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1. Introduction

That we see the world as well as we do is something of a miracle. What seems
so direct and effortless turns out, on close consideration, to involve many rapid and
complex processes the details of which we are only beginning to glimpse. In a series of
papers Marr and his collaborators have outlined a general strategy for approaching
some of these problems (Marr, 1976, 1977; Marr and Nishihara, 1978b; Marr and
Poggio, 1976; Ullman, 1979). Two useful introductions are the general account by
Marr and Nishihara (1978a) and a sympathetic review in Nature by Sutherland (1979).
Other papers by Marr and his coworkers have made detailed suggestions about the
computations the brain carries out in special cases (Marr and Poggio, 1976; Marr 1977;
Ullman, 1979). In particular a recent paper by Marr and Poggio (1977, 1979) has
proposed an algorithm for human stereopsis which has been successfully implemented in
a computer program (Grimson and Marr, 1979). Computational theories of this kind
based on old and new results of information theory can establish what needs to be
computed and how, while psychophysical experiments can tell us, for instance, the
precision of the computation. Additional constraints are determined by the biophysics
of nerve cells and their recorded physiological properties as well as by the anatomical
and physiological diagrams of the circuitry.

In this chapter we shall deal only with the very early stages in the main visual
pathway, specifically the retina, the lateral geniculate nucleus (LGN) and the striate
cortex (also called area 17 or V1). The visual system is attractive not only because it
can be supplied with a well-controlled and detailed input (unlike the cerebellum) but
also because it has a fairly simple and direct path from the sensory receptors to the
cortex (unlike the auditory system). Moreover a large amount of detailed experimental
work has been done on it, using a variety of methods, including such different
approaches as neurophysiology, neuroanatomy and psychophysics.

To our regret we are not yet able to make detailed and explicit suggestions as to
what all the neurons in this region are doing. Instead we shall try to explain the
general way in which we are approaching these problems from a computational point of
view. In particular we shall apply it to the phenomenon of hyperacuity since, as Barlow
(1979) has pointed out, this raises special problems, both static and dynamic.

2. Acuity and Hyperacuity

- The main experiments (which we summarize here only very briefly) have been
carried out on human beings, especially in recent years, by Westheimer and his
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collaborators (Westheimer, 1976, 1977; Westheimer and McKee, 1975, 1977a, b, 1978).
If two points of light lie side by side they can be seen to be double. If they are put
closer together they may appear to us as a single point. It is found that, with practice,
an angular separation of about 1’ of arc can be distinguished with 75% success (see for
instance Westheimer, 1977). This is the classical test for two-point acuity. (See
Figure 1(a).)

Much closer angular intervals can be detected in special situations. A typical
example of this is the acuity found in reading a vernier. The objects used need not be
straight lines. A pattern of three points also gives good results (see Figure 1b), the task
being to say whether the middle point lies to the right or to the left of the imaginary
line connecting the outer two points (Beck and Schwartz, 1978). In such tasks 75%
success can be obtained, with practice, using an angular misalignment of only 2" to 5”
of arc. That is, of a few seconds of arc rather than the minute of arc found for
two-point acuity. Acuity of this type is often called hyperacuity, though ‘positional
accuracy’ might be a better name. To achieve it the three points should not be too far
apart — a few minutes of arc separation gives the best performance.

What is at the root of this large difference between hyperacuity and simple
two-point acuity? For such high resolution the points must be adjacent but they must
not overlap. This has been clearly pointed out by Westheim_er and McKee (1977a).

Hyperacuity, that is positional accuracy, is found in a variety of situations. In
particular the acuity observed in stereopsis is hyperacuity (Westheimer and McKee,
1978). This and other data (possibly Julesz, 1971, figs. 3.6.1 — 3.6.3) show that
hyperacuity can be binocular. For this reason it is likely to be implemented no earlier
in the visual pathway than the striate cortex, since this is the first place where the
inputs from the two separate eyes interact strongly. The image need not be prolonged
in time. A flash of 1.5 msec. is quite adequate and in fact the different parts of the
pattern need not be flashed simultaneously provided they are not separated in time by
more than 20 msec. (Westheimer and McKee, 1977a). Furthermore, the random line
- stereogram of Julesz (1971, Figure 3.6.1) would seem to imply that vernier acuity is not
restricted to forced choice tests. '

Most remarkable of all; as Barlow (1979) has emphasized in a recent note,
performance in a hyperacuity task is not appreciably degraded even if the target is
moving at rates up to 2° to 4° per second (Westheimer and McKee, 1975). This is not
due to eye movements. Westheimer has used the technique of presenting the signal for
only 200 msec., with the direction of motion randomized. This is too short a time for
eye movements to be initiated correctly.
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The astonishing nature of this performance (which even without practice is fairly
striking) can be seen when the properties of the retina are considered. The spacing of
the receptors, the cones, even in the fovea where they are closest, is about 25”. In
addition the optical spread of the system has a half-width of about 30”. The spacing of
the retinal ganglion cells, which connect the eye to the brain, is no finer. How then
can we achieve such a high performance with such a blunt optical instrument?

Figure 1. (a) Pattern configuration for two-point acuity tests, (b) One of several patterns
yielding hyperacuity. Lateral displacements of the middle point to the right or to the left of
the imaginary lines connecting the outer 2 pomts can be detected down to about 5
accuracy. A typical separation for the dots is 10,
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3. Theory

To approach this problem we need to use a computational approach. The
underlying idea is that the nervous system is a very complex information processing
machine. While we cannot always say exactly how visual information is handled we
can be sure that once information is lost in a pathway it cannot be recovered. But to
assess whether information is lost or only concealed we need some theoretical results
and to this we must now turn. '

Viewed in this way, the retina is a device for sampling the visual image at
intervals which, from the point of view of hyperacuity, might appear somewhat coarse.
Is it possible to sample a continuous distribution and yet not lose any information?
The mathematical answer to this is well-known. Provided that the pattern does not
change too abruptly in space the reconstruction can, in theory, be perfect.

To make this more precise consider first the one dimensional case. The condition
imposed is that, if the pattern is analysed into its Fourier components, they must be
zero above a certain limiting spatial frequency. For any general spatial pattern we can
achieve this by passing it through a perfect low-pass filter (see Figure 2). This allows
all spatial frequencies below the cutoff frequency of the filter to pass unaltered while
reducing to zero all frequencies above this limit. The sampling theorem then says that
for such a pattern we need only sample it at the (regular) intervals shown in Figure 3.

That is, the sampling points must be spaced no further apart than the zero’s of the

higher frequency spatial component, as shown in the figure. The proof is elementary
(see the Appendix).

Moreover there is a relatively simple method of reconstructing the continuous
distribution from the samples. This involves convolving the amplitudes of the sampled
points with the mathematical function sinc x ==sin mx/mx. This function is shown in
Figure 3.

The operation of convolution is described in the Appendix. In very rough terms,
if one function is convolved with a second one, the resulting function would be
considered as the first function spread everywhere by the second one (or vice versa).
Thus, if the second function is a Gaussian, the effect of convolving it with a more
extended function is to average the latter locally on every point and thus make it
everywhere smoother.

We shall need one other useful result. This is Logan’s zero-crossing theorem

o,
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Figure 2. A perfect low pass filter is shown on the left. Frequencies above | f] == 1/2 are
blocked, whereas frequencies below are passed undistorted, The inverse Fourier transform
sinc x is outlined on the right. The function sinc has an infinite number of side-lobes, not
shown here, but indicated in Figure 3. Convolution of a8 one-dimensional pattern with the
"receptive field" sinc x is equivalent to filtering it with w(f). '
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(Logan, 1977). Again we consider the one-dimensional case. This time we impose, not
just an upper frequency limit to the filter but also a lower limit as well, to give a
- bandpass filter just one octave wide (see Figure 4). That is, we remove both the high
frequencies and the low frequencies. This necessarily means that the filtered
distribution must cross the zero line fairly often since there are no low-frequency
components to keep it on one side of zero for any considerable distance. Logan’s
theorem states that it is almost always possible to reconstruct the entire (filtered)
distribution, given only the positions and signs of the zero-crossings, subject to a
constant multiplication factor. The exact conditions under which this can be done are
set out in the Appendix. A similar theorem applies to the zero-crossings of a
two-dimensional distribution (see the Appendix).

However in this case the proof is an existence proof. There appears to be no
very simple way to reconstruct the distribution from the zero-crossings. Nevertheless
the theorem shows quite clearly that, provided the bandpass filter is only one octave
wide, the zero-crossings alone are a very rich source of information. It would therefore
not be surprising if the brain used them as an important way to transmit and further
process visual information, especially since the positions of the zero-crossings of a
function are unaltered if the amplitude scale is altered, i.e. if the function is multiplied
by a constant factor. This feature of the zero-crossings is an important aspect of Marr
and Poggio’s theory of stereopsis (1977, 1979).

A

U

Figure 3. An illu;trdiion of the sampling theorem. The time function shown sbove is
sampled at the Shannon rate. Convolution of the series of sampled values with the function .
sinc x shown below reconstructs the original function exactly.
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Figure 4. The meaning of Logan's theorem. A band-limited signal f{x) is filtered through
an ideal one-octave filter (inset) providing fy(x). Since fi{x) has a bandwidth of one octave
and it has no complex zeros in common with its Hilbert transform and no multiple real zeros,
Logan's theorem implies that f; is determined, up to 8 multiplicative constant, by its zero-
crossings alone.
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4. The Optimum Filter

We must next consider what mathematical operations, in a very general sense, are
likely to be performed on the intensity distribution of the retinal image as it proceeds
along the visual pathway. It is well known that the ganglion cells of the retina hardly
respond to an increase in general level of uniform intensity but rather to inequalities in
it, in a "center-surround” manner. This is even more true for cells of the lateral
geniculate and for cells in layer 4C of striate cortex of the monkey which are the main
‘recipient of the input from the LGN (the cat’s cortical cells may be somewhat
different).

A useful way to approach this problem from a computational point of view is to
ask what operation it would be best to perform on the visual input to the retina.
Simply on computational grounds an important preliminary operation in the processing
of visual information is the localization of sharp changes in image intensity, on the
ground that these usually correspond to physically important items like edges in the
image. A major difficulty with natural images is that changes can and do occur over a
wide range of scales. It follows that one should seek a way of dealing separately with
the changes occuring at different scales, since no single filter can be optimal at all
scales. The appropriate filter, at each scale, should be approximately bandpass so that
we reduce the range, of scales over which intensity changes take place. The fact that
there appear to be bandpass channels in vision would in any case point in this direction.
In addition, since the "high" frequencies in the spatial pattern are filtered out we can
use sampling techniques. As explained in Marr and Hildreth (1979) it is sensible to
choose a function which is compact both in space (because the visual world is largely
made up of compact features) as well as in frequency. The function which does this
best is the Gaussian, since its Fourier transform is also a Gaussian.

The first (spatial) differential of an edge has a maximum, but the second
differential has a zero-crossing at the point where the edge is located. In fact, an
intensity change corresponds to a zero-crossing in the second spatial derivative. Thus
we need to take the second differential of the image filtered through a Gaussian. This
is equivalent to convolving the image with the second differential of a Gaussian. As
shown in Figure 5 this is indeed a function which gives a center-surround type of visual
field. A related function (indicated as V2G) can conveniently be used for a
two-dimensional spatial pattern. A similar function, the difference of two Gaussians,
has been suggested by Wilson and Giese (1977). The details are given in the Appendix.

The Fourier transform of Figure 5 is shown in the same figure. As can be seen,
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i

Figure §. The 1-D v2G. The corresponding two-dimensional field is circularly symmetric
with & Mexican hat shape. B is the Fourier transform of A,
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this is not exactly a bandpass filter of width one octave, but it approximates it in that
both low and high frequencies are much diminished. The "effective band width"” might
be considered to be about an octave and a half. Thus it is unlikely that the whole
(filtered) distribution could be recaptured from the zero-crossings alone (see Appendix)
but nevertheless the positions of the signed zero-crossings probably contain a good
fraction of the information in the continuous distribution. An example at one scale of
the signed zero-crossings of a filtered two-dimensional image is given in Figure 6.

In summary our thesis is that the set of zero-crossings of the image filtered
through independent V2G filters of 3 or 4 sizes (in order to cover the range of scales
characteristic of natural images) represent the main "symbols” on which later visual
processes, like stereopsis, are likely to operate.

Finally, observe that the physiological detection of zero-crossings need not depend
on the detection of cells with zero-response. For instance, near an intensity edge the
zero-crossings in the bandpass signal are flanked by two peaks of opposite sign.
Detecticn of zero-crossings can thus be performed on the basis of peaks rather than
zero-response. Marr and Hildreth (1979) and Marr and Ullman (1979) have proposed
physiological schemes for how simple cells in area 17 may detect and represent oriented
zero-crossing segments.

5. The Striate Cortex

The main input to the striate cortex is to layer 4C. To be more precise, in the
monkey the major ganglion cell type of the retina, the X cells, which project to the
parvocellular layers of the LGN, project from there mainly to 4CB of the striate
cortex. The Y cells, though larger in size, are much fewer in number. They connect to
the magnocellular layers of the LGN and from there project mainly to layer 4Ca. Y
cells respond more transiently than X cells. X cells give a fairly sustained response and
are more linear in their behaviour. Here we shall mainly be considering X cells and
cortical layer 4CB. For this reason our theory will be a linear one, even though
linearity may be only a first approximation to the truth.

What immediately strikes one in examining layer 4CB is the very large number of
very small cells in this layer. Thus, as Barlow (1979) has already suggested, it makes
sense to consider that the visual image, or to be more precise a filtered version of it, is
reconstructed there explicitly from the sampled input passed to it, via the LGN, from
the ganglion cells of the retina. Barlow speaks loosely of "reconstructing” the visual
image. Because of our computational theory of early visual information processing we

N
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Figure 6. A pattern (a) is filtered (b) through a medium size viG receptive field. Black
areas represent negative values, white positive. Figure 6(c) shows the zero-crossings of (b).
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would prefer to express this as a more precise hypothesis: that the cells of layer 4CS
represent the reconstruction on a very fine grid of the visual image passed through a
V2G filter in such a way that its zero-crossings are especially well preserved.

The different sizes of the V2G operator, required by our previous scheme, may
correspond to various receptive field sizes of the X cells (at any given eccentricity) in
the LGN. If this is so, it seems likely that the interpolation in layer 4C8 mainly
operates on the smallest of the X channels with a foveal central width of around 1.5’
and a sampling density between 1’ and 30" (Marr and Hildreth, 1979).

Exactly how the reconstruction might be done in layer 4C8 is not clear at the
present time. A major problem is how to represent the negative parts of a function. If
all the cells of 4CB had a steady background firing rate, then a positive value could be
represented by an increase in firing rate and a negative value (relative to the mean) by
a decrease — or vice versa. Alternatively, if the resting firing rate were very low, then
one distribution of cells could map the positive part of the function (being silent for the
negative parts) and another, somewhat separate one, would map the negative parts.
That is, in this latter set of cells a high rate of firing would represent a large negative
value of the function.

Even if it were known which of these two alternatives were correct, there would
still remain the problem of how to interpolate from the relatively sparse input. How
would the reconstruction function be implemented? It may not be necessary to do
more than provide the central positive peak of this function (ideally J 1(P)/p, see
Appendix) and a surrounding rather shallow negative peak. The very small oscillation
in amplitude beyond that could probably be ignored (see the Appendix). It is known
that the axonal trees of the geniculate input spread out somewhat. Could the synapses
in the inner part of the axonal tree excite, whereas those of the outer portions inhibit?
This would do the job very nicely but we know of no precedent for such behavior.

A more plausible way to implement the reconstruction function would be by the
sum of two Gaussians of opposite sign, a narrow positive one plus a lower, wider
negative one, the total integral of one being equal and opposite to that of the other.
Exactly how this would be done depends upon how the negative is represented, as
discussed above. :

More elaborate schemes are possible but are not without their difficulties. An
alternative way, if there are indeed two "maps", one for the positive values of the
function and the other for the negative ones, is to have a rather sharply localized
inhibition of one map by the other. This would have the effect of sharpening up the
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smearing produced by axonal spread and imprecision of wiring. Though we have yet to
do computer simulation of this it seems probable that in most cases this would leave
the position of the zero-crossing almost unaltered though the non-zero parts of the
function might be distorted somewhat. It is even possible that, in this case, it might
only be necessary to implement the central positive part of the reconstruction function.
Preliminary computer studies show that the location of the zero-crossings can be
reconstructed with Vernier precision for 1-D functions via a much simpler receptive
field than the ideal sinc x (Hildreth, 1980).

6. Experimental Evidence

Some of the experimental evidence has already been outlined by Barlow (1979).
It should be remembered that most of the psychophysical data is obtained from human
beings, whereas the greater part of the detailed neurophysiological and neuroanatomical
data is from the macaque monkey. As it is believed that the visual system of man and
the macaque, at least in its earlier stages, are not very different, no great harm is likely
to be done by combining data from these two sources. We hope to give a detailed
~account of the numbers involved elsewhere. Here we merely sketch the broad features.

For the macaque the number of ganglion cells in one retina is about 15 x 106
and it is believed that the number of cells projecting to the striate cortex from the
LGN is about the same (S. LeVay, personal communication and Le Gros Clark, 1941).
Since the area of the striate cortex in one hemisphere is about 1400 mm.2 (Le Gros
Clark 1941, 1942; Cowey 1964) there are, in all, about 500 incoming axons of each

type from the LGN per square millimeter of cortex.

The total number of cells per square millimeter of striate cortex has been
estimated at 3.5 x 10°. The exact fraction of these in layer 4C8 does not appear to
have been reported. A reasonable estimate is 10% giving 3.5x 104 per mm.2 (Powell,
personal communication). Thus there are about 50 times more cells in Layer 4C8 than
incoming LGN axons. Barlow (1979) arrived at a similar ratio (using Garey’s data).
These figures can only be regarded as very approximate but they make the general
point. There are many cells in 4CB and this does indeed suggest that they might be
used to make a fine-grained reconstruction of the sampled input provided by the
incoming optic radiation. ‘

If there are indeed about 3.5x 10* /mm? then, lumping them all together, we
“see that their mean spacing is about 4 microns when projected onto the surface of the
cortex. To translate this into a visual angle we need the so-called magnification factor.
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This is of course different in different parts of the visual field. Near the fovea it is
about 0.25° /mm. for the macaque (Daniel and Whitteridge, 1961). Ignoring possible
complications produced by ocular dominance columns this implies that a spacing of 4u
corresponds to a visual spacing, near the fovea, of roughly 3" of arc. This is indeed
fairly close to the observed hyperacuity limit for humans.

The above calculation can only be regarded as approximate, both because some
of the numbers need to be determined more accurately and because the argument has
been oversimplified. For example, we have ignored the fact that not all ganglion cells
are X cells, that there might be two distinct maps (possibly more) and so forth. A
similar calculation needs also to be done for the simple cells of the striate cortex, but
even a rough estimate suggests that, for any one orientation, there are far fewer of
them than the non-oriented cells of layer 4C83 .

If there is a rather precise reconstruction of the filtered visual input in layer 4Cf3
then this should show up in single-electrode experiments. We are informed by Dr.
David Hubel (personal communication) that preliminary results suggest that the
mapping of the visual field in this layer is indeed rather precise. It would be useful to
- have an estimate of just how accurate it really is. The anatomical mapping between
LGN and layer 4C@ has in fact to be quite precise. Preliminary calculations show that
the ordering of the LGN inputs has to be preserved, i.e. the jitter in the LGN inputs
must be less than 30" (in the fovea) in order to ensure a reconstruction at Vernier
accuracy. Our hypothesis would furthermore require that the cells in layer 4C8 should
have the same receptive field as the corresponding LGN cells and this seems again to
be supported by known physiological data. In addition any detailed theory must take
into account neuroanatomical factors such as the spread of the incoming axonal trees.
For axons from the parvocellular cells of the LGN this is believed to be around 500u
(S. LeVay, personal communication). However, it should be remembered that this is
the total spread. The parameter used in the mathematics, which assumes that the axon
terminals have an approximately Gaussian distribution, is o, the "half-width" of the
Gaussian (see the Appendix). This may well be less than 100k, corresponding, in the
foveal representation, to about 1. Whether this degree of smearing at the input can be
satisfactorily sharpened, and by what means, remains to be seen.

As more becomes known about the neuroanatomical details of the visual cortex it
may be possible to suggest more precisely how an exact reconstruction could be
implemented. More quantitative data would be especiaily welcomed, especially that
which could be obtained fairly exactly. We know no theory yet which justifies our
asking for cell counts, etc., to be as accurate as 10% or even 20%, but in some cases
the relevant numbers are not known to a factor of 10 (for example, how many cells in
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the striate cortex project back to the LGN?). A rough estimate, to within a factor of
two is always better than no estimate at all. A factor of about y2 might be the sort of
precision to aim for at this stage.

7. Conclusion

Our hypothesis is that hyperacuity depends on a fairly accurate reconstruction of
the filtered visual input, with well-preserved zero-crossings, in layer 4C8 of the striate
cortex. As Barlow has already argued (1979) this seems plausible enough as a working
hypothesis, but, as he has pointed out with especial force, it may seem to suffer from
one major disadvantage: it is too static. Recent psychophysical results, especially those
of Burr (Burr and Ross, 1979 and Burr, 1979) have emphasized what was known
before: that it is not possible to understand hyperacuity without considering the

- response to moving objects. Whether this involves the ¥ cells of the retina, which

project to the cortex mainly to layer 4Ca , or whether the effect of movement depends
also on the W ganglion cells of the retina, projecting to the superior colliculus and from
there to the striate cortex via the pulvinar, or whether other cortical areas, such as
Zeki’s movement area on the posterior bank of the superior temporal sulcus (Zeki,
1974) are especially involved — all these questions remain for the future. It is pointed
out in the Appendix that, from the point of view of communication theory,
psychophysical experiments of the Burr type may not present a problem for our
proposal. They may be satisfactorily explained by a scheme in which the zero-crossings
of the filtered image — but not necessarily the filtered image itself — are precisely
reconstructed on the fine grid of layer 4CB. This issue can be resolved only by

~additional psychophysical experiments. How such computations might be implemented

in the brain is not immediately obvious.

Though some clues may come from neuroanatomy we cannot help feeling that
little progress will be made until the response to stationary and moving spots of light,
of the type now being studied on man by Burr, is also measured in the alert monkey
with electrodes in various regions of the brain; for instance, do cells in layer 4C8

~ reconstruct the pattern of activity at moments intermediate between the flashes and at
~ locations intermediate between the stations at which the line segments are flashed?
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APPENDIX

1. Mathematical Tools and Definitions

The convolution of two functions f(x,y) and g(x.y) is defined as the function
Kxy)

@ xy) = flxy)xg(xy) = Lo LO Jwy) g(x —u, y—v) dudv

Figure Al illustrates graphically the meaning of this operation for
one-dimensional functions. The importance of convolution stems from the fact that the
output of a linear time-invariant system on an input function is given by the
convolution of the input with the impulse response characteristic of the system. Thus,
the operation of linear filtering (in space as well as in time) is equivalent to
convolution. :

The Fourier transform §(f,.f g) of the function g(x,y) is defined here as

@ U, =Fighy) = L, _[m gy exp(—j2n(f o x+ [, y) dxdy

The transform is itself a complex-valued function of two independent variables f, and
Jy» which we generally refer to as frequencies.

2. The Sampling Theorem

The retinal image is sampled at a set of discrete points by the photoreceptors and
it is represented by a still smaller number of nerve fibers in the optic radiation.
Intuitively, it is clear that if these samples are taken sufficiently close to each other, the
sampled data provide an accurate representation of the original 2-D function, in the
sense that the pattern can be reconstructed with considerable accuracy by simple
interpolation. For band-limited functions the reconstruction can be accomplished
exactly, provided only that the interval between samples is not greater than a certain
limit. The retinal image is effectively band-limited by diffraction at the pupil to about
60 cycles per degree in man.
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Figure Al. A pictorial illustration of the convolution operation. The function f{x) is

convolved with g(x) according to A(x) = )
by the height of the segment in the bottom diagram equals the shaded area above.

j :f( u) g(x— u)du The value A(x), represented

,,,,,
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We derive here (following Goodman, 1968) a simple version of the sampling
theorem for 2-D functions (possibly time-dependent). We will also show how the
conditions of the classical sampling theorem can be relaxed, if the pattern to be
sampled is known to move at constant (known) speed. Sampling in time will not be
considered; it is easy to extend the proofs to this case.

3. The Sampling Theorem in 2-D

Let us consider a rectangular lattice of sampling points as shown in Figure A2.
With the continuous function g(x,y) we associate its sampled version

)] 8, (xy) = g(xy) comb (x/X) comb (3/Y)

where comb (x) = ; 8x —n). The sampling function comb (x/X) comb (y/Y) consists of

an array of & functions, spaced at intervals of width X in the x direction and width ¥
in the y direction. The Fourier transform of comb (x/X) is

@ | F {comb (x/X)} = g Xf —n/X)

as shown in Figure A3.

The Fourier transform of g, is
® 3,(ff,) = XY comb (£, X) comb (f, D)% B )

Thus, the spectrum of g, can be found simply by replicating the spectrum of g about
each point in the f, Sy plane corresponding to the lattice defined by
comb (f, X) comb (f,Y), as shown in Figure A4,

The function g is assumed to be band-limited and thus its spectrum g, is nonzero
over only a finite region of the frequency space, called its support. If the sampling
points are sufficiently close together (i.e. X and Y are sufficiently small), then the
separations I/X and 1/Y of the various "lobes" in Figure A4 will be great enough to
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Figure A2. The "sampling function” comb (x/X) comb (y/¥). By multiplying 8 continuous
function g(xy) with this array of delta functions one obtains the sampled function g which
essentially consists of the values of the original function at the positions of the arrows.
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Figure A3. The function comb x = Z d(x — n) and its Fourier transform

comb (f) == Z 3(f— n). The comb funcnon is thus its own Fourier trensform. The small

ticks show where the variable has a value of unity.

ensure that adjacent regions do not overlap. We can reconstruct g(x,y) from g, if we

can recover § from §, and this can be accomplished exactly by passing g, through a
linear filter that excludes all side-lobes in §, but includes the central one. In the

limiting case, adjacent regions in the spectrum g, just touch. This happens (see
Figure A4) when X =1/2B, and Y =l/23 where 2B, and ZBy represent the width
in the f and f y directions, respectively, of the smallest rectangle that completely

enclose the support of § (support centered on the origin). In this case the form of the

filter could be
where n(x) = -1 |x|<1/2
| 0  otherwise.
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Figure A4, The Fourier transform £ of a band-limited pattern g(xy), chosen as an example
to be a cone, and (b) the support of the Fourier transform §‘ of the sampled function

8 (%p) = g(xyfcomb (x/X)comb (y/Y)]

where the expression within brackets is the sampling function shown in Figure A2. The
spectrum ¥ is repeated at distances 1/X and 1/Y. If the sampling distances X and Y are small
enough compared with the bandwidth of g, there is no overlap of the side-lobes in the
spectrum of g, Only some of the side-lobes are shown here: they repeat over the whole
Fourier plane.
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Filtering §, through H one gets

o ¥ = 8,0 ) HU S,

which corresponds, as it can be seen by Fourier inversion, to the following (classical)
interpolation scheme

® gx9) = XY 2 g, (uX,mb)sinc (28, (x—nD)]sinc 28, (v — P)]
where sinc (x) == sin mwx/mx.

There are, of course, especially in 2-D, a variety of filters that could perform a
correct interpolation. For instance, another choice for H is (if B,sBy)

® ' H(f ,of ) = circ(B,)
0) where circ (r) = =1 ifr<i
0 otherwise

as shown in Figure A5, with an inverse Fourier transform
) F fcirc (7)) = J(2mp)/p

J being the Bessel function of the first kind, order one. Figure AS illustrates the circle
function and its transform. Filtering §, through circ (B, ) corresponds to convolving g
with a "receptive field" of the type shown in Figure AS(b).
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Figure AS. (a) The ideal low pass filter circ (r) in the Fourier plane and (b) its inverse
Fourier transform, i.e. the corresponding receptive field.
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We have shown the following:

Theorem 1 (Whittaker, Shannon): A band-limited function g(x,y) can be recovered
exactly from a rectangular array of its sampled values, according to eq. 8. The
sampling distance in the x or y direction can be as large as the reciprocal of twice the
bandwidth on f_ or f -

This proof of the sampling theorem can be easily extended to a non-rectangular

sampling lattice, for instance a more efficient (and more realistic, for the human retina) - -

hexagonal one. Since the retinal image is band-limited by the optics to about 60 cycles
per degree, Theorem 1 for a hexagonal lattice implies that the maximum distance
between photoreceptors should be Ag ==1/60 y3 =27 sec., which is about right for the
human fovea. The finite diameter of the photoreceptors worsens only slightly the
overall transfer function of the system. The proof clearly shows that the classical
interpolation function sinc does not have an exclusive role. Many other interpolation
functions would do as well or almost as well, especially if the sampling density is higher
than the minimum. In such a case, the sidelobes in the spectrum g, do not touch;
thus the requirement of the sharp cutoff in the filter 4 is removed. A variety of filter

functions would exclude the sidelobes while transmitting the central lobe without
significant distortions. '

With a suitably higher sampling density, it is clear that simple receptive fields
(see for instance Figure 5) could interpolate almost as well as J(2mp)/p especially with
. respect to the location of the zero-crossings (Figure 6). Recent computer experiments
show indeed that very simple interpolation schemes (linear interpolation, filtering
through a Gaussian, filtering through V2G) can localize zero-crossings in the output of a
channel having w=1' 30" with vernier precision (E. Hildreth,1980).

4. The Sampling Theorem for Bandpass Functions

Stronger results than Theorem 1 hold if the band-limited function is also
bandpass. For instance, a one-dimensional bandpass function with one octave
bandwidth can be sampled at half the rate set by the classical sampling theorem. This
can be easily seen in Figure A6(a). In 2-D, sampling below the classic limit
corresponds to interlacing of the lobes in the Fourier spectrum of the sampled function.
Depending on the geometry of the bandpass support, interlacing can take place without
overlapping of the side-lobes. Suitable filtering can again recover exactly the original
function (Figure A6(b)). Notice that this scheme cannot be applied to a 2-I> bandpass
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function with a circularly symmetric, ring-like support in the Fourier plane.

However, the (sufficient) conditions given by this overlap argument are not
strictly necessary in the bandpass case. It turns out that, despite eventual overlap, it is
still possible to reconstruct exactly the bandpass function with two interlaced sampling
sequerces, each one having a sampling interval of 1/B, where B is the width of the
band (for f>0). The average sampling interval is thus 1/2B.

The following theorem holds:

Theorem 2: A bandpass function can be recovered exactly from a rectangular array of
its sampled values, through suitable filtering The sampling distance on the x or y
direction can be as large as 1/2B, where B is the width of the non-zero part of the
spectrum (for positive frequencies only).

S. The Sampling Theorem For Moving Patterns

For simplicity we consider a 1-D pattern f(x), band-limited in spatial frequency,
sampled at a regular 1-D array of points. Movement of the pattern f(x) produces a
function f(x,r) whose sampling in space obeys the usual restrictions set by the sampling
theorem. If we assume, however, that f(x) moves at a constant (known) velocity v, it is
rather clear that the sampling rate may become very low, without losing information
(in fact one "photoreceptor" clearly suffices). We analyze this problem with the same
methods as in the previous part. The proof is quite instructive, especially for situations
in which the velocity is not exactly known.

Since g(x) moves at constant speed v the pattern of excitation on the "retina" is

gx, ) = gx—w).

The Fourier transform is

©) ?‘fxf,) = ?(fx)“f,—vf,)

where g(f, ) is the Fourief tfansfofm of g(x). Since g(x) is bahd-limitédg g(x, t) is
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Figure A6. (a) § is the (modulus of the) Fourier transform of a one-octave bandpass signal.
If the signal is sampled at half the Shannon rate, interleaving of side-lobes but no overlapping
occurs in the spectrum Es’ is is obtained by shifting g by all integral multiples of Bf,, Bf,
being the bandwidth of g Only two of the side-lobes are shown in the bottom of (8). The
same hatching identifies parts of the same side-lobe.

(b) The same situation for a two-dimensional pattern assumed to be bandpass (one-octave) on
fx and f,. Again sampling at half the classical rate corresponds to interleaving but no
overlapping of the side-lobes, Only some of the side-lobes are shown in the lower half of (b).
They are created by shifting the original spectrum (shown in the upper half) by all multiples
of 1/Xand 1/Y, Xand Ybeing the sampling distences. Side-lobes thus fill the whole Fourier
plane,

Notice that if the support of g were a ring in the Fourier plane, overlap of the side-lobes in
E"s would occur for any sampling rates lower than Shannon’s rate.
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band-limited in both space and time if v is finite. The array of "photoreceptors” spaced
by X provides a sampled version g (x — w) whose spectral support is shown in Figure
A7. The slope of the line is v. The classical sampling theorem requires a sampling
distance x < 2B,. In this case a filter function like n(f /2B ) can separate the
‘central region from the side lobes and thus retrieve g(x —w). Figure A8 shows clearly,
however, that the sampling distance X can be increased much above the classical limit
irrespective of the velocity v, provided that v is different from zero: in the Fourier
plane the distance between the side lobes can be made arbitrarily small (corresponding
to X arbitrarily large in x space) without overlapping.

The original spectrum can be retrieved by the filter depicted in the Figure A8(a).
The retrieval scheme in the limit of very large X requires convolutlon of g,(x 1) with
the (noncausal) receptive field §(x 4 w).

Uncertainty in the velocity forces a finite sampling distance. The minimum
allowed sampling rate depends on the geometry of the support of the Fourier transform.
It can be derived easily from graphs like Figure AS.

~ For instance, assume that only the direction of motion is known, i.e. the sign of v.
Figure A8(b) Shows that if only the sign of v is known the minimum distance on the
S xf; plane to ensure no overlapping is half the classical distance. Thus, the maximum
distance between the samples can be twice the limit set by the classical sampling
theorem. Again from the figure it is easy to derive the required filter and the
corresponding "receptive field".

We have proved the following:

Theorem 3: Assume that a band-limited spatial pattern g(x) with a bandwidth 2B
moves at constant velocity v. Then, if the velocity v is known with arbitrarily high
precision the distance between sampling points can be made arbitrarily large.
Uncertainty in v requires a well defined maximum sampling distance, higher, however,
than the classical limit (if v 3£ 0). As a corollary, if only the sign of the velocity is
known, the maximum sampling distance X is twice the classical limit for statlonary
patterns (thus X =1/B_).

This result can help in discussing the demonstration published very recently by
Burr (1979). In his experiment, vernier line segments are displayed stroboscopically at
a sequence of stations. Spatial offsets were detected with an accuracy in the 5 second
range in spite of the movement (compare Westheimer and McKee, 1975); in addition
an illusory displacement occurs if the line segments are accurately aligned in space, but
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-1 +1 fx
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Figure A7. (a) The support (a "delta” segment) of the spectrum g of a band-limited one-
dimensional pattern g(x) at rest (v== 0) in the Fourier plane of spatia! (f,) and temporal f
frequencies. g(f,.f;) equals 8(f,) on that segment.

(b) The spectral support of the same pattern moving at constant speed ». The Fourier
transform of g(x— vt) takes nonzero values only on the “delta’ segment, whose slope is »

{c) Spectral support of g(xt). The pattern g{x — ) is sampled in spacé &t the Shannon
rate,
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fx

Figure A8, (a) The support of gs(x— vt), when the sampling rate is lower than Shannon’s

rate. The original function § (Figure A7(b)) can be retrieved by filtering the sampled data,
for instance, with the filter indicated by hatching. The filter is arbitrary provided that it
transmits without distortion the central lobe, eliminating at the same time all side-lobes.

(b) If it is only known that the sign of the velocity is positive, the support of g may lie
anywhere in the region shown by vertical hatching. Sampling spatially st half the Shannon
rate still ensures that the side-lobes do not overlap in the spectrum 3‘, Compare Figure
A7(c).
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are displayed with a slight delay in one sequence relative to the other. The accuracy of
detecting the equivalent displacement is again in the hyperacuity range. As Barlow
(1979) pointed out, this suggests that the spatial pattern of activity at moments
intermediate between the stroboscopic flashes is actually reconstructed. Clearly
temporal interpolation (i.e. temporal low-pass filtering) followed by the “static" spatial
interpolation can reconstruct a pattern of activity g(x,7) on an arbitrarily fine spatial
grid, from the sampled functions provided by the LGN fibers. This amounts to saying,
as pointed out by S. Ullman, that almost nothing needs to be done in order to obtain
the right kind of temporal filling-in. Temporal low-pass properties of the LGN
pathway provide temporal blurring; spatial interpolation, for instance in layer 4CS8,
would then reconstruct activity between the LGN fibers at all times. Notice that the
blurring due to temporal integration can be corrected at a later stage, for instance, by
spatial high pass operations (for a pattern moving at constant speed, temporal and
spatial variables are interchangeable). Thus, there is no problem in reconstructing the
correct pattern of activity in 4CB for a real movement of the retinal image.
Difficulties may appear, however, when motion of the object is simulated by presenting
the image at discrete positions at separate instants, as in the experiments by
Westheimer and by Burr. If the positions at which the vernier segments are flashed
correspond to the sampling grid of the LGN cells, the simulated motion is in fact
completely equivalent (from the LGN point of view) to real motion. If, however,
neighbouring positions are much farther apart than neighbouring LGN sampling points
and larger than LGN receptive ficlds, there may be too few samples (in terms of the
classical sampling theorem) to recomstruct the equivalent spatio-temporal pattern of
activity between positions. It is important to stress, on the other hand, that our
hypothesis requires a precise reconstruction in space and time of the zero-crossings of
the filtered image but not necessarily of the filtered image itself. Thus the necessary
conditions — and we are indebted to S. Ullman for this remark — are probably weaker:
computer experiments (by S. Ullman) show that the correct motion of a zero-crossing
between stations can be obtained under conditions that forbid a faithful reconstruction
of the corresponding 2-D function. From this point of view the bounds on the
sampling intervals given by the theorems of this appendix are too strong, since they
refer to a correct reconstruction of a whole function and not only of its zero-crossings.

Although more psychophysical experiments are absolutely essential to determine
how the Vernier acuity measured by Burr actually degrades with increased separations
between the positions at which the segments are flashed, it is indeed possible that
separations larger than the maximum allowed by the sampling theorem may not
dramatically reduce performance. Clearly these estimates depend also on which channel
is actually reconstructed in layer 4CB: if larger receptive fields are involved, the
maximum separation allowed would be correspondingly larger. For instance, for the
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smallest channel (w=1" 30") the maximum distance should not be much larger than
about 1°. This estimate could become up to 8 times larger for the biggest (and
probably transient) channel. It is also conceivable that the effective receptive field size
of the channel reconstructed in layer 4C3 may be transiently larger at the onset of a
stimulus, either because of Y influences or via a mechanism similar to the one
postulated by Detwiler et al. (1978) for the rod network in the retina. This would
provide a lower cut-off in spatial frequencies for moving stimuli, allowing a larger
sampling interval (see Theorem 1).

In any case, Theorem 3 shows how information about the velocity of an object
moving at constant speed, could be used to increase the maximum (spatial) sampling
interval (in principle Theorem 2 could also be exploited, because of the bandpass
properties of the LGN channel). Thus, even rough and implicit estimates of the
velocity may account, at least from the point of view of information theory, for
eventual very large separations in Burr’s type of experiments. For instance, it is
conceivable that the interpolation scheme may be based on the a priori assumption of a
movement of the retinal image within a well defined range of velocities. The correct
motlon may usually be provxded by eye movements.

The samphng theorems outlmed here do not, of course, say whxch neural
mechanisms may be involved. But even if an explicit reconstruction on a finer grid of
neurons is not done in our brain, these results characterize the conditions under which
information of the Vernier type can be preserved in the visual pathway.

6. Logan’s Theorem

If a one-dimensional band-limited function (belonging to B,, , i.e. the restriction
to the real line of entire functionskof exponential type, see Logan 1977)

a) has no free zeros (i.e. complex roots in common with its Hilbert transform)
and no multlple real zeros,

b) is bandpass with enough real zeros in proportion to its bandwidth,

~then the function is uniquely determined, up to an overall multiplicative constant by its

(real) zero-crossings.

Condition (a) is almost always satisfied. Condition (b) is critical: it is always
ensured if the bandwidth of the signal is less than one octave. For particular classes of

i
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bandpass signals (b) may be satisfied even for larger bandwidths: for instance ergodic
gaussian bandpass signals satisfy condition (b) if their bandwidth is less than 1.67
octaves (H.K. Nishihara, personal communication). On the other hand Logan’s result is
valid for ideal bandpass functions and it cannot be extrapolated with abandon to
"almost bandpass" functions.

7. An Extension of Logan's Theorem to 2-D Functions

It is impossible to use directly Logan’s technique for proving some 2-D version of
its theorem. There is, however, a simple way of translating the 2-D problem into a 1-D
problem in order to use Logan’s result. In this way it can be shown that zero-crossings
in a suitably bandpass 2-D function (in principle) determine the function within a
multiplicative constant. The conditions under which this result is valid are likely to be
“too restrictive: they are sufficient but almost certainly not necessary. The argument
runs as follows: the image f(x y) is filtered through one-octave bandwidth vertical -
masks: zero-crossings are then measured along horizontal scan lines at intervals
appropriate to recover all the information. Since the one-dimensional functions
associated with each scan line are then bandpass with less than one octave bandwidth,
they satisfy Logan’s theorem. The same operation can be carried out with horizontal
masks and vertical scans. It can be shown that it is thus possible to reconstruct the
filtered image (through horizontal and vertical marks) modulus a single scaling factor
(Marr, Poggio and Ullman, 1979; Nishihara, in prep.; Poggio, in press). This
reconstruction scheme cannot be applied to images filtered through non-oriented
bandpass filters, like the circularly symmetric receptive fields of the ganglion cells.

8. VG

This way of locating zero-crossings in a filtered image is not the only nor
necessarily the best method. It has been shown (Marr and Hildreth, 1979) that under
certain rather weak conditions the zeros in an image filtered through a concentric type
receptive field provide an equivalent way of locating edges, whose orientation must then
be represented. This suggests that zero-crossings in an image filtered through
concentric receptive fields may also contain all of the information of the image. As we
mentioned, however, the extension of Logan’s theorem to this case is not yet available.

In a similarly negative vein, we do not have yet any formal result on the
information content of the zero-crossings in a non-ideal bandpass signal, although recent
computer experiments (K. Nishihara, 1979) indicate that they still contain almost full
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information, under rather loose conditions.

~In summary, Logan’s theorem cannot strictly be used in a theory of early visual
processing; the important point is that it shows that zero-crossings of a bandpass signal
are very rich in information. In this sense, it supports a set of computational
arguments (Marr, 1976; Marr and Poggio, 1977, 1979; Marr and Hildreth, 1979)
suggesting that the detection of zero-crossings in the output of independent (spatial)
roughly bandpass channels is one of the first steps in the processing of visual
information. Marr and Hildreth (1979) argue that intensity changes in the image at
one scale may be detected by filtering (i.e. convolving) the image with the Laplacian of
a two-dimensional Gaussian at that particular scale and then locating zero-crossings.
Since the Gaussian is given (in 1-D) as

G(x)=1/ o2 7 exp(—x2/26%)
its Laplacian (in one-dimension)
G"(x) =—1/ Ir (1 —x2/20%) exp(—x2/20%)

looks like a Mexican hat operator (see Figure 5), it is an approximately bandpass
operator with a halfpower bandwidth of about 1.25 octaves and is very closely
approximated by Wilson and Giese’s (1977) difference of two gaussians (with a ratio
for their o’s of about 1.6). By using a range of V2G mask sizes one can deal with the
wide range of scales over which intensity changes take place in a natural image.

These ideas may begin to account, on purely information processing grounds, for
the presence of spatial-frequency-tuned channels in early human vision (Campbell and
Robson, 1968; Wilson and Giese, 1977) and for the properties of simple cells in the
cortex, which are usually described as detectors of edges and bars of various widths and
orientations (Hubel and Wiesel, 1962).
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