Al MEMO 554

REVISED OCT. 81

=~ Room 14-0551
MIT Document servlces 77 Massachusetts Avenue

Cambridge, MA 02139

ph: 617/253-5668 | fx: 617/253-1680
email: docs @ mit.edu
http://libraries.mit.edu/docs

DISCLAIMER OF QUALITY

Due to the condition of the original material, there are
unavoidable flaws in this reproduction. We have made every
effort to provide you with the best copy available. If you are
dissatisfied with this product and find it unusable, please
contact Document Services as soon as possible.

Thank you.

%/ Meﬂ’(ﬂ gl 5§7Z 50/4‘71/4/"46 g;% /Zg_
0;/// 7 uméare/ﬂ/yjf/z . '/7/"5 /s I e /mé;?L (pm/g LJZ@,
(“af/ /) re \//'ﬁ/f‘ 74))05,;{/14{4‘% 5{?/4// L5

MASSACHISETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

Al Memo 554 ‘ 22 October 1981

EMACS Manual for ITS Users
by
Richard M. Stallman

A reference manual
for the extensible, customizable, self-documenting
real-time display editor

This manual corresponds to EMACS version 162

This report describes work done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology. Support for the laboratory's research is
proviced in part by the Advanced Research Projects Agency of the Department of
Defense under Otfice of Naval Research contract NO0014-80-C-0505.

(6] MAssAcugssns INSTITUTE OF TECHNOLOGY 1981

8. Killing and Mdving Text

9.1. Deletion and Killing
9.2. Un-Killing
9.3. Other Ways of Copying Text

10. Searching

11. Commands for English Text

11.1. Word Commands

11.2. Sentence and Paragraph Commands
11.3. Indentation Commands for Text

11.4. Text Filling

11.5. Case Conversion Commands

11.6. Font-Changing

11.7. Underlining

11.8. SCRIBE Mode

11.9. Dissociated Press

12. Commands for Fixing Typos

12.1. Killing Your Mistakes

12.2. Transposition

12.3. Case Conversion

12.4. Checking and Correcting Spelling

13. File Handling

13.1. Visiting Files

13.2. How to Undo Drastic Changes to a File

13.3. Auto Save Mode: Protection Against Disasters
13.4. Listing a File Directory

13.5. Cleaning a File Directory

13.6. DIRED, the Directory Editor Subsystem

13.7. Miscellaneous File Operations

13.8. The Directory Comparison Subsystem

14. Using Multiple Buffers
14.1. Creating and Selecting Buffers
14.2. Using Existing Buffers
14.3. Killing Butfers

15. Controlling the Display

16. Two Window Mode
16.1. Multiple Windows and Multiple Buffers

17. Narrowing

EMACS Manual fir ITS Users

35

37

41

45
45
46

50
51
52
53

55

57
57

58
59

61
61

63
65
66
66

69

71
71
72
73
75

77
78

81

v EMACS Manual for ITS Users

24.5. Reporting Bugs ' 140
25. Word Abhreviation Input 143
25.1. Basic Usage 144
25.2. Advanced Usage 147
25.3. Tgco Details for Extension Writers ‘ 150
26. The PICTURE Subsystem, an Editor for Text Pictures 151
27. Sorting Functions 153
Appendix |. Particular Types of Terminals 155
1.1, ideal Keyboards) 155
1.2. Keyboards with an "Edit" key 156
1.3. ASCII Keyboards 156
1.4, Upper-case-only Terminals 157
1.5. The SLOWLY Package for Slow Terminals 158
Appendix li. Use of EMACS from Printing Terminals 161
Distribution of EMACS : 163
Glossary : 165
Command Summary ‘ 175
Catalog of Libraries . 195
Index of Variables 199
EMACS Command Chart {(as of 4/06/81) 209

Index 217

Preface : 1

Preface

This manual documents the use and simple customization of the display editor
EMACS with the ITS operating system. The reader is not expected to be a
programmer. Even simple customizations do not require programming skill, but the
user who is not interested in customizing can ignore the scattered customization
hints.

This is primarily a reference manual, but can also be used as a primer. However, |
recommend that the newcomer first use the on-line, learn-by-doing tutorial
TEACHEMACS, by typing :TEACHEMACS<cr> while in HACTRN. With it, you learn
EMACS by using EMACS on a specially designed file which describes commands, tells
you when to try them, and then explains the results you see. This gives a more vivid
introduction than a printed manual.

On first reading, you need not make any attempt to memorize chapters 1 and 2,
which describe the notational conventions of the manual and the general appearance
of the EMACS display screen. It is enough to be aware of what questions are
answered in these chapters, so you can refer back when you later become interested
in the answers. After reading the Basic Editing chapter you should practice the
commands there. The next few chapters describe fundamental techniques and
concepts -that are referred to again and again. It is best to understand them
thoroughly, experimenting with them if necessary. ’

To find the documentation on a particular command, look in the index if you know
what the command is. Both command characters and function names are indexed. If
you know vaguely what the command does, look in the command summary. The
command summary contains a line or two about each command, and a cross
reference to the section of the manual that describes the command in more detail;
related commands are grouped together. There is also a glossary, with a cross
reference for each term.

Many user-contributed libraries accompany EMACS, and ofter then have no
documentation except their on-line self-documentation. Browsing through the
catalogue of libraries in this manual is a good way to find out what is available.

This manual has in two versions, one for ITS, and one for Twenex, DEC's
"TOPS-20" system. Each version comes in three forms: the published form, the LPT
form, and the INFO form. You can order the published form from the Publications
Department of the Artificial Intelligence lab for $3.25 per copy; be sure to specify the
ITS version or the Twenex version. The LPT form is availsble on line as EMACS;
EMACS GUIDE for printing on unsophisticated hard copy devices such as terminals
and line printers. The INFO form is for on-line perusal with the INFO program. All
three formis are substantially the same.,

Introduction . L : ’ 3

Intrc‘)ducvtio&n‘

You are about to read about EMACS, an advanced, self-documenting,
customizable, extensible real-time display editor.

We say that EMACS is a display editor because normally the text being edited is
visible on the screen and is updated automatically as you type your commands. See
section 1 [Display}], page 5.

We call it a real-time editor because the display is updated very frequently, usually
after each character or pair of characters you type. This minimizes the amount of
information you must keep in your head as you edit. See section 3 [Basic], page 13.

We call EMACS advanced because it provides facilities that go beyond simple
insertion and deletion: {illing of text; automatic indentation of programs; viewing two
files at once; and dealing in terms of characters, words, lines, sentences, paragraphs,
and pages, as well as expressions and comments in several different programming
languages. It is much easier to type one command meaning "go to the end of the

‘paragraph” than to find the desired spot with repetition of simpler commands.

Self-documenting means that at any time you can type a special character, the
"Help" key, to find out what your options are. You can also use it to find out what any
command does, or to find all the commands that pertain to « topic. See section 7
[Help], page 29.

Customizable means that you can change the definitions of EMACS commands in
littie ways. For example, if you use a programming language in which comments start
with <xx and end with *+>, you can tell the EMACS comment manipulation commands
to use those strings. Another sort of customization is rearrangemenit of the command
set. For example, if you prefer the four basic cursor motion commands (up, down, left
and right) on keys in a diamond pattern on the keyboard, you can have it. See
section 21.8 [Customization], page 114.

Extensible means that you can go beyond simple customization and write entirely
new commands, programs in the language TECO. EMACS is an "on-line extensible"
sysiem, which means that it is divided into many functions that call each other, any of
which can be redefined in the middle of an editing session. Any part of EMACS can be
replaced without making a separate copy of all of EMACS. Many already written
extensions are distributed with EMACS, and some (including DIRED, PAGE, PICTURE,
SORT, TAGS, and WORDAR) are documented in this manual. Although only a
programmer can write an extension, anybody can use it afterward.

Extension requires programming in TECO, a rather obscure language. If you are
clever and bold, you might wish to learn how. See the file INFO,CONV >, for advice on
learning TECO. This manual does not even try to explain how to write TECO
programs, but it does contain same notes that are useful primaiily to the extension
writer

The Organization of the Screen 5

Chapt?er One

The Organization of the Screen

EMACS divides the screen into several areas, each of which contains its. own sorts
of information. The biggest area, of course, is the one in which you usually see the
text you are editing. The terminal’s cursor usually appears in the middle of the text,
showing the position of point, the location at which editing takes place. While the
cursor appears to point at a character, point should be thought of as between two
characters; it points before the character that the cursor appears on top of. Terminals
have only one cursor, and when output is in progress it must appear where the typing
is being done. This does not mean that point is moving. it is only that EMACS has no
way to show you the location of point except when the terminal is idle.

The top lines of the screen are usually available for text but are sometimes
pre-empted by an error message, which says that some command you gave was
illegal or used improperly, or by typeout from a command (such as, a listing of a file

directory). Error messages are typlcally one line, end with a question mark, and are

~ accompanied by ringing the bell. Typeout generally has none of those characteristics.

The error message or typeout appears there for your information, but it is not part of
the file you are editing, and it goes away if you type any command. If you want to
make it go away immediately but not do anything else, you can type a Space. (Usually
a Space inserts itself, but when there is an error message or typeout on the screen it
does nothing but get rid of that.) The terminal’s cursor always appears at the end of
the error message or typeout, but this does not mean that point has moved. The
cursor moves back to the location of point after the error message or typeout goes
away.

If you type a question mark when an error message is on the screen, you enter the
EMACS error handler. You probably don’'t want to da this unless you know how to
write TECO programs. If you do it by accident, C-] (the standard abort character) will
get you out. Enough said.

A few lines at the bottom of the screen compose what is called the echo area. The
variable Echo Area Height controls how many lines long itis. £choing means printing
out the commands that you type. EMACS commands are usually not echoed at all, but
if you pause for more than a second in the middle of a multi-character command then
all the characters typed so far are echoed. This is intended to prompt you for the rest
of the command. - The rest of the command is echoed, too, as you type it. This
behavior is designed to give confident users optimum response, while giving hesitant
users maximum feedback. :

EMAQCS also uses the echo area for reading and displaying the arguments for some

The Organization of the Screen ' 7

is on. "Ovwrt" means that Cverwrite mode is on. See section 22,1 [Minor Modes],
page 115, for more information. "Def" means that a keyboard macrc is being defined;
although this is not exactly a minor mode, it is still useful to be reminded about. See
section 22.8 [Keyboard Macros], page 128. "Narrow" means that editing is currently
restricted to only a part of the buffer. See section 17 [Narrowing], page 81.

bfr is the name of the currently selected buffer. Each buffer has its own name and
holds a file being edited; this is how EMACS can hold several files at once. But at'any
time you are editing only one of them, the sefected buffer. When we speak of what
some command does to "the buffer”, we are talking about the currently selected
buffer. Multiple buffers make it easy to switch around between several files, and then
it is very useful that the mode line tells you which one you are editing at any time,
However, before you learn how to use multiple buffers, you will always be in the buffer
called "Main", which is the only one that exists when EMACS starts up. If the name of
the buffer is the same as the first name of the file you are visiting, then the buffer name -
is left out of the mode line. See section 14 [Buffers], page 71, for how to use more
than one buffer in one EMACS.

file is the name of the file that you are editing. It is the fast file that was visited in the
buffer you are in. It is followed, in parentheses, by the file version number most
recently visited or saved provided the second filename visited is ">", so that version
numbers are allowed. "(R-O)" after the filename means that the file or buffer is
read-only; a file visited read-only will not be saved unless you insist, while a read-only
buffer does not allow you to alter its contents at all. See section 13.1 [Visiting],
page 61, for more information.

The star at the end of the mode line means that there are changes in the buffer that
have not been saved in the file. If the file has not been changed since it was read in or
saved, there is no star.

pos tells you whether there is additional text above the top of the screen, or below
the bottom. If your file is small and it is all on the screen, --pos-- is omitted.
Otherwise, it is --TOP-- if you are looking at the beginning of the file, --BOT-- if you
are looking at the end of the file, or --nn%-- where nn is the percentage of the file
above the top of the screen.

Sometimes you will see --MORE-- instead of --nn%--. This happens when typeout
from a command is too long to fit on the screen. It means that if you type a Space the
next screenful of information will be printed. If you are not interested, typing anything
but a Space will cause the rest of the output to be discarded. Typing a Rubout will
discard the output and do nothing else. Typing any other command will discard the
rest of the output and also’ do the command. When the output is discarded,
"FLUSHED" is printed after the --MORE--,

If you are accustomed to other display editors, you may be surprised that EMACS
does not always display the page number and line number of point in the mode line.
This is because the text is stored in a way that makes it difficult to compute this
information. Displaying them all the time would be too slow to be borne. When you
want to know the page and line number of point, you must ask for the information with
the M-X What Page command. Gee section 18 [Pagss], page 83. However, once you
are adjusted to EMACS, you will rarely have any reason to be concerned with page
nurnbers or line numbers, ‘

Character Sets and Command Input Conventions ’ 9

Chanpter Two

Character Sets and Command Input
Conventions

In this chapter we introduce the terminology and concepts used to talk about
EMACS commands. EMACS is designed to be used with a kind of keyboard with two
special shift keys which can type 512 different characters, instead of the 128 different
characters which ordinary ASCII keyboards can send. The terminology of EMACS
commands is formulated in terms of these shift keys. So that EMACS can be used on
ASCII terminals, we provide two-character ASCIl circumlocutions for the command
characters which are not ASCII,

2.1. The 9-bit Command Character Set

EMACS is designed ideally to be used with terminals whose keyboards have a pair
of shift keys, labeled "Control" and "Meta", either or both of which ¢an be combined
with any character that you can type. These shift keys produce Control characters
and Meta characters, which are the editing commands of EMACS. We name each of
these characters by prefixing "Control-" (or "C-"), "Meta-" {or "M-") or both to the
basic character: thus, Meta-F or M-F is the character which is F typed with the Meta
key held down. C-M-; is the Semicolon character with both the Control and Meta
keys. Control in the EMACS command character set is not precisely the same as
Control in the ASCIi character set, but the general purpose is the same.

There are 128 basic characters. Multiplied by the four possibilities of the Control
and Meta keys, this makes 512 characters in the EMACS command character set. So
it is called the 512-character set, to distinguish it from ASCII, which has only 128
characters. It is also called the 9-bit character set because 9 bits are required to
express a number from 0 to 511, Note that the 512-character set is used only for
keyboard commands. Characters in files being edited with EMACS are ASCI
characters.

Sadly, most terminals do not have ideal EMACS keyhoards. n fact, the only ideal
keyboards are at MIT. On nonideal keyboards, the Control key is somewhat limited (it
can only be combined with some characters, not with all), and the Meta key may not
exist at all. We make it possible to use EMACS on a nonideal terminal by providing
two-character circumlocutions, made up of ASCII characters that you can type, for
the characters that you can't type. These circumlocutions start with a bit prefix
character; see below. For example, to use the Meta-A command, you could type

haracter Sets and Command lisut Conventions B

typed as two characters on any *erminal. You can create new prefix characters when
you customize. See the file INTC,CONV >, node Prefix. '

2.3. Commands, Functions, and Variables

Most of the EMACS commands documented herein are members of this 9-bit
character set. Others are pairs of characters from that set. However, EMACS doesn't
really implement commands directly. Instead, EMACS is composed of functions,
which have long names such as "~R Down Real Line" and definitions which are
programs that perform the editing operations. Then commands such as C-N are
connected to functions through the command dispatch table. When we say that C-N
moves the cursor down a line, we are glossing over a distinction which is unimportant
for ordinary use, but essential for customization: it is the function R Down Real Line
which knows how to move down a line, and C-N maoves down a line because it is
connected to that function. We usually ignore this subtlety to keep things simple. To
give the extension-writer the information he needs, we state the name of the function
which really does the work in parentheses after mentioning the command name. For
example: "C-N (*R Down Real Line) moves the cursor down a line". In the EMACS
wall chart, the function names are used as a form of very brief documentation for the
command characters. See section 5.2 [Functions], page 21.

The "~R " which appears at the front of the function name is simply part of the
name. By convention, a certain class of functions have names which start with "R ".

While we are on the subject of customization information which you should not be
frightened of, it's a good time to tell you about variables. Often the description of a
command will say "to change this, set the variable Mumble Foo". A variable is a name
used to remember a value. EMACS contains many variables which are there so that
you can change them if you want to customize. The variable’s value is examined by
some command, and changing the value makes the command behave differently.
Until you are interested in customizing, you canignore this information. When you are
ready to be interested, read the basic information on variables, and then the
information on individual variables will make sense. See section 22.3 [Variables],
page 118.

2.4. Notational Conventions for ASCIlI Characters

Control characters in files, your EMACS buffer, or TECO programs, are ordinary
ASCH characters. The special 9-bit character set applies only to typing EMACS
commands. ASCH contains the printing characters, rubout, and some control
characters., Most ASCH control characters are represented in this manual as uparrow
or caret followed by the corresponding non-control character: control-E is
represented as tE,

Saome ASCH characters have special names. These include tab (011), backspace
(010), linefeed (212), return (015), altmode (033), space (040), and wubout (177). To
make it clear whether we are talking about a 9-bit character or an ASCH character, we

Basic Editing Commands 13

Chapfer Th re:e

Basic Editing Commands

We now give the basics of how to enter text, make corrections, and save the text in
a file. If this material is new to you, you might learn it more easily by running the
:TEACHEMACS program. ‘ :

3.1. Inserting Text

To insert printing characters into the text you are editing, just type them. When
EMACS is at top level, all printing characters you type are inserted into the text at the
cursor (that is, at point), and the cursor moves forward. Any characters after the
cursor move forward too. If the text in the buffer is FOOBAR, with the cursor before
the B, then if you type XX, you get FOOXXBAR, with the cursor still befare the B.

To correct text you have just inserted, you can use Rubout. Rubout deletes the
character before the cursor (not the one that the cursor is on top of or under; that is
the character after the cursor). The cursor and all characters after it move
backwards. Therefore, if you type a printing character and then type Rubout, they
cancel out.

To end a line and start typing a new one, type Return (Customizers, note: this runs
the function “R CRLF). Return operates by inserting a line separator, so if you type
Return in the middle of a line, you break the line in two. Return really inserts two
characters, a carriage return and a linefeed (a CRLF), but aimost everything in EMACS
makes them look like just one character, which you can think of as a line-separator
character. For example, typing Rubout when the cursor is at the beginning ol a line
rubs out the iine separator before the line, joining that line with the preceding line.

if you add too many characters to one line, without breaking it with a Return, the line
will grow to occupy two (or more) lines on the screen, with a "!" at the extreme right
margin of all but the last of them. The "!" says that the following screen line is not
really a distinct line in the file, but just the continuation of a line too long to fit the
screen.

Direct insertion works for printing characters and space, but other characters act as
editing commands and do nat insert themselves. Ut you need to insert a control
character, Altmode, Tab or Rubout, you must quotfe it by typing the Control-Q
("R Quoted Insert) command first. See section 2 {Characters], page 9. Inserting a
tZ is harder because EMACS cannot even recaive the character; you must use the
minibuffer as in Altmode Altmode 26i Altmode Altmods. See saction 23 [Minibulfer],
page 131.

Basic Editing Commands | - ’ 15

file FOO is not really change. If the file FOO doesn't exist, and you \ ant to create it,
visit it as if it did exist. When you save your text with C-X C-S the file will be created.

Of course, there is a lot more to learn about using files. See section 13 [Files],
page 61.

3.5. Help

If you forget what a command does, you can find out with the Help character., The
Help character is Top-H if you have a Top key, or Control-_ H (two characters!)
otherwise. Type Help followed by C and the command you want to know about. Help
can help you in other ways as well. See section 7 [Help], page 29.

3.6. Using Blank Lines Can Make Editing Faster

C-0 Insert one or more biank lines after the cursor.
C-XC-0 Delete all but one of many consecutive blank lines.

It.is much more efficient to insert text at the end of a line than in the middle. So if
you want to stick a new line before an existing one, the best way is to make a blank
line there first and then type the text into it, rather than inserting the new text at the

“beginning of the existing line and finally inserting a line separator. Making the blank
iine first also makes the meaning of the text clearer while you are typing it in,

To make a blank line, you can type Return and then C-B. But there is a single
character for this: C-O {(Customizers: this is the built-in function “R Open Line). So,
FOO Return is equivalent to C-O FOO.

if you want to insert many lines, you can type many C-QO’s at the beginning (or you
can give C-O an argument to tell it how many blank lines to make. See section 4
[Arguments], page 17, for how). As you then insert lines of text, you will notice that
Return behaves strangely: it "uses up” the blank lines instead of pushing them down.

If you don’t use up all the blank lines, you can type C-X C-0O (the function “R Delete
Blank Lines) to get rid of all but one. When point is on a blank fine, C-X C-O replaces
ali the blank lines around that one with a single blank line. When point is on a
nonblank line, C-X C-O deletes any blank lines following that nonblank line.

Giving Numeric Arguments to £MACS Commands , 17

| “Chaptér Four

Giving Numeric Arguments to EMACS
Commands

Any EMACS command can be given a numeric argument. Some commands
interpret the argument as a repetition count. For example, giving an argument of ten
to the C-F command (move forward one character) moves forward ten characters.
With these commands, no argument is equivalent to an argument of 1.

Some commands care only about whether there is an argument, and not about its
value; for example, the command M-Q ("R Fill Paragraph) with no arguments fills text,
but with an argument justifies the text as well.

Some commands use the value of the argument, but do something peculiar when
there is no argument. For example, the C-K (*R Kill Line) command with an argument
<n> kills <n> lines and the line separators that follow them. But C-K with no argument
is special; it Kills the text up to the next line separator, or, if point is right at the end of
~ the line, it kills the line separator itself. Thus, two C-K commands with no arguments
can kill a nonblank line, just like C-K with an argument of one.

The fundamental way of specifying an argument is to use the C-U (“R Universal
Argument) command followed by the digits of the argument. Negative arguments are
allowed. Often they tell a command to move or act backwards. A negative argument
is entered with C-U followed by a minus sign and the digits of the value of the
argument.

C-U followed by a character which is neither a digit nor a minus sign has the special
meaning of "multiply by four". it multiplies the argument for the next command by
four. Two such C-U’s multiply it by sixteen. Thus, C-U C-U C-F moves forward
sixteen characters. This is a good way to move forward "fast", since it moves about
1/4 of a line on most terminals. Other usefu! combinations are C-U C-N,
C-U C-U C-N (move down a good fraction of a screen), C-U C-U C-O (make "a lot" of
blank lings), and C-U C-K (kill four lines). With commands like M-Q that care whether
there is an argument but not what the value is, C-U is a good way of saying "l want an
argument”.

A few commands treat a plain C-U differently from an ordinary argument. A few
others may treat an argument of just a minus sign differently from an argument of -1,
These unusual cases will be described when they come up; they are always for
reasons of conveniagnca of use.

Thare are othor, terminal-dependent ways of specifying arguments, They have the
sama effect but may be easier to type. Seas the appendix,” i your terminal has a

et

Extended (Meta-X) Commands wd Functions , 18

Chapter Fivé‘

Extended (Meta-X) Commands and
Functions '

Not all EMACS commands are of the one or two character variety you have seen so
far. Most commands have fong names composed of English words. This is for two
reasons: the long names are easier to remember and more suggestive, and there are
not enough two-character combinations for every command to have one.

The commands with long names are known as extended commands because they
extend the set of two-character commands.

5.1.Issuing Extended Commands

M-X Begin an extended command. Follow by command
name and arguments, '
C-M-X Begin an extended command. Follow by the command
. name only; the command will ask for any arguments.
C-X Altmode Re-execute recent extended command.

Extended commands are also called M-X commands, because they all start with the
character Meta-X ("R Extended Command). The M-X is followed by the command’s
long, suggestive name, actually the name of a function to be called. Terminate the
name of the function with a Return (unless you are supplying string arguments; see
below). For example, Meta-X Auto Fill Mode<cr> invokes the function Auto Fill Mode.
This function when executed turns Auto Fill mode on or off.

We say that M-X Foo<cr> "calls the function Foo". When documenting the
individual extended commands, we will call them functions to avoid confusion
between them and the one or two character commands. We will also use "M-X" as a
title like "Mr." for functions, as in "use M-X Foo". The "extended command"” is what
you type, starting with M-X, and what the command does is call a function. The name
that goes in the command is the name of the command and is also the name of the
function, and both terms will be used.

Note: Extended commands and functions were once cailed "MM commands”, but
this term is obsolete. If you see it used either in INFO documentation of in Help
documentation, please report it. Ordinary one or two character commands used to be
known as "~R" commands; please report any occurrences of this ohsolete term also.

Thare are a gréat many functions in EMACS for you to call. They will be described

Extended (Meta-X) Commancs and Functions , ' 21

5.1.3. Numeric Argun ents and String Arguments

Some functions can use numeric prefix arguments. Simply give the Meta-X
command an argument and Meta-X will pass it along to the function which it calls.
The argument appears before the "M-X" in the prompt, as in "69 M-X", to remind you
that the function you call will receive a numeric argument.

Some functions require string arguments (sometimes called suffix arguments). To
specify string arguments, terminate the function name with a single Altmode, then
type the arguments, separated by Altmodes. After the last argument, type a Return to
cause the function to be executed. For example, the function Describe prints the full
documentation of a function (or a variable) whose name must be given as a string
argument. An example of using it is

Meta-X Describe#Apropos<cr>
which prints the full description of the function named Apropos.

An alternate way of calling extended commands is with the command C-M-X
("R Instant Extended Command). It differs from plain M-X in that the function itself
reads any string arguments. The function prompts for each argument individually. If
an argument is supposed to be a filename or a command name, completion is
available. However, there are compensating disadvantages. For one thing, since the
function has already been invoked, you can’t rub cut from the arguments into the
function name. For another, it is not possible to save the whole thing, function name
and arguments, for you to recall with C-X Altmode (see below). So C-M-X saves
nothing for C-X Altmode. The prompt for C-M-X is "C-M-X"." You can override it with
the variable Instant Command Prompt. '

5.1.4. Repeating an Extended Command

The last few extended commands you have executed are saved and you can repeat
them. We say that the extended command is saved, rather than that the function is
saved, because the whole command, including arguments, is saved.

To re-execute a saved command, use the command C-X Altmode (*R Re-execute
Minibuffer}). It retypes the last extended command and asks for confirmation. With an
argument, it repeats an earlier extended command: 2 means repeat the next to the last
command, etc. You can alse use the minibuffer to edit a previous extended command
and re-execute it with changes (See section 23 [Minibuffer], page 131.).

5.2. Arcane Information about M-X Commands

You can skip this section if you are not interested in customization, unless you want
to know what is going on behind the scenes.

Extended (Meta-X) Commandi cind Functions 23

5.2.3. Comhnands and F unctions

Actually, every command in EMACS simply runs a function. For example, when you
type the command C-N, it runs the function "~R Down Real Line". “You could just as
well do C-U 1 M-X “R Down Real Line<cr> and get the same effect. C-N can be
thought of as a sort of abbreviation. We say that the command C-N has been
connected to the function ~R Down Real Line. The name is looked up once when the
command and function are connected, so that it does not have to be looked up again
each time the command is used. For historical reasons, the default argument passed
to a function which is connected to a command you typed is 1, but the default for MM
and for M-X is 0. This is why the C-U 1 was necessary in the example above. The
documentation for individual EMACS commands usually gives the name of the
function which really implements the command in parentheses after the ‘command
itself.

Just as any function can+be called directly with M-X, so almost any function can be
connected to a command. You can use the function Set Key to do this. Set Key takes
the name of the function as a string argument, then reads the character command
(including metizers or other prefix characters) directly from the terminal. To define
C-N, you could type

M-X Set Key¢~R Down Real Line<cr>

and then type C-N. If you use the function View File often, you could connect it to the
command C-X V (not normally defined). You could even connect it to the command

C-M-V, replacing that ccmmand’s normal definition. Set Key is good for redefining

~commands in the middle of editing. An init file or EVARS file can do it each time you

run EMACS. See section 22.6 [Init], page 123.

5.2.4. Subroutines

EMAGS is composed of a large number of functions, each with a name. Some of
these functions are connected to commands; some are there for you to call with M-X;
same are called by other functions. The last group are called subroutines. They
usually have names starting with "&", as in "& Read Line", the subroutine which
reads a line in the echo area. Although most subroutings have such names, any
function can be called as a subroutine. Fungctions like “R Down Real Liné have names
starting with "R because you are not expected to call them directly, either. The
purpose of the "&" or "~R" is to get those function names out of the way of command
completion in M-X. M-X allows the command name to be abbreviated if the
abbreviation is unique, and the commands that you are not interested in might have
names that would interfere and make some useful abhreviation cease to be unique.
The funny characters at the front of the name prevent this from happening.

5.2.5. Built-in Functions

Not all of the functions in EMACS are writtan in TECO. A few of the most frequently
used single-character commands have definitions written in machine language.
These include self-inserting characters, Rubout, C-F, and others. Such functions

Moving Up And Down Levels - 25

Chapter Six

Moving Up And Down Levels

Subsystems and recursive editing levels are two states in which you are temporarily
doing something other than editing the visited file as usual. For example, you might
be editing a message that you wish to send, or looking at a documentation file with
INFO.

6.1. Subsystems

A subsystemis an EMACS function which is an interactive program in its own right:
it reads commands in a language of its own, and displays the results. You enter a
subsystem by typing an EMACS command which invokes it. Once entered, the
subsystem runs until a specific command to exit the subsystem is typed. An example
of an EMACS subsystem is INFO, the documentation reading program. Others are
Backtrace and TDEBUG, used for debugging TECO programs, and RMAIL and
BABYL, used for reading and editing mail files.

The commands understood by a subsystem are usually not like EMACS commands,
because their purpose is something other than editing text. For example, INFO
commands are designed for moving around in a tree-structured documentation file.
In EMACS, most commands are Control or Meta characters because printing
characters insert themselves. In most subsystems, there is no insertion of text, so
non-Control non-Meta characters can be the commands.

While you are inside a subsystem, the mode line usually gives the name of the
subsystem {as well as other information supplied by the subsystem, such as the
filename and node name in INFO). You can tell that you are inside a subsystem
because the mode line does not start with "EMACS", or with an open bracket ("[")
which would indicate a recursive editing level. See section 1.1 [Mode Line], page 6.

Because each subsystem implements its own commands, we cannot guarantee
anything about them. However, there are conventions for what certain commands
ought to do:

C-] Aborts (exits without finishing up).

Backspace Scrolls backward, like M-V in EMACS.

Space Scrolls forward, like C-V in EMACS.

Q Exits normally. .

X Begins an extended command, like M-Xin EMACS.
" Help or? " Prints documentation on the subsystem’s commands.

Mot aif of these necessarily exist in every subsystem, however.

Moving Up And Down Levels® ‘ 27

A recursive editing level differs from a subsystem in that the comma «ds are ordinary

"EMACS commands (though a handful may have been changed sliuhtly), whereas a

subsystem defines its own command language.

The text you edit inside a recursive editing level depends on the command which
invoked the recursive editing level. It could be a list of options and values, or a list of
tab stop settings, syntax table settings, a message to be sent, or any text that you
might wish to compose.

Sometimes in a recursive editing level you edit text of the file you are visiting, just as
at top level. Why would this be? Usually because a few commands are temporarily
changed. For example, Edit Picture in the PICTURE library defines commands good
for editing a picture made out of characters, then enters a recursive editing level.
When you exit, the special picture-editing commands go away. Until then, the
brackets in the mode line serve to remind you that, although the text you are editing is
your file, all is not normal. See section 26 [PICTURE], page 151.

In any case, if the mode line says "[...]" you are inside a recursive editing level, and
the way to exit (send the message, redefine the options, get rid of the picture-editing
commands, etc.) is with the command C-M-C (*R Exit). See section 6.4 [Exiting],
page 27. If you change your mind about the command (you don’t want to send the
message, or change your options, etc.) then you should use the command C-] (Abort
Recursive Edit) to get out. See section 24.1 [Aborting], page 133.

Inside recursive editing levels, the help option Help R is defined to print the full
documentation of the command which invoked the recursive editing level. The other
normal Help options are still available for asking about commands you want to use ‘
while inside the recursive edit. ‘

When the text in the mode line is surrounded by parentheses, it means that you are
inside a Minibuffer. A minibuffer is a special case of the recursive editing level. Like
any other, it can be aborted safely with C-]. See section 23 [Minibuffer], page 131.

6.4. Exiting Levels; Exiting EMACS

C-XC-C Exit from EMACS to the superior job.
C-M-C Exit from EMACS or from a recursive editing level.

The general EMACS command to exit is C-M-C (*R Exit). This command is used to
exit from a recursive editing level back to the top level of EMACS, and to exit from
EMACS at top level back to HACTRN. If your keyboard does not have a Meta key, you
must type this command by means of a bit prefix character, as C-C C-C or as Altmode
C-C. Note carefully the difference between exiting a recursive editing level and
aborting it: exiting allows the command which invokad the recursive editing level to
finish its job with the text as you have edited it, whereas aborting cancels whatever the
command was going to do. See section 24.1 [Aborting], page 133.

We cannot say in general how to exit a subsystem, since each subsystem defines its
own command language. but the convention is to use the character "Q". '

" You can exit from EMAGS back to the superior job, usually HACTRN, at any time,

Self-Documentation Cammands 29

Chaptér S(‘ev’en

Self-Documentation Commands

EMACS provides extensive self-documentation features which revolve around a
single character, called the Help character. At any time while using EMACS, you can
type the Help character to ask for help. How to type the Help character depends on
the terminal you are using, but aside from that the same characier always does the
trick. If your keyboard has a key labeled Help (above the H), type that key {together
with the Top key). Otherwise the way you type the Help character is actually C-_
(Control-Underscore) followed by an H (this is two characters to type, but let's not
worry about that). Whatever it is you have to type, to EMACS it is just the Help
character. On some terminals just figuring out how to type a Control-Underscore is
hard! Typing Underscore and adding the Control key is what logically ought to work,
but on some terminals it does not. Sometimes Controi-Shift-O warks, On VT-100
terminals, typing Control-/ or Control-? sends a Control-_ character.

if you typs Help while you are using a subsystem such as INFQ, it prints a list of the
commands of that subsystem.

If you type Help in the middle of a multi-character command, it often tells you about
what sort of thing you should type next. For example, if you type M-X and then Help, it
tells you about M-X and how to type the name of the command. If you finish the
function name and the Altmode and then type Help, it talls you about the function you
have specified so you can know what arguments it needs. If you type C-X and then
type Help, it tells you about the C-X commands.

But normally, when it's time for you to start typing a new command, Help offers you
several options for asking about what commands there are and what they do. It
prompts with "Doc (? for help):" at the bottom of the screen, and you should type a
character to say what kind of help you want. You could type Help or "?" at this point
to find out what options are available. The ones you are most likely to need are
described here.

The most basic Help options are Help C and Help D. You can use them to ask what a
particular command does. Help C is for character commands; type the command you
want to know about after the Help and the "C" ("C" stands for Character). Thus, Help
C M-F or Halp C Altmode F tells you about the M-F command. Help D is for asking
about functions (extended commands); type the name of the function and a Return.
Thus, Help D Lisp Mode<cr> tells you about M-X Lisp Mode. Help D can also tell you
the documentation of a variable, if you give it a variable's name instead of a function’s
name. "D" stands for "Describe", since Help D actually uses the function Describe to
do the work.

The Mark and the Region - . 31

| Ch‘apter Eigh’t
The Mark and the Reg_ion

In general, a command which processes an arbitrary part of the buffer must know
where to start and where to stop. In EMACS, such commands usually operate on the
text between point and the mark. This range of text is called the region. To specifya
region, you set point to one end of it and mark at the other. It doesn’'t matter which
one is set first chronologically, or which one comes earlier in the text. Here are some
commands for setting the mark:

Cc-@ Set the mark where point is.

C-Space The same.

C-XC-X Interchange mark and point.

M-@ Set mark after end of next word. This command and the
following three do not move point.

C-M-@ Set mark after end of next Lisp s-expression.

c< Set mark at beginning of buffer.

c-> Set mark at end of buffer.

M-H Put region around current paragraph.

C-M-H Put region around current Lisp defun.

C-XH Put region around entire buffer.

C-XC-P Put region around current page.

For example, if you wish to convert part of the buffer to all upper-case, you can use
the C-X C-U command, which operates on the text in the region. You can first go to
the beginning of the text to be capitalized, put the mark there, move to the end, and
then type C-X C-U. Or, you can set the mark at the end of the text, move to the
beginning, and then type C-X C-U. C-X C-U runs the function ~R Uppercase Region,
whose name signifies that the region, or everything between point and the mark, is to
be capitalized.

The most common way to set the mark is with the C-@ command or the C-Space
command ("R Set/Pop Mark).” They set the mark where point is. Then you can move
point away, leaving the mark behind.

It isn’t actually possible te type C-Space on non-Meta keyboards., Yet on many
terminals the command appears to work anyway! This is becausa trying to type a
Control-Space on those terminals actually sends the character C-@, which means
the same thing as C-Space. A few keyboards just send a Space. If you have one of
them, you type C-@, or customize your EMACS.

Since terminals have only one cursor, there is no way for EMACS to show you where
the mark is focated. You have to remember. The usual solution to this problem is to

The Mark and the Region | ' 33

marks to drift, but they will still be good for this purpose becaise the. are unlikely to
drift very far.

Some commands whose primary purpose is to move point a great distance take
advantage of the stack of marks to give you a way to undo the command. The best
example is M-<, which moves fo the beginning of the buffer. It sets the mark first, so
that you can use C-U C-@ or C-X C-X to go back to where you were. Searches
sometimes set the mark; it depends on how far they move. Because of this
uncertainty, searches type out "~@" if they set the mark. The normal situation is that
searches leave the mark behind if they move at least 500 characters, but you can
change that value since it is kept in the variable Auto Push Point Option. By setting it
to 0, you can make all searches set the mark. By setting it to a very large number such
as ten million, you can prevent ali searches from setting the mark. The string to be
typed out when this option does its thing is kept in the variable Auto Push Point
Notification.

Killing and Moving Text : 35

Chaptér Nine
Killing and Moving Text

The commonest way of moving or copying text with EMACS is to kill it, and get it
back again in one or more places. This is very safe because the last several pieces of
killed text are all remembered, and it is versatile, because the many commands for
killing syntactic units can also be used for moving those units. There are also other
ways of moving text for special purposes.

9.1. Deletion and Killing

Most commands which erase text from the buffer save it so that you can get it back
if you change your mind, or move or copy it to other paits of the buffer. These
commands are known as kill commands. The rest of the commands that erase text do
not save it; they are known as delete commands. The delete commands include C-D
and Rubout, which delete only one character at a time, and those commands that
delete only spaces or line separators. Commands that can destroy significant
amounts of nontrivial data generally kill. The commands’ names and individual
descriptions use the words "kill" and "delete" to say which they do. If you do a kill
command by mistake, you can use the Undo command to undo it (See section 24.3
[Undol, page 136.).

C-D Delete next character.

Rubout Delete previous character,

M-\ Delete spaces and tabs around point.
C-XC-O Delete blank lines around the current line.
M-~ Join two lines by deleting the CRLF and any indentation.
C-K Kill rest of line or one or more lines.

C-w Kill region (from point to the mark).

M-D Kill word.

M-Rubout <ill word backwards.

C-X Rubout Kill back to beginning of sentence.,

M-K Kilf to end of sentence.

C-M-K Kill s-expression,

C-M-Rubout Kill s-expression backwards,

Killing and Moving Text , 37

9.1.3. Other Kill Commands

A kill command which is very general is C-W (*R Kill Region), which kilis everything
between point and the mark. With this command, you can kill any contiguous
characters, if you first set the mark at one end of them and go to the other end.

Other syntactic units can be killed: words, with M-Rubout and M-D (See
section 11.1 [Words], page 45.); s-expressions, with C-M-Rubout and C-M-K (See
section 20.6.1 [S-expressions], page 97.); sentences, with C-X Rubout and M-K (See
section 11.2 [Sentences], page 46.).

9.2. Un-Killing

Un-killing is getting back text which was killed. The usual way to move or copy text
is to kill it and then un-kill it one or more times.

C-Y Yank (re-insert) last killed text.

M-Y Replace re-inserted killed text with the previously killed text.
M-W Save region as last killed text without killing. ‘
C-M-W Append next kill to last batch of killed text.

Killed text is pushed onto a ring buffer called the kill ring that remembers the last 8
blocks of text that were killed. (Why it is called a ring buffer will be explained below).
The command C-Y (*R Un-kill) reinserts the text of the most recent kill. It leaves the

-cursor at the end of the text, and puts the mark at the beginning. Thus, a single C-W

undoes the C-Y (M-X Undo also does so). C-U C-Y leaves the cursor in front of the
text, and the mark after. This is only if the argument is specified with just a C-U,
precisely. Any other sort of argument, including C-U and digits, has an effect
described below.

If you wish to copy a block of text, you might want to use M-W {*R Copy Region),
which copies the region into the kill ring without removing it from the buffer. This is
approximately equivalent to C-W followed by C-Y, except that M-W does not mark the
buffer as "changed" and does not temporarily change the screen.

There is only one Kill ring, and switching buffers or files has no effect on it. After
visiting a new file, whatever was last killed in the previous file is still on top of the kill
ring. This is important for moving text between files.

9.2.1. Appending Kills’

Normally, each kill command pushes a new block onto the kill ring. However, two or
more kill commands in a row combine their text into a single entry on the ring, so that
a single C-Y command gets it all back as it was before it was killed. This means that
you don’t have to kill alt the text in one command; you can keep killing line after line,
or word after word, until you have killed it all, and you can still get it all back at once.
{Thus we join television in leading people to kill thoughtlessly).

Commanids that kill forward from point add onto the end of the previous killed text.

Killing and Moving Text | ’ 39

9.3. Other Ways of Ccpying Text

Usually we copy or move text by killing it and un-killing it, but there are other ways
that are useful for copying oane block of text in many places, or for copying many
scattered blocks of text into one place. In addition to those described here, see the
self-documentation of the MOVE library.

9.3.1. Accumulating Text

You can accumulate blocks of text from scattered locations either into a buffer or
into a file if you like.

To append them into a buffer, use the command C-X A <buffernamed<cr>
{(*R Append to Buffer), which inserts a copy of the region into the specified buffer at
the location of point in that buffer. If there is no buffer with the name you specify, one
is created. If you append text into a buffer which has been used for editing, the copied
text goes into the middle of the text of the buffer, wherever point happans to be in'it.

Point in that buffer is left at the end of the copied text, so successive uses of C-X A
accumulate the text in the specified buffer in the same order as they were copied. If
C-X A is given an argument, point in the other buffer is left before the copied text, so
successive uses of C-X A add text in reverse order.

You can tetrieve the accumulated text from that buffer with M-X Insert
Buffer¢<buffername><cr>. This inserts a copy of the text in that buffer into the
selected buffer. You can also select the other butfer for editing. See section 14
[Buffers], page 71, for background information an buffers.

Strictly speaking, C-X A does not always append to the text already in the buffer.
But if it is used on a buffer which starts out empty, it does keep appending to the end.

Instead of accumulating text within EMACS, in a buffer, you can append text directly
into a disk file with the command M-X Append to File¢<filename><cr>. It adds the text
of the region to the end of the specified file. M-X Prepend to File adds the text to the
beginning of the file instead. The file is changed immediately on disk. These
commands are normally used with files that are not being visited in EMACS. They

““have the advantage of working even on files too large to fit into the EMACS address

space.

9.3.2. Copying Text Many Times

When you want to insert a copy of the same piece of text frequently, the kill ring
becomes impractical, since the text moves down on the ring as you edit, and will be in
an unpredictable place on the ring when you need it again. For this case, you can use
the commands C-X X ("R Put Q-register) and C-X G (*R Get Q-register) to move the
text.

C-X Xg> stores a copy of the text of the region in a place called g-register <¢>.
With an argument, C-X X deletes the text as well. <g> can be a letter or a digit. This

PoTel

gives 36 places in which you can store a piece of text. C-X G<g inseits in the buffer

Searching 2N

Chapt‘er Ten

Searching

Like other editors, EMACS has commands for searching for an occurrence of a
string. The search command is unusual in that it is incremental; it begins to search
before you have finished typing the search string. As you type in the search string,
EMACS shows you where it would be found. When you have typed enough characters
to identify the place you want, you can stop. Depending on what you will do next, you
may or may not need to terminate the search explicitly with an Altmode first.

C-8 Search forward.
C-R Search backward.
C-S ¢ C-W Word search, ignoring whitespace.

The command to search is C-S (*R Incremental Search). C-S reads in characters
and positions the cursor at the first occurrence of the characters that you have typed.
If you type C-S and then F, the cursor moves right after the first "F". Type an "O",
and see the cursor move to after the first "FO". After another "O" the cursor is after
the first "FOO" after the place where you started the search. At the same time, the
"FOO" has echoed at the bottom of the screen.

If you type a mistaken character, you can rub it out. After the FOO, typing a rubout
makes the "O" disappear from the bottom of the screen, leaving only "FO". The
cursor moves back to the "FO". Rubbing out the "O" and "F" moves the cursor back
to where you started the search.

When you are satisfied with the place you have reached, you can type an Altmoda,
which stops searching, leaving the cursor where the search brought it. Also, any
command not specially meaningful in searches stops the searching and is then
executed. Thus, typing C-A would exit the search and then move to the beginning of
the line. Altmode is necessary only if the next command you want to type is a printing
character, Rubout, Altmode, C-Q, or another search command, since those are the
characiers that have special meanings inside the search.

Sometimes you search for "FOO" and find it, but not the one you expected to find.
There was a second FOO that you forgot about, before the ene you were laoking for.
Then type another C-S and the cursor will find the next FOO. This can be done any
number of times. If you overshoot, you can rub out the C-S's.

After you exit a search, you can search for the same string again by typing just C-S
C-S: one C-S command to start the search and then another C-5 to mean "search
again". '

If your string is not found at all, the echo area says "Failing 1-Search". The cursor

Searching : 43

A non-incremental search i; also available. Type Altmode (or the Séarch Exit Char)
right after the C-Sto get it. Do

M-X Describe4~R String Search<cr>

for details. Some people who prefer non-incremental searches put that function on
Meta-S, and ~R Character Search (do M-X Describe# for details) on C-S. It can do
one useful thing which incremental search cannot: search for words regardless of
where the line breaks.

Word search searches for a sequence of words without regard to how the words are
separated. More precisely, you type a string of many words, using single spaces to
separate them, and the string can be found even if there are multiple spaces or line
separators between the words. Other punctuation such as commas or periods must
match exactly. This is useful in conjunction with documents formatted by text
justifiers. If you edit while looking at the printed, formatted version, you can’t tell .
where the line breaks are in the source file. With word search, you can search without
having to know.

Word search is a special case of non-incremental search and is invoked with C-S
Altmode C-W. This is followed by the search string, which must always be terminated
with an Altmode. Searching does not start until the final Altmode is typed. Search Exit
Char and Search Exit Option do not apply to word search.

You do not even have to type each word in full, in a word search. An abbreviation is
good encugh. Word search finds the first occurrence of a sequence of words whose
beginnings match the words of the argument.

Commands for English Text - 45

Chapter Eleven

Commands for English Text

EMACS enables you to manipulate words, sentences, or paragraphs of text. In
addition, there are commands to fill text, and convert case. For text-justifier input
files, there are commands that may help manipulate font change commands and
underlining.

Editing files of text in a human language ought to be done using Text mode rather
than Fundamental mode. Invoke M-X Text Mode to enter Text mode. See
section 20.1 [Major Modes], page 91. M-X Text Mode causes Tab to run the function
“R Tab to Tab Stop, which allows you to set any tab stops with M-X Edit Tab Stops
(See section 11.3 [Indentation], page 48.). Features concerned with comments in
programs are turned off except when explicitly invoked. Automatic display of
parenthesis matching is turned off, which is what most people want. Finally, the
syntax table is changed so that periods are not considered part of a word, while

apostrophes, backspaces and underlines are.

if you are editing input for the text justifier TEX, you might want to use TEX mode
instead of Text mode. See the file INFO,ETEX>. For editing SCRIBE input, use
SCRIBE mode. See section 11.8 [SCRIBE], page 53. Someday there may be special
major modes for other text justifiers.

11.1. Word Commands

EMACS has commands for moving over or operating on words. By convention, they
are all Meta- characters.

M-F Move Forward over a word.

M-B Move Backward over a word.

M-D Kill up to the end of a word.

M-Rubout Kill back to the beginning of a word.

M-@ Mark the end of the next word.

M-T Transpose two words; drag a word forward or backward

across other words.

Notice how these commands form a group that parallels the character based
commands C-F, C-B, C-D, C-T and Rubout. M-@ is related to C-@.

The commands Meta-F ("R Forward Word) and Meta-B (R Backward Word) move
forward and backward over words. They are thus analogous to Control-F and

Commands for English Text o ' 47

M-H Put point ar.4 mark around this paragraph (around the following
- one, if betv.een paragraphs).
C-X Rubout

Kill back to the beginning of the sentence.

11.2.1. Sentences

The commands Meta-A and Meta-E (*R Backward Sentence and “R Forward
Sentence) move to the beginning and end of the current sentence, respectively. They
were chosen to resemble Control-A and Control-E, which move to the beginning and
end of a line. Unlike them, Meta-A and Meta-E if repeated or given numeric
arguments move over successive sentences, EMACS considers a sentence to end
wherever thereisa ".", "?" or "!I" followed by the end of a line or two spaces, with any
number of ")"'s, "}"’s, "'"’s, or '’ ’s allowed in between. Neither M-A nor M-E moves
past the CRLF or spaces which delimit the sentence.

Just as C-A and C-E have a kill command, C-K, to go with them, so M-A and M-E
have a corresponding kill command M-K (*R Kill Sentence) which kills from point to
the end of the sentence. With minus one as an argument it kills back to the beginning
of the sentence. Larger arguments serve as a repeat count.

There is a special command, C-X Rubout (*R Backward Kill Sentence) for killing
back to the beginning of a sentence, because this is useful when you change your
mind in the middle of composing text.

11.2.2.Paragraphs

Meta-[(“R Backward Paragraph) moves to the beginning of the current or previous
paragraph, while Meta-] (*R Forward Paragraph) moves to the end of the current or
next paragraph. Blank lines and text justifier command lines separale paragraphs and
are not part of any paragraph. Also, an indented line starts a new paragraph.

In major modes for programs (as opposed to Text mode), paragraphs are
determined only by blank lines. This makes the paragraph commands continue to be
useful even though there are no paragraphs per se.

When there is a fill prefix, then paragraphs are delimited by all lines which don’t
start with the fill prefix. See section 11.4 [Filling], page 50.

When you wish to operate on a paragraph, you can use the command Meta-H
(*R Mark Paragraph) to set the region around it. This command puts point at the
beginning and mark at the end of the paragraph point was in. Before setting the new
mark at the end, a mark is set at the old location of point; this allows you to undo a
mistaken Meta-H with two C-U C-@'s. If point is between paragraphs (in a run of
blank lines, or at a boundary), the paragraph foliowing point is surrounded by point

- and mark. Thus, for example, Meta-H C-W kills the paragraph around or after point.

One way to make an "invisible" paragraph boundary that does not show if the file is
printed is to put space-backspace at the front of a line. The space makes the line
appear (to the EMACS paragraph commands) to be indented, which usually means
that it starts a paragraph. ' o

o

Commands for English Text . ' 49

There are also commands for changing the indentation of seve-al lines at once.
Control-Meta-\ (*R Indent Region) gives each line which begins in the region the
"usual” indentation by invoking Tab at the beginning of the line. A numeric argument
specifies the indentation, and each line is shifted left or right so that it has exactly that
much. C-X Tab ("R Indent Rigidly) moves all of the lines in the region right by its
argument (left, for negative arguments). The whole group of lines move rigidly
sideways, which is how the command gets its name.

11.3.1. Tab Stops

For typing in tables, you can use Text mode’s definition of Tab, R Tab to Tab Stop,
which may be given anywhere in a line, and indents from there to the next tab stop. If
you are not in Text mode, this function can be found on M-1 anyway.

Set the tab stops using Edit Tab Stops, which allows you to edit some text which
defines the tab stops. Here is what it would look like for ordinary tab stops every eight
columns. '

123456789 123456789 123456789 123456789 123456789 1234
0 - 10 20 30 40 60

The first line contains a colon or period at each tab stop. Colon indicates an
ordinary tab, which fills with whitespace; a period specifies that characters be copied
from the correspanding columns of the second iine below it. Thus, you can tab to a

- column automatically inserting dashes or periods, etc. itis your respon3|b1hty to putin

the second line the text to be copied. In the example above there are no periods, so
the second line is not used, and is left blank.

The third and fourth lines you see contain column numbers to help you edit. They
are only there while you are editing the tab stops; they are not really part of the tab
settings. The first two lines reside in the variable Tab Stop Definitions when they are
not being edited. If the second line is not needed, Tab Stop Definitions can be just
one line, with no CRLFs. This makaes it easier to set the variable in a local modes list.
See section 22.7 [Locals], page 127.

EMACS normally uses both tabs and spaces to indent lines, and displays tab
characters using eight-character tab stops. (How the ASCII character tab is displayed
has nothing to do with the definition of the Tab character as a command). If you
prefer, all indentation can be made from spaces only. To request this, turn off Indent
Tabs mode with the command M-X Indent Tabs Mode. To display tabs with different
tab stops, set the TECO flag F5 TAB WIDTH¢ 1o the desired interval. This is useful for
displaying files brought from other operating systems whose normal tab stop spacing
is not 8. See section 22.5 [FS Flags], page 121.

To convert all tabs in a file to spaces, you can use M-X Untabify. M-X Tabify
performs the opposite transformation, replacing spaces with tahs whenever possible,
but only if there are at least three of them so as not to obscure ends of sentences. A
numeric argument to Tabity or Untabily specifies the interval between tab stops to use
for computing how to change the file. By default, they use the same interval being

Commands for English Text ’ 51

The maximum line width for filling is in the variable Fill Column. Bot» M-Q and Auto
Fill make sure that no line ex :eeds this width. The easiest way to se! the variable is to
use the command C-X F (“R Set Fill Column), which places the margin at the column
point is on, or at the column specitied by a numeric’ argument. The fill column is
initially column 70.

To fill a paragraph in which each line starts with a special marker (which might be a
few spaces, giving an indented paragraph), use the fi// prefix feature. Move point to a
spot right after the special marker and give the command C-X Period (*R Set Fill
Prefix). Then, filling the paragraph will remove the marker from each line beforehand,
and put the marker back in on each line afterward. Auto Fill when there is a fill prefix
inserts the fill prefix at the front of each new line. Also, any line which does not start
with the fill prefix is considered to start a paragraph. To turn off the fill prefix, do C-X
Period with point at the front of a line. The fill prefix is Kept in the variable Fill Prefix.

The command C-X = (What Cursor Position) can be used to find out the column that
the cursor is in, and other miscellaneous information about point which is quick to
compute. It prints a line in the echo area that looks like this:

X=b Y=7 CH=101 ,=3874(35% of 11014) H=<3051,4640>

In this line, the X value is the column the cursor is in (zero at the left), the Y value isthe

screen line that the cursor is in (zero at the top), the CH value is the octal value of the
character after point (101 is "A"), the "point"” value is the number of characters in the
buffer before point, and the values in parentheses are the percentage of the buffer
before point and the total size of the buffer.

The H values are the virtual buffer boundaries, indicate which part of the buffer is
still visible when narrowing has been done. If you have not done narrowing, the H
values are omitted. For more information about the virtual buffer boundaries, See
section 17 [Narrowing], page 81.

11.5. Case Conversion Commands

EMACS has commands for converting either a single word or any arbitrary range of
text to upper case or to lower case.

M-L Convert following word to lower case.
M-U Convert following word to upper case.
M-C Capitalize the following word.
C-XC-L Convert region to lower case.
C-XC-U Convert region to upper case.

The word conversion commands are the most useful. Meta-L (“R Lowercase Word)
converts the word after point to lower case, moving past it. Thus, successive Meta-L's
convert successive words. Meta-U (*R Uppercase Word) converts to all capitals
instead, while Meta-C (*R Uppercase Initial) puts the first letter of the word into upper
case and the rest into lower case. All these commands convert several words at once
it given an argument, They are especially convenient for converting a large amount of
text from ali upper case to mixed case, because you can move through the text using
M-, M-U or M-C on each word as appropriate. ‘ '

oty

Commands for English Text ‘ - 53

11.7. Unde»rlining

EMACS has two commands for manipulating text-justifier underlining command
characters. These commands do not produce any sort of overprinting in the text file
itself; they insert or move command characters which direct text justifiers to produce
underlining. By default, commands for the text justifier R are used.

M-_ Underline previous word or next word.
C-X_ Underline region.

M-_ is somewhat like M-# in that it either creates an underline around the previous
word or extends it past the next word. However, where a font change requires that
you specify a font number, an underline is just an underline and has no parameter for
you to specify. Also, it is assumed that the text justifier’s commands for starting and
ending underlines are distinguishable, whereas you can't tell from a font change
whether it is "starting" something or "ending” something. M-_ differs slightly from
M-# as aresult.

M-_ with no argument creates an underline around the previous word if there is
none. [f there is an underline there, it is extended one word forward. Thus, you can
insert an underlined word by typing the word and then a M-_. Or you can underline
several existing words by moving past the first of them, and typing one M-_ for each
word.

M-_ given in the vicinity of an underline-begin moves it forward. Thus, it should be
thought of as applying to any boundary, where undeilining either starts or stops, and
moving it forward. If a begin underlining is moved past an end, or vice versa, they
both disappear.

Giving M-_ an argument merely tells it to apply to several words at once instead of
one. M-_ with a positive argument of n underlines the next n words, either creating an
underlined area or extending an existing one. With a negative argument, that many
previous words are underlined. Thus, M-_ can do more things with underlines than
M-# can do with font changes, because of the facts that you don't need to use the
argument to say which font, and you can tell a beginning from an end.

For larger scale operations, you can use C-X _ to place underlines from point to
mark, or C-X _ with a negative argument to remove all underlining between point and
mark.

By default, 1B is used to begin an underline and tE is used to end one. The
variables Underline Begin and Underline End may be created and set to strings to use
instead. For asingle character you can use the numeric ASCH code for it.

11.8. SCRIBE Mode

SCRIBE mode provides many special editing commands for manipulating the
commands for the text justifier SCRIBE. Instances of SCRIBE commands are referred
to in EMAGS as environments, though strictly speaking it is the command name which

s the environment, and not all commands either.

Commands for English Text 55

starting with page defimiters ¢ re paragraph delimiters as usual, and 'ihes starting with
space or tab start paragraphs as usual.

The comment commands know that comments in SCRIBE files start with
"@Comment{" and end with "}". See section 20.5 [Comments], page 95.

You can use the M-X Compile command to invoke SCRIBE. See section 20.2
[Compile], page 92. It operates on the file currently visited: You can use a string
argument to specify switches. After SCRIBE is finished, you must type 4P to resume
EMACS. Then, if there were any errors, EMACS splits the screen and displays the
errors in the bottom window. The command M-X Next Scribe Error moves to the point
in the file at which the next error occurred. Currently the only ITS machine on which
SCRIBE is installed is MC.

The functions listed in this section live in the hbrary SCRIBE, which is loaded
automatically if you enter SCRIBE mode.

11.9. Dissociated Press

M-X Dissociated Press is a command for scrambling a file of text either word by
word or character by character. Starting from a bufferfull of straight English, it
produces extremely amusing output. Dissociated Press prints its output on the
terminal. It does not change the contents of the buffer.

Dissociated Press operates by jumping at random from one point in the buffer to
another. In order to produce plausible output rather than gibberish, it insists on a
certain amount of overlap between the end of one run of consecutive words or
characters and the start of the next. That is, if it has just printed out "president” and
then decides to jump to a different point in the file, it might spot the "ent" in
"pentagon" and continue from there, producing "presidentagon”. Long sample texts
produce the best results.

A negative argument to M-X Dissociated Press tells it to operate character by
character, and specifies the number of overlap characters. A positive argument tells it
to operate word by word and specifies the number of overlap words. In this mode,
whole words are treated as the elements to be permuted, rather than characters. No
argument is equivalent to an argument of two. For your againformation, the output is
only printed on the terminal. The file you start with is not changed.

Dissociated Press produces nearly the same results as a Markov chain based on a
frequency table constructed from the sample text. It is, however, an independent,
ignoriginal invention. Dissociated Press techniquitously copies several consecutive
characters from the sample between random choices, whereas a Markov chain would
choose randomly for each word or character. This makes for more plausible sounding
results.

Itis a mustatement that too much use of Dissociated Press can be a developediment
to your real work. Sometimes to the point of outragedy. And keep dissociwords out of
your documentation, if you want it to he well userenced and properbose. Have fun.
Your buggestions are welcome.

Commands for Fixing Typgs ‘ 57

Chapter Twelve
Commands for Fixing Typos
In this section we describe the commands that are especially useful for the times

when you catch a mistake in your text just after you have made it, or change your mind
while compaosing text on line.

Rubout Delete last character.
M-Rubout Kill last word.
C-X Rubout Kill to beginning of sentence.
C-T Transpose two characters.
C-XC-T Transpose two lines,
C-XT Transpose two arbitrary regions.
M-Minus M-L Convert last word to lower case.
M-Minus M-U Convert last word to all upper case.
M-Minus M-C Convert last word to lower case with capital initial.
M-’ Fix up omitted shift key on digit.
“M-$ {Meta-Dollar Sign) Check and correct spelling of word.

Correct Spelling Check and correct spelling of entire buffer.

12.1. Killing Your Mistakes

The Rubout command is the most important correction command. When used
among printing (self-inserting) characters, it can be thought of as canceling the last
character typed.

When your mistake is longer than a couple of characters, it might be more
convenient to use M-Rubout or C-X Rubout. M-Rubout kills back to the start of the
last word, and C-X Rubout kills back to the start of the last sentence. C-X Rubout is
particularly useful when you are thinking of what to write as you type it, in case you
change your mind about phrasing. M-Rubout and C-X Rubout save the killed text for
C-Y and M-Y to retrieve (See section 9.2 [Un-killing], page 37.).

M-Rubout is often useful even when you have typed only a few characters wrong, if
you know you are confused in your typing and aren’t sure exactly what you typed. At
such a time, you cannot correct with Rubout except by looking at the screen to see
what you did. It requires less thought to kili the whole word and start over again,
especially if the system is heavily loaded.

s o S

Commands for Fixing Typos 59

12.4. Chec‘king and CQr'ectingSpelling ,

When you write a paper, you should correct its spelling at some point close to
finishing it (and maybe earlier as well). To correct the eniire buffer, do M-X Correct
Spelling. This invokes the SPELL spelling corrector program, which will ask you what
to do with each misspelled word. Refer to its documentation. When it finished, you
will be back in EMACS.

To check the spelling of the word before point, and optionally correct it as well, use
the command M-$ (*R Correct Word Spelling). This is a Dollar sign, not an Altmode!
This command sends the word to the SPELL program for correction.

If SPELL recognizes the word as a correctly spelled one (although not necessarily
the one you meant!) you will see "Found it" or "Found it because of" followed by the
word without its suffix. If the program cannot at all recognize the word, it will print
"Couldn’t find it."

If SPELL recognizes the word as a misspelling, it displays on the screen the other
words which are possibilities for the correct spelling, and gives each one a number.
Then, you can type one of the following things:

Oto9 Replace misspelled word with that spelling (preserving case,
just like Replace String and Query Replace, unless Case
Replace is zero).
Space Exit and make no changes.
% Read a digit as above and Query Replace (M-%) the incorrect
: spelling with the correct one from the beginning of the buffer.

No other responses are allowed.

The cursor need not be immediately after the word you want to correct; it can be in
the middle, or following any word-separator characters after the end of the word.
Note that the major mode you are using affects which characters are
word-separators. See section 22.4 [Syntax Table], page 119.

The first time you use an EMACS spelling correction command, it creates a SPELL
job for you. From then on it uses the same SPELL job. It's ok to kill the job if you don’t
think you'll be using M-$ again during that session. But if you do leave the job around
checking words will much quicker. Giving M-$ a negative argument (as in M-- M-$)
kills the SPELL job. Of course, you can kill it from DDT also.

If you are a regular user of the SPELL program, you might have a dictionary file of
words which you use but which are foreign to SPELL. [If there are words in this file
which you might want to use M-$ to correct, you can specify that you want this
dictionary to be loaded into the spell job which EMACS uses. To do this, set the
variable Spell Initialization to the string of SPELL program commands you want to use.
For loading a dictionary, this string would be a "Load " followed by the dictionary
filename. Other initializatior: commands for SPELL can appear there also. The
commands must be separated by altmodes.

You can also pass arbitrary commands to the SPELL job with command M-X

Command to Spell.

File Handling 61

Chapfer‘Thirteen
File Handling

The basic unit of stored data is the file. Each program, each paper, lives usually in
its own file. To edit a program or paper, the editor must be told the name of the file
that contains it. This is called visiting the file. To make your changes to the file
permanent on disk, you must save the file. EMACS also has facilities for deleting files
conveniently, and for listing your file directory. Special text in a file can specify the
modes to be used when editing the file.

13.1. Visiting Files

C-XC-V Visit a file.

C-XC-Q Change regutar visiting to read only, or vice versa.
C-XC-8 Save the visited file, _ :
Meta-~ Tell EMACS to forget that the buffer has been changed.

Visiting a file means copying its contents into EMACS where you can edit them.,
EMACS remembers the name of the file you visited. Unless you use the multiple buffer
or window features of EMACS, you can only be visiting one file at a time. The name of
the file you are visiting in the currently selected buffer is visible in the mode line when
you are at top level, followed by its version number if it has one in parentheses.

The changes you make with EMACS are made in a copy inside EMACS. The file
itself is not changed. The changed text is not permanent until you save it in a file, The
first time you change the text, a star appears at the end of the mode line; this indicates
that the text contains fresh changes which will be lost unless you save them.

To visit a file, use the command C-X C-V (*R Visit File). Follow the command with’
the name of the file you wish to visit, terminated by a Return. If you can see a filename
in the mode line, then that ndme is the default, and any component of the filename
which you don't specify is taken from it. If EMACS thinks you can't see the defaults,
they are included in the prompt. You can abort the command by typing C-G, or edit
the fitename with Rubout or C-U. If you do type a Return to finish the command, the
new file’s text appears on the screen, and its name and version appear in the mode
line.

When you wish to save the file and make your changes permanent, type C-X C-8
("R Save File). After the save is finished, C-X C-S prints "Written: ilenames>” in the
echo area at the bottom of the screen. If there are no changes to save (no star at the
end of the mode linz), the file is not saved; it would be redundant to save a duplicate of
the pravious version.

FileHandling - ot ' ‘ 63

It EMACS is about to save = file and sees that the date of the latest version on disk
does not match what EMACS . last read or wrote, EMACS notifies you of this fact, and
asks what to do, because this probably means that something is wrong. For example,
someone else may have been editing the same file. If this is so, there is a good
chance that your work or his work will be lost if you don’t take the proper steps. You
should first find out exactly what is going on. The C-X C-D command to list the
directory will help. If you determine that someone else has modified the file, save your
file under different names (or at least making a new version) and then SRCCOM the
two files to merge the two sets of changes. Also get in touch with the other person so
that he doesn’t continue editing.

13.2. How to Undo Drastic Changes to a File

If you have made extensive changss to a file and then change your mind about
them, you can get rid of them by reading in the previous version of the file. To do this,
use M-X Revert File. If you have been using Auto Save mode, it reads in the last
version of the visited file or the last auto save file, whichever is more recent.

In Auto Save mode, saving under special Auto Save filenames, then you can ask to
revert to the last "real” save, ignoring subseguent auto saves, with C-U M-X Revert
File. If you are using the style of auto saving which saves under the real filenames,
this is not possible.

M-X Revert File does not change pomt 50 that if the file was only edited slightly, you
will be at approximately the same piece of text after the Revert as before. If you have
made drastic changes, the same value of point in the old file may address a totally
different piece of text.

Because M-X Revert File can be a disaster if done by mistake, it asks for
confirmaticn (Y or N) before doing its work. A pre-comma argument can be used to
inhibit the request for confirmation when you call the function Revert File from a TECO
program, as in 1, M(M.M Revert File¢).

13.3. Auto Save Mode: Protection Against Disasters

In Auto Save mode, EMACS saves your file from time to time (based on counting
your commands) without being asked. Your file is also saved if you stop typing for
more than a few minutes when there are changes in the buffer. This prevents you
from losing more than a limited amount of work in a disaster. (Another methad of
protection is the journal file. See section 24.4 [Journals], page 137.).

You can turn auto saving on or off in an individual buffer with M-X Auto Save. In
addition, you can have auto saving by default in all buffers by setting the option Auto
Save Default. The frequency of saving, and the number of saved versions to keep, can
both be specified.

Each time you visit « file, no matter how, auto saving is turned on for that file if Auto
Save Defaultis nonzero. Once you have visited a file, you can turn auto saving on or

File Handling - 65

which knows how to find the .vast recent save, permanent or not under whatever
filenames. See section 13.2 [F.evert], page 63.

For your protection, if a file has shrunk by more than 30% since the last save, auto
saving does not save. Instead it prints a message that the file has shrunk. You can
save explicitly if you wish; after that, auto saving will resume.

Although auto saving generates large numbers of files, it does not clog directories,
because it cleans up after itself. Only the last Auto Save Max auto save files are kept;
as further saves are done, old auto saves are deleted, However, only files made by
auto saving {or by explicitly requested auto-saves with C-U C-X C-8) are deleted in
this way. If Auto Save Max is 1, then repeated auto saves rewrite the same version of
the file; the version number is only incremented after a real save. (It will write a new
version if it is unable to rewrite the old one). :

The variable Auto Save Max is initially 2. Changing the value may not take effect in
a given buffer until you turn auto saving off and on in that buffer.

The number of characters of input between auto saves is controlled by the variable
Auto Save Interval. ltis initially 500. Changing this takes effect immediately.

If you use the multiple-buffer features of EMACS (See section 14 [Buffers],
page 71.) then you may want to have auto saving for all buffers, not just the one that is
selected at the moment. To get this, set the variable Auto Save All Buffers nonzero.

13.4. Listing a File Directory

To look at a part of a file directory, use the C-X C-D command (*R Directory
Display). With no argument, it shows you the file you are visiting, and related files with
the same first name. C-U C-X C-D reads a filename from the terminal and shows you
the files related to that filename.

To see the whole directory in a brief format, use the function List Files, which takes
the directory name as a string argument. The function View Directory prints a verbose
listing of a whole directory.,

The variable Auto Directory Display can be set to make many file operations display
the directory automatically. The variahle is normally 0; making it positive causes write
operations such as Write File to display the directory, and making it negative causes
read operations such as Insert File or visiting to display it as well. The display is done
using the default directory listing function which is kept in the variable Directory
Lister. Normally this is the function & Subset Directory that displays only the files
related to the current default file. An alternative type of directory listing can be
obtained by setting Directory Lister to the function & Rotated Directory Listing. After
this function display the particular file you are interested in, it offers to display the rest.
If you say "yes" (with a Space), it displays through the end of the directory, and
around to the beginning of the directory, stopping where it originally started. See
saction 22.6 [Init], page 123.

The function List Directories prints an alphabetized list of all the file directories on
the system. '

File Handling : 67

13.6.1. Basic DIRED Commands

You can mark a file for deletion by moving to the line describing the file and typing
D, C-D, K, or C-K. The deletion mark is visible as a D at the beginning of the line.
Point is moved to the beginning of the next line, so that several D’s delete several files.
Alternatively, if you give D an argument it marks that many consecutive files. Given a
negative argument, it marks the preceding file (or several files) and puts point at the
first (in the buffer) line marked. Most of the DIRED commands (D, U, 1, §, P, S, C, E,
Space) repeat this way with numeric arguments.

If you wish to remove a deletion mark, use the U (for Undelete) command, which is
invoked like D: it removes the deletion mark from the current line (or next few lines, if
given an argument). The Rubout command removes the deletion mark from the
previous line, moving up to that line. Thus, a Rubout after a D precisely cancels the
D. '

For extra convenience, Space is made a command similar to C-N. Moving down a
line is done so often in DIRED that it deserves to be easy to type. Rubout is often
useful simply for moving up.

If you are not sure whether you want to delete a file, you can examine it by typing
E. This enters a recursive editing mode on the file, which you can exit with C-M-C.
The file is not really visited at that time, and you are not allowed to change it. When
you exit the recursive editing level, you return to DIRED. The V command is like E but
uses View File to look at the file.

_.When you have marked the files you wish to mark, you can exit DIRED with C-M-C.
If any files were marked for deletion, DIRED lists them in a coricise format, several per
line. A file with "!" appearing next to it in this list has not been saved on tape and will
be gone forever if deleted. A file with “>" in front of it is the most recent version of a
sequence and you should be wary of deleting it. Then DIRED asks for confirmation of
the list. You can type "YES" (Just "Y" won’t do) to go ahead and delete them, "N" to
return to editing the directory so you can change the marks, or "X" to give up and
delete nothing. No Return character is needed. No other inputs are accepted at this
point.

13.6.2. Other DIRED Commands

The "!" command moves down (or up, with an argument of -1) to the next
undumped file (one with a "I before its date).

N finds the next "hog": the next file which has at least three versions (or, more than
File Versions Kept).

T when given on a line describing a link marks for deletion the file which the link
points to. This file need not be in the directory you are editing to be deleted in this
way.

1 copies the file you are pointing at to the primary pack. 2 copies it to SECOND:. 3
copies it to THIRD:. 4 copies it to FOURTH:.

$ complements the don't-reap atribute of the file: this is displayed as a dollar sign
to the lalt of the file dale,

File Handling - 69

next screenful or a Backspase to see the previous screenful. Typir-7 anything else
exits the command. View Fi 2 does not visit the file; it does not alt~.r the contents of
any buffer. The advantage of View File is that the whole file does not need to be
loaded before you can begin reading it. The inability to do anything but page forward
or backward is a consequence.

M-X Write File4<file><cr> writes the contents of the buffer into the file (file>, and
then visits that file. It can be thought of as a way of "changing the name" of the file
you are visiting. Unlike C-X C-S, Write File saves even if the buffer has not been
changed. C-X C-W is another way of getting at this command.

M-X Insert File¢<file><cr> inserts the contents of <file> into the buffer at point,
leaving point unchanged before the contents and mark after them. The current
defaults are used for <file>, and are updated.

M-X Write Region ¢<file><cr> writes the region (the text between point and mark) to
the specified file. It does not set the visited filenames. The buffer is not changed.

M-X Append to File4<file><cr> appends the region to <file>. The text is added to the
end of file>,

M-X Prepend to File4<file><cr> adds the text to the beginning of <file> instead of the
end.

M-X Set Visited Filename¢<file><cr> changes the name of the file being visited
without reading or writing the data in the buffer. M-X Write File is approximately
equivalent to this command followed by a C-X C-S,

M-X Delete Files<file><cr> deletes the file. If you did not get a chance to see the
default filenames before typing the filename to delete, then Delete File asks for
confirmation before deleting the file.

M-X Copy File4<old file>¢<new file><cr> copies the file.
M-X Rename File4<old name> ¢<{new name><cr> renames the file.

The default filenames for all of these operations are TECO default filenames. Most
of these operations also leave the TECO default names set tc the file they operated on.
The TECO default is not always the same as the file you are visiting. When you visit a
file, they start out the same; the commands mentioned above change the TECO
default, but do not change the visited filenames. Each buffer has its own TECO
default filenames.

The operation of visiting a file is available as a function under the name M-X Visit
File¢<file><cr>. In this form, it uses the TECO default as its defaults, though it still sets
both the TECO default and the visited filenames.

13.8. The Directory Comparison Subsystem

The {unction Compare Directories makes it easy 1o compare two directories to see
which files are present in both and which are present only in one. It compares a
dircctory on the local machine with the directory of the same name on another
machine.

Using Multipte Buffers 7

Chapter Fourteen

Using Multiple Buffers

When we speak of "the buffer", which contains the text you are editing, we have
given the impression that there is only one. In fact, there may be many of them, each
with its own body of text. At any time only one buffer can be selected and available for
editing, but it isn't hard to switch to a different one. Each buffer individually
remembers which file it is visiting, what modes are in effect, and wheiher there are any
changes that need saving.

C-XB Select or create a buffer.
C-XC-F Visit a file in its own buffer.
C-XC-B List the existing buffers.
C-XK Kill a buffer.

Each buffer in EMACS has a single name, which normally doesn’t change. A
buffer's name can be any length. The name of the currently selected buffer, and the
name of the file visited in it, are visible in the mode line when you are at top level. A
newly started EMACS has only one buffer, named "Main".

As well as the visited file and the major mode, a buffer can, if ordered to, remember
many other things locally, which means, independently of all other buffers. See
section 22.3 [Variables], page 118.

14.1. Creating and Selecting Buffers

To create a new buffer, you need only think of a name for it (say, "FOO") and then
do C-X B FOOKcr>, which is the command C-X B (Select Buffer) followed by the
name. This makes a new, empty buffer and selects it for editing. The new buffer is not
visiting any file, so jf you try to save it you wili be asked for the filenames to use. Each
buffer has its own major mode; the new buffer’'s major mode is taken from the value of
the variable Default Major Mode, or from the major mode of the previously selected

buffer if the value of Default Major Mode is the null string. Normally the Default Major

Mode is Fundamental mode.

To return to huffer FOO later after having switched to another, the same command
C-X B FOO<cr> is used, since C-X B can tell whether a buffer named FOO exists
already or not. It does not matter whether you use upper case or lower case in typing
the name of a buffer. C-X B Muin<er> reselects the buffer Main that EMACS startad
out with. Just C-X Bdcr> reselects the previous buller. Repeated C-X Bécrd's
alternate between the fast two bulfers selecled.

Using Multiple Buffers : 73

The commands C-X A (“R /Append to Buffer) and M-X Insert Buff’c% can be used to
copy text from one buffer to arother. See section 9.3 [Copying], pag: 39.

14.3. Killing Buffers

After you use an EMACS for a while, it may fill up with buffers which you no longer
need. Eventually you can reach a point where trying to create any more results in an
"URK" error. So whenever it is convenient you should do M-X Kill Some Buffers,
which asks about each buffer individually. You can say Y or N to kil it or not. Or you
can say Control-R to take a look at it first. This does not actually select the buffer, as
the mode line shows, but gives you a recursive editing level in which you can move
around and look at things. When you have seen enough to make up your mind, exit
the recursive editing level with a C-M-C and you will be asked the question again. If
you say to kill a buffer that needs saving, you will be asked whether it should be saved.
See section 24.2,5 [Storage Exhausted], page 135. .

You can kill the buffer FOO by doing C-X K FOO<cr>. You can kill the selected
buffer, a common thing to do if you use C-X C-F, by doing C-X K<cr>. If you kill the
selected buffer, in any way, EMACS asks you which buffer to select instead. Saying
just <cr> at that point tells EMACS to choose one reasonably. C-X K runs the function
Kill Buffer.

Controlling the Display | ‘ 75

Chapter Fifteen
Controlling the Display

Since only part of a large file fits on the screen, EMACS tries to show the part that is
likely to be interesting. The display control commands allow you to ask to see a
different part of the file.

C-L Clear and redisplay screen, putting point at a specified vertical
position.

c-v Scroll forwards (a screen or a few lines).

M-V Scroll backwards.

M-R Move point to the text at a given vertical position.

C-M-R Shift the function point is in onto the screen.

The terminal screen is rarely large enough to display all of your file. If the whole
buffer doesn't fit on the screen, EMACS shows a contiguous portion of it, containing
point. It continues to show approximately the same portion until point moves outside
of it; then EMACS chooses a new portion centered around the new point. This is
EMACS’s guess as to what you are most interested in seeing. But if the guess is
wrong, you can use the display control commands to see a different portion. The
finite area of screen through which you can see part of the buffer is called the window,
and the choice of where in the buffer to start displaying is also called the window.

First we describe how EMACS chooses a new window position on its own. The goal
is usually to place point 35 percent of the way down the screen. This is controlled by
the variable Cursor Centering Point, whose value is the percent of the screen down
from the top. However, if the end of the buffer is on the screen, EMACS tries Lo leave
at most 35 percent of the screen blank beneath it, so that the screen is not wasted.
This percentage is controlled by the variable End of Buffer Display Margin. These
variables woik by controlling FS flags, and their values must never be negative or
greater than 99,

Normally EMACS only chooses a new window position if you move point off the
screen. However, you can ask for a new window position to be computed whenever
point gets too close to the top of the screen by setting the variable Top Display Margin
to the percentage of the screen in which point must not appear. Bottom Display
Margin does the same thing for a region near the botiom,

The basic display control command is C-L. (*R New Window). In its simplest form,
with no argument, it clears the screen and tells EMACS to choose a new window
position, centering paint 35 percent of the way from the top as usual.

C-L with a positive argument chooses a new window so as (o put point that many

Two Window Mode ' L 77

Cyhaptery Sixteen

Two Window Mode

EMACS allows you to split the screen into two windows and use them to display
parts of two files, or two parts of the same file.

C-X2 Start showing two windows.

C-X3 Show two windows but stay "in" the top one.
C-X1 Show only one window again.

C-XO Switch to the Other window

C-X4 Find buffer, file or tag in other window.
C-X~ Make this window bigger.

C-M-V Scroll the other window.

In two window mode, the text display portion of the screen is divided into two parts
called windows, which display different pieces of text. The two windows can display
two different files, or two parts of the same file. Only one of the windows is selected:
that is the window which the cursor is in. Editing normaily takes place in that window
alone. To edit in the other window, you would give a special command to move the
cursor to the other window, and then edit there. Since there is only one mode line, it
-applies to the window you are in at the moment.

The command C-X 2 (“R Two Windows) enters twa-window mode. A line of dashes
appears across the middle of the screen, dividing the text display area into two halves.
Window one, containing the same text as previously occupied the whole screen, fills
the top half, while window two filis the bottom half. The cursor moves to window two.
If this is your first entry to two-window mode, window twao contains a new buffer
named W2. Ctherwise, it contains the same text it held the last time you looked at it.

To return to viewing only one window, use the command C-X 1 (*R One Window).
Window one expands to fill the whole screen, and window two disappears until the

next C-X 2. C-U C-X 1 gets rid of window one and makes window two use the whole

screen. Neither of these depends on which window the cursor is in when the
command is given.

While you are in two window mode you can use C-X O (*R Other Window) to switch
between the windows. After doing C-X 2, the cursor is in window two. Doing C-X O
moves the cursor back to window one, to exactly where it was before the C-X 2. The
difference between this and doing C-X 1 is that C-X O leaves window two visible on
the screen. A second C-X O moves the cursor back into window two, to where it was
before the first C-X 0. Andso on..

Often you will be editing one window while using the other just for reference. Then,

Two Window Mode 79

continues to show the same text. Then, having found in window tvo the place you
wish to refer to, you can go hack to window one with C-X O to ma'e your changes.
Finally you can do C-X 1 to make window two leave the screen. If you are already in
two window mode, C-U C-X O switches windows carrying the buffer from the old
window to the new one so that both windows show that buffer.

If you have the same buffer in both windows, you must beware of trying to visit a
different file in one of the windows with C-X C-V, because if you bring a new file into
this buffer, it will replace the old file in both windows. To view different files in the two
windows again, you must switch buffers in one of the windows first (with C-X B or C-X
C-F, perhaps).

A convenient "combination” command for viewing something in the other window is
C-X 4 (*R Visit in Other Window). With this command you can ask to see any
specified buffer, file or tag in the other window. Follow the C-X 4 with either Band a
buffer name, F or C-F and a file name, or T or "." and a tag name (See section 21
[TAGS], page 107.). This switches to the other window and finds there what you
specified. If you were previously in one-window mode, two-window made is entered.
C-X 4 Bis similar to to C-X 2 C-X B. C-X 4 F is similar to C-X 2 C-X C-F. C-X4 Tis
similar to C-X 2 M-Period. The difference is one of efficiency, and also that C-X 4
works equally well if you are already using two windows.

Narrowing S ’ 81

" Chapter Seventeen

Narrowing

Narrowing means focusing in on some portion of the buffer, making the rest
temporarily invisible and inaccessible.

C-XN Narrow down to between point and mark.
C-XP Narrow down to the page point is in.
C-XW Widen to view the entire buffer.

When you have narrowed down to a part of the buffer, that part appears to be all
there is. You can’t see the rest, you can't move into it (motion commands won't go
outside the visible part), you can’t change it in any way. However, it is not gone, and if
you save the file all the invisible text will be saved. In addition to sometimes making it
easier to concentrate on a single subroutine or paragraph by eliminating clutter,
narrowing can be used to restrict the range of operation of a replace command. The
word "Narrow" appears in the mode line whenever narrowing is in effect.

The primary narrowing command is C-X N (*R Narrow Bounds to Region). [t sets
the virtual buffer boundaries at point and the mark, so that only what was between
them remains visible. Point and mark do not change.

The way to undo narrowing is to widen with C-X W (*R Widen Bounds). This makes
all text in the buffer accessible again.

Another way to narrow is to narrow to just one page, with C-X P (*R Narrow Bounds
to Page). See section 18 [Pages], page 83.

You can get information on what part of the buffer you are narrowed down to using
the C-X = command. See section 11.4 [Filling), page 50.

The virtual buffer boundaries are a powerful TECO mechanism used internally in
EMACS in many ways. While only the commands described here set them so as you
can see, many others set them temporarily using the TECO commands FS VB¢ and
FS VZ¢, but restore them before they are finished.

Commands for Manipulating Pagas ‘ : 83

Cfnapter'Eighfeen

Commands for Manipulating Pages

Files are often thought of as divided into pages by the ASCIl character formfeed
(tL). For example, if a file is printed on a line printer, each page of the file, in this
sense, will start on a new page of paper. Most editors make the division of a file into
pages extremely important. For example, they may be unable to show more than one
page of the file at any time. EMACS treats a formfeed character just like any other
character. It can be inserted with C-Q C-L (or, C-M-L), and deleted with Rubout.
Thus, you are free to paginate your file, or not. However, since pages are often
meaningful divisions of the file, commands are provided to move over them and
operate on them.

C-M-L Insert formfeed.
C-XC-pP Put point and mark around this page (or another page).

C-X[Move point to previous page boundary.
- C-X] Move point to next page boundary.

C-XP Narrow down to just this (or next) page.

C-XL Count the lines in this page.

M-X What Page

Print current page and fine number.

The C-X [(*R Previous Page) command moves point to the previous page delimiter
(actually, to right after it). If point starts out right after a page delimiter, it skips that
one and stops at the previous one. A numeric argument serves as a repeat count.
The C-X](*R Next Page) command moves forward past the next page delimiter.

The command M-X What Page prints the page and line number of the cursor in the
echo area. There is a separate command to print this information because it is likely
to be slow and should not slow down anything else. The design of TECO is such that
it is not possible to know the absolute number of the page you are in, except by
scanning through the whole file counting pages.

The C-X C-P command (*R Mark Page) puts point at the beginning of the current
page and the mark at the end. The page delimiter at the end is included (the mark
follows it). The page delimiter at the front is excluded (point follows it). This
command can be followed by a C-W to kill a page which is to be moved elsewhere. |f
it is inserted after a page delimiter, at a place where C-X] or C-X [would take you,
then the page will be properly delimited betore and after once again.

A numeric argument to C-X C-P is used to specify which page to go to, relative to
the current one. Zero means the current page. One means the next page, and -1
means the previous one,

Commands for Manipulating Pz 3135 85

be done by giving the page nu mber as an argument to C-X C-P (*R (‘-éto Page). If you
- give a number too big, the last page in the file is selected.

For convenience, C-X C-P with no argument when you are looking at the whole file
selects the page containing point. When you are looking at only one page, C-X C-P
with no argument goes to the next page and with a negative argument goes to the
previous page.

However, the main commands for moving forward or backward by pages are C-X [
and C-X] (*R Goto Previous Page and “R Goto Next Page). These take a numeric
argument (either sign) and move that many pages.

To go back to viewing the whole file instead of just one page, you can use the C-X

W ("R PAGE Widen Beounds) command. These are the same characters that you
would use in standard EMACS, but they run a drfferent function that knows to remove

the page number from the mode line. '

The C-S ("R Incremental Search) and C-R ("R Reverse Search) commands are
redefined to widen bounds first and narrow them again afterwards. So you can search
through the whole file, but afterward see only the page in which the search ended. in
fact, PAGE goes through some trouble to work with whatever search functions you
prefer to use, and find them wherever you put them.

To split an existing page, you could insert a 1L, but unless you do this while viewing
the whole file, PAGE might get confused. The clean way is to use C-X P (*R Insert
Pagemark) which inserts the page mark, and narrows down to the second of the two
pages formed from the old page. The clean way to get rid of a page mark is to use
C-XJ ("R Join Next Page). It gets rid of the page mark after the current page; or, with
a negative argument, gets rid of the page mark before this page.

A page mark is defined as <CRLF>tL. If you set the variable PAGE Flush CRLF to 1,
a page mark is <CRLF>*L<CRLF>, which has the effect of making the CRLF at the
beginning of each page invisible. This may be desirable for EMACS library source
files. You can also specify some other string in place of 1L by setting the variable
Page Delimiter. If Page Delimiter specifies multiple alternatives, separated by 10,
PAGE always inserts the first of them, but recognizes them all.

To see a list of all the pages in the file, each one represented by its first nonempty
line, use M-X View Page Directory. It prints out the first non-blank line on each page,
preceded by its page number. M-X Insert Page Directory inserts the same directory
into the buffer at point. If you give it an argument, it tries to make ihe whole thing into
a comment by putting the Comment Start string at the front of each line and the
Comment End string at the end.

If the variable Page Setup Hook exists, PAGE will execute its value as the function
for placing PAGE’s functions on keys. This is done instead of the normal assighments
to C-X[, C-X],C-XC-P, C-X P, and C-X J.

Replacement Commands | » ’ 87

Chapter Nineteen

Replacement Commands

Global search-and-replace operations are not needed as often in EMACS as they
are in other editors, but they are available. In addition to the simple Replace operation
which is like that found in most editors, there is a Query Replace operation which asks
you, for each accurrence of the pattern, whether to replace it.

To replace every instance of FOO after point with BAR, you can do
M-X Replace4FO04BAR<cr>

Replacement occurs only after point, o if you want to cover the whole buffer you
must go to the beginning first. Replacement continues to the end of the buffer, but
you can restrict it by narrowing. See section 17 [Narrowing], page 81.

Unless the variable Case Replace is zero, Replace tries to preserve case; give both
FOO and BAR in lower case, and if a particular FOO is found with a capita! initial or all
. capitalized, the BAR which replaces it will be given the same case pattern. Thus,

M-X Replaceé¢fooébar<cr>
would replace "foo" with "bar”, "Foo" with "Bar" and "FOO" with "BAR"™. If Case
Replace is zero, the replacement string is inserted with the case you used when you
typed it. If Case Search is zero, the string to be replaced is found only when it has the
same case as what you typed.

If you give Replace (or Query Replace) an argument, then it replaces only
occurrences of FOO delimited by break characters (or an end of the buffer). So you
~ can replace only FOO the word, and not FOO when it is part of FOOBAR.

The string FOO to be replaced is actually a TECO search string, a type of pattern, in
which the characters 1B, N, 10, tQ, 1S, 1X, and 1] are special. See section 19.3
{TECO search strings], page 89,

19.1. Query Replace

If you want to change only some of the occurrences of FOO, not all, then you cannot
use an ordinary Replace. Instead, use M-X Query Replace$FOO4BARLcr>. This
displays each occurrence of FOO and waits for you to say whether to replace it with a
BAR. The things you can type when you are shown an occurrence of FOO are:

Space to replace the FOO (preserving case, just like plain Replace,
unless Case Replace is zero).

Replacement Commands - 89

prints each "ne containing FOO. With an argument, it prints that
‘many lines oetore and after each occurrence.
M-X Count Occurrences¢FOO<cr>
prints the number of occurrences of FOQ after point.
M-X Delete Non-Matching Lines¢FOO<cr>
kills all lines after point that don’t contain FOO.
M-X Delete Matching Lines$FO0O<cr>
kills all lines after point that contain FOO.

19.3. TECO Search Strings

The first string argument to Replace and Query Replace is actuallv a TECO search
string. This means that the characters tX, 1B, 1N, 1S, 10, and *Q have special
meanings.

tX matches any character. tB matches any "delimiter" character (anything which
the word commands consider not part of a word, according to the syntax table. See
section 22.4 [Syntax], page 119.). TN negates what follows, so that TN A matches
anything but A, and tN 1B matches any non-delimiter. 1S is followed by a parameter
character, and matches anything whaose Lisp syntax equals the parameter. So 15(
matches any character given the syntax of an open-parenthesis. tNtSA matches any
character which is not part of symbol names.

10 means "or", so that XYXY 10 ZZZ matches either XYXY or ZZZ. 10 can be

“used more than once in a pattern. +Q quotes the following character, in case you

want to search for one of the special control characters. However, you can’t quote an
Altmode or a Return in this way because its speciainess is at an earlier stage of
processing.

Some variables are supposed to have TECO search strings as their values. For
example, Page Delimiter is supposed to be a search string to match anything which
should start a page. This is so that you can use 1O to match several alternatives. In
the values of such variables, 1B, 1N, tO, tQ, 1S, tX and 1] are special, but Altmode is

not. B through tX are quoted with a +Q, and 1] is quoted with another +].

The function Apropos (or, Help A) and all similar functions actually take TECO
search strings as arguments, so you can search for more than one substring at a time.
This is useful because doing Apropos on wordtOpara is not really slower than
searching for just "word" or just "para”.

Editing Programs e 91

Chapter Twenty
Editing Programs |

Special features for editing programs include automatic indentation, comment
alignment, parenthesis matching, and the ability to move over and kill balanced
expressions. Many of these features are parameterized so that they can work for any -
programming language.

For each language there is a special major mode which customizes EMACS slightly
to be better suited to editing programs written in that language. These modes
sometimes offer special facilities as well.

See section 11.1 [Words], page 45. Moving over words is useful for editing
programs as well as text.

See section 11.2 [Paragraphs], page 46. Most programming language major modes
define paragraphs to be separated only by blank lines and page boundaries. This
makes the paragraph commands useful for editing programs.

See section 21 [Tags], page 107. The TAGS package can remember all the labels
or functions in a multi-file program and find any one of them quickly.

20.1. Major Modes

EMACS has many different major modes, each of which customizes EMACS for
editing text of a particular sort. The major modes are mutually exclusive, and one
major mode is current at any time. When at top level, EMACS always says in the mode
line which major mode you are in.

When EMACS starts up, it is in what is called Fundamental mode, which means that
the character commands are defined so as to be convenient in general. More
precisely, in Fundamental mode every EMACS option is set in its default state. For
editing any specific type of text, such as Lisp code or English text, ycu should switch
to the appropriate major mode. This tells EMACS to change the meanings of a few
commands to become more specifically adapted to the language being edited. Most
commands remain unchanged; the ones which usually change are Tab, Rubout, and
Linefeed. In additicn, the commands which handie comments use the mode to
determine how commaents are to be delimited.

Selecting a new major mode is done with an M-X command. Each major mode is
the name of the function to se%act that mode. Thus, you can enter Lisp mode by
execuling M-X Lisp (short for M-X Lisp Mode). You can specily which major mede

Editing Programg -~ -, ¢ , %

Command. This should be a TECO expression which takes complete r~sponsibility for
the compilation. It can find t e filename to use in g-register 1. It must use 1\ to exit.
All the other hooks described above are ignored. This is often used when several
input files must be compiled together in order to compile any of them. See the file
AILEMACST;CCL > for an example of doing this for an EMACS library.

20.3. Indentation Commands for Code

Tab Indents current line.
Linefeed Equivalent to Return followed by Tab.
M-+ Joins two lines, leaving one space between if appropriate.
M-\ Deletes alf spaces and tabs around point.
~M-M Moves to the first nonblank character on the line.

Most programming languages have some indentation convention. For Lisp code,
lines are indented according to their nesting in parentheses. For assembier code,
almost all lines start with a single tab, but some have one or more spaces as well.
Indenting TECO code is an art rather than a science, but it is often useful to indent a
line under the previous one.

Whatever the language, to indent a line, use the Tab command. Each major mode
defines this command to perform the sort of indentation appropriate for the particular
language. In Lisp mode, Tab aligns the line according to its depth in parentheses. No
matter where in the line you are when you type Tab, it aligns the line as a whale. In
MIDAS mode, Tab inserts a tab, that being the standard indentation for ass embly
code. In TECO mede, Tab realigns the current line to match a previous line. PL1
mode (See the file INFO;EPL1>.) knows in great detail about the keywords of the
language so as to indent lines according to the nesting structure.

The command Linefeed (*R Indent New Line) does a Return and then does a Tab on
the next line. Thus, Linefeed at the end of the line makes a following blank line and
supplies it with the usual amount of indentation. Linefeed in the middle of a line
breaks the line and supplies the usual indentation in front of the new line.

The inverse of Linefeed is Meta-~ or C-M-~ (*R Delete Indentation). This command
deletes the indentation at the front of the current line, and the line separator as well.
They are replaced by a single space, or by no space if before a *}" or after a "(", or at
the beginning of a line. To delete just the indentation of a line, go to the beginning of
the line and use Meta-\ ("R Delete Horizonta! Space), which deletes all spaces and
tabs around the cursor.

To insert an indented line before the current one, do C-A, C-O, and ther Tab. To
make an indented line after the current one, use C-£ Linefeed.

To move over the indentation on a line, use Meta-M or C-M-M ("R Back to
Indentation). These commands move the cursor forward or back to the first nonblank
character on the line,

~

Editing Programs = - 95

The impleméntation of this *sature uses the TECO flag FS “R PAREN¢. See

section 22.5 [FS Flags], page 121.

20.5. Manipulating Comments

The comment commands insert, kill and align comments. There are also commands
for moving through existing code and inserting comments.

M-; Insert or align comment.

C-; The same.

C-M-: Kill comment.

Return Move past comment terminator and onto new line.
C-X; Set comment column.

M-N Move to Next line and insert comment.

M-P Move to Previous line and insert comment,

M-J Continue a comment on a new line.

M-Linefeed The same.

The command that creates a comment is Meta-; or Control-; ("R Indent for
Comment). [f there is no comment already on the line, a new comment is created,
aligned at a specific column called the comment column. The comment is created by
inserting whatever string EMACS thinks should start comments in the current major
mode. Point is left after the comment-starting string. If the text of the line goes past
the comment column, then the indentation is done to a suitable boundary (usually, a
multiple of 8).

Meta-; can also be used to align an existing comment. If a line already contains the
string that starts comments, then M-; just moves point after it and re-indents it to the
right column. Exception: comments starting in cotumn 0 are not moved.

Even when an existing comment is properly aligned, M-; is still useful for moving
directly to the start of the comment.

8Some languages require an explicit comment terminator, which is not simply the
end of the line. Although the language may then allow comments in the middle of the
ling, the EMACS comment commands assume that a comment is the last thing on the
line. When there is a comment terminator, M-; inserts the terminator as well as the
starter, and leaves point between them, so that you are ready to insert the text of the
comment. When you are done, the Return command given immediately before the
comment terminator acts as if it were at the end of the line already: it moves down to
or creates a following blank line. It does not break the existing line before the
comment terminator as you would expect.

-M-; (“R Kill Comment) kills the comment on the current line, if there is one. The
indentation before the start of the comment is killed as well. If there does not appear
to be a comment in the line, nothing is done.. To reinsert the comment on another ling,
move to the end of that line, do C-Y, and then do M-; to realign it.

Editing Programs - ‘ 97

have any ";" recognized as starting a comment but have new com'nents begin with

",, "

Cy k&,

The string used to end a comment is kept in the variable Comment End, In many
languages no comment end is needed as the comment extends to the end of the line.
Then, this variable is a null string.

If Comment Multi Line is nonzero, then Meta-Linefeed within a comment does not
close the old comment and start a new comment on the new fine. Instead it allows the
original comment to extend through the new line. This is legitimate if the language
has explicit comment terminators. Then it's a matter of taste.

20.6. Lisp Mode and Muddle Mode

Lisp’s simple syntax makes it much easier for an editor to understand; as a result,
EMACS can do more for Lisp, and with less work, than for any other language.

Lisp programs should be edited in Lisp mode. In this mode, Tab is defined to indent
the current line according to the conventions of Lisp programming style. It does not
matter where in the line Tab is used; the effect on the line is the same. The function
which does the work is called ~R Indent for Lisp. Linefeed, as usual, does a Return
and a Tab, so it moves to the next line and indents it.

As in most modes where indentation is likely to vary from line to line, Rubout is

redefined to treat a tab as if it were the equivalent number of space ("R Backward

Deiete Hacking Tabs). This makes it possibie to rub out indentation one position at a
time without worrying whether it is made up of spaces or tabs. Control-Rubout does
the ordinary type of rubbing out which rubs out a whole tab at once.

Paragraphs are defined to start only with blank lines so that the paragraph
commands can be useful. Auto Fill indents the new lines which it creates. Comments
start with ";". If Atom Word mode is in effect, them in Lisp mode the word-motion
commands regard each Lisp atom as one word.

The LEDIT library allows EMACS and Lisp to communicate, telling Lisp the new
definitions of functions which you edit in EMACS. See the file INFO,LEDIT >.

The language Muddle is a variant form of Lisp which shares the concept of using
parentheses (of various sorts) as the main syntactical construct. It can be edited
using Muddle mode, which is almost the same as Lisp mode and provides the same
features, differing only in the syntax table used.

20.6.1. Moving Over and Killing Lists and S-expressions

Move Forward aver s-expression.
Move Backward,
Kill s-expression forward.
ubout Kill s-expression backward,
Move Up and backward in list structure. -
The same.

-M-
-M-
-M-
~M-
-M-
-M-
-M- Move up and forward in list structure.

OOO(\OOO
“""‘CSJ;“(DTI

Editing Programs o ‘ ’ 99

To move down in list struc‘ure, use C-M-D (*R Dovm List). ltis ne rly the same as
searching fora "(".

A somewhat random-sounding command which is nevertheless easy to use is
C-M-T (*R Transpose Sexps), which drags the previous s-expression across the next
one. An argument serves as a repeat count, and a negative argument drags
backwards (thus canceling out the effect of C-M-T with a positive argument). An
argument of zero, rather than doing nothing, transposes the s-expressions at the
point and the mark.

To make the region be the next s-expression in the buffer, use or C-M-@ (*R Mark
Sexp) which sets maik at the same place that C-M-F would move to. C-M-@ takes
arguments like C-M-F. In particular, a negative argument is useful for putting the
mark at the beginning of the previous s-expression.

The commands M-(("*R Insert ()") and M-) ("~R Move Over)") are designed for a
style of editing which keeps parentheses balanced at all times. M-(inserts a pair of
parentheses, either together as in "()", or, if given an argument, around the next
several s-expressions, and leaves point after the open parenthesis. Instead of typing
"(FOO)", you can type M-(FOO, which has the same effect except for leaving the
cursor before the close parenthesis. Then you type M-), which moves past the cloge
parenthesis, deleting any indentation preceding it (in this example there is none), and
indenting with Linefeed after it.

The library LSPUTL contains twa other list commands. Find Pat searches for lists
which contain several strings. R Extract Sublist replaces a list with one of its sublists.
See section 22.2 [Libraries], page 116.

{level>M-X Find Pat¢<mainstring>v<{string1>¢<string2> searches for a list which
contains <mainstring> at a depth of <level> lists down, and contains <string1> and
<string2> at any level. There can be any number of such additional strings to search
for; there can be none of them.

“R Extract Sublist is meant to be connected to a character. Given an argument of
<level>, it replaces the list <level> levels up from point with its sublist which starts after
point.)

The library XLISP contains a functions for making various transformations on Lisp
code:

Lowercase Lisp Buffer changes all the Lisp code in the buffer to lower case, without
changing comments, strings, or slashified characters. Uppercase Lisp Buffer
performs the inverse transformation. Lowercase Lisp Region and Uppercase Lisp
Region are similar but act only between point and mark.

Change / to \ takes Lisp code written with "/" as the character-quote character
and transforms it to use the new character-quote character, "\". The meaning of the
transtormad code in the new syntax is the same as that of the old code in the old
ayntax.

XLISP contains several other commands which transform old constructs into new
ones. They behave like Query Replace in that they display each occurrence of the old
construct and ask you whether to change it to the new one. A Space means yes, a
Rubowt means no. Here is a lisl of these commands, and what each one transforms.

Editing Programs 101

20.7. Lisp Grinding

The best way to keep Lisp code properly indented ("ground") is to use EMACS to
re-indent it when it is changed. EMACS has commands to indent properly either a
single line, a specified number of lines, or all of the lines inside a single s-expression.

Tab In Lisp mode, re-indents line according to parenthesis depth.

Linefeed Equivalent to Return followed by Tab.

M-~ Join two lines, leaving one space between them if
appropriate.

C-M-Q Re-indent all the lines within one list.

C-M-G Grind a list, moving code between lines.

. The basic indentation function is R Indent for Lisp, which gives the current line the
correct indentation as determined from the previous lines’ indentation and
parenthesis structure. This function is normally found on C-M-Tab, but when in Lisp
mode it is placed on Tab as well (Use Meta-Tab or C-Q Tab to insert a tab). If
executed at the beginning of a line, it leaves point after the indentation; when given
inside the text on the line, it leaves point fixed with respect to the characters around it.

When entering a large amount of new code, use Linefeed (*R Indent New Line),
which is equivalent to a Return followed by a Tab. In Lisp mode, a Linefeed creates or
moves down onto a blank line, and then gives it the appropriate indentation.

To join two lines together, use the Meta-~ or Control-Meta-~ command (*R Delete
Indentation), which is approximately the opposite of Linefeed. It deletes any spaces
and tabs at the front of the current line, and then deletes the line separator before the
line. A single space is then inserted, if EMACS thinks that one is needed there.
Spaces are not needed before a close parenthesis, or afler an open parenthesis.

If you are dissatisfied about where Tab indents the second and later fines of an
s-expression, you can override it. If you alier the indentation of one of the lines
yourself, then Tab will indent successive lines of the same list to be underneath it
This is the right thing for functions which Tab indents unaesthetically.

When you wish to re-indent code which has been altered or moved to a different
level in the list structure, you have several commands available. You can re-indent a
specific number of lines by giving the ordinary indent command (Tab, in Lisp mode) an
argument. This indents as many lines as you say and moves to the line following them.
Thus, if you underestimate, you can repeat the process later.

You can re-indent the contents of a single s-expression by positioning point before
the beginning of it and typing Control-Meta-Q (*R Indent Sexp). The ling the
s-expression starts on is not re-indented; thus, only the relative indentation with in the
s-expression, and not its position, is changed. To correct the position as well, type a
Tab before the C-M-Q,

Another way to specify the range to be re-indented is with point and mark. The
command C-M-\ (“R Indent Region) applies Tab to every line whase first character is
between point and mark. In Lisp mode, this does a Licp indent.

A more powerful grind command which can move lext between lines is C-M-G
("1 Format Code). You might or might not fike it. #t knows in different ways about Lisp
code and Macsyima code.

Editing Programs - : 103

Whatever its value, the hoo< is called with two arguments, which cre the position in
the buffer of the most recent unclosed "(" and the buffer position o' the beginning of
the line to be indented. The buffer position of the cursor at the time the tab was typed
is stored as an offset from Z in qZ, so Z-qZ is that buffer position. The hook should
not modify the buffer. If it raturns 0 or no value, the caller will use the horizontal
cursor position of point as the column to indent to. Hence, to indent under the "O" in
PROG, it is sufficient to jump to that character in the buffer and return. Alternatively,
the hook can simply return the desired indentation column number as a value.

The hook should return a nonzero precomma value if following lines of the same
expression should be indented individually. If it does not return a nonzero precomma
value, the caller may remember the indentation of this line and indent following lines
the same way.

If Lisp FOO Indent has a TECO expression as its value, the same interface
conventions apply to it.

Different Lisp-like languages can select an entirely different set of indentation
patterns by changing the value of the variable Lisp Indent Language. Normally the
value of this variable is the string "Lisp". All the variables listed above with names
beginning with "Lisp" actually should have names beginning with the Lisp Indent
Language. Thus, if Lisp Indent Language is changed to "Muddle", then the
indentation commands will look for variables Muddie Indent Offset, Muddle
Indentation Hook, Muddle PROG Indent, etc. ‘

20.8. Editing Assembly-Language Programs

MIDAS mode is designed for editing programs written in the MIDAS assembler.
Major modes for other assemblers, such as PALX, also exist but differ only in the
syntax table and in the name of the major mode hook that they will invoke. (There is
also IBM370 mode, for 370 assembler, which is completely different. Refer to the
self-documentation of the IBM370 library for infarmation on it).

fn MIDAS mode, comments start with ";", and "<" and ">" have the syntax of
parentheses. " in addition, there are five special commands which understand the
syntax of instructions and labels. These commands are;

C-M-N Go to Next label.

C-M-P Go to Previous label.

C-M-A Go to.Accumulator field of instruction.
C-M-E Go to Effective Address field.

C-M-D Kill next word and its Delimiting character.

- Two other commands with slighily different uses are

M-[. Move up to previous biank line.
M-] Move down to next biank line.

Any ling which is not indented and is not just a commerit is taken to contain a label.
The label is everything up 1o the first whitaspace (or the end of the ling). C-M-N
(*R Go to Next Label) and C-M-P ("R Go to Previous Label) hoth position the cursor

B

Editing Programs . ’ 105

PL1 mode is for editing Pl 1 code, and causes Tab to indent an a/cunt based on
the previous statement type. The body of the implementation of PL1 mode is in the
library PL1, which is lcaded automatically when necessary. See the file INFO;EPL1 .

PASCAL mode is similar to PL1 mode, for PASCAL. It is in the library called
PASCAL. See the file INFO;EPASC . ‘

FORTRAN mode is implemented by the FORTRAN library. See the file INFO:
EFORTRAN >, ‘

There are major modes for many other languages, but documentation for them
except that in the libraries themselves. Any volunteers to write some? Meanwhile, you
can look at the documentation in the libraries. See section 22.2 [Libraries], page 116.

The TAGS Package. 107

Chapter Twenty-One
The TAGS Package.

The TAGS package remembers the locations of the function definitions in a file and
enables you to go directly to the definition of any function, without searching the
whole file.

The functions of several files that make up one program can all be remembered
together if you wish; then the TAGS package will automatically select the appropriate
file as well.

21.1. How to Make a Tag Table for a Program

To use the TAGS package, you must create a tag table for the source file or files in
your package. Normally, the tag table does not reside in any of those files, but in a
separate tag table file which contains the names of the text files which it describes.
Tag table files are generated by the :TAGS program. The same program can be used
to update the tag table if it becomes very far out of date (slight inaccuracies do not
matter). Tag tables for INFO files work differently; the INFO file contains its own tag
table, which describes only that file. See section 21.8 [INFO tag tables], page 113, for
how to deal with them.

The normal mode of operation of the :TAGS program is to read in an existing tag
table and update it by rescanning the source files that it describes. The old tag table
file itself tells :.TAGS which source files to process. When making a new tag table you
must start by making a skeleton. Then :TAGS is used to turn the skeleton into an
accurate tag table.

A skeleton tag table is like a real one except that it is empty; there are no tags in it. It
contains exactly this much data, for each source file that it is going to describe:

<filenames>
0,<Vanguage>
1;

The languages that :TAGS understands now are TECO, LISP, MIDAS, FAIL, PALX
MUDDLE, MACSYMA, TJ6, and R. MIDAS will do for MACRC-10 files. Any
incompletely specified filenames will default to > and to the directory on which the tag
table file itself is stored. The "0," must be present, since :TAGS expacts that there will
be a number in that place and will be completely confused if there is not. The CRLF
after each 1_ also must be present. You can omit both the last t_ and its CRLF
together, however.

The TAGS Package. 109

21.3. Jumping to a Tag

To jump to the definition of a function, use the command Meta-Pariod <tag name>
<cr>. You will go straight to the definition of the tag. If the definition is in a different
file then TAGS visits that file. if it is in the same file, TAGS leaves the mark behind and
prints "~@" in the echo area.

You do not need to type the complete name of the function to be found; any
substring will do. But this implies that sometimes you won’t get the function you
intended. When that happens, C-U Meta-Period will find the "next" function
matching what you typed (next, in the order of listing in the tag table). Thus, if you
want to find the definition of X-SET-TYPE-1 and you specify just TYPE-1, you might
find X-READ-TYPE-1 instead. You could then type C-U Meta-Period until you reach
X-SET-TYPE-1.

If you want to make sure you reach a precise function the first time, you should just
include a character of context before and after its name. Thus, in a Lisp program, put
a space before and after the function name. In a MIDAS program, put a linefeed
before it and a colon after,

If Meta-Period is used before M-X Visit Tag Table has been done, it asks for the
name of a tag table file. After you type this name and a <cr>, you type the name of the
tag as usual. If the variable Tag Table Filenames exists, it specifies the defaults for the
filename.

Typing an Altmode as the first character of the argument to Meta-Period allows you
to switch to a new tag table. It prompts for the tag table filenames, then prompts again
for the tag.

21.4. Other Operations on Tag Tables

21.4.1. Adding a New Function to a Tag Table

When you define a new function, its location doesn't go in the tag table
automatically. That's because EMACS can't tell that you have defined a function
uniess you tell it by invoking the function “R Add Tag. Since the operation of adding a
tag to a tag table has proved not to be very necessary, this function no longer placed
on any character, by default. You can invoke with M-X or connect it to a character if
you like. For this section, let's-assume you have placed it on C-X Period.

When you type the command C-X Period, the pointer should be on the line that
introduces the function definition, after the function name and the punctuation that
ends it. Thus, in a Lisp program, you might type "(DEFUN FOO " (note the space after
FOO) and then type the C-X Period. In a MIDAS program, you might give the C-X
Period alter typing "FOO:". Ina TECO program in EMACS format, you might type C-X
Pericd after "1Set New Foo:!".

“R Add Tag modifies only the copy of the 1ag table loaded into EMACS. To modify
the tag table file itself, you must cause it to be saved. M-X Save All Files is the easiest
way to do this.

The TAGS Package. , ‘ 111

M-X Tags Query Replace '2es a Query Replace over all the files in .: tag table. Like
M-X Tags Search, it sets Control-. up to be a command to comtinue the Query
Replace, in case you wish to exit, do some editing, and then resume scanning.

With Tags Find File set nonzero, Tags Search or Tags Query Replace could easily
require more buffers than EMACS has room for. To prevent such a problem, they do
not always put each file in a separate butfer. If Tags Search or Tags Query Replace
wants to search a file which is already visited in some buffer, it uses the copy in that
buffer. But if the file is not present, and Tags Find File is 1, then instead of visiting it in
its own buffer, they visit it in a buffer named *Tags Searchx, So at most one new
buffer is created. If Tags Find File is 2, a new buffer is created for each file.

The library MQREPL enables you to use Next File to repeat a sequence of many
Query Replace commands over a set of files, performing all the replacements on one
file at a time.

21.4.4. Miscellaneous Applications of Tags

M-X List Tags#<file><cr> lists all the tags in the specified file. Actually, all the files
in the tag table whose names contain the string <file> are listed.

M-X Tags Apropos#<pat><cr> lists all known tags whose names contain <{pat>.

M-X Tags File List inserts in the buffer a list of the files known in the visited tag
table.

M-X Tags Rescan runs :TAGS‘ove‘r the visited tag table and revisits it. This is the
maost convenient way to update the tag table.

M-X View Arglisté<tag><cr> lets you look briefly at the line on which a tag is
defined, and at the lines of comments which precede the definition. Thig is a good
way to find out what arguments a function needs. The file is always loaded into a
separate buffer, when this command is used.

M-X What Tag? tells you which function’s definition you are in. It looks through the
tag tabie for the tag which most nearly precedes point. -

21.5. What Constitutes a Tag

In Lisp code, a function definition must start with an "(" at the beginning of a line,
followed immediately with an atom which starts with "DEF" (and does not start with
"DEFP"), or which starts with "MACRO", or which starts with "ENDF". The next atom
on the line is the name of the tag. If there is no second atom on the line, there is no
tag.

In MIDAS code, a tag is any symbol that occurs at the beginning of a line and is
terminated with a colon or an equal sign. MIDAS mode is good for MACRO-10 also.

FAIL caode is like MIDAS code, except that one or two ¥’s or "~"'s are allowed before
atag, spaces are allowed between the tag name and the colon or equal sign, and _ is
recognized as equivident to =.

The TAGS Package. -~ - 113

new tag table.vThen use [TAG! to update the tag table. The dumny will turn into a
real entry. : :

You can delete a source file from a tag table by deleting its entire entry. Since the
counts of the remaining entries are still valid, you need not run :TAGS over the file
again. You can also change the order of the entries without doing any harm. The
order of the entries matters if there are tags which appear in more than one source
file.

You can edit everything else in the tag table too, if you want to. You might want to
change a language name once in a while, but | doubt you will frequently want to add
or remove tags, especially since that would all be undone by the next use of :TAGS!

21.7.How a Tag Is Described in the Tag Table

A tag table file consists of one or more entries in succession. Each entry lists the
tags of one source file, and has the overall format described in the previcus section,
containing zero or more lines describing tags. Here we give the format of each of
those lings.

Starting with the third line of the tag table entry, each line describes a tag. It starts
with a copy of the beginning of the line that the tag is defined on, up through the tag
name and its terminating punctuation. Then there is a rubout, followed by the
character position in decimal of the place in the line where copying stopped. For
example, if a ling in a MIDAS program starts with "FOO:" and the colon is at position
602 in the file, then the line describing it in the tag table would be

FOO:<rubout>603

One line can describe several tags, if they are defined on the same ling; in fact, in
that case, thay must be on the same line in the tag table, since it must contain
everything before the tag name on its definition line. For example,

{Foo:! !Bar:!

in a file of TECO code followed by character number 500 of the file would turn into
}Foo:! I[Bar:!<rubout>500

EMACS will be able to use that line to find either FOO or BAR. :TAGS knows how to

create such things only for TECO files, at the moment. They aren’t necessary in Lisp
or MACSYMA files. In MIDAS files, :TAGS simply ignores all but the first tag on aline.

21.8. Tag Tables for INFO Structured Documentation Files

INFO files are divided up into nodes, which the INFO program must search for. Tag
tables for these files are designed to make the INFO program run faster. Unlike a
normal tag table, the tag table for an INFO file resides in that file and describes only
that file. This is se that INFO, when visiting a file, can automatically use ils tag table if
it has one. INFO uses the tag tables of INFO files itsclf, without going through the
normal TAGS package, which has no liowledge of INFO file tag tables. Thus, INFO

Simple Customization ' : 115

Chapter Twenty-Two

Simple Customization

In this chapter we describe the many simple ways of customizing EMACS without
knowing how to write TECO programs.

One form of customization, reconnection of commands to functions, was discussed
above in the explanation of how M-X commands work. See section 5.2.3
[Reconnecting Commands], page 23.

22.1. Minor Modes

Minor modes are options which you can use or not. For example, Auto Fill mode is a
minor mode in which Spaces break lines between words as you type. All the minor
modes are independent of each other and of the selected major mode. Most minor
niodes say in the mode line when they are on; for example, "Fill" in the mode line
means that Auto Fill mode is on.

Each minor mode is the name of the function that can be used to turn it on or off.
With no argument, the function turns the mode on if it was off and off if it was on. This
is known as toggling. A positive argument always turns the mode on, and an explicit
zero argument or a negative argument always turns it off. All the minor mode
functions are suitable for connecting to single or double character commands if you
want to enter and exit a minor made frequently.

Auto Fill mode allows you to type text endlessly without worrying about the width of

- your screen. Line separators are be inserted where needed to prevent lines from

becoming oo long. See section 11.4 [Filling], page 50.

Auto Save mode protects you against system crashes by periodically saving the file
you are visiting. Whenever you visit a file, auto saving is enabled if Auto Save Default
is nonzero; in addition, M-X Auto Save allows you to turn auto saving on or off in a
given buffer at any time. See section 13.3 [Auto Save], page 63.

Atom Word mode causes the word-moving commands, in Lisp mode, to move over
Lisp atoms instead of words. Some people ke this, and others don't. In any case, the
s-expression motion commands can be used to move over atoms. If you like to use
segmented atom names like FOOBAR-READ-IN-NEXT-INPUT-SQURCE-TO-READ,
then you might prefer not to use Atom Woird mode, so that you can use M-F to move
over just part of the atom, or C-M-F to move over the whole atom, ‘

Overwrite mode causes ordinary printing characters to replace existing text instead

Simple Customization o ' 117

or on request to make their functions available. See section [Catalc 7iie], page 195,
for a list of them.

To load a library, say M-X Load Library4<libname><cr>. The library is found, either
on your own directory or whichever one you specify, or on the EMACS directory, and
loaded in. All the functions in the library are then available for use. Whenever you use
M-X, the function name you specily is looked up in each of the libraries which you
have loaded, more recently loaded libraries first. The first definition found is the one
that is used.

For example, if you load the PICTURE library, you can then use M-X Edit Picture to
run the Edit Picture function which exists in that library.

In addition to making functions accessible to M-X, the library may connect some of
them to command characters. This is done by the library's & Setup function (See the
file INFO,CONV >, node Lib.). If you give Load Library an argument, the setup is not
done.

You can also load a library temporarily, just long enough to use one of the functions
in it. This avoids taking up space permanently with the library. Do this with the
function Run Library, as in M-X Run¢<libname>#4<function name><cr>. The library
<libname> is loaded in, and <function name> executed. Then the library is removed
from the EMACS job. You can load it in again later.

M-X List Loaded Libraries types the names and brief descriptions of all the libraries
loaded, last loaded first. The last one listed is always the EMACS library.

You can get a brief description of all the functions in a library with M-X List
Library¢<libname><cr>, whether the library is loaded or not. This is a good way to
begin to find out what is in a library that has no INFO documentation. Continue by
loading the library and using Help D to inquire further about whichever functions
looked interesting.

The function Kill Libraries can be used to discard libraries loaded with Load Library.
{Libraries used with Run Library are discarded automatically). However, of all the
libraries presently loaded, only the most recently loaded one can be discarded. Kill
Libraries offers to kill each loaded library, most recently loaded first. It keeps killing
libraries until you say to keep one library. Then it returns, because the remaining
libraries cannot be deleted if that library is kept.

Libraries are loaded automatically in the course of executing certain functions. You
will not normally notice this. For example, the TAGS library is automatically loaded in
whenever you use M-. or Visit Tag Table for the first time. This process is known as
autoloading. lItis used ta make the functions in the TAGS library available without the
user's having to know to load the library himself, while not taking up space in
EMACSes of people who aren’t using them. It works by simply calling Load Library on
the library known to be needed. Another kind of autoloading loads a library
temporarily, the way Run Library does. This is done when you use the DIRED
function, for example, since the DIRED library is not needed after the DIRED function
returns. (This does not use Run Library; it uses M.A, which is what Run Library uses).

You can make your own libraries, which you and other people can then use, if you
know how to write TECO code. See the file INFO,CONV >, noda Lib, for more details.

Simple Customization ' 119

If you want to set a variable a -articular way each time you use EM£ CS, you can use
an init file or an EVARS file. 7Tnis is one of the main ways of customizing EMACS for
yourself. An init file is a file of TECO code to be executed when you start EMACS up.
They are very general, but writing one is a black art. You might be able to get an
expert to do it for you, or modity a copy of someone else’s. See the file INFO,CONV >,
node Init, for details. An EVARS file is a much simpler thing which you can do
yourself. See section 22.6 [EVARS files], page 123.

You can also set a variable with the TECO command
<value> M.V <varname>+¢
or
:Is<string>4¢ M.V <varname>+¢
This is useful in init files.

Any variable can be made local to a specific buffer with the TECO command
M.L<variable name>#¢. Thus, if you want the comment column to be column 50 in one
buffer, whereas you usually like 40, then in the one buffer do M.LComment Column+¢
using the minibuffer. Then, you can do 50U¢Comment Column¢ in that buffer and
other buffers will not be affected. This is how local modes lists in files work, M-X List
Redefinitions describes the local variables of the selected buffer in a verbose fashion.

Most local variabies are killed if you change major modes. Their global values come
back. They are therefore called mode Jocals. There are also permanent locals which
are not killed by changing modes; use 2,M.L to create one. Permanent locals are used
by things like Auto Save mode to keep internal information about the buffer, whereas
niode locals are used for customizations intended only for one buffer. See the file
INFO;CONV >, node Variables, for information on how local variables work, and
additional related features.

Local values of variables can be specified by the file being edited. For example, if a
certain file ought to have a 50 column width, it can specify a value of 50 for the
variable Fill Column. Then Fill Column will have the value 50 whenever this file is
edited, by anyone. Editing other files is not affected. See section 22.7 [Locals],
page 127, for how to do this. ‘

22.4. The Syntax Table

All the EMACS commands which parse words or balance parentheses are
controlled by the syntax table. Each ASCH character has a word syntax and a Lisp
syntax., By changing the word syntax, you can control whether a character is
considered a word delimiter or part of a word. By changing the Lisp syntax, you can
control which characters are parentheses, which ores are parts of symbols, which
ones are prefix operators, and which ones are just ignored when parsing
S-EXprassions.

The syntax table is actually a string which is 12845 characters iong. Each group of
5 consecutive characters of the syntax table describe one ASCH character’s syntax;

~ but only the first three of each group are used. To edit the syntax table, use M-X Edit

Simple Customization 121

groups. You can see easily what the syntax of any character is. Ycu are not editing
the table immediately, however. Instead, you are asked for the character whose
syntax you wish to edit. After typing it, you are positioned at that character’s
five-character group. Overwrite mode is on, so you can simply type the desired
syntax entries, which replace the old ones. You can also do arbitrary editing, but be
careful not to change the position of anything in the buffer. When you exit the
recursive editing level, you are asked for another character to position to. An Altmode
at this point exits and makes the changes. A C-] at any time aborts the operation.

Many major modes alter the syntax table. Each such major mode creates its own
syntax table once and reselects the same string whenever the mode is selected, in any
buffer. Thus, all huffers in Text mode at any time use the same syntax table. This is
important because if you ever change the syntax table of one buffer that is in Text
mode, you change them all. It is possible tu give one buffer a local copy with a TECO
program:

MM Make Local Q-Registert..Dé¢W :G..DU..D

The syntax tables belonging to the major modes are not preinitialized in EMACS; they
are created when the major mode is invoked for the first time, by copying the defauit
one and making specific changes. Thus, any other changes you have made in the
default (Fundamental mode) syntax table at the beginning propagate into all modes’
syntax tables unless those modes specifically override them.

After a major mode has created its own syntax table, that table is stored in the
variable <modename> ..D. This makes a different variable for each major mode, since
the mode name is part of the variable name. Further use of the major mode gets the
syntax table from that variable. [f you create the variable yourself before the first use
of the major mode, the value you put there will be used. :

TECO programs and init files can most easily change the syntax table with the
function & Alter ..D (look at its documentation). The syntax table is kept in the
g-register named ..D, which explains that name.

22.5.FS Flags

FS flags are variables defined and implemented by TECO below the level of EMACS.
Some of them are options which control the behavior of parts of TECO such as the
display processor. Some of them control the execution of TECO programs; you are
not likely to want to change these. Others simply report information from inside
TECO. The list of FS flags is fixed when TECO is assembled and each one exists for a
specific purpose.

FS flags are used mostly by the TECO programmer, but some of them are of interest
to the EMACS user doing minor customization. For example, FS ECHO LINES¢ is the
number of lines in the echo area. By setting this flag you can make the echo area
bigger or smalier. Many FS flags usefui for customization are controlled by EMACS
variables; instead of setting the FS flag, you can get the EMACS variable like any
other. Setting the variable automatically sets the FS flag as well. Hereis a list of such

.variables which control flags:

Simple Customization . : ’ 123

22.6. Init Files and EVARS Files

EMACS is designed to be customizable; each user can rearrange things to suit his
taste. Simple customizations are primarily of two types: moving functions from one
character to another, and setting variables which functions refer to so as to direct
their actions. Beyond this, extensions can involve redefining existing functions, or
writing entirely new functions and creating sharable libraries of them.

The most general way to customize is to write an init file, a TECO program which is
executed whenever you start EMACS. The init file is found by looking for a particular
filename, <home directory>;<user name> EMACS. This method is general because
the program can do anything. It can ask you questions and do things, rather than just
setting up commands for later. However, TECO code is arcane, and only a few people
learn how to write it. If you need an init file and don’t feel up to learning to write TECO
code, ask a local expert to do it for you. See the file INFO;CONV >, for more about init
files.

However, simple customizations can be done in a simple way with an EVARS file.
Such a file serves the same sort of purpose as an init file, but instead of TECO code, it
contains just a list of variables and values. Each line of the EVARS file names one
variable or one command character and says how to redefine it. Empty lines, and
lines starting with spaces or tabs, are ignored. They can be used as comments. Your
EVARS file is found by its filename, as an init file is, but it should be called <home
directory>;<user name> EVARS instead of EMACS. You can have both an init file and
an EVARS file if you want, as long as your init file calls the default init fils, since that is
what processes the EVARS file, '

To set a variable, include in the EVARS file a line containing the name of the
variable, a colon, and the value. A numeric value is represented by the number. A
string value is enclosed in double quotes. To include a double quote or a t] character
in the value of the string, precede it with a 1] to quote it. You can also simply give the
string value, with no quotes, as long as it is not ambiguous (does not consist of digits
or start with a double quote}); however, in this case, any spaces following the colon
become part of the value of the variable. They are not ignored. Examples:

Comment Column: 79
Comment Start: ";"
MM Foo:FTFOO¢

The last line defines a variable named MM Foo, which has the effect of defining a
function named Foo with the specified value as its definition.

To redefine a command character is a little more complicated. Instead of the name
of a variable, give a 1R (control-R) followed by the character. Since the general
Control and Meta character cannot be part of a file, ali Control and Meta characters
are represented in a funny way: after the 1R put the residue of the character after
removing the Control and Meta, and before the 1R put periods, one for Control, two for
Meta, and three for Control-Meta. Thus, C-D is represented by “.1RD" and C-M-: is
represented by " 1R, Lower case characters such as C-a are usually defined as
"exgcute the definition of the upper case equivalent”. Therefore, by redefining the
C-A command you also change C-a; but if you redefine C-a, by saying ".tRa" instead
of " ARA", you will not change C-A. So be careful about case.

Simple Customization . 125

22.6.1. EVARS File Exa 19les

Here are some examples of how to do various useful things in an EVARS file.

This causes new buffers to be created in Lisp mode:
Default Major Mode: "LISP"

This causes new buffers to have Auto Fill mode turned on:
Buffer Creation Hook: "IM.L Auto Fi1l Mode4é"

This causes all Text mode buffers to have Auto Fill mode turned on:
Text Mode Hook: "1M.L Auto Fill Mode¢"
This causes C-M-G to be undefined by copying the definition of C-|- (which is
undefined):
...TRG: Q.1*R|
This redefines C-S to be a single character search command, and M-S to be a
non-incremental string search:
.tRS: M.M ~R Character Search#t
..TRS: M.M ~R String Search¢
This redefines C-X V to run View File:
S X(t~V): MM View Fileé
This makes M-M a prefix character and defines M-M W tc mark a word and M-M P

to mark a paragraph. It stores the dispatch vector for the prefix character in the
variable M-M Dispatch.

..TRM: MM Make Prefix Character4z4M-M Dispatch244
Temp: "M-M ¢M-M Dispatch¢

"

Append the line in Temp to Prefix Char List.
*: Q¢Prefix Char Liste[1 Q¢Tempé4[2 :i¢Prefix Char Listé¢r]1t]24
1¢M-M Dispatchd(t~W): M.M ~R Mark Word¢
:0M-M Dispatché(+~P): M.M ~R Mark Paragraph+¢
This icads the library LUNAR and defines C-Q to run a useful function found in that
library:

*: MM Load Library$LUNAR$
.tRQ: M.M ~R Various Quantities¢

This causes Auto Save mode to save under the visited filenames:
Auto Save Visited File: 1
This causes TAGS to bring new files into separate buffers:
TAGS Find File: 1
This prevents the default init file from prinling the message "EMACS version nnn.
Type ... for Help".
Inhibit Help Message: 1

This redefines the list syntax of "%" to be ;" for "comment starter”, and that of ™"
t

to be "A" for "alphabetic™:

Simple Customization _ 127

This causes TAGS to bring 1ew files into separate buffers:
" 1M.VTAGS Find File¢ B

This prevents the default init file from printing the message "EMACS version nnn,
Type ... for Help".

IM.VInhibit Help Messageé

This redefines the list syntax of "%" to be ";" for "comment starter", and that of ";"
to be "A" for "alphabetic":

imm& Alter ..Dé%;;A¢

22.7. Locai Variables in Files

By specifying local modes in a file you can cause certain major or minor modes to
be set, or certain character commands to be defined, whenever you are visiting it. For
example, EMACS can select Lisp mode for that file, set up a special Comment
Column, or put a special command on the character C-M-Comma. Local modes can
specify the major mode, and the values of any set of named variables and command
characters. Local modes apply only while the buffer containing the file is selected,;
they do not extend to other files loaded into other buffers.

The simplest kind of local mode specification sets only the major mode. You put the
mode's name in between a pair of "-x-"’s, anywhere on the first nonblank line of the
file. For example, the first line of this f:le contains -x-Scribe-x-, implying that this file
should be edited in Scribe mode.

To specify more that just the major mode, you must use a focal modes list, which
goes in the last page of the file (it is best to put it on a separate page). The local
modes list starts with a line containing the string "Local Modes:", and ends with a line
containing the string "End:". In between come the variable names and values, just as
in an EVARS file. See section 22.6 [EVARS files], page 123.

The line which starts the local modes list does not have to say just "Local Modes:".
It there is cther text before "l.ocal Modes:", that text is called the prefix, and if there is
other text after, that is called the suffix. If these are present, each entry in the local
modes list should have the prefix before it and the suffix after it. This includes the
"End:" line. The prefix and suffix are included to disguise the local modes list as a
comment so that the compiler or text formatter will not be perplexed by it. If you do
not need to disguise the local modes list as a comment in this way, do not bother with
a prefix or a suffix.

Aside from the "Local Mades:" and the "End:", and the prefix and suffix if any, a
local modes list looks like an EVARS file. Howsver, comments lines are not allowed,
and you cannot redefine C-X subcommands dus to fundamental limitations of the data
structure used to remember local variables. Sorry.

The major mode can be set by specifying a value for the variable "Mode" (don't try
setting the major mode this way except in a local modes list!). It should be the first
thing in the local modes list, if it appears at all. A function M-X Foo can he defined

“ocally by putting in a lucal setting for a variable named "MM Foo”. See section 5.2

[Functions], page 21.

Simple Customization L ’ 129

editor, We decided to chang~ the terminology because, when thinkin * nf EMACS, we
consider TECO a programmi 1g language rather than an editor, The only "macros” in
EMACS now are kevboard macros.

You define a keyboard macro while executing the commands which are the
definition. Put differently, as you are defining a keyboard macre, the definition is
being executed for the first time. This way, you can see what the effects of your
commands are, so that you don’t have to figure them out in your head. When you are
finished, the keyboard macro is defined and also has been, in effect, executed once.
You can then do the whole thing over again by invoking the macro.

22.8.1. Basic Use

To start defining a keyboard macro, type the C-X (command {*R Start Kbd Macro).
From then on, your commands continue to be executed, but also become part of the
definition of the macro. "Def" appears in the mode line to remind you of what is going
on. When you are finished, the C-X') command (*R End Kbd Macro) terminates the
definition (without becoming part of it!).

The macro thus defined can be invoked again with the C-X E command (*R Execute
Kbd Macro), which may be given a repeat count as a numeric argument to execute the
macro many times. C-X) can also be given a repeat count as an argument, in which
case it repeats the macro that many times right after defining it, but defining the macro
counts as the first repetition (since it is executed as you define it). So, giving C-X) an
argument of 2 executes the macro immediately one additional time. An argument of
zero to C-X E or C-X) means repeat the macro indefinitely (until it gets an error).

If you want to perform an operation on egach line, then either you should start by
positioning point on the line above the first one to be processed and then begin the
macro definition with a C-N, or you should start on the proper line and end with a C-N,
Either way, repeating the macro will operate on successive lines.

After you have terminated the definition of a keyboard macro, you can add to the
end of its definition by typing C-U C-X (. This is equivalent to plain C-X { followed by
retyping the whole definition so far. As a consequence it re-executes the macro as
previously defined.

If you wish to save a keyboard macro for longer than until you define the next one,
you must give it a name. If you do M-X Name Kbd Macro$FQO<cr>, the last keyboard
macro defined (the ane which C-X E would invoke) is turned into a function and given
the name FQO, M-X FOO will from then on invoke that particular macro. Name Kbd
Macro also reads a character from the keyboard and redefines that character
command to invoke the macro. You can use a bit prefix character in specifying the
command; ‘you can also type a C-X command to be redefined. When you have
finished typing the command characters, Name Kbd Macro asks you whether it should
go ahead and redefine the character.

To save a keyboard macro permanently, do M-X Write Kbd Macro.” Supply the
function name of the keyboard macro as a string argument, or else it will ask you to
type the character which invokes the keyboard macro. The keyboard macro is saved

- as a library which, when loaded, automatically redefines the keyboard macro. The

The Minibuffer 131

Chap"cer TWenty-Th rée
The Minibuffer

The minibuffer is a facility by means of which EMACS commands can read input
from the terminal, aliowing you to use EMACS commands to edit the input while you
are typing it. Usually it is used to read a TECO program to be executed.

M-Altmode Invokes an empty minibuffer.

M-% Invokes a minibuffer initialized with a Query Replace.
C-X Altmode Re-execute a recent minibuffer command.

C-X~ Add more lines to the minibuffer.

C-\ Meta-prefix for use in the minibuffer.

C-CC-Y Rotate ring of recent minibuffer commands.

The primary use of the minibuffer is for editing and executing simple TECO
programs such as

MM Query Replacet¢F00
¢BAR
¢

(which could not be done with M-X Query Replace because when M-X is used Return
terminates the arguments).

You can always tell when you are in a minibuffer, because the mode line contains
something in parentheses, such as "(Minibuffer)” or "(Query Replace)". There is also
a line of dashes across the screen a few lines from the top. Strictly speaking, the
minibufier is actually the region of screen above the line of dashes, for that is where
you edit the input that the minibuffer is asking you for. Editing has been fimited o a
few lines so that most of the screen can continue to show the file you are visiting.

if you want to type in a TECO command, use the minibuffer with the command
Meta-Altmode, ("R Execute Minibuffer). An empty minibuffer will appear, into which
you should type the TECO command string. Exit with Altmode Alimode, and
remember that neither of the two Altmodes is inserted into your TECO command
although the first one may appear to be. When the TECO command is executed, "the
buffer” will be the text you were editing before you invoked the minibuffer.

Often, a minibuffer starts out with some text in it. This means that you are supposed
to add to that text, or, sometimes, to delete some of it so as to choose among several
alternatives. For example, Meta-% (*“R Query Replace) provides you with a minibuffer
initially containing the string "MM Query Replace¢". The cursor comes at the end.
You are then supposed to add in the arguments to the Query Replace. ‘

i a minibuffer, you can edit your input uniil you are satizfied with it. Then you tell

Correcting Mistakes and EMACS Problems 133

Chapter Twenty-Four

Correcting Mistakes and EMACS
Problems |

If you type an EMACS command you did not intend, the results are often mysterious. .
This chapter tells what you can do to cancel your mistake or recover from a
mysterious situation. EMACS bugs and system crashes are also considered.

24.1. Quitting and Aborting

C-G Quit. Cancel running or partially typed command.

C-] Abort recursive editing level and cancel the command which
invoked it.

M-X Top Level '

Abort all recursive editing levels and subsystems which are
currently executing.

There are three ways of cancelling commands which are not finished executing:
quitting with C-G, and aborting with C-] or M-X Top Level. Quitting is cancelling a
partially typed command or one which is already running. Aborting is cancelling a
command which has entered a recursive editing level or subsystem.

Quitting with C-G is used for getting rid of a partially typed command, or a numeric
argument that you don’t want. It also stops a running command in the middle in a
relatively safe way, so you can use it if you accidentally give a command which takes a
long time. In particular, it is safe to quit out of killing; either your text will a// still be
there, or it will a/l be in the kill ring (or maybe both). Quitting an incremental search
does special things documented under searching; in general, it may take two
successive C-G's to get out of a search. C-G can interrupt EMACS at any time, so it'is
not an ordinary command.

Aborting with C-] (Abort Recursive Edit) is used to get out of a recursive editing
level and cancel the command which invoked it. Quitting with C-G cannot be used for
this, because it is used to cancel a partially typed command within the recursive
editing level. Both operations are useful. For example, if you are editing a message to
be sent, C-G can be used to cancel the commands you use 1o edit the message, and
C-] cancels sending the message. C-] either tells you how to resume the aborted
command or queries for confirmation before aborting.

When you are in a position to use M-X, you can use M-X Top Level. This is

Correcting Mistakes and EMACS Problems ’ 135

24.2.3. Garbage on th e Screen

If the data on the screen looks wrong, it could be due to line noise on input or
output, a bug in the terminal, a bug in EMACS redisplay, or a bug in an EMACS
command. To find out whether there is really anything wrong with your text, the first
thing to do is type C-L. Thisis a command to clear the screen and redisplay it. Often
this will display the text you expected. Think of it as getling an opinion from another
doctor.

24.2.4. Garbage Displayed Persistently

If EMACS persistently displays garbage on the screen, or if it outputs the right things
but scattered around all the wrong places on the screen, it may be that EMACS has
the wrong idea of your terminal type. The first thing o do in this case is to exit from
EMACS and restart it. Each time EMACS is restarted it asks the system what terminal
type you are using. Whenever you detach and move to a terminal of a different type
you should restart EMACS as a matter of course. If you stopped EMACS with the exit
command, or by interrupting it when it was awaiting a command, then this is sure to be
safe.

The system itself may not know what type of terminal you have. You should try
telling the system with the :TCTYP command.

24.2.5. URK Error (Address Space Exhausted)

If attempting to visit a file or load a library causes an "URK" error, it means you have
filled up the address space; there is no room inside EMACS for any more files or
libraries. In this situation EMACS will try to run the function Make Space for you. If
EMACS is unable to do it for you, you may stili be able to do M-X Make Space yourself.
This command compacts the data inside EMACS to free up some space. It also offers
to discard data that may be occupying a lot of space, such as the kill ring (See
section 9.1 [Killing], page 35.), the undo memory (See section 24.3 [Undo], page 136.),
and butfers created by RMAIL, TAGS and INFO. Another way of freeing space is to kill
buffers with M-X Kill Some Buffers (See section 14 [Buffers], page 71.) or unload
libraries with M-X Kill Libraries (See section 22.2 [Libraries], page 118.).

Use the command M-X What Available Space to find out how close you are to
running out of space. 1 tells you how many K of space you have available for
additional files or libraries.

Visiting a file causes an URK error if the file does not fit in the available virtual
memory space, together with the other buffers and the libraries loaded. A big enough
file causes an URK error all by itself. For editing such large files, use the command
Split File (in the SPLIT library) to break it into subfiles. These will be fairly large files
still, but not too large to edit. Afier editing one or more of the subfiles, use the
command Unsplit File (also in SPLIT) to put them back together again.

Correcting Mistakes and EMACS Problems 137

another, but it-doesn’t, becaus: vou can always Undo the Undo it it didn't help. But
youcan avaid even having t¢ Je that, if you look at what type of change Undo says it
will undo.

If you want to undo a considerable amount of editing, not just the last change, the
Undo command can’t help you, but M-X Revert File (See section 13.2 [Revert],
page 63.) might be able to. If you have been writing a journal file (See section 24.4
[Journals], page 137.), you can replay the journal after deleting the part that you don't
want.

24.4. Journal Files

A journal file is a record of all the commands you type during an editing session. If
you lose editing because of a system crash, an EMACS bug, or a mistake on your part,
and you have made a journal file, you can replay the journal or part of it to recover
what you lost. Journal files offer an alternative to auto saving, using less time and disk
space if there is no crash, but requiring more time when you recover from a crash.
See section 13.3 [Auto Save], page 63.

24.4.1. Writing Journal Files

In order to make a journal file, you must load the JOURNAL library and then execute
M-X Start Journal Fileé<filename><cr>. Immediately, most of the current status of
EMACS is recorded in the journal file, and all subsequent commands are recorded as
they are typed. This happens invisibly and silently. The journal file is made fully up to
date on the disk after every 50th character, so the last 50 characters of type in is the
most you can lose.

The default filenames for the journal file are <home directory>;<user name> JRNL.
There is rarely a reason to use any other name, because you only need one journal file
unless you are running two EMACSes at the same time.

24.4.2. Replaying Journal Files

To replay the journal file, get a fresh EMACS, load JOURNAL, and do M-X Replay
Journal File ¢<filename><cr>. The filename can usually be omitted since normally you
will have used the detfaults when creating the journal.

After a delay while the files, buffers and libraries are loaded as they were when the
journal file was written, EMACS will begin replaying the commands in the journal
before your very eyes. Unlike keyboard macros, which execute invisibly until they are
finished, journal files display as they are executed. This allows you to see how far the
replay has gone. You can stop the process at any time by typing C-G. Aside from
that, you should not type anything on the keyboard while the replay is going on.

If the need for a replay is the result of a system crash or EMACS crash, then you
probably want to replay the whole file. This is what happens naturally. W you are
replaying bocause you made a great mistake, you probably want to stop the replay

Correcting Mistakes and EMACS Problems 139

Colons are also used to record the precise effects of certain ccnmands such as
C-V whose actions depend on how the text was displayed on the ccreen. Since the
effects of such commands are not completely determined by the text, replaying the
command could produce different results, especially if done on a terminal with a
different screen size. The extra information recorded in the journal makes it possible
to replay these commands with fidelity.

A semicolon in the journal file begins a comment, placed there for the benefit of a
human looking at the journal. The comment ends at the beginning of the following
line,

24.4.4. Warnings

Proper replaying of a journal file requires that all the surrounding circumstances be .
unchanged.

In particular, replaying begins by visiting all the files that were visited when the
writing of the journal file began; not the latest versions of these files, but the versions
which were the latest at the earlier time. If those versions, which may no longer be the
latest, have been deleted, then replaying is impossible.

If your init file has been changed, the commands when replayed may not do what
they did before.

These are the only things that can interfere with replaying, as long as you start
writing the journal file immediately after starting EMACS. But as an editing session
becomes longer and files are saved, the journal file contains increasing amounts of
waste in the form of commands whose effects are already safe in the newer versions
of the edited files. Replaying the journal will replay all these commands wastefully to
generate files identical to those already saved, before coming to the last part of the
session which provides the reason for replaying. Therefore it becomes very desirable
to start a new journal file. However, many more precautions must be taken to insure
proper replaying of a journal file which is started after EMACS has been used for a
while. These precautions are described here. If you cannot follow them, you must
make a journal checkpoint (see below).

If any buffer contains text which is not saved in a file at the time the journal file is
started, it is impossible to replay the journal correctly. This problem cannot possibly
be overcome. To avoid it, M-X Start Journal File offers to save all buffers before
actually starting the journal.

Another problem comes from the kill ring and the other ways in which EMACS
remembers information from previous commands. If any such information which
originated before starting the journal file is used after starting it, the journal file cannot
be replayed. For example, suppose you fili a paragraph, stari a journal file, and then
do M-X Undo? When the journal is replayed, it will start by doing M-X Undo, but it
won’t know what to undo. Itis up to you not to do anything that would cause such a
problem. It should not be hard. It would be possible to eliminate this problem by
clearing out all such data structures when a journal file is started, if users would prefer
that.

A more difficult problem comes from customization. |f you change an option or

Correcting Mistakes and EM/ CS Problems 141

what it cught to have done. 'f you aren’t familiar with the command, ¢ - don't know for
certain how the command is supposed to work, then it might actuall’. b working right.
Rather than jumping to conclusions, show the problem to someone who knows for
certain.

Finally, a command’s intended definition may not be best for editing with. Thisisa
very important sort of problem, but it is also a matter of judgement. Also, it is easy to
come to such a conclusion out of ignorance of some of the existing features. It'is
probably best not to complain about such a problem until you have checked the
documentation in the usual ways (INFO and Help), feel confident that you understand
it, and know for certain that what you want is not available. If you feel confused about
the documentaticn instead, then you don't have grounds for an opinion about whether
the command’s definition is optimal. Make sure you read it through and check the
index or the menus for all references to subjects you don’t fully understand, If you
have done this diligently and are still confused, or if you finally understand but think
you could have said it better, then you have a constructive complaint to make about
the documentation. It is just as important to report documentation bugs as program
bugs.

24.5.2. How to Report a Bug

When you decide that there is a bug, it is important to report it and to report it in a
way which is useful. What is most useful is an exact description of what commands
you type, starting with a fresh EMACS just loaded, until the problem happens. Send
the bug report to BUG-EMACS@MIT-AL

The most important principle in reporting a bug is to report facts, not hypotheses or
conditions. ltis always easier to report the facts, but people seem to prefer to strain to
think up explanations and report them instead. [f the explanations are based on
guesses about how EMACS is implemented, they will be useless; wa will have to try to
figure out what the facts must have been to lead to such speculations. Sometimes this
is impossible. Butin any case, it is unnecessary work for us.

For example, suppose that you type C-X C-V GLORP;BAZ UGH<cr>, visiting a file
which (you know) happens to be rather large, and EMACS prints out "l feel pretty
today". The best way to report the bug is with a sentence like the preceding one,
because it gives all the facts and nothing but the facts.

Do not assume that the problem is due to the size of the file and say "When 1 visit a
large file, EMACS prints out 'l feel pretty today'". This is what we mean by "guessing
explanations”. The problem is just as likely to be due to the fact that thereis a "Z2" in
the filename. if this is so, then when we got your report, we would try out the problem
with some "big file", probably with no "Z" in its name, and not find anything wrong.
There is no way in the world that we could guess that we should try visiting a file with a
"Z" in its name.

Alternatively, the problem might be due to the fact that the file starts with exactly 25
spaces. For this reason, you should make sure that you don’t change the file until we
have looked at it. Suppose the problem only occurs when you have typed the C-X
C-A cammand previously? This is why we ask you to give the exact sequence of
characters you lyped since loading the EMACS.

Word Abbreviation Input 143

Chapter TWenty-Five
Word Abbreviation Input

Word Abbrev mode allows you to abbreviate text with a single "word", with EMACS
expanding the abbreviation automatically as soon as you have finished the
abbreviation.

Abbrevs are also useful for correcting commonly misspelled or mistyped words
("thier" could expand to "their"), and for uppercasing words like "EMACS" (abbrev
"emacs” could expand to "EMACS").

To use this mode, just do M-X Word Abbrev Mode<cr>, (Another M-X Word Abbrev
Mode<cr> will turn the mode off; it toggles.)

For example, in writing this documentation we could have defined "wam" to be an
abbreviation for "word abbrev mode". After typing just the letters "wam", we see just
that, "wam", but if we then finish the word by typing space or pericd or any other
punctuation, the "wam" is replaced by (and redisplays as) "word abbrev mode". If we
capitalize the abbrev, "Wam", the expansion is capitalized: "Word abbrev mode", i
we capitalize the whole abbrev, WAM", each word in the expansion is capitalized:
"Word Abbrev Mode". In this particular example, though, we would define "wam" to
expand to "Word Abbrev mode" since it is always to be capitalized that way.

Thus, typing "I am in wam now" produces "l am in Word Abbrev mode now".

Word Abbrev mode does not interfere with the use of major modes, such as Text,
Lisp, TECQ, PL1, or minor modes, such as Auto Fill. Those modes (or the user) may
redefine what functions are connected to characters; this does not hamper Word
Abbrev mode.

There are two kinds of word abbreviations: mode and global. A mode word abbrev
applies only in one major mode (for instance only in Text mode), while a global word
abbrev applies regardless of major mode. If some abbrev is defined both as a mode
word abbrev for the current mode and as a glocbal word abbrev, the mode word abbrev
expansion takes precedence.

Forinstance, you might want an abbrev "foo" for "find outer otter” in Text mode, an
abbrev "foo" for "FINAGLE-OPPOSING-OPINIONS" in Lisp, and an abbrev "foo" for
"meta-syntactic variable"” in any other mode (the global word ahbrev).

Word abbrevs can be detined one at a time (adding them as you think of them), or
many at a time (from a definition list). You can save them in a file and read them back
tater. If you turn off Word Abbrev mode, abbrevs stop expanding automatically, but
their definitions are rememberad in case you turn Word Abbrev mode back on.

Word Abbreviation Input g 145

Sometimes you may think yu already had an abbrev for some tert; use it, and see

““that it didn’t expand. In this case, the C-X C-H (*R inverse Add Mc 1e Word Abbrev)

or C-X - (“R Inverse Add Global Word Abbrev) commands are helpful: they ask you to
type in an expansion rather than an abbrev. In addition to defining the abbrev, they
also expand it. If you give them a numeric argument, n, they use the nth word before
point as the abbrev.

You can kill abbrevs (cause them to no longer expand) by gi\/ing a negative numeric
argument to C-X C-A or C-X +. For instance, to kill the global abbrev "foo" type
C-U - C-X + fooler.

25.1.2. Controlling Abbrev Expansion

When an abbrev expands, the capitalization of the expansion is determined by the .
capitalization of the abbrev: If the abbrev is all lowercase, the expansion is as defined.
If the abbrev’s first letter is uppercase, the expansion’s first letter is too. If the abbrev
is all uppercase, there are two possibilities: if the expansion is a single word, it is
all-uppercasad; otherwise, each of its words has its first letter uppercased (such as
for use in a title). (If you don't like this distinction between single-word and
multi-word expansions, set the variable WORDAB All Caps to 1. Then an
all-uppercase abbrev will always result in an all-uppercase expansion.)

Abbrevs normally expand when you type some punctuation character; the abbrev
expands and the punctuation character is inserted. There are other ways of
expanding abbrevs: C-M-Space ("R Abbrev Expand Only) causes the abbrév just
before point to be expanded without inserting any other character. C-M-Space will
expand abbrevs even if Word Abbrev mode is currently off; this can be useful if the
system is slow, and you just want to manually expand a few abbrevs. M-’ (*R Word
Abbrev Prefix Mark) allows you to "glue" an abbrev onto any prefix: suppose you
have the abbrev "comm” for "committee”, and wish to insert "intercommittee "; type
“inter", M-’ (you will now see "inter-"}, and then "comm *; "inter-comm " becomes
"intercommittee ". M-X Expand Word Abbrevs in"Region checks each word in the
region and offers to expand each word abbrev found; for more details see its
self-documentation. (itis similar to the M-X Query Replace command.)

25.1.3. Unexpanding Abbrevs

C-X U {*R Unexpand Last Word) "unexpands" the last abbrev's expansion,
replacing the last expansion with the abbrev that caused it. If any auto-filling was
done because of the expansion (you had Auto Fill mode on), that too is undone. f you
type another C-X U, the first one is "undone" and the abbrev is expanded again. Only
the last expansion can be undone. Sometimes you may find that C-X U unexpands an
abbrev later than the ane you're looking at. In this case, do another C-X U and go
back and manually correct the earlier expansion.

If you know beforehand that a word will expand, and want to prevent it, you can
simply "quote” the punctuation characier with C-Q. For example, typing "comm”, a
C-Q, and then "." gives "comm," without expanding.

Word Abbreviation Input | ¢ ‘ 147

*: 1 MM Word Abbr~v Mode¢
»: MM Read Word A)brev FiledWORDAB DEFNS¢

Save Word Abbrevs:1

Or if you have an init file, use the following Teco code:

1 MM Word Abbrev Modeé
MM Read Word Abbrev File¢WORDAB DEFNS+¢

1ué¢Save Word Abbrevsé

25.2. Advanced Usage

The use of Word Abbrev mode as discussed in the previous section suffices for
most users. However, some users who use Word Abbrev mode a lot or have highly
tailored environments may desire more fiexibility or need more power to handle
extreme situations than the basic commands provide,

25.2.1. Alternatives and Customizations

M-X Make Word Abbrevé4<abbrev> ¢<{expansion>¢<mode><cr>
M-X Kill All Word Abbrevs<cr>
M-X Make These Characters Expand¢<{characters><cr>
M-X Attach Word Abbrev Keybcard Macro
~R Kill Mode Word Abbrev
~R Kill Global Word Abbrev
Only Global Abbrevs
Set this option if you only use globals.
Additional Abbrev Expanders
Variable for adding a few more expanders.

WORDAB Ins Chars
Variable for replacing entire set of expanders.

The basic commands for defining a new mode abbrev, C-X C-A ("R Add Mode
Word Abbrev) and C-X C-H {*R Inverse Add Mode Word Abbrev), work only in the
current mode. A more general command is M-X Make Word Abbrev which takes three
string arguments: the first is the abbrev, the second is the expansion, and the third is
the mode (such as "Text"). This command can also define global abbrevs, by
providing "x" as the mode name.

M-X Kill All Word Abbrevs<cr> is a very quick way of killing every abbrev currently
defined. After this command, no abbrev will expand. {A slower but more careful way
is with M-X Edit Word Abbrevs.)

The functions ~R Kill Mode Word Abbrev and ~R Kill Glohal Word Abbrev exist, but
are not connectad to any commands by default. If you find having to specify negative
arguments to C-X C-A ("R Add Mode Word Abbrev) and C-X + ("R Add Global Word

Word Abbreviation Input 149

argument is actually a TECO s arch string (See section 19.3 [TECO search strings],
page 89.). If you want to see inz abbrevs which contain either <string1> or <{string2>,
separate the strings with a 10, to see abbrev definitions containing either "defn" or
"wab", do M-X List Word Abbrevs¢defntOwab<crd.

You can provide M-X List Word Abbrevs with an argument to control whether the
filtering string applies to just the abbrev (C-U 1), just the expansion (C-U 2), just the
mode (C-U 4), or any combination (the sum). C-U 3 M-X List Word Abbrevs#élisp<cr>
will match "lisp" against abbrevs and expansions, but not modes.

M-X Insert Word Abbrevs¢<string><cr> works similarly, but inserts the list into the
buffer instead of typing it out.

25.2.4. Dumped EMACS Environments

M-X Write Word Abbrev File ¢<filename><cr>

Writes a file of all abbrev definitions, before dumping.
M-X Read Word Abbrev File ¢<filename><cr>

Reads file of abbrev definitions at init-time.
M-X Write Incremental Word Abbrev File ¢<{filename><cr>

Writes a file of abbrev definitions changed since dumping.
M-X Read Incremental Word Abbrev File ¢<filename><cr>

Reads file of changed abbrev definitions at startup-time.

Some users with highly customized EMACS environments (their init files take a long
- time to run) "dump out" their environments, in effect creating another EMACS-like
program (the "dump") which starts up much faster. (For instance, 1.7 cpu seconds
instead of 70.5 cpu seconds. See the file INFO;MKDUMP >, for details about a simple
method of dumping environments. See the file INFO;CONV >, for details about more
general environment dumping.) Since the dumped environment contains word abbrev
definitions, a dumped environment with hundreds of abbrevs can start just as quickly
as if it had none. (But reading all these abbrevs with M-X Read Word Abbrev File in
the init file originally took a long time.) For these users it is important, at dump-startup
time, to read in only those abbrevs which were changed or defined since the
environment was dumped out. A file which contains only these new abbrev's
definitions is called an incremental word abbrev file. (It also can specify that certain
abbrevs are to be killed if they were defined when the environment was dumped out,
but subsequently killed.)

The startup for the dump should use the Read Incremental Word Abbrev File
function instead of Read Word Abbrev File. It takes the filename as a string argument,
which defaults to INCABS >. The command M-X Write Incremental Word Abbrev
File#<filename><{cr> writes such a file, writing out those abbravs more recent than the
dump (ones read by Read Incremental Word Abbrev File and cnes defined in the
current editing session).

Setting Save Word Abbrevs to -1 will cause an incremental abbrev file fo be
automatically written, if necessary, when EMACS is exited.

When you want to dump out a new EMACS, first create a new, complete word'
abbrev definition file using M-X Write Word Abbrev File, This file now has all abbrevs

The PICTURE Subsystem, an E Yiror for Text Pictures 151

Cha‘p‘ter Twenty-Six

The PICTURE Subsystem, an Editor for
Text Pictures

If you want to create a picture made out of text characters (for example, a picture of
the division of a register into fields, as a comment in a program), the PICTURE
package can make it easier.

Do M-X Load Lib¢PICTURE<cr>, and then M-X Edit Picture is available. Do M-X
Edit Picture with point and mark surrounding the picture to be edited. Edit Picture
enters a recursive editing level (which you exit with C-M-C, as usual) in which certain
commands are redefined to make picture editing more convenient.

While you are inside Edit Picture, all the lines of the picture are padded out to the
margin with spaces. This makes two-dimensional motion very convenient; C-B and
C-F move horizontally, and C-N and C-P move vertically without the inaccuracy of a
ragged right margin. When you exut from Edit Picture, spaces at the ends of lines are
removed. Nothing stops you from ‘moving outside the bounds of the p:cture but if you
make any changes there slightly random things may happen.

Edit Picture makes alteration of the picture convenient by redefining the way
printing characters and Rubout work. Printing characters are defined to replace
(overwrite) rather than inserting themselves. Rubout is defined to undo a printing
character: it replaces the previous character with a space, and moves back to it.

Return is defined to move to the beginning of the next line. This makes it usable for
moving to the next apparently blank (but actually filled with nothing but spaces) line,
just as you use Return normally with fines that are really empty. C-O creates new
blank lines after point, but they are created full of spaces.

Tab is redefined to indent (by moving over spaces, not inserting them) to under the
first non-space on the previous line. Lineleed is as usual equivalent to Return
followed by Tab.

Four movement-control commands exist to aid in drawing vertical or horizontal
lines: If you give the command M-X Up Picture Movement, each character you type
thereafter will cause the curser to move up instead of io the right. Thus if you want to
draw a line of dashes up to some point, you can give the command Up Picture
Movement, type enough dashes to make the line, and then give the command Right
Picture Movement to put things back to normal. Similarly, there are functions to cause
downward and leftward movement; Down Picture Movemont and Left Picture
Movement. These commands remain in effact only until you exit the Edit Picture
function, (One final note: you can use these cursor movement commands oulside of

Sorting Functions - - - | ' 153

| Chaptery"ll‘wenty-Seven

Sorting Functions

The SORT library contains functions called Sort Lines, Sort Paragraphs and Sort
Pages, to sort the region alphabetically line by line, paragraph by paragraph or page
by page. For example, Sort Lines rearranges the lines in the region so that they are in
alphabetical order.

Paragraphs are defined in the same way as for the paragraph-motion functions (See
section 11.2 [Paragraphs], page 46.) and pages are defined as for the page motion
commands (See section 18 [Pages], page 83.). All of these functions can be undone
by the Undo command (See section 24.3 [Undo], page 136.). A numeric argument
tells them to sort into reverse alphabetical order.

You can rearrange pages to any way you like using the functions Make Page
Permutation Table and Permute Pages From Table.” Make Page Permutation Table
starts you editing a table containing the first line of each page. This table iskept in a
buffer named xPermutation Tablex. You specify the new ordering for the pages by
rearranging the first lines into the desired order. You can also omit or duplicate pages
by omitting or duplicating the lines.

When you are finished rearranging the lines, use Permute Pages From Table to
rearrange the entire original file the same way. Reselect the original buffer first. The
permuted version is constructed in a buffer named *Permuted Filex. The original
buffer is not changed. You can use Insert Buffer to copy the data into the original
buffer.

Particular Types ¢f Terminals 155

Appéndix I

Particular Types of Terminals

1.1. Ideal Keyboards

An ideal EMACS keyboard can be recognized because it has a Control key and a
Meta key on each side, with another key labeled Top above them,

On an ideal keyboard, to type any character in the 9-bit character set, hold down
Control or Meta as appropriate while typing the key for the rest of the character. To
type C-M-K, type K while holding down Control and Meta.

Yau will notice that there is a key labeled "Escape" and a key labeled "Alt", The
Alimode character is the one labeled "Alt". "Escape" has other functions entirely; it
is handied by ITS and has nothing to do with EMACS, While we are talking about keys
handled by ITS, on Meta keyboards the way to interrupt a program is CALL, rather
than Control-Z, and entering communicate mode uses the RACK-NEXT key rather
than Control-_. CALL echoes as tZ, but if you type C-Z it is just an ordinary character
which happens to be an EMACS command to return to the superior. Similarly,
BACK-NEXT echoes as t_ but if you type t_ it is just an EMACS command which
happens not to be defined.

The key labeled "Top" is an extra shift key. It is used to produce the peculiar
"SAIL" graphics characters which appear on the same keys as the letters. The
"Shift" key gets you upper-case letters, but "Top" gets you the SAIL characters. As
EMACS commands, these characters are normally self-inserting, like all printing
characters. But once inserted, SAIL characters are really the same as ASCH control
characters, and since characters in files are just 7 bits there is no way to tell them
apart. EMACS can display them either as ASCII control characters, using an uparrow
or caret to indicate them, or it can display them as SAIL characters, whichever you
like. The command Control-Alpha (SAIL Character Mode) toggles the choice. Alpha
is a SAIL character and you can only type it on a terminal with a Top key, but only
those terminals can display the SAIL characters anyway. SAIL characters are
displayed if the variable SAIL Character Mode is nonzero.

One other thing you can do with the Top key is type the Help character, which is
Top-H on these keyboards. BACK-NEXT H also works, though.

For inserting an Altmode, on an ideal keyboard you can type C-M-Altmode.
C-Altmode is a synonym for C-M-C (*R Exit). ‘ -

The "bit prefix" characters that you must use on other terminals are also available
on terminals with Mata keys, in case you find them more conveniont or get into habits
on those other terminals,

Particular Types of Terminals 157

including a few that Altmode can’t be used for because the correspnding non-Meta
character isn’'t on the keybcard. Thus, while you can't type C M-; as Altmode
Control-;, since there is no Control-; in ASCIl, you can type C-M-; as C-C ;. The
Control (non-Meta) characters which can’t be typed directly require the use of C-+, as
in C-~ < to get the effect of C-<. Because C-~ by itself is hard to type, the EMACS
command set is arranged so that most of these non-ASCll Contro! characters are not
very important. Usually they have synonyms which are easier to type. In fact, in this
“manual only the easier-to-type forms are usually mentioned.

In order to type the Help character you must actually type two characters, C-_ and
H. C-_is an escape character for ITS itself, and C-_ fcllowed by H causes ITS to give
the Help charapter as input to EMACS.

On ASCII keyboards, you can type a numeric argument by typing an Altmode
foliowed by the minus sign and/or digits. Then comes the command for which the .
argument is intended. For example, type Altmode 5 C-N to move down five lines. If
the command is a Meta command, it must have an Altmode of its own, as in Altmode 5
Altmode F to move forward five words.

Note to customizers: this effect requires redefining the Meta-digit commands, since
the Altmode and the first digit amount to a Meta-digit character. The new definition is
~R Autoarg, and the redefinition is done by the default init file. '

If you use numeric arguments very often, and you dislike having to start one with an
Altmode, you might enjoy using Autoarg mode, in which you can specify a numeric
argument by just typing the digits. See section 4 [Arguments], page 17, for details.

I.4. Upper-case-only Terminals

On terminals lacking the ability to display or enter lower case characters, a special
input and output case-flagging convention has been defined for editing files which
contain lower case characters.

The customary escape convention is that a slash prefixes any upper case letter; all
unprefixed letters are lower case (but see below for the "lower case punctuation
characters”). This convention is chosen because lower case is usually more frequent
in files containing any fower case at all. Upper case letters are displayed with a slash
{("/")in front. Typing a slash followed by a letter is a good way {0 insart an upper case
letter. Typing a letter without a slash inserts a lower case letter. For the most part, the
buffer will appear as if the slashes had simply been inserted (type /A and it inserts an
upper case A, which displays as 7A), but cursor-motion commands will reveal that the
slash and the A are really just one character. Another way to insert an upper-case
letter is to quote it with C-Q.

Note that this escape convention applies only to display of the buffer and insertion
in the buffer. It does not apply to arguments of commands (it is hardly ever useful for _
them, since case is ignored in command names and most commands' arguments).
Case conversion is performed when you type commands into the minibufier, but not
when the commands are actually executed. '

The ASCII character set includes several punctuation characters whose codes fall

Particular Types of Terminals ' 159

1.5.2. SLOWLY Comminds

The commands provided are:

M-O (*R Set Screen Size)
This function reduces the amount of the screen used for
displaying your text, down to a few lines at the top or the bottom. if
called without an argument, it will use the same size as last time
(or 3 it it hasn’t been called before). If given a positive argument,
that is taken to be the number of lines to use at the top of the
screen. If given a negative argument, it is taken to be the number
of lines at the bottom of the screen. If given an argument of 0, it
returns to the use of the entire screen. The section of the screen
that is in use is (defaultly) delimited by a line of 6 dashes. This
command sets the variable Short Display Size.

C-S (*R Slow Display I-Search)
This function is’just like the usual incremental search, except if the
search would run off the screen and cause a redisplay, it narrows
the screen {0 use only a few lines at the top or bottom of the
scieen 1o do the redisplay in. When the search is exited, use of
the full screen resumes. The size of the window used for the
search is the value of the variable Slow Search Lines. If it is
positive, it is the number of lines at top of screen; if negative, it is
the number of lines at bottom of screen. The default is 1. The
variable Slow Search Separator contains the string used to show
the end of the search window. By defauli it is six dashes. See

oo o - section 10 [Search], page 41.

C-R (*R Slow Reverse Dispiay {-Search)
This searches in backwards in the style of ~R Slow Display
I-Search.

C-X Q {(~R Edit Quietly)
This function enters a recursive editing level with redisplay
inhibited. This means that your commands are carried out but the
screen does not change. C-L with no argument redisplays. So
you can update the screen when vou want to. Two C-L’s in a row
clear the screen and redisplay. C-L with an argument repositions
the window, as usual (See section 15 [C-L], page 75.). To exit and
resume continuous redisplay, use C-M-C,

1.5.3. Minibuffers

SLOWLY provides centrol over how minibuffers display on your screen. The
variable Minibufer Size specifies how many lines it takes up. If this is made negative,
the minibuffer will appear at the bottom of the screen instead of the top. Thus one
mode of operation which some people like is to use “R Set Screen Size to set up to not
use the bottom 3 fines of the screen, and set Minibuffer Size to -3. This will
permanently reserve 3 lines at the bottom of the screen for the minibuffer. See
section 23 [Minibuffor], page 131.

~ The variable Minibuffor °>pm ator holds the strmq used to separate the mmlbuffer
' ©area from the rest of the scroen. By default, this is six dashes.

Use of EMACS from Printing Tarminals 161

Appendix Ii
Use of EMACS from Printing Terminals

While EMACS was designed to be used from a display terminal, you can use it
effectively from a printing terminal. You cannot, however, learn EMACS using one.

All EMACS commands have the same editing effect from a printing terminal as they
do from a display. All that is different is how they try to show what they have done.
EMACS attempts to make the same commands that you would use on a display
terminal act like an interactive line-editor. It does not do as good a job as editors
designed originally for that purposs, but it succeeds well enough to keep you informed
of what your commands are accomplishing, provided you know what they are
supposed to do and know how they wouid look on a display.

The usual buffer display convention for EMACS on a printing terminal is that the part
of the current line before the cursor is printed out, with the cursor following (at the
right position in the line). What follows the cursor on the line is not immediately

“visible, but normally you wiil have a printout of the original contents of the line a little

ways back up the paper. For example, if the current line contains the word
"FOOBAR", and the cursor is after the "FOQ", just "FOO" would appear on the
paper, with the cursor following it. Typing the C-F command to move over the "B"
would cause "B" to be printed, so that you would now see "FOOB" with the cursor
following it. All forward-motion commands that move reasonably short distances print
out what they move over,

Backward motion is handled in a complicated way. As you move back, the terminal
backspaces to the correct place. When you stop moving back and do something else,
a linefeed is printed first thing so that the printing done to reflect subsequent
commands does not overwrite the text you moved back over and become garbled by
it. The Rubout command acts like backward motion, but also prints a slash over the
character rubbed out. Other backwards deletion commands act like backward
motion; they do not print slashes (it would be an improvement if they did).

One command is different on a printing terminal: C-L, which normally means "clear
the screen and redisplay”. With no argument, it retypes the entire current line. An
argument tells it to retype the specified number of lines around the current line.

On printing terminals, C-S {*R Incremental Search) does not print out the context
automatically. To see what you have found at any stage, type C-L. This types out the
current line but does not exit the search. Ali the normal facilities of incremental
searching are available for finding something else if you had not found the right place

initially.

Distribution of EMACS 163

Distribution of EMACS

EMACS is available for distribution for use on Tenex and Twenex systems. To get it,
mail me a 2400 foot mag tape with a self-addrassed return mailing envelope. It should
hold both the tape and a manual.

EMACS does not cost anything; instead, you are joining the EMACS
software-sharing commune. The conditions of membership are that you must send .
back any improvements you make to EMACS, including any libraries you write, and
that you must not redistribute the system except exactly as you got it, complete. (You
can also distribute your customizations, separately.)

Please do not attempt to get a copy of EMACS, for yourself or any one else, by
dumping it off of your local system. - It is almost certain to be incomplete or
inconsistent. 1t is pathetic to hear from sites that received incompiete copies lacking
the sources, asking me years later whether sources are available. (All sources are
distributed, and should be on line at every site so that users can read them and copy
code from them). If you wish to give away a copy of EMACS, copy a distribution tape
from MIT, or mail me a tape and get a new one.

EMACS does not run on Bottoms-10; conversion would be painful but possible. Nor
does it run on any computers except the PDP-10. However, there are several other
implementations of EMACS for other systems. There are also several ersatz
EMACSes, which are editors that superficially resemble EMACS but lack the
extensibility which is the essential feature of EMACS. Here is a list of those that run on
systems in general use, and how to obtain them.

- MULTICS EMACS. This true EMACS, written in Lisp, is a Honeywell
product and runs on Multics systems only. Unfortunately, it costs an arm
and a leg. An early version was distributed free 1o Multics sites; perhaps
your Multics site can get this from another one.

- NILE. This true EMACS, written in New Implementation of Liep, will run on
VAXes under VMS and UNIX when it is available, perhaps next summer,
Write to Richard Soley; Lab ftor Computer Science; 545 Tech Square;
Cambridge, MA 02139.

- PRIME EMACS. This true EMACS, containing an implementation of Lisp,
will at some time be available from PRIME itself. Write to Bairy Kingshury,
i0B-7; Prime Computer Company; 500 Old Connecticut Path;
Framingham, MA 01701.

- VAX EMACS. This is a semi-ersalz EMACS, containing a Lisp-like
extension language which currently lacks the data types required for
general programming. It runs under VM3 and UNIX. Write to James

Glossary

Aborting

Altmode

165

‘Glossary

Aborting a recursive editing level (q.v.) means canceling the
command which invoked the recursive editing. For example, if you
abort editing a message to be sent, the message is not sent.
Aborting is done with the command C-]. See section 24.1
[Aborting], page 133.

Altmode is a character, labelled Escape on some keyboards. It is
the bit prefix character (q.v.) used to enter Meta-characters when
the keyboard does not have a Meta (g.v.) key. See section 2
[Characters], page 9. Also, it delimits string arguments to
extended commands. See section 5 [Extended Commands],
page 19.

Balance Parentheses

EMACS can balance parentheses manually or automatically. You
can ask to move from one parenthesis to the matching one. See
section 20.6.1 [Lists], page 97. When you insert a close
parenthesis, EMACS can show the maiching open. See
section 20.4 [Matching], page 94.

Bit Prefix Character

Buffer

C-M-

Comment

Command

A bit prefix character is a command which combines with the next
character typed to make one character, They are used for
effectively typing commands which the keyboard being used is not
able to send. For example, to use a Meta-character when there is
no Meta key on the keyboard, the bit prefix character Altmode
{g.v.) is needed. See section 2 [Characters], page 9.

The buffer is the basic editing unit; one buffer corresponds to one
piece of text being edited. You can have several buffers, but at
any time you are editing only one, the "selected" buffer, though
two can be visible when you are using two windows. See
section 14 [Buffers], page 71.

C is an abbreviation for Control, in the name of a character. See
section 2 [Characters], page 9.

C-M- is an abbreviation for Control-Meta, in the name of a
character. See section 2 [Characters], page 9.

A comment is text in a program which is intended only for humans
reading the program, and is marked specially so that the compiler
will ignore it. EMACS offers special comimands for creating and
killing commeants. See section 20.5 [Comments], page 95.

A command is a character or sequence of characters which, when
typed by the user, fully specifies one action to be porformed by
EMACS. For exampie, "X" and "Control-F" and "Mata-X Text

Glossary

Delete

Deletion

Dispatch Table

Echo Area

Echoing

Error Messages

Escape

Exiting

167

it is s0 naed because most such lists are valls to the Lisp
function d<fitn. See section 20.6.2 [Defuns], page 100.

This is the label used on some keyboards for the Rubout
character.

Deletion means erasing text without saving it. EMACS deletes text
only when it is expected not to be worth saving (all whitespace, or
only one character). The alternative is killing (q. v) See
section 9.1 [Killing], page 35.

The dispatch table is what records the connections (q.v.) from
command characters to functions. Think of a telephone
switchboard connecting incoming lines (commands) to telephones
(functions). A standard EMACS has one set of connections; a
customized EMACS may have different connections. See
section 5.2 [Functions], page 21,

The echo area is the bottom three lines of the screen, used for
echoing the arguments to commands, for asking questions, and
printing brief messages. See section 1 [Screen], page 5.

Echoing is acknowledging the receipt of commands by displaying
them (in the echo area). Most programs other than EMACS echo
all their commands. EMACS never echoes single-character
commands; longer commands echo only if you pause while typing
them.

Error messages are single lines of output printed by EMACS when

.. the user or a TECO program asks for something impossible. They
“appear at the top of the screen and end with a question mark.

Escape is the label used on some keyboards for the Altmode
character.

Exiting EMACS means returning to EMACS's superior, normally
HACTRN. See section 6.4 [Exiting], page 27. Exiting a recursive
editing level (q.v.) means allowing the command which invoked the
recursive editing to complete normally. For example, if you are
editing a message to be sent, and you exit, the message is sent.

Extended Command

Extension

Filling

"~ Function

An extended command is a command which consists of the
character Meta-X followed by the command name (really, the
name of a function (g.v.)). An extended command requires several
characters of input, but its name is made up of English words, so it
is easy to remember. See section 5 [Extended Commands],
page 19.

Extension means making changes to EMACS which go beyond the
bounds of mere customization. lf customization is moving the
furniture around in a room, extension is building new furniture.
See the fils INFO;CONV >,

Filling text means moving text from line to line so that all the lines
are approximately the same length. See section 11.4 [F ;Ilmg]
page 50.

A function is a named subroutine of EMACS. When you type a

Glossary

Major Mode

Mark

Meta

Meta Character

Metizer
Minibuffer

Minor mode

MM—command
Mode line

Narrowing

Node

Numeric Argument

~ Option

Parse

169

commands”, and an individual extanded cowimand is often
referred to as "M-X such-and such". Sese section 5 [M-X],
page 19.

The major modes are a mutually exclusive set of options which
configure EMACS for editing a certain sort of text. Ideally, each
programming language has its own major mode. See section 20.1
[Major Modes], page 91. :

The mark points, invisibly, to a position in the text. Many
commands operate on the text between point and the mark
(known as the region, q.v.). See section 8 [Mark], page 31.

Meta refers to the Meta key. A character’s name includes the word
Meta if the Meta key must be held down in order to type the
character. If there is no Meta key, then the Altmode character is
used as a prefix instead. See section 2 [Characters], page 9.

A Meta character is one whose character code includes the Meta
bit. These characters can be typed only by means of a Meta key or
by means of the metizer command (g.v.).

The metizer is another term for the bit prefix character for the Meta
bit; namely, Altmode (q.v.).

The minibuffer is a facility for editing and then executing a TECO
program. See section 23 [Minibuffer], page 131.

A minor mode is an optional feature of EMACS which can be
switched on or off independently of all other features. Each minor
mode is both the name of an option (g.v.) and the name of an
extended command to set the option. See section 22.1 [Minor
Modes], page 115.

This is an obsolete synonym for "extended command".

The mode line is a line just above the echo area (g.v.), used for
status information. See section 1,1 [Mode Ling], page 6.

Narrowing means limiting editing to only a part of the text in the
buffer. Text outside that part is inaccessible to the user until the
boundaries are widened again, but it is still there, and saving the
file saves it all. See section 17 [Narrowing], page 81.

The node is the urnit of structure of INFO (q.v.) files. When
referring 1o documentation contained only in INFO files, we
sometimes refer to a node of a specific name, in a specific file, as
in "See the file INFO;CONV >, node Hooks".

A numeric argument is a number specified before a command to
change the effect of the command. Often the numeric argument
serves as a repeat count. See section 4 [Numeric Arguments],
page 17.

An option is a variable which exists to he set by the user to change
the behavior of EMACS commands. This is an important method
of customization. See seclion 22.3 [Variables], page 118.

We say that EMACS parses words or expressions in the text hoing

Glossary

Rubout

S-expression

Selecting

171

Rubout is 2 character, sometimes labelled "Delete ' itisused asa
commanc to delete one character of text. It also deletes one
character when an EMACS command is reading an argument.

An s-expression is the basic syntactic unit of Lisp: either a list, or
a symbol containing no parentheses (actually, there are a few
exceptions to the rule, based on the syntax of Lisp). See
section 20.6.1 [Lists], page 97.

Selecting a buffer (q.v.) means making editing commands apply to
that buffer as opposed to any other. At all times one buffer is
selected and editing takes place in that buffer. See section 14
[Buffers], page 71.

Self-documentation

String Argument

Subsystem

Syntax Table

Tailoring

Self-documentation is the feature of EMACS which can tell you
what any command does, or give you a list of all commands
related to a topic you specify. You ask for self-documentation
with the Help character. See section 7 [Help], page 29.

A string argument is an argument which follows the command
name in an extended command. In "M-X Aproposéword<cr>",
"Word" is a string argument to the Apropos command. See
section 5 [Extended Commands], page 19.

A subsystem of EMACS is an EMACS command which, itself,
reads commands and displays the results. Examples are INFO,
which is for perusing documentation; DIRED, which is for editing
directories; RMAIL and BABYL, which are for reading and editing
maii. The word "subsystem" implies that it offers many
independent commands which can be used freely. If an EMACS
function asks specific questions, we do not call it a subsystem.

Usually the subsystem cortinues in operation until a specific
command to exit (usually "Q") is typed. The commands for a
subsystem do not usually resemble ordinary EMACS commands,
since editing text is not their purpose. The Help character should
elicit the subsystem’s documentation. See section 6.1
[Subsystems], page 25.

The syntax table tells EMACS which characters are part of a word,
which characters balance each other like parentheses, etc. See
section 22.4 [Syntax], page 119.

This is a synonym for customization (q.v.).

TECO Search String

Top Level

Twenex

A TECO search string is a sort of pattern used by the TECO search
command, and also by various EMACS commands which use the
TECO search command. See section 19.3 [TECO search strings],
page 88.

Top level is the normal state of EMACS, in which you are editing
the text of the file you have visited. You are at top level whenever
you are hot in a recursive editing level or a subsystem (q.v.).

Twenex is the operating system which DEC likes to call
"TOPRS-20". However, a person should not be forced to call a

Glossary 173

Yanking ‘ This is a syt Hiiym for un-Killing (q.v.).

““R The string "~R" is the beginning of many function names. See
section 5.2 [Functions], page 21.
~R Mode ~R mode is the real time editing mode of TECO. EMACS always

operates in this mode.

Command Summary 175

Coramand Summary

This summary contains brief descriptions with cross references for all commands,
grouped by topic. Within each topic, they are in alphabetical order. Qur version of
alphabetical order places non-control non-meta characters first, then control
characters, then meta characters, then control-meta characters. Control-X and
Meta-X commands come last. Not all Meta-X commands are included.

Prefix Characters

Altmode (°R Prefix Meta)
Altmode is a bit prefix character which turns on the Meta bit in the
next character. Thus, Altmode F is equivalent to the single
character Meta-F, which is useful if your keyboard has no Meta
key. See section 2 [Characters], page 9.

Control-~ (“R Prefix Control)
Control-~ is a bit prefix character which turns on the Control bit in
the following character. Thus, Control-~ < is equivalent to the
single character Control-<. See section 2 [Characters], page 9.

Control-C (R Prefix Control-Meta) '
Control-C is a bit prefix character which turns on the Control bit
and the Meta bit in the following character. Thus, Control-C ; is
equivalent to the single character Control-Meta-:. See section 2
[Characters], page 9.

Control-Q (*R Quoted Insert)
Control-Q inserts the following character. This is a way of
inserting control characters. See section 3 [Basic Editing],
page 13.

Control-U (*R Universal Argument)
Control-U is a prefix for numeric arguments which works the same
on ail terminals. See section 4 [Arguments], page 17.

Control-X
Control-X is a prefix character which begins a two-character
command. Each combination of Control-X and another character
is a "Control-X command”. Individual Ceontrol-X commands
appeatr in this summary according to their uses.

Meta-X (*R Extended Command)
Meta-X is a prefix character which introduces an extended
command name. See section 5 [Meta-X], page 19,

Control-Meta-X ("R Instant Extended Command)

Command Summary ; ’ 177

Control-X Control-N (~R Se* Goal Column) ‘
- : .Control-> Controi-N sets a horizontal goal for ¢h.e Control-N and
Control-P commands. When there is a goal, those commands try
to move to the goal column instead of straight up or down.

Lines

Return (*R CRLF)
Return inserts a line separator, or advances onto a following blank
line. See section 3 [Basic Editing], page 13.

Control-O (*R Open Line, built-in function)
Control-O inserts a line separator, but point stays before it. See
section 3 [Basic Editing], page 13.

Meta-= (R Count Lines Region)
Meta- = prints the number of lines between point and mark. See
section 8 [Mark], page 31.

Control-X Control-O (*R Delete Blank Lines)
Control-X Control-O deletes all but one of the blank lines around
point. If the current line is not blank, all blank lines following it are
deleted. See section 3 [Basic Editing], page 13.

Cantrol-X Control-T (~R Transpose Lines)
Control-X Control-T transposes the contents of two lines. See
section 12 [Fixing Typos], page 57.

Killing and Un-killing

Rubout (R Backward Delete Character, built-in function) .
Rubout deletes the previous character. See section 3 [Basic
Editing], page 13.

Control-Rubout (R Backward Delete Hacking Tabs, built-in function)
Control-Rubout deletes the previous character, but converts a tab
character into several spaces. See section 20.6 {Lisp], page 97.

Control-D (*R Delete Character, built-in function)
Control-D deletes the next character. See section 3 [Basic
Editing], page 13.

Control-K (~R Kill Line)
Control-K kills to the end of the line, or, at the end of a line, kills
the line separator. See section 9.1 [Killing], page 35.

Control-W (“R Kill Region)
Control-W kills the region, the text between point and the mark.
See section 9.1 [Killing], page 35. See section 8 [Region],
page 3t.

Control-Y {*R Un-kill)
' Control-Y reinserts the last saved block of killed text. See
section 9.2 [Un-Killing], page 37.

Command Summary 179

Control-Meta-V (*R Scrall Cit. > Window)
B R T Control-Muta-V scrolls the other window up or down, when you
are in two window mode. See section 16 [Windows], page 77.

M-X View Buffer
M-X View Bufter skips through a buffer by screenfuls. See
section 15 [Display], page 75.

M-X View File
M-X View File lets you move through a file sequentially by
screenfuls forward and back. See section 13.7 [View File],
page €8.

The Mark and the Region

Control-Space (*R Set/Pop Mark)
Control-Space sets the mark or moves to the location of the mark.
See section 8 [Mark], page 31.

Control-< (*R Mark Beginning)
Control-< sets the mark at the beginning of the buffer. See
section 8 [Mark], page 31.

Control-> (*R Mark End)
Control~> sets the mark at the end of the buffer. See section 8
[Mark], page 31.

Control-@ (“R Set/Pop Mark)
Control-@ sets the mark or moves to the location of the mark.
See section 8 [Mark], page 31.

Meta-@ (*R Mark Word)
Meta-@ puts the mark at the end of the next word. Sege
section 11.1 [Words], page 45.

Meta-H (~R Mark Paragraph)
Meta-H puts point at the beginning of the paragraph and the mark
at the end. See section 11.2 [Sentences], page 46.

Control-Meta-@ (*R Mark Sexp)
Control-Meta-@ puts the mark at the end of the next
s-expression. See section 20.6.1 [Lists], page 97.

Control-Meta-H (*R Mark Defun)
Control-Meta-H puts point at the beginning of the current Defun
and the mark at the end. See section 20.6.2 [Defuns], page 100.

Control-X H (*R Mark Whole Buiffer)
Control-X H puts point at the beginning of the buffer and the mark
at the end. Sce section 8 [Mark], page 31.

Caontrol-X Control-P (R Mark Page)
Control-X Control-P puts point at the beginning of the current
page and the mark at the end. See section 18 [Pages], page 83.

Centrol-X Control-X ("R Exchange Point and Mark)

Control-X Control-X sets point where the mark was and the mark
wheore point was. See section 8 [Mark], page 31,

Command Summary . 181

M-X Indent Tabs Mode

. +M-X Indent Tabs Mode turns Indent Tabs mode ¢n or off. When
indent Tabs mode is on, the indentation commands use tab
characters for indentation whenever possible. Otherwise they use
only spaces. See section 22.1 {Minor Modes], page 115.

M-X Tabify
M-X Tabily converts spaces after point to tabs when that can be
done without changing the appearance. See section 11.3
[Indenting Text], page 48.

M-X Untabify

M-X Untabify converts all tabs after point to spaces. A numeric
argument says haw far apart the tab stops are, which is good for
converting files brought from systems with tab stops at intervals
other than 8. See section 11.3 [Indenting Text], page 48.

Words, Sentences and Paragraphs

Meta-A (*R Backward Sentence)
Meta-A moves to the beginning of the sentence. See section 11.2
[Sentences], page 46.

Meta-B (*R Backward Word)
Meta-B moves backward one word. See section 11.1 [Words],
page 45,

Meta-D (~R Kill Word)
Meta-D kills one word forward. See section 11.1 [Words],
page 45.

Meta-E (*R Forward Sentence)
Meta-E moves to the end of the sentence. See section 11.2
[Sentences], page 46.

Meta-F (“R Forward Word)
Meta-F moves forward one word. See section 11.1 [Words],
page 45.

Meta-H (~R Mark Paragraph)
Meta-H puts point at the front of the current paragraph and the
mark at the end. See section 11.2 [Sentences], page 46.

Mata-K (*R Kill Sentence)
Meta-K kills to the end of the sentence. See section 11.2
[Sentences], page 46.

Meta-T (“R Transpose Words)
Meta-T transposes two consecutive words. See section 11.1
[Words], page 45.

Meta-[(“R Backward Paragraph)
Meta-| moves to the beginning of the paragraph. See section 11.2
[Sentences], page 46.

“Meta-] (*R Forward Paragraph)

Command Summary , ' 183

Control-] (Abort Recursive Fdit) ,

SR Control-] eborts a recursive editing level; that is 1o say, exits it
without allowing the command which invoked it to finish. See
section 24.1 [Quitting], page 133.

Control-Meta-C (*R Exit, built~in function)
Control-Meta-C exits from a recursive editing level and allows the
command which invoked the recursive editing level to finish, At
top level, it exits from EMACS to its superior job. See section 6.4
[Exiting], page 27.

Control-X Control-C (*R Return to Superior)
Control-X Control-C returns from EMACS to its superior job, even
if EMACS is currently inside a recursive editing level. In that case,
re-entering EMACS will find it still within the recursive editing
level. See section 6.4 [Exiting], page 27.

M-X Compile
M-X Compile recompiles the file you are visiting, in a manner that
depends on the major mode. See section 20.2 [Compile], page 92.
M-X Top Level
M-X Top Level returns to the top level EMACS command loop or to
TECO. See section 24.1 [Quitting], page 133.
M-X Undo
M-X Undo retracts the last undoable change to the buffer. See
section 24.2 [Lossage], page 134,
Pages

Control-XL (R Count Lines Page)
Control-X L prints the number of lines on the current page, and
how many come before point and how many come after. See
section 18 [Pages], page 83.

Control-X P (*R Narrow Bounds to Page)
Control-X P narrows the virtual boundaries to the current page.
See section 17 [Narrowing], page 81.

Control-X[(*R Previous Page)
Control-X [moves backward to the previous page boundary. See
section 18 [Pages], page 83.

Control-X] (*R Next Page)
Control-X] moves forward to the next page boundary. See
section 18 [Pages], page 83.

Control-X Control-P (*R Mark Page)
Control-X Control-P puts point at the beginning and the marl at
the end of the current page. See section 18 [Pages], page 83.

M-X View Pags Directory (in PAGE)
M-X View Page Directory prints a directory of the pages of the file.
See section 18,1 [PAGE], page 84.

Command Summary 185

ControI—Meta-K {*R Kill Sexp)
e ~Control-M2ta-K kills. the following s-exptession. See
section 20.6.1 [Lists], page 97.

Control-Meta-N (*R Next List)
Control-Meta-N moves forward over one list, ignoring atoms
before the first open parenthesis. See section 20.6.1 [Lists],
page 97.

Control-Meta-P (R Previous List)
Control-Meta-P moves backward over one list, ignoring atoms
reached before the first close parenthesis. See section 20.6.1
[Lists], page 97.

Control-Meta-Q (~R Indent Sexp) .
Control-Meta-Q adjusts the indentation of each of the lines in the
following s-expression, but not the current line. See section 20.3
[Indenting], page 93.

Control-Meta-T (*R Transpose Sexps)
Control-Meta-T transposes two consecutive s-expressions. See
section 20.6.1 [Lists], page 97.

Control-Meta-U (*R Backward Up List)
Control-Meta-U moves backward up one level of list structure.
See section 20.6.1 [Lists], page 97.

Files

Meta-. ("R Find Tag)
Meta-. moves to the definition of a specific function, switching files
if necessary. See section 21 [TAGS], page 107.

Meta-~ (“R Buffer Not Modified)
Meta-~ clears the flag which says that the buffer contains
changes that have not been saved. See section 13.1 [Visiting],
page 61.

Control-X Control-F (Find File)

Control-X Control-F visits a file in its own buffer. See section 14
[Buffers], page 71.

Control-X Control-Q (*R Set File Read Only)
Control-X Control-Q makes the visited fie read only, or no longer
read only. See section 13.1 [Visiting], page 61.

Control-X Control-S (*R Save File)
Control-X Control-S saves the visited file. See section 13.1
[Visiting], page 61.

Control-X Control-V (*R Visit Fife)
Control-X Control-V visits a file. See section 13.1 [Visiting],
page 61.

Control-X Control-W (Write File) _
SRR Control-X Control-W saves the file, asking for names to save it
under. Bee section 13.7 [Advanced File Commands), page €8.

Command Summary 187

M-X Clean Directory

‘ M-X Clean Directory deletes all but the most racent versions of
every file in a directory. See section 13.5 [Cleaning Directories],
page 66.

M-X Compare Directories
M-X Compare Directaries compare two directories with the same
name on different machines. See section 13.8 [Compare
Directories], page 69.

M-X List Directories
M-X List Directories list the names of all disk directories. See
section 13.4 [Directories], page 65.

M-X List Files '
M-X List Files prints a very brief listing of a directory, listing only
the filenames, several files per line. See section 13.4 [Directories], -
page 65.

M-X Reap File

M-X Reap File deletes all but the most recent versions of a file.
See section 13.5 [Cleaning Directories], page 68.

M-X View Directory
M-X View Directory prints a file directory. See section 13.4
[Directories], page 65.

Buffers

Control-X Control-B (List Buffers)
' Control-X Control-B prints a list of all buffers, their major modes
and the files they are visiting. See section 14 [Buffers], page 71.

Control-X A (*R Append to Buffer)
Control-X A adds the text of region info another buffer. See
section 9.3 [Copying], page 39.

Control-X B (Select Buffer)
Control-X B is the command for switching to another buffer. See
section 14 [Buffers], page 71.

Control-X K (Kill Buffer)
Control-X K kills a buffer. See section 14 [Buffers], page 71.

M-X Insart Buffer .
M-X Insert Bufler inserts the contents of another buffer into the
existing text of this buffer. See section 14 [Buffers], page 71.

M-X Kill Some Buffers
M-X Kill Some Buffers offers to kill each buffer. See section 14
[Buffers], page 71.

M-X Make Space
M-X Make Space tries to free up space inside EMACS for more
libraries or buffers. See section 24.2.5 [Storage Exhausted],
page 135,

Command Summary . 189

Control-X Control-L (*R Lovercase Region)
: :Control-; Control-L converts the text of the region to lower case.
See section 11.5 [Case], page 51.

Control-X Control-U {~R Uppercase Region)
Control-X Control-U converts the text of the region to upper case.
See section 11.5 [Case], page 51.

Minor Corrections

Meta-# (*R Change Font Region)
Meta-# inserts a font-change command good for certain text
justifiers around a word. See section 11.6 [Fonts], page 52.

Meta-$ (*R Correct Word Spelling)
Meta-$ (Dollar sign, not Altmode) passes the word before point to
the SPELL program. If it is not a correct spelling, you have the
option of replacing it with a corrected spelling. See section 12
[Fixing Typos], page 57.

Meta-' (*R Upcase Digit)
Meta-' converts a digit before point on the same or previous line to
a punctuation character, assuming that you failed to type the shift
key and thus typed the digit by mistake. See section 12 [Fixing
Typos], page 57.

Meta-_ (*R Underline Word)
Meta-_ inserts underlining commands good for certain text
justifiers around a word. See section 11.7 [Underlining], page 53.
Control-X # (*R Change Font Region)
Control-X # inserts font change commands goaod for certain text
justifiers around the region. See section 11.6 [Fonts], page 52.
Control-X _ (*R Underline Region) o
Control-X _ inserts underlining commands good for certain text
justifiers around the region. See section 11.7 [Underlining],
page 53.

Windows

Control-Meta-V (*R Scroll Other Window)
Control-Meta-V scrolls the other window up or down. See
section 15 [Display], page 75.

Control-X 1 {*R One Window)
Control-X 1 returns to one-window mode. See section 16
[Windows], page 77.

Control-X 2 (*R Two Windows)

Control-X 2 splits the screen into two windows. See saction 16
[Windows], page 77.

Command Summary 11

M-X List Va iables lists the names and values of z Il variables, or of
those whose names contain a specified string. :See section 22.3
[Variables|, page 118.

M-X List Redefinitions
M-X List Redefinitions describes all the ways which the major
mode and local modes of the selected buffer modify the standard
EMACS. See section 20.1 [Major Modes], page 91.

M-X What Page
M-X What Page prints the page and line number of point. See
section 18 [Pages], page 83.

Keyboard Macros

Control-X ((“R Start Kbd Macro)
Control-X (begins defining a keyboard macro. See section 22.8
[KBDMAC], page 128.

Control-X) (*R End Kbd Macro)
Control-X) terminates the definition of a keyboard macro. See
section 22.8 [KBDMAC], page 128.

Control-XE (*R Call Last Kbd Macro)
Control-X E executes the most recently defined keyboard macro.
See section 22.8 [KBDMAC], page 128.

Conirol-X Q (R Kbd Macro Query)
Control-X Q in a keyboard macro can ask the user whether to
continue or allow him to do some editing before continuing with
the keyboard macro. See section 22.8 [KBDMAC], page 128.

M-X Name Kbd Macro
M-X Name Kbd Macro gives a permanent name to the last
keyboard macro defined. See section 22.8 [KBDMAC], page 128.

M-X View Kbd Macro
M-X View Kbd Macro prints the definition of a keyboard macro.
See section 22.8 [KBDMAC], page 128.

Libraries

M-X Kill Libraries
M-X Kill Libraries discards one or more libraries from core. See
section 22,2 [Libraries), page 116.

M-X List Library
M-X List Library describes briefly all the functionsin a library. See
section 22.2 [Libraries], page 116,

M-X Load Library
M-X Load Library loads one library, permanently. See section 22.9
[Libraries], page 116,

Command Summary 193

M-X View Mail ,
M-X View Mail displays your own or another user's mail file using
View File. See section 6.2 [Mail], page 26.

Minibuffer

Control-% (*R Replace String)
Control-% invokes a minibuffer containing a call to Replace String.
You fill in the arguments. See section 19 [Replace], page 87. .

Meta-Altmode (*R Execute Minibuffer)
Meta-Altmode invokes an empty minibuffer which you can fill in
with a TECO program to be executed. See section 23 [Minibuffer],
page 131. ’ ’

Meta-% (“R Query Replace)
Meta-% invokes a minibuffer containing a call to Query Replace.
You fill in the arguments. See section 19 [Replace], page 87.

Control-X Altmode (*R Re-execute Minibuffer)
Control-X Altmode re-executes a TECO program previously
executed in the minibuffer. It can also re-execute an extended
command. See section 23 [Minibuffer], page 131. :

Catalog of Libraries

195

Catalog of Libraries

Libraries Used Explicitly

These are libraries which you must load with M-X Load Library4<iibname><cr> to
use. If no cross-reference is given, the only documentation for the library is the
self-documentation contained in it. Use M-X List Library$<libname><crd to print a
brief description of each function in the library. For more detailed information, lcad
the library and use M-X Describe on individual functions.

ABSTR
BABYL
BACKQ
BSHACK
BUGHUNT

CACHE
CHESS
CLU
COLUMNS

COMPLT
DELIM
DOCLSP

DOCIX
DOCOND

DOCTOR
DRAW

contains commands for making documentation files; wall charts,
and abslracts of libraries. See the file INFO;CONV >.

is a subsystem for reading, sending and editing mail. See the file
INFO;BABYL >.

provides a feature for Maclisp, similar to automatic display of
matching parentheses: when you insert a comma or atsign, the

cursor moves momentarily to the backquate which dominates it.

has functions for operating on lines containing overprinting.
contains commands for putting your name into each comment you
edit. Thisis to record who changed what.

implements a cache for speeding up EMACS subroutine calls.
implements commands for editing pictures of chess boards.
implements CLU mode. See the file INFO;ECLU >.

implements commands for converting single-column text into
double-column text and vice versa.

provides completion for buffer names and variable names.

implements commands for moving over balanced groupings of
various kinds of parentheses. There are a pair of commands for
square brackets, a pair for angle brackets, etc.

prints documentation from the MacLisp manual on a specified Lisp
function.

constructs indexes of Lisp manual files for DOCLSP.

is a macro processor and conditionalizer for text files, useful for
maintaining muRiple versions of documents with one source.

contains DOCTOR mode, a psychiatrist,

offers functions for editing picturecs made of characters. These
parlinlly duplicate the facililies of the PICTURE library, but contain
othor distinet foutures.

Catalog of Libraries 197

OUTLINE
PAGE

PASCAL
PERSONAL
PHRASE
PICTURE

PURIFY

QSEND

RENUM
RMAIL

RUNOFF

SAIL

SCHEME
SCRLIN

SLOWLY
SORT
SPLIT

TDEBUG

TIME
TMACS
VT100

VT52

XLiSP

implementis Dutline Mode, for editing outlines.

defines ccramands for viewing only one page of the file at a time.
See section 18.1 [PAGE], page 84.

implements PASCAL mode. See the file INFO;EPASC >.
has functions for keeping notes on your current projects.
has commands for moving over and killing phrases of text.

contains Edit Picture, the command for editing text pictures. See
section 26 [PICTURE], page 151.

generates libraries from EMACS source files, and contains other
functions useful for editing the source files. See the file INFO;
CONV >,)

sends a message to another logged-in user, like :QSEND.
renumbers figures, equations, theorems or chapters.

is for reading, editing and sending mail. See the file INFO;
RMAIL >.

is for text-justified documents divided into separate source files. It
rejustifies the files which have changed, then runs :@ to print only
the pages which have changed.

implements SAIL mode,
implements SCHEME mode.

contains alternative definitions of C-N and C-P which move by
screen lines instead of by real fines.

redefines commands and options to suit slow terminals.
implements the sorting commands.

contains the commands Split File and Unsplit File for breaking up
large files into subfiles small enough to be edited. See
section 24.2 [Split], page 134.

is a debugger for TECO programs. It displays the buffer in one
window and the program in the other, while stepping by lines or
setting breakpoints. See the file INFO;TDEBUG >.

causes the current time of day to be displayed in the mode line.
contains miscelianeous useful functions

defines the arrow keys and numetic keypad of the VT-100 terminal
to move the cursor and supply numeric arguments.

defines the numeric keypad of the VT-52 terminal to supply
numeric arguments.,

contains functions for global stylistic transformations of Lisp code.
See section 20.6 [Lisp], page 7.

Index of Variables 199
Index of Variables

An option is a variable whose value Edit Options offers for editing. A hook variable
is a variable which is normaily not defined, but which you can define if you wish for
customization. Most hook variables require TECO programs as their values.

The default value of the variable is given in parentheses after its name. If no value is
given, the default value is zero. If the word "nonexistent” appears, then the variable .
does not exist unless you create it.

Abort Resumption Message
This is the message to be printed by C-1 to tell you how to resume
the aborted command. If this variable is zero, there is no way to
resume, so C-] asks for confirmation. See section 24.1 [Quitting],
page 133.

Additional Abbrev Expanders (nonexistent)
if this variable exists when Word Abbrev mode is turned on, itis a
string of .characters which should terminate and expand an
abbrev, in addition to the punctuation characters which normally
do so. See also WORDARB ins Chars.

After Compilation Hook (nonexistent)
If this variable exists and is nonzero, then it is executed as a TECO
expression by the function Compile, after compilation itself is
finished. Exception: If the variable Compile Comriand is also
nonzero, it overrides this hook. See section 20.2 [Compile],
page 92.

Atom Word Mode The minor mode Atom Word mode is on if this variable is nonzero.
See section 22.1 [Minor Modes], page 115.

Auto Directory Display
If this is nonzero, certain file operations automatically display the
file directory. See section 13.4 [Directories}], page 65.

Auto Fill Mode The minor mode Auto Fill mode is on if this variable is nonzero,
See section 11.4 [Filling], page 50.

Auta Push Point Notification
The value of this variable is the string printed in the echo area by
some commands to notify you that the mark has heen set to the
old location of point. See saction 10 [Search], page 41.

Auto Push Point Option (500)
Searches set the mark if they move at least this many characters.
See section 10 [Search], page 41.

Auto Save All Bulfers .
If this is nonzero, auto save saves all bulfers that are modified, not
just the selected buffer. See section 13.3 [Auto Save], paye 63,

Index of Variables , ’ 201

Case Replace (1) When Cnse Replace is nonzero, Replace Sting and Query
. - ~Replace attempt to preserve case when they replace. See
section 19 [Replace], page 87.

Case Search (1) - If Case Search is nonzero, searches of all sorts allow upper case
letters and lower case letters to match each other. It controls the
TECO flag FS BOTH CASE¢. See section 10 [Search], page 41.

Collapse in Comparison (nonexistent)
If this variable exists and is not zero, it should be a string of
characters for M-X Compare Windows to regard as insignificant.
See section 16 [Windows], page 77.

Comment Begin This is the string used to start new comments. If it is zero, the
value of Comment Start is used. See section 20.5 [Comments],
page 95.

Comment Column This is the column at which comments are aligned. See
section 20.5 [Comments], page 95.

Comment End This is the string which is used to end comments. It is often empty
for languages in which comments end at the end of the line. See
section 20.5 [Comments], page 95.

Comment Multi Line {nonexistent)
If this variable exists and is nonzero, then when Auto Fill mode
breaks a comment line, it does not insert a new comment starter
on the new line. This is for use with languages that have explicit
comment terminators, if you want single multi-line comments
instead of single-line comments on consecutive lines. See
section 20.5 [Comments], page 95.

Comment Rounding (/8+1x%8)
This is the TECO program used to decide what column to start a
comment in when the text of the line goes past the comment
column. The argument to the program is the column at which text
ends. See section 20.5 [Comments], page 95.

Comment Start This is the string used for recognizing existing comments, and for
starting new ones if Comment Begin is zero. If Comment Start is
zerp, semicolon is used. See section 20.5 [Comiments], page 95.

Compile Command (nonexistent)
if this variable exists and is nonzero, its value should be a TECO
program to be used by the M-X Compile command to compile the
file. See section 20.2 [Compile], page 92.

Compiler Filename (nonexistent)
If this variable exists and is nonzero, its value should be the name
of the compiler to use, suitable for a colon command. By default,
the name of the major mode is used as the name of the compiler.
See section 20.2 [Compile], page 92.

Cempiler Switches (nonexistent)
If this variable exists and is nonzero, its value is used as switches
for compilation. See section 20.2 [Compile], page 92.

Cursor Centering Point (40)
: This specifies how far from the top of the screen point ought to

Index of Variables 203

instead of « t the top of the screen. It controls the TECO flag FS
ECHO ERF.ORS4. See section 24.2 [Lossage], pe.ge 134.

Exit Hook (nonexistent)
If this variable exists and is nonzero, its value is a TECO program
to be executed whenever EMACS is exited, instead of the normal
action of doing an auto save. The subroutine & Exit EMACS is
responsible for executing it. See section 6.4 [Exiting], page 27.

Exit to Superior Hook {nonexistent)
If this variable exists and is nonzero, its value is a TECO program
to be executed whenever EMACS is about to return to its superior
job, in addition to all normal actions.

Fill Column (70) The value of Fill Column is the width used for filling text. It
controls the TECO flag FS ADLINE#4. See section 11.4 [Filling],
page 50.

Fill Extra Space List ()
The characters in this string are the ones which ought to be
followed by two spaces when text is filled. See section 11.4
[Filling], page 50.

Fill Prefix The value of this variable is the prefix expected on every line of
text before filling and placed at the front of every line after filling. It
is usually empty, for filling nonindented text. See section 11.4
[Filling], page 50.

Indent Tabs Mode (-1)
If Indent Tabs Mode is nonzero, then tab characters are used by
the indent commands. Otherwise, only spaces are used. See
section 11.3 [Indenting Text], page 48.

<libname> Setup Hook (nonexistent)
If this variable exists and is nonzero, its value should be a TECO
program to be executed when the library {libnama> is loaded. The
library's & Setup function is responsible for doing this. If the
library has no & Setup function, it will not handle a setup hook
either. See section 22.2 [Libraries), page 116.

<libname> Kill Hook (nonexistent)
Some libraries may execute the value of this variable, if it exists
and is nonzero, when the library is being removed from core with
Kill Libraries. This is done by the library's & Kill function; if the
library has no & Kill <libname> Library function, it will not handle a
kill hook. See section 22.2 [Libraries], page 116.

Lisp <function> Indent
This variable controls the indentation within calls to the function
<function>. Actually, the variable used is not always Lisp
<function> Indent, but rather <language> <function)> Indent, where
<language?> is the value of Lisp Indent Language. See section 20.3
[indenting], page 93.

Lisp Indent DEFanything (1)
The value of this variable controls indentation within calls to
functions whose names start with "def"”. Actually, the variable
usad is not always Lisp Indent DizFanything, but rather danguaged

index of Variables 205

PAGE Flush CRLF If this var able exists and is nonzero, the PAC': iibrary expects
every page to start with a blank line, which is nct considered part
of the contents of the page. See section 18.1 [PAGE] page 84,

Paragraph Delimiter (.+tO11tO 10’)
This is the TECO search string used to recognize beginnings of
paragraphs. See section 11.2 [Sentences] page 46.

Permit Unmatched Paren (-1)
Controls whether the bell is run if you insert an unmatched close
parenthesis. See section 20.4 [Matching], page 94.

Prefix Char List This variable’s value is a string which lists all the prefix characters
defined, so that self-documentation facilities can find any
subcommands of prefix characters which call a given function.
See the file INFO;CONV >, node Prefix.

Quote Execute Command (nonexistent)
If this variable exists and is zero, then M-X does not quote 1]
characters which appear in the string arguments of the command.
See section 5.2 [Extended Commands], page 21.

Read Line Delay This is the amount of time, in 30'ths of a second, which EMACS
should wait after starting to read a line of input, before it prompts
and starts echoing the input.

Readable Word Abbrev Files (nonexistent)
if this variable exists and is nonzero, word abbrev files will be
written in the format that M-X List Word Abbrevs uses, instead of
in a less readabie but faster loading format. See section 25.1.6
[Saving Abbrevs], page 146.

Region Query Size (5000)
' Many commands which act on the region require confirmation if
the region contains more than this many characters. See
section 8 [Mark], page 31.

Return from Superior Hook (nonexistent)
If this variable exists and is nonzero, its value should be a TECO
program to be executed whenever EMACS is resumed after being
exited. See section 6.4 [Exiting], page 27.

SAIlL Character Mode
If this is nonzero, characters in the buffer with ASCH codes 0
through 37 are displayed without conversion. Do not try to use
this feature except on terminals specially equipped to handie it
The variable controls the TECO flag FS SAIL¢4. See section I.1
[ldeal Keyboards], page 155.

Save Word Abbrevs (nonexistent)
If this variable exists, its value determines which abbrevs will be
saved upon exit from EMACS when abbrevs have been modified,
Setting it to 1 causes all abbrevs to be saved. See section 25.1.6
[Saving Abbrevs], page 146. Setting it to -1 causes just the
incremental abbrevs to be saved. See seclion 25.2.4 [Dumped
Environments], page 149. .

Search Exit Char (27)

Index of Variables) ’ 207

Underline End (nonexistent)

e If this var gble exists, its value should be the cha: aster or string to
use to end underlines for the M-_ command. See section 11.7
[Underlining], page 53.

Visit File Hook {(nonexistent)
If this variable exists and is nonzero, its value should be a TECO
program to be executed whenever a file is visited. See
section 13.1 [Visiting], page 61.

Visit File Save Old (1)
This variable controls whether visiting a file offers to save the file
previously visited in the same buffer, if it has changes. See
section 13.1 [Visiting], page 61.

WORDAB All Caps (nonexistent)
If this variable exists and is nonzero, expanding an all-upper-case
abbrev to a multi-word expansion will cause the words in the
expansion to be all-upper-case, instead of just having their first
letters uppercased. See section 25.1.2 [Controlling Expansion],
page 145.

YORDAB Ins Chars {(nonexistent)
If this variable exists when Word Abbrev Mode is turned on, it
should be a string containing precisely those characters which
should terminate and expand an abbrev. This variable overrides
Additional = Abbrev Expanders (q.v.). See section 25.2.1
[Customizing WORDAB], page 147,

EMACS Command Chart (as »f 4/06/81) ' 209

~Non-Control Non-Meta (Characters:

Backspace ~R Backward Character

Tab ~“R Indent According to Mode
Linefeed ~R Indent New Line

Return ~R CRLF

Altmode “R Prefix Meta

Rubout ~R Backward Delete Character

Control Characters:

Alpha ~R Complement SAIL Mode

Altmode ~R Exit
Space ~R Set/Pop Mark
% .o “R Replace String

e ~R Negative Argument

thru 9 ~R Argument Digit
~“R Indent for Comment
~R Mark Beginning
What Cursor Position
“R Mark End
~“R Set/Pop Mark
~“R Beginning of Line
~R Backward Character
~R Prefix Control-Meta
~R Delete Character
~R End of Line
“R Forward Character
~R Quit
~R Backward Character
~R Indent According to Mode
“R Indent New Line
~R Ki1l Line
~R New Window
“R Self Insert for Formatting Character
“R Down Real Line
“R Open Line
~R Up Real Line
~R Quoted Insert
~R Reverse Search
“R Incremental Search
~R Transpose Characters
~“R Universal Argument,
~R Next Screen
“R KiTl Region
ts a prefix character. See below,
~R Un-kill
“R Raeturn to Superior
"R Frafix Heta
Abort Recursive Cdit

.. “R Prefix Control
Rubout "R Backward Delete Hacking Tabs

Lo 2 |

>L_J/N-<><E(C—-i(n:uO'UOZZr-KC.;HIm*anOUJJ:@V A .-

EMACS Command Chart {as of 4+/06/81) 211

Meta Characfers:

Linefeed ~R Indent New Comment Line

Return ~R Back to Indentation
Altmode ~R Execute Minibuffer
.. "R Change Font Word

% . ~R Query Replace

$.. "R Correct Word Spelling
’ .. “R Upcase Digit

(. ~R Make ()

) .. ~R Move Over)

- “R Negative Argument

. ~R Find Tag

/ .. ~R Describe

0 thru 9 ~R Arqument Digit

~R Indent for Comment
~R Goto Beginning

~R Count Lines Region
“R Goto End

~R Describe

~R Mark Word

~R Backward Sentence
~R Backward Word

~R Uppercase Initial
R Kill Word

~R Forward Sentence

~R Forward Word

“R Fi11 Region

~R Mark Paragraph

“R Tab to Tab Stop

~R Indent New Comment Line
~R Ki11 Sentence

“R Lowercase Word

~R Back to Indentation
~R Down Comment Line
~R Up Comment Line

~R Fi11 Paragraph

*R Move to Screen Edge
~R Center Line

~R Transpose Words

~R Uppercase Word

~R Previous Screen

~R Copy Region

“R Extended Command

“R Un-kill Pop

~R Backward Paragraph
~R Delete Horizontal Space
~R Forward Paragraph
“R Delete Tndentation
_ .. ~R Undertine Word

~ - ~“R Buffer Not Modified
Rubout ~R Backward Ki1l Word

A -

2L ST K X E SO W ODO D2 R@MIOTMOO T II® 0V

EMACS Command Chart (as 0i 4/06/81)

Control-Meta

Backspace ~R

Tab ~R
Linefeed “R
Return ~R
~R

~R

. “R
thru 9 ~R
~R

A_R

~R

~R

~R

~R

~R

~R

“R

~R

“R

~R

~R

~R

~R

~R

~R

~R

~R

~R

~R

~R

~R

~R

~R

~R

~R

~R

.. ~R
Rubout ~R

Lo e

P AT E CC A WO VO EEXRXRGLWHIOMMOOmD@ 0 --

Characters:

Mark Defun

Indent for Lisp
Indent New Comment Line
Back to Indentation
Backward Up List
Forward Up List
Negative Argument
Argument Digit

Ki1l Comment
Documentation

Mark Sexp

Beginning of Defun
Backward Sexp

Exit

Down List

End of Defun
Forward Sexp

Format Code

Mark Defun

Indent for Lisp
Indent New Comment Line
Kill Sexp-

Back to Indentation
Forward List

Sptit Line

Backward List
Indent Sexp
Reposition Window
Transpose Sexps
Backward Up List
Scroll Other Window
Append Next Kill
Instant Extended Command
Beginning of Defun
Indent Region

End of Defun

Delete Indentation
Backward Kill Sexp

213

EMACS Command Chart {as of 4/06/81) ’ 215

Control-X is an escape prefix command with these sub. ommands:

~X ~B List Buffers

~X ~C ~R Return to Superior

~X ~D ~R Directory Display

X ~F Find File

~X Tab ~R Indent Rigidly

~X ~L ~R Lowercase Region

~X ~N ~R Set Goal Column

~X ~0 ~R Delete Blank Lines

~X ~P ~R Mark Page

~X ~Q ~R Set File Read-Only

~X ~S ~R Save File

~X T ~R Transpose Lines

~X ~U ~“R Uppercase Region
X~V ~R Visit File

~X W Write File

~X ~X ~R Exchange Point and Mark
~X Altmode ~R Re-execute Minibuffer
~X # ~R Change Font Region

~X ~R Start Kbd Macro

~X . ~“R Set Fil11l Prefix

~X 1 ~R One Window ‘

~X 2 ~R Two Windows

~X 3 “R View Two Windows

~X 4 ~R Visit in Other Window

~X ~R Set Comment Column

X = What Cursor Position
~X A “R Append to Buffer
~X B Select Buffer

~XD ~R Dired

~X F ~R Set Fi11 Column
X G ~R Get Q-reg

~X H ~R Mark Whole Buffer
~X I ~R Info

~X K Ki11 Buffer

~X L “R Count lLines Page
~X M Send Mail

~X N ~R Narrow Bounds to Region
~X 0 ~R Other Window

~X P ~“R Narrow Bounds to Page
~X R Read Mail

XT ~“R Transpose Regions
X W ~“R Widen Bounds

~X X ~R Put Q-reg

X[~R Previous Page

X] ~R Next Page

o S "R Grow Window

~X “R Underline Region
~X Rubcut ~R Backward Kill Sentence

index

| 13,87
% 59

& (in function names} 23
& Alter .D 121

& Exit EMACS 28

& Mail Message 26

Permutation Table (buffer) 153
Permuted File (buffer) 153
Tags Search (buffer) 111
TAGS (buffer) 108, 110

-MORE-- 7
. 87
< 10

@Begin 54
@End 54

Abbrev definition files 146, 149
Abbrev definition lists 143, 148, 148
Abbrevs 143

Abort Recursive Edit 118, 133
Aborting 133

Accumulator 103

Additional Abbrev Expanders 148
Address 103

Altmode 10, 11, 12, 20, 87, 88, 120, 130, 131

Append io File 30, 68
Apropos 29

Argument 144, 149

ASCHt 9, 11

Atom Word mode 6, 46, 115
Auto Directory Display 65
Auto Fill 67

Auto Fill mode 6, 48, 50, 96, 115, 116, 127

Auto Push Point Notification 33
Auto Push Point Qption 33
Auto Save All Buifers 65

Auto Save Default 63, 115

Auto Save Filenames 64

Auto Save Inlerval 65

Auto Save Max 65

Index

Auto Save mode 6, 63, 115
Auto Save Visited File 64
Autoarg mode 18, 157
Autoloading 117

Backspace 11,12

BARE library 23

Bit prefix characters 156
Blank lines 15, 36, 47, 86, 97
BOLIO 52

Bottom Display Margin 75
Buffers 7,71,78, 108, 111, 127
Buggestion 55

Bugs 140

Built-in functions 23

Cc- 9

C-. 110

C-; 95

C< 32

C-> 32

c@ 31

C-A 14,47,93
C-B 14,89

C-C 10,132
C-CC-Y 132

C-D 14,20,35
C-E 14,47,93
C-F 14

C-G 20, 27,42, 61, 132, 133, 137
C-K 14, 35,47
C-L 14,75, 130, 161
C-M-{ 98

CM) 98

C-M-; 95

CM-@ 32,99
G-M-A 100, 103
C-M-B 54,98
C-M-C 27,66,118
C-M-D 54,98, 103
C-M-E 54, 100, 103
C-M-F 54,08
C-M-G 54,101, 104
C-M-H 32, 54,100
C-M-K 35,54,98
C-M-L 83

CMM 48,083
CM-N 54,083,103

217

Index

Continuation line 13

Control 9, 11,138

Control characters, display of 12
Control characters, inserting 13
Control-Meta 98

Copy File 69

Correct Spelling 59

Count Matching Lines ' 88
Crashes 63

Create File 62

CRLF 12,13

Cursor 5, 13

Cursor Centering Point 75
Customization 11, 23, 102, 123, 127, 147

Default Major Mode 71
Default Separator 160
Define Word Abbrevs 148
Defining abbrevs 144, 146
Defuns 32, 100

Delete File 69

Delete Matching Lines 88
Delete Non-Matching Lines 68, 88
Deletion 13, 35, 57, 88, 136
Describe 29, 118 -

Digit Shift Table 58
Directory 66, 68, 69
Directory Lister 65

DIRED &6, 117

.-.Disasters B3

Display Matching Paren 94
Display Mode Line inverse 7
Display Overprinting 12
Dissociated Press 55
Documentation 30

Dollar Sign 12

Down Picture Movement 151
Drastic Changes 63
Dumped environments 149

Echoarea 5, 20, 51, 83, 144
Echo Area Height 5

Edit Indented Text 48

Edit key 156

Edit Options 26, 118

Edit Picture 27, 151

Edit Syntax Table 120

Edit Tab Stops 45, 43

Edit Word Abbrevs 146

Editor Type 6

End of Buffer Display Margin 75
Environments 53

Error handler 5

Error message 5

Error Messages in Echo Area 134
Escape key 155

EVARS 116, 123, 127

EVARGS fileg 146, 147

Exit Hook 28

219

Exit to Superior Hook 28

Exiting 27

Exiting EMACS 146, 149

Expand Word Abbrevs in Region 145
Expander characters 148
Expanding abbrevs 145

Extended commands 19

FAIL 103

File dates 63

File deletion 66

File directory 65

File Versions Kept 66

Files '7,14,'61,63, 68, 79,127
Fill Column 50, 115, 118

Fill Prefix 47, 51

Filling 50 -

Find File 72, 108

Find Pat 99

FLUSHED 7

Fonts 52

Formatting 48, 101

Formfeed 83

FSFlags 49,75, 85, 104, 121, 142, 158
Functions 11, 19, 23

Global abbrevs 143, 147, 148
Grinding 101

Help 10, 29,138
Home Directory 123, 137
Hooks 150

lgnoriginal 55

Incremental abbrev definition files 149
Indent Tabs Mode 49, 116
Indentation 48, 63, 95, 101
initfile 157

Initfiles 123, 1486, 147
insert Buffer 153

Insert File 68

Insert Page Directory 85
Insert Word Abbrevs 148
Insertion 13, 68, 83

Instant Command Prompt 21
INTER 97

Join pages 85
Journal files 137
Justification 50

Keyboard macros 6, 128

Kill All Word Abbrevs 147, 148
Kill Buffer 73

Kill Libraries 117, 135

Killring 37, 135

Kill Some Buffers 73, 135

Killing '35, 37, 46, 47, 57,08, 136
Killing abbrevs 145, 146, 147, 148

Index

MQREPL 111
Muddle mode 97

Name Kbd Macro 129

Narrowing 51, 81, 83, 87

Next File 110

Next Screen Context Lines 76

Numeric argument 144, 149

Numeric arguments 17, 21, 22, 36, 33, 46, 48, 50,
51, 52, 53, 83, 65, 75, 77, 78, 87, 96, 101,
115, 118, 132, 156, 157

Only Global Abbrevs 148
Options 118

Cutragedy 55
Overprinting 12
Overwrite mode 6, 115

PAGE 84

Page Delimiter 47, 84

PAGE Flush CRLF 85

Pages 32, 47, 83, 84, 153
Paragraph Delimiter 47, 104
Paragraphs 32, 46, 50, 54, 97, 103, 153
Parentheses 45, 94,120
Permit Unmaiched Paren 84
Permute Pages From Table 153
Pictures 151

Point 5, 13

Prefix characters 10, 124, 127

Prepend to File 39,68

Preventing abbrev expansion 145
Printing characters 13 '
Printing terminal 161

Prompting 5, 20

PURIFY library 104

Q-registers 39

Query Replace 59, 87, 130, 131
Quit 137

Quilting 42, 133

Quote Execute Command 22
Quoting 13, 148

R 52,563

Read Command Prompt 20

Read Incremental Word Abbrev File 149

Read Mail 26

Read Word Abbrev File 146, 149

Read-Only Visiting 62

Readable Word Abbrev Files 146

Reap File 686

Recursive editing level 6, 26, 66, 73, 120, 133,
138, 146

Redetining abbrevs 144 ,

Redafining commands 123, 127

Region 31, 37, 47, 52, 53, 69, 81, 83, 100, 101,
144, 153

Region Query Size 52

221

Rename Buffer 72

Rename File 69

Replace String 87

Replacement 87, 88

Replay Journal File 137

Restarting 136

Return 10, 11, 13,61

Return from Superior Hook 28

Return, stray 12

Revert File 63, 64

Right Picture Movement 151

RMAIL 6,25

Rubout 10, 11, 13, 14, 20, 35, 57, 87, 91, 97, 115,
130

Run Library 117

S-expressions 97, 120

SAIL Character Mode 116, 165
SAIL characters 155

Save Ali Files 72

Save Word Abbrevs 146, 149
Saving 61,63

Saving abbrevs 146

Screen 5,75

SCRIBE' 53

Scrofling 75,76, 77

Search Exit Char 42

Search Exit Option 42
Searching 41, 85, 87

Select Buffer 71

Send Mail 268"

Sentences 46, 57

Set Key 23, 147

Set Variable 118

Set Visited Filename 62, 69
Short Display Size 159

Slow Search Lines 159

Slow Search Separator 160
SLOWLY Maximum Speed 160
Sort Lines 153

Sort Pages 153

Sort Paragraphs 153

Sorting 153

Space 10, 11, 20, 50, 59, 87, 130
Space Indent Flag 48 o
Speli Program 59

SPLIT 135°

Split File 135

Split pages 85

SRCCOM 63,68

Start Journal File 137

Siring arguments 21, 22,65, 118
String Search 42

Submode 8

Subroutines 23

Subsystem 6

Syntax table 45, 46, 94, 97, 100, 119

Tab 11, 45,48, ¢1, 93, 97, 101

Index

*R Copy Region 37

tR Correct Ward Spelling 59

1R Count Lines Page 84
tRCRLF 13

tR Delete Blank Lines 15, 36

+R Delete Character 35

1R Delete Horizontal Space 36, 48,93
1R Delete Indentation 36, 48, 93, 101
1R Directory Display 65

1R DIRED 68

tR Down Comment Line 96

1R Down Environment 54

1R Down List 98

1R Down Real Line 14

1R Edit Quietly 159

1R End Kbd Macro 129

1R End of Defun 100

tR End of Environment 54

+R End of Line 14

tR Exchange Point and Mark 31
1R Execute Kbd Macro 129

1R Execute Minibuffer 131

R Exit 27, 118

1R Extract Sublist 99

1R Fill Paragraph 50

1R Fill Region 50

1R Format Code 101

tR Forward Character 14

1R Forward Environment 54

1R Forward List 98

+R Forward Paragraph 47, 103
1R Forward Sentence 47

+R Forward Sexp 98

R Forward TECO Conditional 104
1R Forward Up List 98

+R Forward Word 45

+tR Get Q-1eg 39

*R Go to AC Field 103

+R Go to Address Field 103

R Go to Next Label 103

*R Go to Previous Label 103

tR Goto Reginning 14

1R Goto End 14

*R Goto Next Page 85

1R Goto Page 84

tR Goto Previous Page 85

1R Grow Window 78, 132

tR Irncremental Search 41, 85
1R Indent for Comment 95

tR Indent for Lisp 97, 101

1R Indent Nested 104

1R Indent New Comment Line 86
1R Indent New Line 48, 91, 93, 101
1R Indent Region 48, 101

1R Indent Rigidly 48

TR indent Sexp 101

1R Insert (} 99

1R Insért Pagemark 85

1R Instant Extended Command 21

223

1R Inverse Add Global Word fibbrev 144, 147,

148

tR Inverse Add Mode Word Abbrev 144, 147

+R Join Next Page 85

1R Kbd Macro Query 130

tR Kill Comment 95

1R Kill Global Word Abhrev 147
tRKill Line 35

1R Kill Mode Word Abbrev 147
1R Kill Region 35

1R Kill Sentence 35, 47

1R Kill Sexp 35, 98

1R Kill Terminated Word 103
1R Kill Word 35, 46

1R Lowercase Region 52

*R Lowercaze Word 51, 58

1R Mark Beginning 32

+R Mark Defun 32, 100

+R Mark End 32

1R Mark Environment 54

+R Mark Page 32,83

+R Mark Paragraph 32, 47

+R Mark Sexp 32, 99

R Mark Whole Buffer 32

*R Mark Word 32, 46

tR Move Over) 98

tR Move to Screen Edge 76
+R Narrow Bounds to Page 81,83
tR Narrow Bounds to Region &1
1R New Windaw 14, 75, 161
1R Next Page 83

1R Next Screen 76

tR One Window 77

+R Open Line 15,17

+R Other Window 77

1R PAGE Widen Bounds 85
1R Prefix Control 10

+R Prefix Control-Meta 10

1R Prefix Meta 10

R Previous Page 83

tR Previous Screen 76

TR PutQ-reg 39

*R Query Replace 88, 131

1R Quoted Insert 13

1R Re-execute Minibuffer 21, 88, 132
tR Repositicn Window 76

tR Return to Superior 27

1R Reverse Search 41,85

*R Save File 14,61, 72

1R Scroll Other Window " 77

tR Set Comment Column 96
1R Set File Read-Only 62

tR Set Fill Column 50, 115

1R Set Fill Prefix 51

tR Set Screen Size 169

tR Set/Pop Mark 31

1R Slow Display I-Search 159
IR Slow Reverse Display Lsearch 159
1R Start Khd Macro 129

