s are both assumed a contradiction arises and

g

3. PREMISE CONTROL -11- August 1980

Scenario 7. An Example of Premise Control with Assumptions

(assert '(-> r s))
(-> R S)

(assert '(-> s (not t)))
(-> S (NOT T))

(assume 'r)
R

(why "t)
(T IS FALSE FROM
(1 (NOT T) IS TRUE))

(assume 't)
((CONTRADICTION FROM
(T 1S TRUE)
((NOT T) IS TRUE))
(UNDERLYING ASSUMPTIONS ARE
(1 T IS TRUE)
(2 R 1S TRUE))
(WHICH ASSUMPTION SHOULD BE RETRACTED)) 2

(why r)

(R IS FALSE FROM

(1 (-> R S) IS TRUE)
(2 S IS FALSE))

the user makes a choice between these two assumptions, leading to a retraction of r. When t is assumed the
user must then choose between t and s, leading to a retraction of s. At this point the user has not expressed
any preference between r and t, both of which were given to the premise controller as assumptions. So the
premise controller reinstates r as a premise and forces this choice to be made. In general the premise

controller never makes an arbitrary choice between assumptions.
3.2. Likelihood Classes

A generalization of the assumption approach to premise control involves placing potential premises
in likelihood classes. The assumption approach can be viewed as a special case of this in which there arc two
likelihood classes, one for known facts and onc for assumptions. When contradictions arise in the general
likelihood approach, less likely assumptions are always preferred for retraction. The user nced only be
consulted when there are several premises which tie for being the lcast likely premises underlying a
contradiction. Again the premise controller is very carcful not to make arbitrary choices between premises in
the same class.

An example of a case in which it might be desirable to have mbrc than two premise classes involves a
numerical approximately cqual relation, ~. Such a relation is not truly transitive, i.c. (~ a b) and (~ b c) does

3. PREMISE CONTROL -12- August 1980

Scenario 8. A More Complex Example

(assert ’'(not (and r s)))
(NOT (AND R S))

(assert '(not (and s t)))
(NOT (AND S T))

(assert '(not (and r t)))
(NOT (AND R T))

(assume 'r)
R

(assume 's)
((CONTRADICTION FROM
(AND R S) IS FALSE)
(S IS TRUE)
a (R IS TRUE))
(THE UNDERLYING ASSUMPTIONS ARE
(1S IS TRUE)
(2 R IS TRUE))
(WHICH SHOULD BE RETRACTED)) 2

(assume 't)
((CONTRADICTION FROM
ff-hx ((AND S T) IS FALSE)
’ (S IS TRUE)
(T IS TRUE))
(THE UNDERLYING ASSUMPTIONS ARE
(1 S IS TRUE)
(2 T IS TRUE))
(WHICH SHOULD BE RETRACTED)) 1

((CONTRADICTION FROM
((AND R T) IS FALSE)
(R IS TRUE)
(T IS TRUE))
(THE UNDERLYING ASSUMPTIONS ARE
(1 R IS TRUE)
(2 T IS TRUE))
(WHICH SHOULD BE RETRACTED)) 1

not necessarily imply that (~ a c); otherwise onc could prove that things of arbitrarily differing size were
roughly equal. However onc might want to consider this transitivity to be very likely. One might also have
other assumiptions in the systems, say about transistor states which are much less certain. Thus one would
want at least three likelihood classes used in premise control, one for known facts, one for facts derived from

~ the transitivity of the roughly cqual rclation, and one for less certain assumptions. The code for a premise
controller of this type is presented in appendix two.

3. PREMISE CONTROL -13- August 1980

3.3. Likelihood Assertions

In addition to retracting premises which Iead to a contradiction, a premise controller should be able
to use deductions made by the TMS to do more positive types of premise control. For example, if it has been
deduced that one person is taller than another, one might want to assume that he is also heavier. Or if onc has
deduced that some animal is a bird, onc might want to assume that it can fly. This type of premise control can
be done with likelihood assertions.

Assuming that the a general likelihood class approach is taken to premise control, one can imagine
likelihood assertions of the form: (very-likely p). which is intended to mean that the assertion p is very likcly to
be true. There could be a whole range of such likelihood “predicates™ such as somewhat-likely, likely,
very-likely, ctc. Of course it remains to be shown how a system is capable of using (or "understanding™) such
asscrtions.

One way of using such asscrtions is to have the premise controller continually monitor the data base
and usc them in placing potential premises in likelihood classes. However if the system has assumed that
some animal can fly it might be nice to know why this.assumption was made. While it would be possible to
place justification machinery in the premise controller there is a much simpler solution. For cach assertion of
the form (likely p) the system automatically creates the assertion (-> (likely p) p). This implication is then
considered to be a "likely" premisc by the premise controller. Similar implications would be created for other
likelihood predicates and given corresponding status in the premise controller. In this way if the assertion
(likely p) is ever deduced to be true, the assertion p will also become true. The support for p will involve the
likelihood assertion and it will therefore be clear why p is belicved. However if the deduction of p ever leads
to a contradiction then the assumption (-> (likely p) p) can be retracted. Scenario 9 gives an example of the
usc of a likclihood assertion.

Scenario 9. A use of Likelihood Assertions

(assert '(-> (bird fred) (likely (flys fred))))
(-> (BIRD FRED) (LIKELY (FLYS FRED)))

(assert '(bird fred))
(BIRD FRED)

(why '(flys fred))

((FLYS FRED) IS TRUE FROM

(1 (-> (LIKELY (FLYS FRED)) (FLYS FRED)) IS TRUE)
(2 (LIKELY (FLYS FRED)) IS TRUE))

(why 2)

((LIKELY (FLYS FRED)) IS TRUE FROM

(1 (-> (BIRD FRED) (LIKELY (FLYS FRED))) IS TRUE)
(2 (BIRD FRED) IS TRUE))

4. INSTANTIATION CONTROL -14- August 1980

4. INSTANTIATION CONTROL

It s well known that automated deduction and theorem proving systems are subject to explosive
computations. However the TMS described in the previous sections seems free of this problem. While it is
possible to make the premisc controller do a great deal of backtracking (cxponential in the number of
backtrackable assumptions), in practice this is not important because the number of assumptions is usually
small and they do not interact in complex manncrs. The difference between the TMS and more general
deductive systems is that the TMS deals with propositional logic only. All of the difficult problems in
automated deduction involve instantiation of quantified formulac and axiom schemas.

From the point of view taken here instantiation and deduction are separate processes. Deduction is
the process of assigning truth values to assertions based on other truth values alrcady in the system. This can
be done entirely by the TMS. Instantiation can be though of as gencrating propositional formulae upon
which the TMS can operate. This outlook on deduction leads to novel control strategies.

4.1. For-All Assertions

Quantificd knowledge can be represented in for-all assertions. Scenario 10 gives an example of the
use of such asscrtions. In this scenario the assertion (for-all (dog !'x) (mammal 'x)) represents the statement
that all dogs arc mammals. In general a for-all assertion has two parts. The first is an "anteccdent assertion”
such as (dog !x) in the example, and is similar to a trigger pattern in a PLANNER demon. Symbols which
begin with the character "!" arc treated as variables which can match any s-expression. The sccond part of a
for-all assertion is a conscquent asscrtion, instances of which follow from the for-all assertion and
corresponding instances of the antecedent assertion.

For deductions to be made from the assertion (for-all (dog 'x) (mammal X)) constraints must be
placed in the TMS which involve this assertion. TMS constraints for assertions involving the basic logical
connectives are derived from axioms for those connectives. Similarly constraints involving for-all assertions
are derived from implicit axioms for for-all. The following constraint is an instance of these axioms. It says
that the above for-all assertion along with the assertion (dog Fred) implies the assertion (mammal Fred).

(v ((for-all (dog !x) (mammal !x)) . false)

((dog Fred) . false)
((mammal Fred) . true))

It is clear that it would be impossible to gencrate all instances of the axioms for for-all asscrtions
whenever such an assertion is created in the data base. Therefore some more sophisticated control tcchnique
is required for this instantiation process. When a for-all assertion is created a demon is constructed which is
invoked every time an assertion that matches the antecedent pattern is created in the data base. Each time this
demon is invoked it uses the variable binding gencrated by the triggering assertion to create a corresponding
instance of the conscquent assertion. Then it adds a constraint, similar to the onc above, which states that the
for-all assertion along with this instance of the antecedent assertion implics the instance of the conscquent

4. INSTANTIATION CONTROL -15- August 1980

Scenario 10. A use of for-all

(assert '(for-all (dog !x) (mammal !x)))
(FOR-ALL (DOG !X) (MAMMAL 1X))

(assert '(dog fred))
(DOG FRED)

(why '(mammal fred))

((MAMMAL FRED) IS TRUE FROM

(1 (FOR-ALL (DOG !X) (MAMMAL X)) IS TRUE)
(2 (DOG FRED) IS TRUE))

assertion. It is important to keep in mind that the triggering condition is the creation of an assertion not the
assignment of a true truth valuc to that assertion. Thus the above constraint could have been generated even if
the assertion (dog fred) was not known to be true. In this case the constraint could be used to deduce that this

assertion is in fact false.
4.2. Taxonomic Hierarchies: An Example

A system for reasoning about taxonomic hierarchies will be developed in this scction. Each
taxonomic class is represented by a predicate. The taxonomic hicrarchy can.be represented by assertions of

the form:

(for-all (cat !x) (mammal Ix))
(for-all (dog !x) (mammal 1x))
(for-all (dog !x) (not (cat lx)))

(for-all (cat Ix) (not (dog !x)))

Figure 2 shows a taxonomic hierarchy. A set of assertions similar to the above asscrtions concerning
the predicate mammal are asserted for each non-terminal predicate in the hierarchical tree. Scenario 11 gives
some sample deductions the system is capable of making from these assertions. When the assertion (mouse
fred) is created the assertion (rodent fred) is also created and a constraint is installed which says that the
assertion that all mice are rodents along with the assertion that Fred is a mouse imply the assertion that Fred
is a rodent. The creation of the assertion (rodent fred) in turn lcads to the creation of other constraints and
assertions until the top of the hicrarchy is rcached. Now when (rodent fred) becomes true, the TMS
automatically deduces that fred is a member of every class supcrior to rodent in the hicrarchy.

Now consider what the system does in response to the form (why ‘(ladybug fred)). Since the
assertion (ladybug fred) did not cxist previously in the system the why function first creates this assertion. This
creation results in the creation of further assertions and logical constraints. These newly created constraints
interact with the previous constraints at the level of vertebrate and arthropod. Since it was asserted in

4. INSTANTIATION CONTROL -16- August 1980

Fig. 2. A Simple Taxonomic Hicrarchy

animal
)ﬂei K
)n< fish crustacean jct\
rodent primate butterfly beetle
mouse rabbit June bug ladybug

Scenario 11. Some Deductions Involving the Taxonomic Hierarchy

(assert '(mouse fred))
(MOUSE FRED)

(why '(vertebrate fred))

((VERTEBRATE FRED) IS TRUE FROM

(1 (FOR-ALL (MAMMAL !X) (VERTEBRATE 1X)) IS TRUE)
(2 (MAMMAL FRED) IS TRUE))

(why '(ladybug fred))

((LADYBUG FRED) IS FALSE FROM

(1 (FOR-ALL (LADYBUG 1X) (BEETLE IX)) IS TRUE)
(2 (BEETLE FRED) IS FALSE))

constructing the hierarchy that no vertebrates arc arthropods, the system had alrcady deduced that the
assertion (arthropod fred) was false. This leads to the deducticon that Fred is not an inscct, and therefore not a
beetle, and thercfore not a ladybug.

The time it takes it takes to do the types of instantiations and deductions exemplified in scenario 11
is proportional to the depth of the hierarchy which is usually proportional to the log of the number of classes
involved. The interesting thing about the above deductions however is not the efficient computation time

4. INSTANTIATION CONTROL -17- August 1980

involved but instead the simplicity of the control structure used in achicving it. Normally to achieve
comparable efficiency one would have to use both forward chaining and backward chaining control structures
[Moore 75]. Here a single method for controlling instantiation (as opposed to deduction) fully achieves the
desired efficiency.

4.3. Areas for Further Research

The instantiation control techniques which have been discussed so far are only a beginning. Not all
domains in deduction lend themsclves to so simple a solution as do taxonomic hicrarchics. The simple
statement that the mother of any person is a person leads to infinite instantiation if a standard for-all asscrtion
is used. This scction gives some dircctions for rescarch into other instantiation control techniques. The major
point here does not concern specific mechanisms for controlling instantiation, but rather that control of

deduction in general should be thought of as control of instantiation.
4.3.1 DEMONIC INVOCATION

In controlling the instantiation of quantificd knowledge one would like a convenient way of
specifying general conditions under which instantiation is to take place. The axioms for the basic
propositional logical operators get instantiated whenever an assertion using onc of these opcrators is created
in the data basc. This type of demonic invocation will be called "reference invocation”. The following is a
demon specification utilizing reference invocation which might be used to control the knowledge that the
mother of any person is a person:

(notice ((assertion-reference (person Ix))

(term-reference (mother Ix)))
(install-constraint '(-> (and (person lx)

(for-all y

(-> (person y)
(person (mother y)))))
(person (mother !x)))))

Demon specifications of the above form have two parts. First is a set of conditions which must be
met for the demon to fire. The second is a body of Lisp code which defines the action taken by the demon
when it fires. The trigger conditions of the above demon arc both reference conditions which are met
whenever a term or assertion matching the given pattern is referenced. When a demon is triggered the
variables in the trigger patterns are bound to s-cxpressions representing terms and assertions. These bindings
are then used to replace all occurrences of the variables in the body with the corresponding s-expressions
before the body is cvaluated. In the above example install-constraint is used instead of assert because the
implication being asserted is really a logical tautology and therefore only a TMS clause cquivalent to the
implication need be created (no node is generated to represent the implication itself).

Other types of trigger conditions are conceivable. The simplest would trigger whenever assertions of
a certain form became true (or false). Asscrtions and terms might also be assigned "intcrestingness”. Demons

4. INSTANTIATION CONTROL - 18- August 1980

could then trigger when assertions or terms of certain forms are "interesting™. Such control states assigned to
assertions and terms would be closely related to "control assertions”™ which have been used in some recent
work with pattern directed invocation systems [de Kleer ct. al. 77] [Shrobe 79]. However the use of such

techniques for instantiation control (as opposed to deduction control) is still largely unexplored.
4.3.2 SPECIAL PURPOSE SUBSYSTEMS

An important aspect of any automated deduction system is the case with which special purpose
subsystems can be incorporated. For example one almost certainly wants some special purpose algorithms for
dealing with cqualitics [Nelson & Oppen 79] [McAllester 80]. In the present context such algorithms can be
viewed as controlling the instantiation of the substitution axioms for cquality, generating new terms and
cquating them with other terms in the system. A full discussion of the ways cquality can be handled is beyond
the scope of this work, but it is important to note that special purposc'pmccdurcs scem a better option than
any attempt to handle it entirely through demonic mechanisms.

Another example of an arca in which special pufposc subsystems would be desirable is algebraic
simplification. There are good algorithms for doing symbolic simplification of algebraic expressions and any
reasoning system which must manipulate such expressions should be able to use these algorithms [McAllester
80]. The feasibility of incorporating arbitrary special purpose deduction algorithms and decision procedures is
only beginning to be explored.

5. RELATION TO OTHER WORK -19- August 1980

- 5.RELATION TO OTHER WORK

The earliest predecessor to the system described here is probably the Davis-Putnam algorithm for
determining the satisfiability of sentences in first order predicate calculus [Davis & Putnam 60}. The feature of
their algorithm which reseinbles the TMS is their technique for determining satisfiability of purely
propositional sentences. Their method translated the propositional sentence to a set of disjunctive clauses and
then performed "propositional constraint propagation” on those clauses much as does the TMS (but they did
not call it that). Propositional constraint propagation can also be scen to be very similar to unit clause
resolution (resolving first with clauses which contain only a single term). However it is not really appropriate
to compare the TMS to any full fledged resolution system since the TMS does not deal with variables (ie.
quantificd formula).

These carly systems however did not perform the basic TMS functions of justification maintenance,
incremental retraction, and dependency directed backtracking. The carliest attempt to handle incremental
retraction probably dates back to the "add" and "delete” lists in the STRIPS language [Fikes 71], and
PLANNER demons which triggered on the removal of assertions [Hewitt 72] [Sussman 71] [McDermott 74).
Later a dependency based mechanism was developed by Richard Fikes for rcasoning about state transitions
[Fikes 75]). A more sophisticated dependency directed retraction mechanism was later developed by Stallman
and Sussman for usc in an clectrical circuit analysis system [Stallman & Sussman 77]. Their system could
make assumptions about transistor states, and when a contradiction was derived, the system uses dependency
directed backtracking to track down the particular underlying assumptions.

The first domain independent system which performed all of the basic truth maintenance functions
was developed by Jon Doyle [Doyle 78]. Doyle’s system used "non-monotonic” dependencics which justify a
node being "in" by the fact that some other node is "out". Such dependencies are typically used to make
assumptions. For example one might assume A by justifying A with the fact that (not A) is out. Thus if (not A)
ever becomes in, the justification for A will no longer be valid and A will become out. This leads to problems
however if the system is able to prove (not A) from the assumption of A. First (not A) comes in forcing A out.
But because (not A) depends on A this in turn causes (not A) to become out, which, via the non-monotonic
dependency, leads to A becoming in, which leads to (not A) becoming in, ad infinitum. While there may be
ways to fix this problem, it sccms hard to motivate the introduction of non-monotonic mechanisms which lead
to unnecessary complications.

Another problem with non-monotonic systems is their obscure semantics. Attempts to formalize
"non-monotonic logics" are plagued by "unsatisfiable” situations similar to the infinite computation
described above [McDermott 78]. While it may be possible to debug these problems, the fundamental
motivation behind non-monotonic justifications is suspect. Certainly one cannot argue that an assumption is
madec because one cannot prove its ncgation. At any time there is an infinite number of assertions which the
system can not prove to be false, but one would certainly not want to assume all these things. Therefore a
non-monotonic justification does not capture the true reason for makiﬁg an assumption. It might capture what
the system should do if it could prove the ncgation of an assumption, but this is a backtracking issuc and

5. RELATION TO OTHER WORK -20- August 1980

should not be represented as a justification.

In the truth maintenance system described in this paper as much as possible is done in a traditional
framework. The problem with non-monotonic logics is that they bring in non-traditional formalisms too
carly, muddying deduction, justifications, and backtracking. The aspect of truth maintenance which cannot be

formalized in a traditional framework is premise control, which has only just begun to be explored. foofoo

6. APPENDIX I THE TMS CODE -21- August 1980

6. APPENDIX I: THE TMS CODE
6.1. The User Interface

These functions interact with the the premise controller. The premise controller works on a priority
class scheme which can be initialized to have any number of priority classes, which are assigned consccutive
integers from the least to the most certain. The user level functions given here work with three priority classes,
numbered 1 through 3. The functions assert and assume put assertions in the most certain and lcast certain

classes respectively. The middle class is accessed via very-likely assertions, which arc documented below.

(prmcon-init 1 3)

(defun assert (assertion)
(set-default (referenced-node assertion) 'true 3)
assertion)

(defun assume (assertion)
(set-default (referenced-node assertion) "true 1)
assertion) :

(defun retract (assertion)
(remove-default (referenced-node assertion)))

The assertions are placed in a hash table which is used to insure that no two TMS nodes have the
same assertion,

(dectare (special *assertion-table*))
(setq *assertion-table®* (make-array nil 'art-q 4000))

(aefun index (form)
(remainder (hash form) 4000))

(defun referenced-node {assertion)
(let ((ass (virt-assoc assertion
(ar-1 *assertion-table* (index assertion)))))
(if (cdr ass)

(cdr ass)

(let ((node (make-tms-node)))
(setf (cdr ass) node)
(setf (assertion node) assertion)
(instantiate node assertion)

node))))

(defmacro in-funs (symbol)
‘(get ,symbol 'in-funs))

(defun instantiate (node assertion)
(if (and (listp assertion) (symbolp (car assertion)))
(mapc 'funcall (in-funs (car assertion))
(circular-list node)
(circular-list assertion))))

6. APPENDIX I: THE TMS CODE -22- August 1980

These functions instantiate the basic axioms of propositional logic in the TMS.

(defun ->instance (node assertion)
(let ((nl1 (referenced-node (cadr assertion)))
(n2 (referenced-node (caddr assertion))))

(add-clause (1ist (cons node 'false)
(cons n1 °'false)
(cons n2 'true)))

(add-clause (1list (cons node 'true) (cons nl 'true)))

(add-clause (1ist (cons node 'true) (cons n2 'false)))))

(addf '->instance (in-funs '->))

(defun or-instance (node assertion)
(let ((n1 (referenced-node (cadr assertion)))
(n2 (referenced-node (caddr assertion))))

(add-clause (1ist (cons node 'false)
(cons n1 'true)
(cons n2 ‘'true)))

(add-clause (1list (cons node 'true) (cons ni1 'false)))

(add-clause (list (cons node 'true) (cons n2 'false)))))

(addf ’or-instance (in-funs 'or))

(defun and-instance (node assertion)
(et ((n1 (referenced-node (cadr assertion)))
(n2 (referenced-node (caddr assertion))))

(add-clause (1list (cons node 'true)
(cons n1 'false)
(cons n2 'false)))

(add-clause (1ist (cons node 'false) (cons nl 'true)))

(add-clause (1list (cons node 'false) (cons n2 'true)))))

(addf ‘and-instance (in-funs 'and))
(defun not-instance (node assertion)
(et ((n1 (referenced-node (cadr assertion))))
(add-clause (1ist (cons node 'true) (cons nl1 ‘'true)))
(add-clause (1ist (cons node 'false) (cons nl 'false)))))

(addf 'not-instance (in-funs 'not))

These functions interface likclihood assertions with the premise controller.

(defun likely-instance (node assertion)
(assume ‘(-> ,assertion ,(cadr assertion))))

(addf 'likely-instance (in-funs 'likely))
(defun very-likely-instance (node assertion)
(1et ((n1 (referenced-node '(-> ,assertion ,(cadr assertion)))))
(set-default nl1 'true 2)))

(addf 'very-likely-instance (in-funs 'very-likely))

6. APPENDIX L THE TMS CODE -23- August 1980

(defun try-to-show (assertion)
(1et ((node (referenced-node assert1on)))
(refute (cons node 'false))
(eq (truth node) 'true)))

(defun why (item)
(if (and (numberp item) (= item 0))
(pop-guery)
(let ((node (if (numberp item)
(answer item)
(referenced-node item))))
(cond ((unknown? node)
"(I dont know whether or not ,(assertion node) is true))
((null (support node))
"(,(assertion node) is ,(truth node) as
,@(cdr (assoc (certainty node) '((1 a likely)
(2 a very-likely)
(3 an asserted))))
premise))
(t (push-query (cons '(,(assertion node) is ,(truth node) from)
(fmapcar '(lambda (term)
(if (not (eq (car term) node))
(cons '(,(assertion (car term))
is
,(truth (car term)))
(car term))))
(clause-1ist (support node))))))))))

6. APPENDIX [THE TMS CODE -4- August 1980

~ 6.2. The TMS

(declare (special *contra-list* *removed-list* *noticers*
premise-selector *premise-checker®))

(defun tms-init (prem-selector prem-checker)
(setq *premise-selector* prem-selector)
(setq *premise-checker* prem-checker)
(setq *contra-1ist* nil)

'(tms-ready))

(defstruct (tms-node)
assertion
(truth 'unknown)
support
true-noticers
false-noticers
unknown-noticers
neg-clauses
pos-clauses
external-properties)

(defmacro opposite (value)
*(if (eq .,value ‘'true) 'false 'true))

(defmacro clauses (node value)
"(if (eq ,value 'true)
(pos-clauses ,node)
(neg-clauses ,node)))

(defmacro op-clauses (node value)
'(if (eq ,value 'true)
f kY (neg-clauses ,node)

(pos-clauses ,node)))

(defmacro noticers (node value)
‘(cond ((eq ,value 'true)
(true-noticers ,node))
((eq ,value 'false)
(false-noticers ,node))
(t (unknown-noticers ,node))))

(defmacro unknown? (node)
‘(eq (truth ,node) ‘annown))

efmac premise? (node
def ise? (nod
(and (not (unknown? node)) (null (support node))))

(defmac true-term? (term)
(eq (truth (car term)) (cdr term)))

(defmac false-term? (term)
(eq (truth (car term)) (opposite (cdr term))))

(defmacro unknown-term? (term)
"(unknown? (car ,term)))

(defmacro op-term (term)
‘(cons (car ,term) (opposite (cdr ,term))))

6. APPENDIX I: THE TMS CODE -25- August 1980

(defmacro make-clause ()

g"‘x "(cons nil nil))

(defmacro clause-1ist (clause)
‘{car ,clause))

(defmacro psat (clause)
‘(cdr ,clause))

(defun add-clause (clist)
(let ((clause (add-2 clist))
(*noticers* nil}))
(deduce-check clause)
(run-noticers)))

(defun add-2 (c-list)
(let ({(clause (make-clause)))
(setf (clause-list clause) (merge c-list nil))
(mapc '(lambda (term)
(addf clause (clauses (car term) (cdr term))))
(clause-1ist clause))
(setf (psat clause) (comp-psat {clause-list clause)))
clause))

(deftail comp-psat (clist)
(if (null clist)
0

(if (not (false-term? (car clist)))
(1+ (comp-psat (cdr clist)))
(comp-psat (cdr clist)))))

6. APPENDIX I: THE TMS CODE -26-

(defun make-premise (node value)
e (et ((*noticers* nil))
: (cond ({unknown? node)
(set-truth node value))
((eq value (truth node))
(setf (support node) nil))
(t (et ((*removed-1ist* nil))
(remove-truth node)
(set-truth node value)
(removed-check))))
(run-noticers)))

(defun set-truth (node value)
(set-2 node value)
(mapc ’(lambda (noticer)
(addf noticer *noticers*))
(noticers node value))
(mapc 'deduce-check {op-clauses node value)))

(defun set-2 (node value)
(mapc '(lambda (clause)
(setf (psat clause) (1- (psat clause))))
(op-clauses node vatue))
(setf (truth node) value))

(defun deduce-check (clause)
(cond ((= (psat clause) 1)
(let ((term (unknown-term (clause-list clause))))
(if term
(deduce (car term) (cdr term) clause))))
((= (psat clause) 0)
(addf clause *contra-list*))))

e (deftail unknown-term (clist)
: (cond ((null clist) nil)
((unknown-term? (car clist))
(car clist))
(t (unknown-term (cdr clist)))))

(defun deduce (node value sup-clause)
(setf (support node) sup-clause)
(set-truth node value))

August 1980

6. APPENDIX i: THE TMS CODE -27- August 1980

(defun retract-premise (node)
(if (premise? node)
(tet ((*noticers* nil)
(*removed-Tist* nil))
(remove-truth node)
(removed-check)
(run-noticers))))

(defun remove-truth (node)
(let ((value (truth node)))
(remove-2 node value)
(addf node *removed-list*)
(mapc 'retract-check (op-clauses node value))))

(defun remove-2 (node value)
(if (unknown? node) (break removing-truth-of-unknown-node))
(mapc '(lambda (clause)
(setf (psat clause) (1+ (psat clause))))
(op-clauses node value))
(setf (truth node) 'unknown)
(setf (support node) nil))

(defun retract-check (clause)
(if (> (psat clause) 1)
(let ((node2 (satisfier (clause-list clause))))
(if (and nodez (eq clause (support node2)))
(remove-truth node2)))))

(deftail satisfier (clist)
(cond ((null clist) nil)
((true-term? (car clist))
(caar clist))
(t (satisfier (cdr clist)))))

All nodes whose support status has changed (the node’s previous support was invalidated) are passed
to the premise controller which determines if the premises should be changed based on the current support

structure.

(defun removed-check ()

(mapc 'node-deduce-check *removed-list®)

{funcall *premise-checker* *removed-Tist®)

(mapc '(lambda (node)

(cond ((unknown? node)
(mapc '(lambda (noticer) (addf noticer *noticers®))
(unknown-noticers node)))))
removed-1ist))

(defun node-deduce-check (node)
(cond ((unknown? node)
(node-check-2 node 'true (pos-clauses node))
(node-check-2 node 'false (neg-clauses node)))))

(deftail node-check-2 (node value clauses)
(if clauses
(et ((clause (car clauses)))
(if (= 1 (psat clause))
(deduce node value clause)
(node-check-2 node value (cdr clauses))))))

6. APPENDIX I: THE TMS CODE -28- August 1980

(deftail run-noticers ()
(cond (*contra-list*

(let ((contra (car *contra-list*)})
(setg *contra-list* (cdr *contra-list*))
(if (= 0 (psat contra)) (backtrack contra))
(run-noticers)))

(*noticers®

(Tet ((next (car *noticers*)))

(setg *noticers* (cdr *noticers®))
(eval next)
(run-noticers)))))

(defun backtrack (contra)
(let ((prems (premises (clause-list contra))))
(et ((prem (cond ((null prems) (break contradiction))
{((null (cdr prems)) (car prems))
(t (funcall *premise-selector* prems)))))
{(let ({path (support-path prem (clause-list contra)))
(*removed-1ist* nil))
(invert path contra)
(de1f prem *removed-1ist*) ; the premise controller has already selected this node

(removed-check)))))

(defmacro premises (clist)
‘(merge (premises2 ,clist) nil))

(defun premises2 (clist)
(if clist
(if (true-term? (car clist))

(premises (cdr clist))

(if (premise? (caar clist))
(cons (caar clist) (premises (cdr clist)))
(nconc (premises (clause-list (support (caar clist))))

(premises (cdr clist)))))))

(defun refute (term)
(let (((node . value) term))
(if (unknown? node)
(let ((*removed-list* nil)
(*noticers* nil)
(*contra-1ist* nil))
(set-truth node value)
(let ((path (support-path node (clause-list (car *contra-list*)))))
(if path
(invert path (car *contra-1ist®))
(remove-truth node))
(removed-check)
(run-noticers))
(if (unknown? node) nil t))
(print '(warning -- refutation attempted on known truth value)))))

The following is a useful utility in choosing premises for retraction

(defun user-choice (assums)
(push-query '((there is a conflict between)
,@(mapcar '(lambda (node)
(cons '(,(assertion node)
assumed to be
,(truth node))
node))
assums)))
(print '(which assumption should be retracted?))
(answer (read)))

6. APPENDIX I: THE T™MS CODE -29- August 1980

A support path is a list of nodes such that for any two sequential nodes the latter node is in the
support clause for the former. The function support-path is used to find a support path from a contradiction to
a premise. (support-path node clist) returns a support path such that the first node in the path is in clist and

the path ends with node.

(deftail support-path (node c-1list)
(cond ((null c-list) nil)
((true-term? (car c-list))
(support-path node (cdr c-list)))
(t (let ((node2 (caar c-list)))
(cond ((eq node node2)
(1ist node))
((premise? node2)
(support-path node (cdr c-1ist)))
(t (let ((path (support-path node (clause-list (support node2)))))
(if path
(cons node2 path)
(support-path node (cdr c-1ist))))))))))

(deftail invert (path contra)
(if path
(let ((node (car path)))
(et ((path2 (circular-path node contra)))
(if path2
(et ((node2 (car path2)))
(let ((contra2 (add-2 (resolution (path-resolution path2)
(clause-Tist contra)
node2))))
(invert path contra2)))
(let ((next-contra (support node)) -
£ 00 (value (truth node)))
\ (remove-truth node)
(deduce node (opposite value) contra)
(invert (cdr path) next-contra)))))))

(defun circular-path (node contra)
(support-path node (remove-node node (clause-list contra))))

(defun path-resolution (path)
(path-resolution2 (cdr path) (clause-list (support (car path)))))

(deftail path-resolution2 (rest-path clist)
(if (cdr rest-path)
(path-resolution2 (cdr rest-path)
(resolution clist
(clause-list (support (car rest-path)))
(car rest-path)))
clist))

(defun resolution (clistl clist2 node)
(append (remove-node node clistl)
(remove-node node clist2)))

(deftail remove-node (node clist)
(if (eq (caar clist) node)
(cdr clist)
(cons (car clist) (remove-node node (cdr clist)))))

6. APPENDIX I: THE TMS CODE -30- August 1980

6.3. The Premise Controller

The premise controller is best understood in terms of the invariants it enforces. First a node with a
default truth value (one that is in some premisc priority class) can have its default value as a deduced value
(instead of as a premise) only if all the premises underlying that deduction are in a stronger class. Such a node
can take on the opposite of its default value only when the premises underlying that value are in stronger
priority classes or when the node has been chosen cexplicitly by the user for retraction when it conflicts with

other premises in its own class.

(declare (special *min-cert* *max-cert*))

(defun prmcon-init (minc maxc)
(tms-init 'prmcon-selector ‘'prmcon-checker)
(setq *min-cert* minc)
(setq *max-cert* maxc))

(defmacro default (node)
‘(cdr (virt-assq 'default (external-properties ,node))))

(defmacro default-certainty (node)
‘(cdr (virt-assq ‘'default-certainty (external-properties ,node))))

(defun certainty (node)
(cond ((unknown? node) 0)
((premise? node)
(default-certainty node))
(t (min-cert (support node)))))

(defmacro min-cert (clause)
‘(min-cert2 *max-cert* (clause-list ,clause)))

(defun min-cert2 (min-cert clist)
(cond ((null clist) min-cert)
((not (false-term? (car clist)))
(min-cert2 min-cert (cdr clist)))
(t (min-cert2 (min min-cert (certainty (caar clist)))
(cdr clist)))))

(defun set-default (node value certainty)
(if (not (numberp certainty)) (break (non numeric certainty)))
(setf (default node) value)
(setf (default-certainty node) certainty)
(premise-check node))

(defun remove-default (node)
(setf (default node) nil)
(if (premise? node) (retract-premise node)))

(defun prmcon-checker (nodes)
(mapc 'premise-check nodes))

(defun premise-check (node)
(if (default node)
(cond ((or (unknown? node)
(not (< (default-certainty node)
(certainty node))))
(make-premise node (default node))))))

6. APPENDIX I: 'THE TMS CODE -3t-

(defun prmcon-selector (premises)
(1et ((assums (least-cert-premises premises)))
(if (cdr assums) ’
(user-choice assums)
(car assums))))

(defun least-cert-premises (premises)
(least-cert-2 (1ist (car premises))
(default-certainty (car premises))
(cdr premises)))

(defun least-cert-2 (so-far min-cert rest)
(if (null rest)
so-far : .
(let ((node (car rest)))
(let ((cert (default-certainty node)))
(cond ((< cert min-cert)

(least-cert-2 (list node) cert (cdr rest)))
((= cert min-cert)
(least-cert-2 (cons node so-far) min-cert (cdr rest)))
(t (least-cert-2 so-far min-cert (cdr rest))))))))

August 1980

7. APPENDIX 1L UTILITY PROCEDURES -32- August 1980

7. APPENDIX II: UTILITY PROCEDURES

Most of the basic concepts behind the utilities described here have been developed by various
people other than the author and many of them are documented in the LISP MACHINE MANUAL
[Weinreb & Moon 78].

7.1. Basic Macros
7.1.1 BACKQUOTE

The backquote feature provides a form of quote which replaces items preceded by a comma with
their value. The following arc some examples of the use of backquote:

‘(foo a ,(+ 12)) evaluates to: (foo a 3)
‘(foo ,(1list 'a 'b) (list 'a 'b)) evaluates to: (foo (a b) (list 'a 'b))

Items in the interior of backquoted expressions which are preceded by ,@ have their values

exploded into the top level list structure. An example of the use of this feature is as follows:

‘(foo ,@(7ist 'a 'b) ,(list 'a 'b) (list 'a 'b))
evaluates to:

(foo a b (a b) (1ist 'a 'b))

7.1.2 DEFMACRO

This form is used to define macros. A macro definition has a similar syntax to a function definition.
When a form whose car is a macro is evaluated the macro definition is used to generate a new form whose
value is the value returned for the original form. The arguments to the macro are bound to the forms in the
argument positions rather than their values as is done for functions. An example of a macro definition is given
below:

(defmacro first-part (x)
‘(caar ,x))

Using this definition (first-part a) macro expands to: (caar a) and so (fist-part a) has the same value
as: (caar a). A macro is often used instcad of a trivial function definition because it is expanded within the
compiler and results in more efficient compiled code.

It is sometimes convenient to allow the bound variable list of a macro to be an arbitrary list structure
rather than a simple list. In this casc atoms in the bound variable list (or bound variable pattern, since it nced
not be a simple list) are bound to corresponding parts of the expression using the macro. For example the
new MACLISP form of do could have been defined as a macro along the following lines:

7. APPENDIX I1: UTILITY PROCEDURES -33- August 1980

(defmacro do (variable-bindings (end-test . end-body) . do-body)
)

The bound variable list may also be a single atom, in which case that atom is bound to the cntire list

of "arguments” to the macro.
7.1.3 DEFMAC

defmac is identical to defun with the exception that a macro is created which the compiler can use to
open code the function during the compilation of other functions. This is used purely for reasons of
cefficiency. The open coding is uscful in getting the compiler (and other optimization macros such as deftail)
to perform optimizations which would not otherwise be done. No function defined via defmac can be

recursive however since this would lead to infinite expansion during open coding.
714 1F

(if a b ¢) macro expands to: (cond (a b) (t c)).
(if a b) expands to: (cond (a b)).

715 LET

The let feature allows structured lambda binding. An example follows:

(let ((a 1)
(b 2))
(+ a b))

is equivalent to:

((1ambda (a b) (+ a b)) 1 2)

The let macro allows the the bindee of a binding pair to be an arbitrary list structure whose parts are
bound to the corresponding parts of the value being bound. This is convenient for dealing with functions
which conceptually return more than one value.

7.2. Side Effect Macros
7.2.1 SETF

The setf macro gives a general method for side effecting data structures. The following equivalences
give some examples of its use:

(setf a b) is equivalent to: (setq a b)
(setf (get a b) c) (putprop a ¢ b)
(setf (car a) b) (rplaca a b)
(setf (cdr a) b) * (rplacd a b)

(setf (cond (a b) (c d)) ‘e) (cond (a (setf b e)) (c (setf d e)))

)

7. APPENDIX 1I: UTILITY PROCEDURES -34- August 1980

The setf macro macrocxpands its first argument. Thus it is possible to use setf in conjunction with
macros as is demonstrated below. “
(defmacro foo (x)
'(caar ,x))

(setf (foo a) b) macroexpands to (rplaca (car a) b)

7.2.2 DEFSIDMAC

defsidmac is just like defmacro cxccpt that it is used to define macros which side cffect their last
argument and treats that argument position specially. Specifically it dcfines a macro which will embed the
side effect in conditionals as docs setf. To sce how this works consider the following definition of addf.

(defsidmac addf (x 1ist)
“(setf ,list (cons ,x ,list)))

(addf x b) is equivalent to: (setf b (cons a b))
but '
(addf x (if a b c)) is equivalent to: (if a (addf x b) (addf x c¢))

While it may scem obscure to write code which side effects conditional expressions, the ability to do
so can be important when data structure macros expand to conditionals. In such situations it is sometimes

convenient to be able to side effect applications of these macros.
7.2.3 INCREMENT

increment is defined by:

(defsidmac increment (x)
‘(setf ,x (1+ ,x)))

7.2.4 ADDF
addf is defined by:

(defsidmac addf (x list)
‘(setf ,tlist (cons ,x ,1ist)))

7.2.5 DELF

delf is defined as:

(defsidmac delf (x 1ist)
‘(setf ,1ist (delete ,x ,list)))

7. APPENDIX il: UTILITY PROCEDURES -35- _ August 1980

7.2.6 VIRT-ASSOC

This function is like assoc cxcept that it is always guaranteed to return a cons whose car is its first
argument. Furthermore if there was no such cons originally in the association list then the cons returned is

automatically addf'd to the alist. The following is a typical usc of virt-assoc

(defmacro foo (x)
'(car ,x))

(defmacro other-properties (x)
‘(cdr ,x)) :

(defmacro bar (x)
‘(cdr (virt-assoc 'bar (other-properties ,x))))

(setf a (cons nil nil))
(setf (bar a) 'bar-val)

;a2 now is (nil . ((bar . bar-val)))
;(bar a) is now bar-val

7.2.7 VIRT-ASSQ

virt-assq is to assq as virt-assoc is to assoc.
7.3. Definition Macros
7.3.1 DEFSTRUCT

The defstruct feature is used to define a type of structured object. A defstruct definition creates a set
of macros. One of these macros is used to create objects of the defined type. The others are used to access the
parts of that object. Consider the following example:

(defstruct (ship) x-pos y-pos (mass 200))

This defines four macros: make-ship, x-pos, y-pos, and mass. The make-ship macro creates a ship
with its mass set to a default value of 200. The following dialoguc illustrates a use of these macros:

(SETQ HERO (MAKE-SHIP))

{ni1 nil 200}

(MASS HERO)
200

(SETF (X-POS HERO) 10)
10

(X-POS HERO)
10

7. APPENDIX I: UTILITY PROCEDURES -36- August 1980

7.3.2 DEFTAIL

When deftail is uscd instcad of defun in a function definition tail recursion optimization is
performed on the body of that definition. This feature actually does more than simple tail recursion
optimization in that simple accumulations (functions which generate sums, products, or lists recursively) are

also converted to iterative forms.
7.3.3 DEFARB

defarb is identical to defun cxcept that it allows the bound variable list to be an arbitrary list
expression. The atoms in this cxpression are bound to the corresponding parts of the list of values to which
the defined is applied. The most common use of defarb is to have the bound variable patrern be a single atom
in which case that atom is bound to the list of arguments to the function. A function so defined can take an

arbitrary number of arguments.
7.4. Query Functions
7.4.1 PUSH-QUERY

This function takes a "query", prints a "query list", and pushes information on an internal data
structure which is used to “answer" the query. A query is a cons of an "initial query” and a "query-list". The
initial query can be any s-expression and is printed as the first part of the printed query. The query list is an
association list of s-cxpressions with arbitrary objects. The printed query consists of the initial query followed
by an enumecration of the s-expressions in the query list. The following cxample should be useful.

(push-query (cons '(the items of interest are)

(1ist (cons 'item1 'answerl)

(cons 'item2 'answer2)
(cons 'item3 'answerd))))

: which results in the following being printed:
((the items of interest are)
(1 iteml)

(2 item2)
(3 itemd))

7.4.2 ANSWER

This function is only mecaningful after a query has been pushed. It takes a single numeric argument
and returns the datum that was associated with the corresponding s-expression in the query enumeration. For
cxample assuming the previous query pushed was the above query, the answer would yicld the following
results: ' ’ '

7. APPENDIX 11 UTILITY PROCEDURES -37- August 1980

(answer 1) => answerl
(answer 2) => answer2
(answer 3) => answer3

7.4.3 POP-QUERY

This function pops the query stack such that further calls to answer arc computed in the context of

an carlier query.
7.5. Mapping Functions

All of the standard MACLISP mapping functions have been converted to macros which
macroexpand to iterative forms. This allows one to map macros as well as normal functions. These macros
also provide a great deal of optimization not normally supplicd by the compiler. For example embedded
mappings, such as (mapc ‘foo (mapcar ‘bar 1)), macro expand into a single iterative form. Some non-standard

mapping functions and special forms relating to mapping functions have also been defined.
7.5.1 CIRCULAR-LIST

This function of onc argument returns an infinite, self referential list of that argument. This is used
to create list arguments to mapping functions. For example a list of symbols could be sct to nil with the
following expression:

(mapc 'set symbols (circular-list nil))

The mapping macros recognize circular-list arguments and produce iterative forms which avoid actually
creating the infinite list.

1.5.2 INTEGERS-BETWEEN

This function of two numeric arguments returns a list of all the intcgers between those arguments
inclusive. Thus one could convert an array to a list with the following code:

(mapcar 'ar-1 (circular-1list array)
(integers-between 0 (1- (car (dimension array)))))

The mapping functions recognize integers-between forms and avoid actually creating such a list. Also because
nested mappings are merged, the above form could be given as an argumém to a second mapping function
and the resulting code would be just as cfficient as a single iteration over the clements of the array.

The second argument to integers-hetween can be the atom inf. This is recognized by the mapping
functions which then treat the integers-hetween argument as an infinite list. However integers-between
actually only creates a finite list when given inf as its second argument.

7. APPENDIX I UTILITY PROCEDURES -38- August 1980

1.5.3 FMAPCAR

This is the same as mapcar except that all null elements arc removed from the list returned. Thus:

(fmapcar 'foo 11)
is equivalent to:

(mapcan '(lambda (x) (list (foo x))) 11)

7.54 FORALL

This could have been defined as:”

(defun forall (1list pred)
(or (null 1list)
(and (funcall pred (car 1list))
(forall (cdr list) pred))))

7.5.5 EXISTS

This could have been defined as

(defun exists (1ist pred)
(and 1ist
(or (funcall pred (car 1list))
(exists (cdr 1ist) pred))))

7.5.6 ACCUM

This could have been defined as:

(defun accum (fun 1ist temp-accum)
(if (null list)
temp-accum
(accum fun
(cdr list)
(funcall fun (car 1ist) temp-accum))))

7.5.7 LSUM, LPROD

These could have been defined as:
(defun 1sum (1ist)
(accum 'sum list 0))

(defun 1prod (1ist)
(accum ’product list 1))

7. APPENDIX II: UTILITY PROCEDURES -39-

7.6. Miscellancous FFunctions
7.6.1 MERGE

This is defined as:

(deftail merge (11 12)
(cond ((null 11) 12)
((member (car 11) 12) (merge (cdr 11) 12))
(t (merge (cdr 11) (cons (car 11) 12)))

7.6.2 HASH

This is a hashing function on s expressions.

August 1980

8. FUNCTION INDEX

-40- v August 1980

8. FUNCTION INDEX
SDINSLANCE ..ovecerereeeeesnerensenssesnssnsesssessessescssences 22 INSLANTIALE.vvrserrrensuerenssasnsesnsrsrissnssssmsssassnserssessssssasees 21
ACCUMuuriieeceevsurrerieeereseenseesserrseserssssssssmasssssnsssases 38 INECECTS-DEIWECT «vvrcereeeeerieeeere s esesreressnansenenes 37
AAA-2 e s 25 [113775] 1 GOV rerseeneresessssasssasnessnsnsesnene 29
AAd-ClAUSE .o e sessenees 25 [CASE-COTE-2.cererrreereenisensnsesssronsecsesanensessnsnsnsesssansasesssens 31
AAAS e sasaees 34 1CASt-COIt-PICITHSCS....vevrerevererererrrrerensseeserasesnesessssenens 31
ANA-INSIANCE ...vvvrrcverrereseress e sbssseseenens 22 LGt 33
ANSWET ..verrererreereeereraessaesernns ererteieresresrensnennsanes 36 TIKCIY-INSANCE ..oeveereeerererrrceerierir i reree e eresesresnsseronens 22
ASSCTL Lvererrerereerensueresesserssnssesesssssesassassssassransanes 21 IPTOQ ettt et s 38
ASSUIMIE «..ovvenvverecrsseesessesesesssssesssesrassasssossassensans 21 ISUIM cooeteceeeessesee e ense s ssenss s sesssssssssassssssesssssessassssssans 38
DACKQUOLE .. et ses st ssensenes 32 MAKC-CLAUSE covvererveverenrirennisrensanniesensssssesssansnsssnssssesees 25
DACKLIACK c.veveeeerennecrererissnernrsssasesesesesesersesssessonne 28 MAKE PICITUSE «.voveveerereresenreesrsssseressssssssenssssssssessrsnsases 26
COTLAINEY cvuveeerencunereeesenseresessseesstsessssnsesessesasses 30 ITICTEC .. veveruescerreresesesrssssssesssssssrsssssssssssnsssnssssesesarssesnnns 39
CIrCUIAT-TSt ooveveverieeveneencinereise s e RS ¥) IMUNICEI T cuuveeveesnsrreeeesennssresesnrsnsarsssssssssssssnsaessssseesenes 30
CIrCULAT-PAth....e e e 29 MUNCEI2 c.ovueeerereerresenesessesessnessessrsesesessssassssrsssssssens 30
Clause-liSt..ccvrrererreerrerrrcresenenes cerereess e serases 25 NOAC-CHECK-2 ..uecverrrerereieesaenerersssnsnsesessenees veenrene w21
ClAUSES...vrerierireneiecrene et s esessnneaesassenessesesens 24 n0de-deduce-CheCKoorrrreeeineereenerererennenssesensnsenns 27
COMPPSAL.ucrrcrerrerrsrsaaesesereses veveneneens cerreanenan 25 NOL-INSTANCE couvverrevecrerresesssssinssessssssssssssssssssesasssasssnes 22
ACAUCE .cvvereeeererecrerre e sneeniereras s sensesensenes 26 noticers......... v s st sasneraasaene retetee bt s s aeaesaesrenes 24
dedUCE-ChECK ...vvviercerreenrreresensrencesaserannnensees 26 OPClAUSES....cveveerireererrereersesesereensaesssesssenesssessssssresesane 24
defarb .o ST 36 op-term.............. ceereen e s s s e s st saaenasesnbarannen 24
ACFAUTL ..ot see e enrsevernnesseseseserens 30 OPPOSILE ...veverereeerreerenererneeresasennees rrereererasanans SRR 24
default-certainty ceereerereteenenren verererrsenaens 30 OT-INSLANCE ..vevercrerererrrrrresssensesssserssrsssssesssssssessssesssssnes 22
defmac...vveveeeeneecrereennens e teessssresisasstesans 33 path-resolutionceceverernrernrenas vesreerenns veeeeeseerensaenens 29
1610312103 {0 SOOI reereeneneresenenees 32 path-resolution2cceevveveernnnens veeressessnenassentaentene 29
defsidmaccceereereneee vrerrerrsanasnens vereereesensesaeses 34 POD " QUETY .oceerrerrenerersnrsrenensesssssrsesessssesesensnens w37
defstruct...... . reeessisesssranes 35 premise-check. e 30
deftail................ cenrereereeseses 30 PICITHSEY w..vrereereeereenenenenseessessnssesessasssasssnseanes weereennn 24
delfnereecnennes e ee st snstaennas vreeeseraenns .34 Premisesccveeee .28
[31 - vereneeens 38 PICINSES2voverreeerenensrrsreenssasesserassenenens .28
false-term? ... 24 prmcon-checker...... v ssraes 30
fMAPCAT..cuctucrrcrrrrrrsasensaeisssresssesens cerererersesnene 38 prmcon-init......... vererensesaenaerens rtererenrasaeanasaen 30
fOTALL....coiereerererecenrne e snersesssea searereseneseses 38 prmcon-selector.......enene. rrereresenenseneassenessesesnernes k)
1T | O rrerereeesrererese s eneseasasrnnens 39 psat reereeeseer et sa e senesene s nenranes w25
T SO : ereern 33 PUSH-QUETY cocvevvveressessessesssssnssssssssssssessenssnsssesnssssees 36
IN-FUNS <o rercrnseseaereesssessss s ssnenns 21 referenced-nodecc.cceeecrnecerneneresieresise s esesssssneses 21
increment eeeeeres st st s saaes veeversernneene 34 refute............. craessennen vervene sttt sae st ses s tenanes 28

8. FUNCTION INDEX -41 - August 1980

INACK 1eritirerrcereereeerereresraessssssss e ssssssssnssessesssens 21 TEIMOVE 2 ..vercrrererenesesssseesenesssesssessansesassessasssassssssasasnens 27
1emoVe-defaull .o esenennones 30 SCUE 1 eueererrneenseransnsnesssrersencnsassassensssnsesssensensnssersasesanen SO X,
TEMOVE-NOMARvevveertretreierer e eversseassaensnsesans 29 SUPPOTL-PAN ..vce e rere s e sa s s sresesasesenns 29
FCIMOVELTULN ot e serseebenssesesssanss 27 HTISTITIIL 1ocvesreueereneennsnescsessnssnessrsssassessnssssessncsesssnsnransnsnsren O
1eMOVEd-ChECK oot cenesennes 27 true-term? erererrernesesses s esesseneaenereneneastesennrssares 24
TCSOIULION weeveeeriereerceenirceeveseerensansssreansssessesanss 29 LY -L0"SHOW ettt sse et s 23
FELIACt.cuurrerirerrerensanes reereseesresenstensenssranaserenensen 21 UNKNOWNTEIM..ceeiceisiarerscnesesnsnssssesssssssssnsssannssesesennss 20
FCLIACE-CRECK «evevevieeeterereenrerernee e ene e eseeenes 27 unknown-term?ceceevvereeerrennrenenes rerereserenss vereeenenas 24
FOLrACt-PICMISE vvvvevveeereneeen 27 UNKNOWN . er s eses e sesenes s sesens s 24
FUNNOUICETS o vverveveeeeresnessrnscseseesesssessssressesanes 28 USCT-CROICE cuvvuvreerversanenesesesersesnesssessanssassesarsraneassssnsens 28
SASTICT . vverereeeere e e e eeeseeenases st ssesennes 27 VEry-liKely=inStanceccoveveeeeveneeceeneerereeeceeereceenns 22
SCL2 e vverrieretereneneseesessssesssesersesssesssrrrassassssens 26 VITL-ASSOC «vevrereresneenssrasssessessennes reerebeees s s as s snaresanes 35
SCE-dCAULL.....coveeererecerreereseererreseenseserenesssnsesnes 30 Virt-assqovevne reterereeetete et e ae et en et b sae e et s et eneesbaen 35
SCLLTULN vttt e cnreserea s rnesenaasseenas 26 WHY oot e e eereseesesssesaraesebesessssesesnansens 23

9. REFERENCES -42- August 1980

9. REFERENCES

[Davis & Putnam 60] Martin Davis, Hilary Putnam
"A Computing Procedure for Quantification Theory."
Journal of the Association for Computing Machinery, Vol. 7, pp. 201-215, 1960

[de Kleer ct. al. 77] Johan de Kleer, Jon Doyle, Guy Stecle, Gerald Sussman.

Explicit Controle of Reasoning.
MIT Al I.ab Memo 427 (Cambridge June 1977).

[de Kleer & Sussman 78] Johan de Kleer, Gerald Jay Sussman.
Propogation of Constraints Applied to Circuit Synthesis.
MIT Al Lab Memo 485 (Cambrige, Scptember 1978).

[Doyle 77} Jon Doyle.
Truth Maintenance Systems for Problem Solving. »
M.S. thesis (May 1977). Also MIT ATl Lab Technical Report 419 (Cambridge, September 1978).

[Doyle 78] Jon Doyle.
A Glimpsc of Truth Maintenance.
MIT Al Lab Memo 461a (Cambridge 1978).

[Fikes 75] Richard E. Fikes
"A Deductive Retrieval Mechanism for State Descriptor Models”
SR Al Technical Note 106

[Fikes 71] Richard E. Fikes, N. J. Nilsson.
"STRIPS: a New Approach to the Application of Theorem Proving to Problem Solving"
Artificial Intelligence 2, 1971, pp. 189-208.

[Hewitt 72] Carl Hewitt
Description and Theoretical Analysis of PLANNER: a Language for Proving Theorems and
Manipulating Modcls in a Robot.
MIT Technical Report 258, 1972.

[London 78] Philip E. London.

Dependency Networks as a Representation for ngcmng Gencral Problem Solvers.
Ph.D. thesis U. Maryland, Dept. of Computer Science ‘T'echnical Report 698 (College Park, Maryland,

September 1978).

9. REFERENCES -43- August 1980

[McAliester 80] David A. McAllester
The Use of Equality in Deduction and Knowledge Representation
MIT Al Lab Tcchnical Report 520, February 1980.

[McDermott 74] Drew McDermott, Gerlad J. Sussman.
The CONNIVER Reference Manual
MIT Al Lab Memo 259a, 1974.

[McDermott 78] Drew McDermott, Jon Doyle
Non-monotonic Logic I
MIT Al L.ab Memo 486, 1978, Also to appear in Artificial Intelligence 13.

[Moore 75] Robert C. Moore
Reasoning From Incomplete Knowledge in a Procedural Deduction System.
MIT Al Lab Technical Report 347 (Cambridge December 1975).

[Neison & Oppen 79] Greg Nelson, Derck C. Oppen
"Simplification by Cooperating Decision Procedures”
ACM Transactions on Programming Languages and Systems, Vol. 1, No. 2, October 1979, Pages 245-257.

[Reiter 79] Raymond Reciter

A Logic for Default Reasoning.
University of British Columbia, Department of Computer Science, Technical Report 79-8.

[Shrobe 79] Howard E. Shrobe

Dependency Directed Reasoning for Complex Program Understanding
MIT Al Lab Technical Report 405 (Cambridge June 1979).

[Stallman & Sussman 77] Richard M. Stallman, Gerald Jay Sussman.
"Forward Reasoning and Dependency Directed Backtracking in a System for Computer-Aided Circuit
Analysis."”
Artificial Intelligence 9 (1977), 135-196. .

[Steele & Sussman 78] Guy Lewis Stecle Jr., Gerald Jay Sussman.

Constraints.
MIT Al Lab Memo 502 (Cambridge, May 1978). Also Proc. APL.79 Conference (Rochester, May 1979).

9. REFERENCES " -44-

[Sussman 71] Gerald J. Sussman. Terry Winograd, E. Charniak.
Micro Planner Reference Manual
MIT Al L.ab Memo 203a, 1971

[Sussman 77] Gerald J. Sussman.
"Electrical Design: a Problem for Artificial Intelligence Research”

in [JCAI-77, pp. 894-900, 1977.

[Waltz 72] David L. Waltz. .
Generating Semantic Descriptions from Drawings of Scenes With Shadows.
MIT Al Technical Report 271, November 1972,
Also in The Psvchology of Computer Vision, Patrick H. Winston (ed.), McGraw-Hill, 1975.

[Weinreb & Moon 79] Danicl Weinreb, David Moon.

LISP Machine Manual.
MIT Artificial Intelligince Laboratory, 1979

August 1980

