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pencratization of context mechanisms and serve as a device for rcprc'icntmg muliiple world models. A
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PREFACE

This work is a shortened version of my master’s thesis [1] submitted in the Spring of 1979. The original text
covered several ancillary topics of which I was not satisfied with cither the presentation or technical content. [
had originally planned to complete these patts in a short time and produce an expanded version as a technical
report. This task proved harder than 1 first realized. Consideration of many of these additional topics has led
1o a gradual evolution of the ideas in dircctions that differ in emphasis and specific technical detail from those
expressed here. Thave decided it best o take what T felt was the stable core of the ideas and issuc them at this
time. ‘

The topics that have been removed include:

(V) Manipulative viewpoint inheritance, the placing of filters between viewpoints so that some subsct of the
assertions will be inherited.  This mechanism can make use of justifications on the assertions in a viewpoint to
control the filtering. More recently T have been thinking of genceralizations of this concept in which the
contents of a viewpoint can be expressed as a firnetion of the contents of its parents, not simply a subset. [
plan to develop this idea in the future,

(2) Use on parallel hardware. 1had developed a scheme for implementing Ether on multiprocessors. Its only
purpose was to show that the broadeast primitive could be implemented on a multiprocessor system without
having to invoke a nctwork broadeast. It was not well-developed and 1 thought it best to drop.

(3) Conjunctive Subgoals with Shared Variables. 'This is a very important topic that T will develop morce
completely in a future paper.

Tn addition, [ am currently developing with Tlewitt [2] a paper on the relationship between the problem
solving philosophy embaodied in Ether and the landinark works of modern philosophers of science sach as
Popper, Lakatos, and Kuhn, We feel there is much similarity between the notions of conjecture and
refutation in science as cxpressed by Popper and the parallel execution of many activities including opponent
activities. Twas largely unaware of this relationship when the work reported here was done.

The term viewpoint that is used in the present work replaces the term platforsm that Thad originally used in my
thesis and in the paper describing Ether that appeared in TJCATG.
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Chapter I Introduction

My interest is in studying possible uscs of"pamllcl program architecturcs for the solution of problems in
artificial intelligence. What distinguishes this class of problems from others is the volume of "nonessential”
computation that gets done,  Programs spend the bulk of their time searching through spaces of facts and
methods for one that might possibly be uscful.'r This scarch often takes place at many levels simultancously;
in determining whether a selected fact or method is useful may entail a vast search through a different
subspace of facts or methods. How this is orchestrated within a program is usually referred Lo as its control
structure. The intent of a control structure is to avoid as much of this search as possible, although a certain
amount of it scerms nceessary. There have even been some rescarchers suggesting that it is not possible to
curtail this search very much, at least for certain special cases of reasoning {3, 4], and have suggested solutions
involving vast amounts of parallel hardware that can decide many of these questions by use of sheer
computation power. While T don’t wish to take exception to their conclusions, only leave these questions in
abeyance, this is not the position taken by the present work. The emphasis is not on "brute force” solutions,

but on techniques for gaining more programming flexibility and greater control over the problem at hand.
& [ 3 P

This work builds on various ideas in the problem solving literature and combines them with some new ideas
about parallel computation, The synthesis will be a new pattern-directed invocation language known as
Bther, FEther follows in the tradition of Planner in having a collection of asscrtions representing facts about

the world and procedural objects that interact with these facts via pattern matching.

Two Important subcomponents of Fther are a language for talking about activities and a hicarchy of
vievpoin{s for structuring data. The notion of an activity is intuitively similar to the notion of a process, that is
“a locus of control with some purpose. It is not as rigid as the concept of a process as might be defined by
allusion to a Turing or Von Neumann machine model, The concept of process for these models can be
thought of as a totally ordered sequence of state changes to a tape or other kind of memory. This is not the
case with an activity. It may be the case that several asscrtions are broadcast {Le. added to the database)y or
several procedural objects exceuted by one activity without there being any particular ordering between then.
The kinds of things that might become activities are "Do antecedent reasoning on the facts in the following
vicwpoint,” "Attempt to achicve the following goal,” or simply "Run the following code.”  Activities are
objects that can be talked about through the Fither database and acted upon by special primitives. A kind of
thing one might do to an activity is to preveit its continucd exccution. This might be desivable if the purpose

of the activity has already been accomplished. One might also change ate al which an activity is working.
fthe activity 1 lready been accomplished. One might alse change the rate at which an activity is working

fu fither the host machine is thought of as a finite resource that has a cortain {constant) amount of power,

[ ‘The problem of scarch isn’t the only distinpuishing feature of antificial intetligence rescareh. There are many serious issucs of data or
"knowledge" represeutation that ave unique to the field. While many researchers today would consider these o be the ouly serious
concerns, T think this altitude has led to the creation of a number of sophisticated systems for the representation of knowledpe with no
clear ideas on how o use themn in programs, i contrast (o s, we will be concerned only with questions of program organization.




‘The power can be distributed amongst running activitics in whatever way sceins appropriate at the time, If
some newly discovered information suggesls that one way of accomplishing a goal is more likely to succeed
than another, the amount of processing power being used by the former activity can be increased to the

detriment of the other,

Many AT languages reason by creating and manipulating world models inside the machine. Context
mechanisms allow multiple inconsistent world models to reside in the database concurrently, Often many of
the world models share much of their strueture. Context mechainisms make this economical by supporting an
inheritance between contexts. These mechanisms, as usually conceived, do not aflow processing to happen in
more than one world model at a lime.. A gencralization of the context idea is the viewpoini. Viewpoints have
an inheritance structure similar to contexts but unlike them, there is no restriction on the number of
viewpoints that may be available at one time -- all may be processed concurrently. Many of our examples

depend on the ability to build many incompatible but concurrently accessible world models.

Throughout this paper we will present a number of control structures that can be viewed as parallel
generalizations of well known techniques, such as forward and backward chaining, OR and AND subgoals,

depth first and breadth first search, and goal filtering. The parallel techniques tend to be more flexible.

One facility of most other procedural deduction systems that TBther has chosen to leave behind is automatic
backtracking; although uscful in certain circumstances, the purpose of this work is to study what could be
accomplished by allowing the user’s program to explicitly control the search. Fven though backtracking is not
present, the system s set up so that the program is not commitied to "believing” hypothetical assumptions

Jjust because they were once made, Why these are different ideas will become clear later o,

In ‘Lhi:; work T will not be concerned with the question of whether the (parallel) programs described are to be
runcon a conventional sequential machine or a specially designed parallel machine. However, the language to
be described is designed so that an implementation on parallel hardware would require fitle revision of the
language constructs,  The arguments for parallel processing advanced are as relovant to conventional serial

machines as they are o more advanced parallel architictures.

"The contribution of Ether can best be understood in a historical context. In Micro-Planner, many {thcorems
could be specified for accomplishing some purpose.  They were chosen non-deterministically by the
interpreter. The inability of the user to order the application of methods made programs semantically cican'
but led to grossly ineflicient scarches via the automatic backtracking mechanism. The Conniver language was

a procedural deduction system made to look and act more like a conventional programming language. The

driving motivation for this was to curtail the needless search engendered by backtracking. ‘The end result was

a system without a rich semantic model and thus the complexity barrier was ccached very quickly,  The
presence of explicit parallefism in Tither allows both goals to be achieved. T believe Fther programs o

maintain the clean semantic model of Micro-Planner while allowing search o be tghtly controlled.




Chapter I Combinatorial Implosions

This chapter introduces a phenomenon that is possible in parallel programming environments. thi\ many
activities are running concurrently in an attempt to solve some problem, some activities can produce
information that obviate the need for others or help them solve their problem more quickly than if they were
run in isolation. We would not reap the beaefits of this sharing of information in a sequential system because
the activities must be run in some ovder decided before this information has been produced.. We will use the

term combinatorial implosion for this unpredictable and uselul interaction between running activities.

Discussion of this phenomenon as a justification for paraflel processing is curiously scant in the Iitemture.‘i‘
The usual argument for parallel schemes is that problems can be broken into parts that arc separately solved
on separate processors, thereby finishing faster than could have been accomplished on a single processor,
Combinatorial implosions, however, can occur just as readily on time shared sequential processors as on truly
parallet machines, The main example of this chapter is discussed assuming it will be run on a single

time-shared processor.
2.1 Anexample problem

This problen is excerpted from the PROTOSYSTEM-1 automatic programming system [6]. 1t is presented in
a somewhat stylized format that is functionaly identical to an & tual problem cecurring in the design phase of

the awtomatic programming systcm‘i'

We are presented with a sct of (boolean) predicales {Py, Py, .., P} and a {boolean) predicate %, such that
%D Pl \Y P2 N P“. The goal is to determine all sets S C {Pl' Py s Pu}, such that 9D \k/ Pk for
cach Py € S and for which there are no proper subsets R of S such that 2D \k/ Py for cach Pk € R. Inother
words we want 1o find the smallest subsets of {Pl’ Pz, s P“} ihat cover the predicate @ Note that there can

be more than one such subset.

In order to sitmplify the following discussion we will make two definitions.

LA tple of predicates {P; L Py, P Y worksifPDP, VP, V..V DP .
Ih ' ok h

2. A tuple of predicates {Pi . P

1 2

SC{P, P, .., P; }such that S works.
1 2

n

, P-l} is minimal iU there I8 no
n

T A simitar notion known as the aceleration effeet [S] was developed independently,
£ PROTOSYSTEM - werminology the problem is one of penerating driving dutaseis candidates.




2.2 Sequential Solutions

In terms of the above definitions, we are looking for all subscts of the given set of predicates that work and are
minimal. There are two algorithms that we, as programmers, might pick as solutions to this problem; they are

known as Top-Dewn and Bottom-Up. Descriptions of these algorithms follow.

2.2.1_Top Down
Create a results-list, initially null,

Top-Down({ Pl’ Pz, s Pn}) =
1. if forevery j, where1 <j<n, {Pl, . Pj_'l, Pj Fl Pn} does not work add
{P. Py, .., P} to the results-ist, '

2. clse execute Top-Down ({Pl, T Pj-l’ Pj+ o Pn}) for cach of the
{Pl’ ey Pj'].’ P} IS PR pﬂ} that works.

3. Return the results-list as the answer when all computation is completed.

222 Bottom Up

Create a results-list, initially null, and a counter k, initially 1,

Bottom-Up ({Pl’ P2, ,Pn}) =
1. Generate all k-tples of the Py and remove all ef the k-tuples that contain a proper
subset that is on the results-list, Check cach of these to see if they work, and if they

do add them to the results-list.
2. Increment & and iterate until k=n, then stop and retucn the resulfs-list.
Both algorithms arc optimal in the sense that no test for workingness (a very expensive operation) is cver

performed that could be logically climinated; no algorithm could be created that will always require fewer

tests than cither of these.



2.3 Parallel Algorithms

2.3.1 Parallel Algorithm I

The two algorithms have very different characteristics. Top-Down will work faster if lhé minimal working
subsets are large with respect to n, and Bottom-Up will work faster when they are relatively small. There is no
way to decide which one will be fastest for a given problem short of running one of them. The variability is
sufficiently great that we could produce a faster algorithm on sequential machine by running them
concurrently with one another by time-sharing and waiting for the first to finish with the result. This is one
(albeit weak) form of combinatorial iinplosion. The timing variability between methods need only be high

cnough so that on the average twice the time of the fastest to finish is less that the average speeds of both,

2.3.2 Parallel Algorithm 1

In this section we will improve on the algorithm of the preceding section by allowing the two subactivities to

pass each other information. We note two facts:

LAf{P Py By 1 docs not work, then any subset of it will not work.
1 02 n

2. 16{P; , Py, o Py } works then any supersct of {Py Py, .., Py b will work and
: 2 n L2 n

not be minimal.

As Top-Down is running, it produces as computational by-products numerocus sets that don’t work and in
order from fargest to smalfest. By property 1 above it can be immediately deduced that all subsets of these
sets will riot work and these can be climinated from immediate consideration. 'This fact is of course implicit in
the design of the Top-Down algorithin, but can be of great use to Bottown-Up. As Top-Down discovers sets
that don’t work they can be passed to Bottom-Up and used to prune many scls from possible consideration. A
byproduct of the running of Bettom-Up is the enumeration of scts (in increasing order) that work, By

property 2 these can be used Lo prune alt supersets of the set from consideration by Top-Down.

The paratlel algorithm we cnvision has these two_activities running concurrently and passing results to cach
other as they are discovered.. A bleck diagram is shown in figure L. Arrows in the figure show conceptual
flow of information. As a process discovers new sets that it should report to the other progcess, it broadeasts
this fact, Whenever a fact is learned that eliminates the need for what the activity is doing at the moment ity
work is halted and a relevant one is begun. This algorithm is casy o express in Fther, although difficult or

awkward using other paraflel programming methodologies.
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Fig. 1. Block Diagram for Parallel Implementation
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Chapter III  Basic Ideas
3.1 Pattern Directed Invocation

The principle feature of pattern-dirccted invocation languages are a large, continually changing collection of
assertions that represent facts of importance to the problem solver and some means of procedure invocation

based on pattern matching involving this collection of assertions. In Fither, T these define the two principle

operations: broadcast and when.

We choose the term broadcast for the operation that adds new assertions to the oncs alrcady known. The
reason we are using the term broadeast (and avoiding the term database) is to supply a certain conceptual
model. A database is often thought of as a data structure in which items are ix{sertcd in some definite order.
It might matter to the overall behavior of the system in what order two assertions were entered. The database
itself often has to ensure its own consistency. 1f this database is used as a joint repository of information used
by many activities running in parallel there are many opportunitics for unforseen and undesirable interactions
to occur between these running activities. The standard conceptual model of a database is at too low a level.
The pattern-invoked procedures, called sprites, are thought of as watching for broadeast assertions matching

their patterns. 1f onc of them is invoked it can broadcast new assertions to other sprites or create new sprites.

3.2 What Sprites Are

Sprites consist of two parts, a pattern and a body. They watch for assertions to be broadcast that match their
patterns, If a spritc’s pattern successfully matches an assertion, the body of the sprite is excented in the
canvironment of the mateh, Sprite bodics principally contain two kinds of constructs: more sprites that are

activated and commands to broadcast new assertions to the collection of spritcs.i

An example of a sprite that serves the function of an antecedent theorem is:

{whan (ON =x =y) When a block is on another block
(when {OVER y =z) sand the second block is over a third,
{broadcast (OVER x z)))) cassert the first block is over the third

The pattern of this sprite will match any assertion with three clements that has on in the first position. When
this sprite is triggered it creates a new sprite (as the sole action of cxecuting its body). [f the assertion

(6N A 8) is broadeast, this sprite will create a new one of the form:

f “Erher” (according to many noted 19th century physicists) is the name of the medium through which all information travels at finite
speed.

I 1o the current implementation the bodics of sprites are evalualed by the Lisp interpreter in the lexical environmeat of pattern
malching. Brouadeast and when are ordinary Lisp functions, Other Lisp {unctions, such as cond, can also be used.




(when (OVER B ez When B is known to be over a certain block,
(broadcast (OVER A z))) cassert. A s over thar block.

If an assertion of the form (OVER B ©) is also broadcast, the action of this sprite will be to broadcast

(OVER A C).

Nested sprites, are common cnough to motivate a simpler notation. The patterns are all collected together

into one list delimited by curly brackets, For example, the form:

(whon {(ON =x =y)
(OVER y =z)}
(broadcast (OVER x 2)))

is functionally equivalent to the one above.

Sprites obey an important property known as commutativity. When there is a sprite S that is capable of
triggering on an assertion A, the behavior of the system is invariant with respect to the order of creation of S
and A. Tt does not matter if the sprite was created before the assertion or vice yersa for the sprite to trigger.
The ¥ther collection of asscrtions satisfy another importzint property known as monotonicity. Once an
assertion has been broadceast it can never be crased. The modularity of Ether code depends upon these

propertics.

3.3 Explicit Goal Asserlions

Many pattern-dirccted invocation languages have specific syntactic constructs for doing antecedent and
consequent reasoning (e.g. Planner’s antecedent and consequent “theorems™). It was later realized that only
one paltern-directed invocation facility was needed {7, 8, 91, Sprites can serve as antecedent theorems aswas
shown above. Assertions that represent goals can be marked as such so that the same syntactic construct can
be used for consequent as well as antecedent reasoning. deKleer et al. [9] describes a fanguage using explicit
controf assertions closely resembling the subsct of Ether developed in this chapter. A natural deduction logic

that bears a corlain resemblance is described in Kalish and Montague {10},
A simple consequent theorem embedded in a sprite is shown in figure 2.

Tig, 1. Shwple Consequent Sprite

{whan (GOAL {(MABMAL =x)) When there is a goal of demonstrating X Is & mammal,
(broadcast (GOAL (HUMAH x})) ey w0 show x i human.

{whon {(HUMAN x) Af you show xois human,
(broadcast (MAMMAL x)))) shroadeast thor x i @ mammal

This sprite, when invoked by a goal assertion, broadeasts a new goal assertion that can be picked up by
(possibly several) consequent reasoning sprites and worked on in parallel. A sprite is created that watches for

an assertions o be broadeast that walches for the new subgoal goal to be satisfied, I and when this assertion



appears the result (HUMAB X) is broadeast. Sprites of this kind, that watch for results of independent activity,
are called continuation sprites because of their similarity to continuations employed in other programming

languages.

There are many advantages in using explicit goal assertions, They allow the system to reason about its goals
{possibly concurrently with working on them.) There are at least four reasons why a procedural deduction

system should be able to reason about its goals.

1. It is often useful for a system to determine consequents of its goals in order to evaluate the plausibility of
the goals themselves, If the system can know what its goals are, then it can reason about the possible
applicability of techniques aimed at accomplishing these goals. This idea will be developed extensively in

section 5.3.

2. Moore [11] presents another use of the ability to have access to the goal structure. He demonstrates
numerous examples of situations in which there is a goal with two OR subgoals. 1t is shown (because of the
cxistence of these two sabgoals) that there exists a third subgoal, the successful solution of which will signify a
solution to the main goal. His examples of this are all of one form that might be characterized as the dual of

resolution. (He calls it "restricted goal resolution™.) I one subgoal is of the form:

P/‘\Qi/\.../\ﬂi
and the second is of the form:
P'A R,I FAVIAN Rj

where Pand P unify then it is sufficient to solve the goal:';'
DA ANQIARTA LA R’j

where the individual propositions ace instantiated by variable bindings resulting from the unification of P and
P Tt is based on the observation that it does not malter to the main goal which of P and —11* is achicved.
Since one of P and =P will be true, and all other prerequisites of the respective OR subgoals are achicved,

one of them will certainly be satisfied.

While this example seems somewhat artificial, (although Moore doves develop the idea extensively) other,
more semantically meaningful examples involving, for instance, planning can be imagined, Suppose you
want to do two things (have two goals): (1) Get money al the bank and (2) Buy a book. Let's say the bank has
two branches, one in Kendall Square and one in Harvard Square, you arce nearer Kendalf Square than

Harvard Square, but thore are book stores only in Harvard Square, To deduce that you should go to the
¥ Y g

.

T 1n our notation, the Q7 and R’ are the teems (1 and R, with variables replaced by constants resulting from the unification of P and P
& i i i ] b £



bank’s branch in Harvard Squarc the reasoning system must reason about its goals.

3. A more pragmatic, though no icss impbrmnt, reason for having expficit goal assertions 1s as an casy
technique for producing arbitrarily parallel processing on conventional machines. Conventional Lisp
interpreters contain a significant control state; there is a non-negligible amount of time required o switch
processes. 1f goals are created in a manner similar to the calling of functions in Lisp, a great deal of effort
must be expended to allow several goals to work in parallel. By not mimicing this aspect of the host language,

targe-scale paraliel development becoracs possible.

4. A problem that can arise in (particutarly, but not cxclusively) paralle! problem solving systems Is one of
ensuring that effort is not duplicated unnecessarily. If two distinct goal activities broadcast identical subgoals
we would like them to initiate only one new activity, not two. This follows automatically from the invisibility
of multiple broadcasts of a single assertion.T C'This is similar to a well-known difficulty with recursive
programming as can be scen in a recursive definition of the Fibonacei function. A Lisp definition of

Fibonacci is:

(defun FIBO (n)
{cond
{({=n 0) 0)
((= n 1) 1)
(t (+ (FIBO (- n 1))
(FIBO (- & 2)}))))

Calling (F180 6), for cxample, will require (FIB0 2) fo be cvaluated five separate times, and this count
increases crponentially with its argument. An Ether implementation of this same function is shown in figure
3.

Fig. 3. Fther Implementation of Fibonacci

{whon (COMPUTE (FIBO =n)) Af asked 10 compute (fibo n)
(cond

{{= n 0) Afonis 0,

{hroadcast (IS (FIBO 0) 0))) shroadeast the answer i3 0.

({= n 1) A L

{broadcast (IS (FIBO 1) 1)})) sroadeast the answer I8 1.

{t (broadcast (COMPUTE (FIBO <~ n 1>)}) [Otherwise comprde (fibo n-1),

(broadcast (COMPUTE (FIBO <~ n 2>))) - cand compute (fibo n-2).

(when {(IS (FIRO <~ n 12) =q) When vou have a value for (fito n-1),

(IS (FI80 <~ n 2>) =b)} rand a yvolue for (fibo n-2),

{broadcast (IS (FIBO n) <+ a b>}))))) sbroadeast their sum for (fibo n).

Because this sprite will only respond to the assertion (COMPUTE {¥1B0 2)) once, it will only compute the
answer once, Sequential problem solving systens can get around this problem becanse there is a guaranteed

scquencing between atlempts o solve a goal. Each goal activity merely has to record that it worked on the

: £ Ether sprites will respond to an assertion only once regardless of the number of times it has been broadeast



goal and what the result was. A later attempt to achieve this goal first checks to see if this information was in
the database. The THEoAL primitive of Micro-Planner half solved this by first checking the database to see if

the goal was present: apparently Micro-Planner repeatedly attempted failing branches.
8 i pp p f 8

A similar problem that we casily avoid is that of the infinite goal stack. 1f a goal attempts to set itself up as a
subgoal, work automatically stops at that point. This problem is much less serious one in parallel problem
solving systems compared with sequential systems executing a depth-first search where it can cause the system

to come to a grinding halt. In parallel systems an infinite goal stack only degrades the efficiency of the system.,

Given the presence of goal assertions with cxplicit activities created to work on them in parallel, we now have
the capability to compare and contrast them as they work. As work progresses new partial resulls arc achieved
that can enable the system to reapportion its resources. A simple example of this 15 a system attempting to
solve the goal (I)P() A Q(x)). The system in parallel attempts to find assignments to x that will make one
of the predicates P and Q true. If it succeeds in finding one such assignment (say P(a)), then it should allocate
rmore resources to working on a derivation of Q(a). Similarly, if it discovers —1P(b), it should certainly stop

working on the goal of showing Q(b).




Chapter IV Activities
4.1 Creating Activitics for Goals

The simple consequent sprite developed in figure 2 on page 12 has one obvious problem; there is no way to
stop work on the subgoal when the main goal has been achieved. For example, if the original goal assertion
was (GOAL (MAMMAL FIDO)) and it had been achieved, i.c. (MAMMAL FIDO) was broadcast, there is no
mechanism that would prevent work contributing to the solution of (60AL (HUMAN FIDO)) begun by the
consequent sprite from continuing. Our solution to this problem will be the introduction of the concept of an
activity. An activity is a locus of control with some purpose. We would like to create two activities, each
containing all work on each of the two subgoals. The example in figure 2 is redonc using activitics as shown

in figure 4.

Fig, 4, Simple Consequent Sprite With Activitics

{(when (GOAL (MAMMAL =x)) =activity Jf you want 1o show X s a mammal,
(1et {(subgoal (new-activity)}) ;Create a subgoal activity.
{broadcast {GOAL (HUMAN x}) subgoal) JTvy 1o show x is hwman in this activity.

(when (HUMAN x) AAf you show X is human,

(hroadeast (MAMMAL x))) coroadeast x i @ mammal,

(when (MAMMAL x) Af you learn x is a mammdl,

{broadcast (STIFLE subgoal))))) stifle the subgoal activity.

There are a couple of new syntactic constructs used in this cxample. You will notice that sprites (such as the
main one) can take two clements in the pattern instead of one. Also notice that broadeasts (such as the first
onc in the body of this sprite) can take two arguments. The second argument in both cases is the activily
marker. ‘The main spritc will trigger if an assertion has been broadcast that matches its pattern and that
assertion is part of a currently active activiry. The main goal, if it is to enable this sprite, should be part of
such an activity. The function aew-aetivily creates a new activity that becomes a sub-activity of the current
activity. The new activity (bound to subgoea1) becomes the activity of the new subgoal of the main goal. The
goal assertion, representing this subgoal, is broadeast with this activity as a seccond argument. As before, a
sprite is created that watches for the the result of the subgoal to appear and then broadeasts the main sesult.
An additional sprite Is created that waits for this ruain result to appear, and if so, broadcasts a STIFLE
asscrtion. These cause work on the created activity to'halt. STIFLE is an Ether primitive.

At Ticst glance it would seem that (he two sprites created (the one that cheeks for the result and the one that
doces the stifling) could have been combined into one. Why have they been separated? Remember this is a
paralfel problem solving system, There may be, concurrently running with this solution attempt, other such
activities with the same overalt purpose. Or it may be that this fact is learned by the system in some fortuifous
uncxpected way. It doesn't matter. I ever the resull is achieved, repardless of how, the activitics created to

achicve them will stop working.




4.2 General Schemas for OR and AND subgoals

Traditional prob‘lcm'solving theory presents two standard techniques of backward chaining [12] based on
whether one or all of a collection of subgoals must be satisfied for its parent goal to be considered satisfied.
We will present Ether templates for doing these two kinds of reasoning where all subgoals are attemipted in

parallel,

4.2.1 OR Subgoals

If we wanted to determine If an object is a living thing it would suffice to determine cither that the object is a
plant or an animal. We can say this in Ether by creating two sprites, cach watching for a LIVING=THING goal to,
be broadcast as shown in figure 5. One bwadca%t‘; an g_,_MAL goal and th other a PLANT goal. Appropriate

continuation sptites are also created to broadeast the LIVING-THING asscriion if cither of the subgoals are

achieved.

Tig. 5. Simple Or Subgoals

{when {GOAL (LIVING-THING =x)) =activity
(let ({subgoal {new-activity)))
(broadcast (GOAL (ANIMAL x)) subgoa])
(when (ANIMAL x)
(Broadcast (LIVING-THING x)))
(whea (LIVING~THING x)
(broadcast (STIFLE subgoal)}))))

(whon {GOAL (LIVING-THING =x))} =activity
{Vtet {(subgoal (new-activity)))
(broadcast (GOAL (PLAMT x)) subgoal)
(when (PLANT x)
(broadcast (LIVIMG-THING x)))
(when (LIVING-THIEG x)
(broadcast {STIFLE subgoal)))))

Jf you want to show x is o fliving thing

sStart a subgoal activity,

Ay o show x is an animel.
Jf xods an animal,

sbroadeast x is a living .ing
HF you learn x o is o living thing,
stifle the subgoal

JAf you want fo show x is a living thing,

sstart @ subgoul activity.

Ty to show x s an plant.

Af you learn x is a plant,
sbroadeast xois o« living thing,
A you learn x s o living thing,
ssiifle the subgoal.

Notice that the activitics working on each of the subgoals stop if the main goal is satisficd, regardiess of

how. We could create a thivd such consequent sprite and insert it in the system and these would stifl behave

propetly.

4.2.2_AND Subpoals without Yariables

If we wanted to determine whether a person was a bachelor it would

male and vomarried. This could be accomplished by the following:

be sufficient to determine that he was

This consequent broadeasts the two gud subgoals simultmeously and establishes continuations awaiting the

results. When they are recelved, the individual subactivities are stifled. Another continuation sprite awaits

the suecessiul completion of both subactivities and broadeasts the main result,




Fig. 6. Simple And Subgoals

™ - (when (GOAL (BACHELOR wx)) wactivity sIf you want to show x is a bachelor,
) (Tet ((subgoall (new-activity)) :Start ore subgoal aciivity,
{subgoal? {new-activity))) sand another subgoal activity,

(broadcast {GOAL (MALE x)) subgoall) [Try to determine if x Is male.

(when (MALE x) Af you learn x is male,

(broadcast (STIFLE subgoall))) sstifle the subgoal activiey.

{broadcast (GOAL (UNMARRIED x)) subgoal2) sTryio determine i x Is unmarried,

(when (UNMMARRIED x) Jf you fearm thar x #s unmarried,

(broadcast (STIFLE subgoal?))) sstifle the subgoal activity.,

{when {(MALE x) A you leam that x is male,

(UNMARRIED x)} sand that x is unmarried

{broadcast (BACHELOR x))))) ;broadeast that x is a Dachelor.

Activities form -a tree by a subactivity relationship. When an activity is $T1rLEd, it and all activities
transitively related to it by the subactivity refation stop work. The patterns of these consequent sprites are
followed by a pattern variable (Le. =activity) to indicate the match will only occur if the goal assertion, the
sprite’s pattern, was broadcast in an activity that is currently functioning. Any new activitics produced inside
the body of this sprite become direct subactivitics of the activity in which the assertion was broadcast. The
“next section contains a precise description of how activitics are defined and their relationship to the other

objects in the system: sprites and assertions. Note that if the main goal activity bound to agtivity is stifled at

. any time work on its subgoal subactivitics subgoal1 and subgoal2 stop work.

4.3 How Activities Work

This section describes how activities function, what being in an activity means, and their relation to the other

concepts of the system,

The Tther environment consists of asscrtions and sprites.  The actual "work™ of the system is done by
executing the bodies of sprites that have been triggered by assertions. In order for a sprite to trigger, it must
be part of some (non-stifled) activity, Associated with cach currently active sprite is an activity. Associated
with some assertions (those representing goals, for instance) must be onc or more activities that will supply
processing power to sprites matching the assertion, i.e. sprites capable of carvying out the tasks called for in

the assertion.

There are two cases that need be considered.

{a) 1f the sprite is of the form:



(when (patlern)
body)

and is part of a currently active activity, the match will be processed. Al new broadcasts and sprite activations

- that result from cvaluating the sprite’s body will happen in the same activity.

(b) If the sprite is of the form:

(whan (paltern) sactivity
body)

is part of a currently active activity and the assertiont has been broadcast With onc or more activitics that are
currently active, the match will happen. All new broadcasts and sprite activations that result from evatuating
the body will happen in a new activity that is a subactivity of a/f the activities the assertion was broadeast in.
This property Is retroactive. 1f the assertion associated with the parent activity is subsequently broadeast with

a new activity, this activity is added to the list of parents.

When an activity is stifled, all work occuring in that activity is halted. [If this activity has subactivitics they are

also stifled providing they do not have additional parent activities that arc not stifled.



Chapter V. Hypothetical Reasoning

Many procedural deduction systems contain facilitics for creating separate subwoilds of the then current
collection of assertions (world model) to allow rcasening new deductions to be made that are contingent on
this collection of assertions.. New deductions made are placed within this subworld aad thus the rest of the

system is left unaltered.

The notlon of a sitwation is introduced by McCarthy [13] as one way of accomplishing this. All n-tuple
assertions are made into n-+ 1-tuple assertions by the inclusion of a situational tag. For example the assertion
(HAS MONKEY BANANAS) can be rclativized to become (HAS MOMKEY BAHANAS WORLD16). Then if all asscrtions
are so relativized, the problem solver can reason about what would be truc in worLD16 and can make new

assertions that apply to that world without affecting the state of belief about other hypothetical worlds.

0a4 introduced the notion of a confext for similar reasons. Contexts are a gencralization of Algol block
structure. Contexts can be pushed and popped. When a context is popped, changes made in that context
become invisible. QA4 gencralizes block structure by making it possible to coroutine between the various
contexts; contexts form a tree structure. The Qa4 context mechanism is somewhat less general than situational
ags because only one context can be current at a time, This makes it impossible to concurrently examine and
manipulate several of them. Contexts do supply one additional structuring mechanism that situational tags
do aot, 'When a context is pushed the new context contains all the nformation contained in the previous
context. This makes it casy to determine the implications of making a change to the current world model

without making a separate copy of it.

Context and situational tag-like mechanisms are used to create hypothetical worlds inside the machine that can
be reasoned about separately. There are two reasons for wanting such a mechanism. The first is to determine
the consisiency of a hypothesis with presently believed facts, The second is to determine the implications of
making changes to the curient world as would be done in robot planning problems, for example. We will call
these two uses additive and manipulative, The name additive is used because the collection of assertions
representing the new hypothetical world is a superser of the assertions in the old one. Manipulative
mechanisms are more general, The assertions in the hypothetical world pz‘loduccd are a function of the
assertions in the onc it was derived from.  Manipulative mechanisms are inherently more complex. Most
problent solving systems place more emphasis on manipulative rather than additive hypothetical reasoning
and in fact do not recognize the difference. We have found some new uses for additive mechanisms in
parallel problem solving and will concentrate only on these in this paper. A discussion of manipulative

hypothetical reasoning and their uses in planning will appear in a later paper.



5.1 Viewpoints

The term given to the Fther analog of context or situation is viewpoint. Vicwpoints have the flexibility of
sitnational tags and an inheritance mechanism something like contexts, All assertions representing facts about
the world are considered to be in some viewpoint, The syntax for these assertions is a 2-tuple: the first
element is the assertion itself and the second is the viewpoint. For example ({08 A 8) H1) means that
(O A B) is truc in viewpoint H1. So far viewpoints look just like situational tags. When vicwpoints are
created, they may be declared to be subviewpoints of other viewpoints, When a viewpoint is .made a
suhwcwpohn(ﬁanomcrﬁnanadthciwpoﬂmsﬁ)dla%cnmnsofmcsmmndv#ﬂmH}bemnnca%cmmnsof
the first; i.e. sprites will trigger on them as if they were actually broadeast in the subviewpoint, This concept is

similar to Fahlman’s [4] notion of virtual copying,’.T

The function used to create new viewpoints is called new-viewpoind, 1t is given as an optional argument the

vicwpointjF it is a subviewpoint of, 1t might be used in the following way:

Y

{let ({(bypothetical (new-viewpoint (parent INITIAL})))
(broadcast ({(ON B C) hypothetical}))

This has the effect of creating a new viewpoint {(which we will call "wypoTHETICAL” for the sake of discussion)

that is a subviewpoint f the currently existing viewpoint INITIAL. Suppose that INITIAL had three assertions

in it at some point in time: ' o k o
((ON € A) INITIAL)

{(ON A B) INITIAL)
((MADE MOOH ROQUEFORT) INITIAL)

Then immediately alter the broadeast, HypoTHETICAL would contain (at least) four assertions:

((ON C A) HYPOTHETICAL)
({ON A B) HYPOTHETICAL)
{ (MADE MOON ROQUEFORT) HYPOTHETICAL)
T ((ON B C) HYPOTHETICAL)

~The contents of INTTIAL is not affected at all. Note also that any additional assertions broadeast a any fitture

fime in IHITIAL will immediately appear in HYPOTHETICAL; there are no race conditions betwoen subvicwpoint
crealion andd broadeasting in superviewpoints,  We will use a diagraramatic representation o describe

#

{ The terminology here is somewhat ambiguous. We will sometimes consider ((ON A B) 111) 1o be an assertion and somctimies consider
it o represent the assection (0N A B)Y in viewpoint 1L Hopefully this will not cause confusion.

ZII The viewpoint hierarchy can be more gencral than a tree structure, A viewpoint can be a subviewpoint of wore than one other
viewpeint. The sebvicwpoint hicrarchy can form any graph without dirccted eycles. The assertional content of cach of the parents s

virtually copied into the subvicwpoint. We do not have the multiple parent inherifance problemy thal peawrs in classstructured

languages. Tor the remainder of this chapier, though, all viewpoints will have no more than one parent.



viewpoint structures as shown in figure 7.

Tig. 7. Example of Hypothetical Viewpoint

| l
! (0N CA) |
| (0N A B) ]
} (MADE MOOH ROQUEFORT) |
I |
{ initial]
I |
| (0N 8 C) |
| I
| hypotheticall

Individual viewpoints are shown as boxes of assertions with subvicwpoint relations indicated by arrows. An
assertion that is virtually copicd from one viewpoint to another will be explicitly shown only in the viewpoint
it was actually broadcast in.” However, to antecedent sprites, it will appear just as if the the assertions were
carried along the subviewpoint link and actually placed in the fower viewpoint. Suppose there was an active

anteeedent sprite such as:

{when [({ON =x =y) HYPOTHETICAL) A xcis on yoin the Iypothetical viewpoint,
({0t y =»z) HYPOTHETICAL)} saud ¥ is on oz In that viewpoint,
(broadcast {(ON x z) HYPOTHETICAL))) Jdssert x is on z in that viewpoint,

Then the asscrtions (o8 A 8) and (o8 B ¢) will be picked up by this sprite and cause (ON & €) to appear in

HYPOTHETICAL., The new viewpoint structure appears in figure 8. When doing antecedent reasoning from the

Fig. 8, Hypothetical Viewpoint After Processing

| |
I (01 C A) |
| (0N A B) |
| (MADE MOON ROGUEFORT) |
| f
| initial)
| I
l (o 8C) |
| (OH A C) |
| 1
[ hypothetical]




v -23-

assertions in a-hicrarchy of viewpoints, the only assertions to be actually broadeast in the subvicwpoint are
those that depend on the new assertions broadeast in the subviewpoint. This (assuming additive inheritance) is

a rather trivial contribution to the study of the frame problem,

511 _Antecedent Reasoning With Yiewpoints

All work, including both conscquent and antecedent reasoning, must occur in some activity, The ¢mphasis
throughout this work is on schemas for conscquent reasoning., Code for creating activitics to pursue
antecedent reasoning has been, for the most part, left out of the examples. Our technique for instantiating
antecedent sprites is a variation on the one used by Charniak [14]. The key idea is we have a sprite that
requires an activity to trigger (just as we do with goals). The assertion this sprite triggers on indicates the
viewpoint on which antecedent reasoning is to be done, This sprite creates the antecedent sprites in the new

activity. In Ether code this appears as follows:

(when (ANTECEDENT-REASON viswpoint) =activity
(whon {antecedent; viswpoint)

(broadcast (consequenty viewpoint}))
(when {antecedenty viewpoint)
{broadcast (comsequenty viewpoint)})

P

(when (antecedent,, viewpoint)
{broadcast (conscquent, viswpoint))))
There may of course be many antecedent reasoning activities working on a given viewpoint. If the antecedent
sprites are divided into several activitics according to the semantics of the problem domain, these activitics

can be manipulated separately as the computation progresses.

Tt is the responstbility of the codce that creates a viewpoint to initiate antecedent reasoning on the viewpoint.

5.2 Deduction by Antecedent Reasoning to Anomalies

Qne use for additive viewpoint inheritance is in doing what mathematicians call indirect proof. Indirect proof
is a proof method in which the negation of the theorem that is desired 0 be proved s assumed and
contradictory consequents are demonstrated.  Indirect proof is used very commonly in mathomatical
reasoning. 1€ you scan a typical text in Topology, say {15], it scoms that more than half the theorems use

indirect proof for at least part of their demonstration.

There has been some argument in recent years that indirect proof is not appropriate as a sound basis for
reasoning in domains outside pure mathematics.  The argument asserts that any complex reasoning
mechanism must contain some mutually incompatible beliefs. £ some assumption is made a contradiction
will be ubtainable. Thas any fact you like is derivable via indirect proof. While the basis of this assumption

(the mherent inconsistency i the belief structures of a sullicicntly complex reasoncer) is undoubtably correct,




and strongly suggests that logic cannot be an ultimate basis for rcas;oning,1 the plausibility of some

mechanism very much like indirect proof for reasoning about negative goals scems still quite necessary.

The basic idea is that the reasoning mechanisms imagines the antithesis of the negative goal 1o be true ina
scparate hypothetical world that also contains facts currently known to be true. This world is then examined
for anomalous conditions, If one is found, the original negative result is asserted. For example, if T wld you
there was an angry skunk in this room you would not betieve me. How do you so quickly decide this? T
propose that the reasoning goes something like: "Suppose there were an angry skunk in this room. Then
there would be a horrible odor. I'do not notice a horrible odor, Therefore there is no such skunk here.” We
have achicved a negative goal. What we have done is created a world inside our machine in which we placed
all known facts plus the fact that there was an angry skunk in the room. The antecedent theorems "went to
work” and quickly discovered an anomaly. This mechanism scems far more plausible than straightforward
consequent reasoning. It is easier to imagine an antecedent-driven indircct proof-like mechanism for doing

this than a consequent method that knows how to prove a skank isn’t in a room.

The reason this mechanism seems primarily uscful for deriving negative results in "common sense reasoning”
is that the technique depends on the ability to reason antecedently from the negative of the fact to be
demonstrated. If the goal was to pi‘@vc there is'a skunk in the room we would have to imagine a workd that
contained the one additional fact of there nos being a skunk in the room. Certainly this fact would not trigger

any new facts and thus nothing can be learned; no anomalics could be found.

Tt is interesting to note that indirect proof, in mathematics, does not exhibit this limitation. This is because of
the nature of mathematical concepts. In mathematics, if we can derive interesting facts from the proposition
P, then it is also likely that P will have interesting consequents. One mathematical argument might go like
"Supposc topological space T is Hausdorf, Then there is some open neighborhood U of x such that .." or fike
"Suppose topological space T is not ausdorf, Then there are two points x and 'y in T such that there is no
open set containing y that does not contain x. ..."" There does not seetnr to be the same asymmetry as exists

with commo sense reasoning.

The way we would do indirect proof-type reasoning in Fiher is by creating a viewpoint that inherits {rom the
viewpoint containing facts about the world and place in that new viewpoint the negation of the fact we are
trying to deduce. In addition to deing normal antecedent reasoning on this vicwpoint, special "anomaly
expert” sprites are created o watch the viewpoint. In a logic theorem prover, an appropriate anomaly cxperts

would be a sprite that checks for simultancous cxistence of a fact T and o fact 1P in'the knowledge base.

‘ Hayes [16] does not discuss this objection to logic in his otherwise fusightfuf criticism of criticisms of logic. However, in Tayes
defense, for this problem to be of important pragmatic concert would require the construction of systems much more intricate than any
discussed to date in hearlificial intelligenee litevature,




As an example of the use of indirect proof in Fther, suppose we had a viewpoint (called worRLD) with the
following assertions: (3 Q R), (D P Q), and —R, with a goal of ~ip, Figure 9 shows a sprite that knows how
to prove negative goals via indirect proof. Tt docs this by creating a new viewpoint and places the antthesis of
the negative goal (P) in this viewpoint., Anteccdent sprites working on the upper viewpoint also work on the
fower one, placing all results that involve any of the assertions in the hypothetical viewpoint explicitly in it,
One additional sprite is created that watches for contradictions in this hypothesis viewpeaint, If they are

found, the result (—P) is broadcast in the upper viewpoint,

Fig. 9. Sprite that Initiates Indirect Reasoning

(wion (GOAL ((™ =x) =w))} =activity Af there Is a negative goal

{1et ((hypothasis {(new-viewpoint w))) ;Create a new hypothesis viewpoint
(broadcast (x hypothasis)) ;Place the goals antithesis in this viewpoint
{when {{(™ =y) hypothesis) Af a faet and irs negarion

(y hypothasis)} cappear in the hypothesis viewpoint
(broadcast ((77 x) w))))) :Broadeast the resultant theorem.

In order to get the ball rolling, the following would have to be exccuted:

{breoadcast {GOAL ({7 P) WORLD} ACTIVITY5)

(when ((™ P) WORLD)
(broadcast (STIFLE ACTIVITY6)))

W¢ do not have the continuation sprite in figure 9 stifle the activity of the indirect proof activity directly.
Rather, we create a separate sprite that watches for the result to be achicved and then stifles the activity, It

should not matter who solved the goal, or how it was solved, for this activity to be stified.

The 6oAL asscrtion will be picked up by the conscquent sprite shown in figure 9 and will create a viewpoint
structure as shown in figure 10, Assuming we have activated an antecedent rule implementing modus ponens,
new facts will be derived in the hypothesis viewpoint producing the viewpoint structure of figure 11, Then
the sprite that was created to watch for assertions and their negations will detect R and =R being present in
the lower viewpoint and broadeast the result to the higher viewpoint as shown in figure 12, At this point the

sprite that watches for the goal (=) to be achieved stifles acTIvITYs and all work attempting this goal stops,

The purpose in our introducing techniques of indirect proof are twolold, First, it is an example of a program
in which the reasoner can concurrently reason about different world models (viewpoints) in parallel.  Auny
conscquent directed sprites that picked up the goal of 1P would have worked unhindered in parallel with the
one attempting indireet proof. The second purpose is suggested by the skunk example above, If P does not
inply any anomalies {i.e. =P is nor derivable by indirect proot) then P is at least plansible. This is the subject

of the next section.,
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Fig. 10. Tnitial Indirect Reasoning Viewpoint Structure

| |
| OPQ) l
| =R !
} {DOR) {
| world|
| I
I p |
! I
| hypothesis)
Fig. 11, Subsequent Indirect Reasoning Viewpoint S{ructure
I : |
| orYy |
| —R I
i QR ;
| world]
I |
| [ |
| Q |
l R o
| |
l hypothesis|

5.3 Modeling Goal States and Opponents

A well known difficulty with backward chaining is that it can casily lead to_exponentially widening trees of
goals where many of the goals in the trec are to achicve states that are simply not true, There is a greal
advantage in stifling the activity working on untrae goals; every such goal is itsel{ the root of an exponentially
widening tree of (guaranteed usclesst) subgoals. The strategy we will adopt in this section s to create when
appropriate a model of what the world would be like if the goal were true and see if there are any anomalics

that would indicate that the goal is unachievable. In Ether we do this by creating a viewpoint that inherits




Fig. 12. Final Indircet Reasoning Viewpoint Structure
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. from the viewpoint containing the world model in which the goal is broadeast. This viewpoint represents

what the world woul'l be like i the goal were true. We instantiate both standard antecedent sprites arx
A7, E & ;

anomaly detection sprites that work on this viewpoint.

In this section we will build on the cxample of simple OR subgoals in figure 5 on page 17 which contained
two sprites that turned a goal of showing some object was a LIVING-TRING into two subgoals of showing it is a

FLANT or an AMIMAL. We will assume now that we have a world model containing facts about the objects in the

system, In particular we may know some facts about the object we wish to prove is a LIVING-THING {(call it

FRED), say thatil is MoszLe. This along with other facts about our world are contained in a viewpoint, We will

modify the consequent sprites shown in figure 5 to create new viewpoints containing the subgoals themselves,
In these subviewpoints antecedent reasoning is performed on the goal also using information contained in the
world model viewpoint. In this way the consistency of the subgoal is checked, We know of only one fact 50
far, though the world model perhaps containg many others; that fact i that Fred is mobile, Our database

contains at least the following asscrtion: ((MOBILE FRED) WORLD).

In figure 13 cach of the component subgoals establishes a viewpoint that inherits from the woRLD viewpoint.”
In this viewpoint is placed the assertion of the goal. We want to do antecedent reasoning on the contents of
these new viewpoints. There are presumably alrcady antecedent sprites that are pallern matching on the
HORLD viewpoint. We would fike to extend their range of application to the newly created viewpoints, There
s an Uther prinitive for doing this called SPRITE-THHERTTS. [t is broadeast with two arguments, the inherited

and inheriting viewpoints, 1t must be broadeast in o cortain activity in which all the work done by these




Tig. 13, OR Subgouls With Opponents

{(when (GOAL ({LIVIHG-THING w»x) =h)) =activity Jf there s a goal of showing x is « living-thing
(tet ((subgoal {nsw-activity}) jereare a new activity for a subgoal
{subplat {new-viewpoint h))) sand @ new viewpoint for an opponent
{brondcast (GOAL ((ANIMAL x) h)) subgoal) ‘Broadeast the new subgoal.
{when ((AMIMAL x) h) Jf the subgoal has been achieved
(broadcast ((LIVING-THING x) h))) ;Broadeast x is a living thing

(whon ((LIVING-THING x) h) JAf you determine x s a living ihing
(broadcast (STIFLE subgoal))) : sstifle the subgoal

(broadcast {{ANIMAL x) subplat)) ;Broadeast the gonl to the opponent viewpoint.
(broadcast (SPRITE-INHERITS subplat h) subgoal) Jand swart antecedent reasoning.
{when ((CONTRADICTION) subplat) JAf the opponent viewpoini is contradiciory,
{broadcast (STIFLE subgoal)})))) sstifle the subgoal,

{when (GOAL ((LIVING-THING =x) h)) =activity f there is a goal to shown x is a living thing
{let ({subgoal (new-activity)) . ;Create a new subgoal activity,
(subplat (new-viewpoint h))) ;and an opponent viewpoint,
{broadcast (GOAL ({PLAHT x) h)) subgoal) ;Broadeast the new subgoal,
{when ((PLANT x) h) JIf the subgoal has been achieved,
~(broadcast ({LIVING-THING x) h))) ;Broadeast x is a living thing

(when ({LIVING-THING x) h) Af you determine x is a living thing,
(broadcast {STIFLE subgoal))) jstifle the subgoal

(broadcast ((PLANT x) subpTat)) Broadcast the goal to the opponent viewpoint,
(broadcast (SPRITE-INHERITS subplat h) subgoal) qand start antecedent reasoning,
{when ((COMTRADICTION) subplat) Jf the opponent viewpoint is found contradictory,
(broadcast {STIFLE subgoal))})) stifle the subgoal avtivity.

inherited sprites happens.  If that activity becomes stifled all work done by these sprites in the inheriting
vicwpoint stops. We create an additional sprite watching for contradictions to be determined via antecedent
reasoning. IFonc is found, the subgoa? activity (which includes the antecedent reasoning on that viewpoint) is

stifted. The viewpoint structure appears in figure 14,

Fig. 14, Viewpoint Structure for OR Subgoal Opponent

| |

| (MOBILE FRED) ]

| |

| world)
| o | | , |
| (PLANTFRED) i | {(ANIMAL FRED) |
| (CONTRADICTION) | | 1
| | | |
| hypothesisi| l hypothesis2]

Antecedent reasoning will cventually determine that moBILE and PLART arc incompatibie propertics and
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broadcast the (CONFRADICTION) nsscr,tion‘T

The general name we give to work being done to try to prove goals insoluble is opponent activity. The
viewpoints created to look for contradictions for an opponent activity are called opponent viewpoints. The

opponent concept is a generalization of what is usually referred to as goal filtering.

The most familiar example of goal filtering in the literature is the classic geometry theorem proving program
of Gelernter [17]. His program used only backward chaining. A representation of the diagram was available
to the program, Before it would attempt work on any goal it first checked to see if the theorem was true of the
diagram. If it was not truc,'work on the subgoal was never begun, Otherwise the subgoal was attempted.
"This is analogous to our creation of a new inberiting viewpoint in which the goal is asserted and contradictions
are looked for. Opponents arc more general than goal filters because we do not require the opponents to
always terminate in a reasonable amount of time. It wounld be catastrophic in a scquential system using goal
filtering if even rarely the filtering procedure did not terminate. Tmagine that instead of proving the validity
of a theorem in geometry we were interested in satigfiability. Presence of suppotting evidence in the diagram
would solve the problem. Tack of supporting evidence would not be useful information. Tlowever, our

opponents would still be useful, If a contradiction was determined then the theorem would not be safisfiable.

+

In the event of and subgoals we would crcate an opponeat viewpoint that contained all the conjuncts. The

example of AND subgoals in figure 6 is redone in figure 15.

Tiig. 15, And Subgoals With Opponents

{when {GOAL ((BACHELOR =x) =h}) =activity Af there Is a goal of showing x i a bachelor,
(Tet {(subgoall (nww-activity)) ;Create a subgoal activity,
(subgoal2 (new-activity)) cand another subgoal activigy.
(subpiat (new-viewpoint h)}) [Create an opponent viewpolnt,
(broadcast (BOAL {(MALE x) h)) subgoall) Broadeast a maele’ subgoal.
(when {(MALE x) h) A x o is shown (o be mule,
(broadcast {STIFLE subgoall))) cstifle thut subgodd,

(broadcast {GOAL {(UNMARRIED x) h}) subgoall) sBroadeast om unmarried” subgoal.
(when ((UHMARRIED x) h) Af xois shown o be wnemrricd,
{(broadcast {STIFLE subgoal2)}) stifle that subgodd,

(when {((MALE x) h) Af xois shown to be male,
((UMMARRIED x) h)} sand x i shown to be unmarried

{broadcast ((BACHELGR x) h))}) sbroadeast x s a bachelor.

(broadcast {(MALE x) h)) [Broudeast « male assertion W the oppenent viewpoint.
(broadcast ((UNMARRIED x) h)) JAnd also an unmarried assertion,
{broadcast {SPRITE-IRHERITS subplat d) subgoall subgoall) sdntecedently reason,
{whon ((COHTRADICTION) h) JAf dhere s o coniadiction,
(broadcast {STIFLE subgoall)) Seifle one subgoal,

{broadeast {STIFLE subgoal2))))) :Stifle the other subgod.

Unlike the case with OR subgoals, we require only onc opponent viewpoint in which we putall the conjuncts

Because all must be true if the goal is o be realizable. Figure 16 shows the viewpoint structure created for a

[ Ifit scems to you that an unreasonghly large amount of antecedent reasoning must be done to support this, see section 6.3,




particular world model by the consequent sprite of figure 15 after two independent goal broadcasts:

(GOAL ((BACHELOR JOHH) YORLD))
(GOAL {(BACHELOR SUE) WORLD))

Iig. 16. AND Subgoal Opponent Viewpoint Structure

I |

] { FEMALE SUE) i

I |

| I

| world)
l | | I
| {MALE JOHN) | | (MALE SUE) |
| {UNMMARRIED JOHN) i | (UHMARRIED SUE) |
% |- | |
| Johu's opponent, | Sue’s opponeni

Doth goals are processed concurrently with opponent activity trying to refute them. In cach opponent
vicwpoint is a description of what the world would be like if the goal were true. One of the apponents (Sue’s)
rather  quickly discovers a contradiction as shown in figure 17 and the activity working on

(GOAL ((BACHELOR SUE) WORLD)) is stifled.
5.4 Modeling The Goal Stack in Opponents

If there are several goals artanged hicrarchically we would like the opponent viewpoints to chain togetherin a
way that mimics the goal stack. Subgoals tower down can often be constrained by the overall purpose of the
main goal. Tor example, if we had the goal stack of figure 18 where the BACHELOR goal establishes two
conjunctive subgoals: UMMARRIED and MALE and the UNMARRIED subgoal tn turn sets up a subgoal (o show FRED
does nat have a wussano. This, however, is a subgoal that is only applicable in cases where the object is a
fomnale. The subgoal should get stifled immedintely, Using the methodology for opponents shown so far, this
constraint would not be carried along because cach opponent inherits from the viewpoints containing the
world model viewpoint.  Instead of having cach subgoal link its opponent directly to the WoRLD model
viewpoint, we would Tike it to link its opponent Lo the opponent of the goal it is a subgoal of. Tor this
particular example, the opponent viewpeint structure is shown in figure 19. In order to make this work, we

must pass the name of the opponent viewpoint along with the goal assertion itself. The consequent sprite in




Fig. 17. Subsequent ANT Subgoal Opponcnt Viewpoint Structure

| i

| {MALE JOHN) |

| l

I l

| world
| l | ' |
| (MALE JOHN) | | (MALE SUE) |
| {URMARRIED JOHN) ] ] (UMMARRIED SUE) |
! ! | {CONTRADICTION) ]
! [ | I
] Jolin’s opponent] | Sue’s opponesnd]

Tig. 18. Example Goal Stack

(GOAL (BACHELOR FRLD))

|
(GOAL (UMMARRIED FRED))

]
|
|
I
|
(GOAL (HOT (HAS FRED HUSBAND)))

Figure 15 s redone in figure 20 with this modification. The explicit goal assertion contains an additional
element: the name of the opponent viewpaint working on the goal. This atlows the code in the sprite bodics
to make the newly created opponent viewpoint a subviewpoint of the epponent viewpoint of its supergoal.

Cther than this, the code is identical,
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Pig. 19. Opponent Viewpoint Structure for Goal Stack

............................

Fig. 20. Code to Create Viewpoint Goal Stack Model

(when (GOAL ((BACHELOR =x) =h)

=opponent) wactivity

{Yet ((subguall {new-activiiy})

(subgoal2 (new-act

fvity))

{subpiat (new-viswpoint opponent)))
{broadcast (GOAL ((MALE x} h)) subgoall)

(when ({(MALE x) h)

(broadcast (STIFLE subgoall}))
(broadcast (GOAL ((UHMARRIED x) h)) subgoal2)
(whan ({UKMARRIED x) h)

{broadcast (STIFLE subgoal2)))

(when {((MALE x) h)
( (UMMARRIED

x) h)}

{broadcast ((BACHELOR x) h)))
(broadcast ({UHMARRIED x} subplat))
(broadcast ((MALE x) subplat))

(broadesst (SPRITE-
subgoall

INHERITS subplat opponent)
subgoal?)

(when {(CONTRADICTION) subplat)
(broadcast (STIFLE subgoall))
(broedcast {STIFLE subgoal2)))))

Af you want io show x is a bechelor,

[Start one subgoal activity.

[Start another subgoal activity.
[Create an opponent viewpoint,
:Broadeast a ‘male’ subgoal,

Jf x i shown to be male,
SStifle the subgoal acrivity.
sBroadeast an unmarried” subgoal.
Af v s shown to be unmarried,
stifle the subgoal.

Af xcis shown 1o be male
Cocand xois shown to be wnmarried,
(Broadeast x is a bachelor.

[Rreadeast wwnasried” 1o the opponent.

[Breadeast “male’ to the opponent.
[Start antecedent reasoning,

JIf there is a contradiction,
stifle one subgoal activity,
sand stiffe the other subgoal activity.



5.5 The Relationship Between Viewpoints and Activities

In every example in this chapter we have created viewpoints and activitics in parallel. Whenever there was a
problem to be solved, an activity would be created to pursue the problem and a viewpoint created to serve as
a "scratch pad” for the activity. This close relationship might tempt one to siniplify the language somewhat

by combining the two notions.

Viewpoints and activities are, however, guite distinct notious. Viewpoints are a mechanism for :;U“ucturi.ng
and localizing knowledge, Activities are a way of controlling the processing that actually gets done. Less
trivial programs in Ether than the cxamples in this paper might require the use of an activity that nceded to
access more than one world model (i.e. viewpoint) to accomplish its purpose, Converscly, the information in

a viewpoint may be useful irrespective of the state of the activity that created it.




Chapter VI Some Further ldeas
6.1 Resource Control

We have argued that by allowing many processes to run concurrently tighter eontrol over certain search
problems can be achieved, This increase in control can come from two sources: (1) taking advantage of wide
variabilitics in the timings of methods, and (2) the use of opponents to prunc demonstrably useless attempts.
The system is able to capitalize on interactions between various running activity in ways that would be
hopelessly complex to manipulate by a coroutine-like control structure.  Akthough ocur system is protected
from catastrophic failure when individual activities diverge, there is onc sensc in which we have lost control;
wc have no means to protect the system from getting choked with thousands upon thousands of activities,

choked to the point where no activity can do anything at alll

6.1.1_The Basic Idea

The kinds of problem solving situations Ether is designed for involve substantial trees of backwardly chained
goals. These problems have the character that any given approach (goal) is not likely to succeed. We have
proposed onc mechanism, namely opponent activity, that can achieve eventual pruning of activities working
on useless subgoals. Often it will require some amount of work to be done for a geal to be pruned. We are of
course most interested in pruning goals higher up in the tree. Because of the exponential growti character of
expanding goal trees, there may be, in a short time after the program is started, so many running activitics that
none can get anything done. The system becomes choked. Fven if you see this scenario as being somewhat
unreatistic, it would scem that in a Targe problem solver some fittle comer of it would have this property of
generating many useless activities that do not get quickly stifled. This one corner would grow in a cancer-like
way and could come to dominate the entire problem solver. This is the traditional idea of a "combinatorial
explosion” applied to activities instead of data. We have to provide some means of preventing it from getting

out of hand.

Our sofution to this problent is the introduction of the notions of processing power and energy. The machine
15 viewed as a finite resource usable at a constant rate in the sense that during a given interval of time the
machine can do a constant amount of work. Drawing an analogy with physics, we say that a machine has a
constant amount of power available to it that can be divided among its running activitics. Fach activity uses
up an amount of energy cqual to the time integral of the power avaitable to i, When an activity creates
another activity, it mnst give up a certain amount of its processing power to this activity. Thus processing

power, in addition to being conserved globally, Is converved locally.

An analogy with tree search algorithms can be made here, Scquential programs can be said to correspond

with depth-first scarch, and paralicl programs to breadih-first search, There is a third class of tree scaich
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algorithm known as best-first that is a generalization of depth and breadth-ficst search. Best-first scarches can
make use of available heuristic information to decide what node to examine next. [fall activilies are given
approximately equal amounts of processing povwcr then the control structure is similar to a breadth-first
scarch. If only one activity (or one string of activitics related by the sub-activity relation) has processing
power at a time it is similar to a depth-first search. Best-first search can be emulated by using heuristic

information to control the allocation of processing power.

Parallel processing with resource control is actually more general than best-first search, With best-first search,
after we have picked a method, we are committed to pursuing it until we are given the opportunity to pick the
next method. Paratlel processing allows you to change resouices allocated to running activities whenever facts

are discovered that would suggest such changes; there is no cencept of an atomic, indivisble action.

6.1.2 _An Tmplementation of Resource Control

There arc two kinds of resource limitations we might want to define for an activity: power and cnergy. A
resource limitation on encrgy is optional; an activity with no cnergy limit will keep computing as long as it has
something to do. All activities are power-limited, whether or not the language supplies a means of controlling
it. In this section Ether primitives for dealing with these two quantities will be described, They have not been

extensively used and should be considered tentative,

The machine is viewed as consisting of some constant amount of power that is divided among the running
activitics, For the moment we will assume the activity graph to be a tree. When an activity creates another
activity it must give it a certain amount of its own processing power if this activity is to do anything., The
processing power owned by an activity is distributed in some manner between its needs and those of its
subuctivities. The default allocation strategy is to divide power equally between an activity and each of its
subactivities. With an exponcatially growing tree of activities this has the property that the allocation of

power falls off exponentially as the tree is traversed down from the root.

When the default scheme is not desired there must be a way to alter the power allocation assigned 1o a node.
An activity is created to do a job. When an activity is created, its creator gives it an amount of processing
power that corresponds to its notion of how important this job is to it at the time. This activity in turn divides
its power in the way it secs most fit. For these reasons the primitives dealing with processing power do not
deal i terms of proportions of the total machine resources that it is getting, they deal only in terms of
praportions of the processing power that have been assigned to it. We think of the processing power posessed
by an activity and its subactivitics as summing to 1. The default scheme, then, aliocates implicitly a power of
/{n+ 1) to it and cach of its subactivitics, 1F it becomes desirable to change from the default allocation it

should do:




{broadcast {PROCESSING-POWER activily mumber))

for subactivitics it has created and for its own use:

(broadcast (PROCESSING-POWER-SELF activily number))

Al subactivities that lave not been explicitly allocated will divide up among themselves all the power that has

not been allocated. It is an crror if the sum of these nwmbers for an activity and its subactivities is greater than
1.

The other resource we would like to specify ways of limiting is energy. Processing cnergy is a quantity we are
used to dealing with, somelimes cxpressed in the units of "CPU scconds.” 1t is, unfortunately,
implementation (and program) dependent. One would not use it in a program without having first had quite
alot of expericnce with that program on that machine. This, unlike ideas about processing power, has
received some treatment in the literature in the context of agendas and has been used as an integral part of at
least one artificial intelligence system [18). There are any number of things we might want to do if an activity
has expended its encrgy limit, The following sprite stifles an activity when it has reached a hl‘escribcd encigy
limit:

{when (PROCESSING-ENERGY activily number)
(broadcast (STIFLE aclivily}))

Other things we may want to do when an activity has reached a limit is cheek to see how it is doing, based on
information that has been broadeast by that activity during its running. 1€ it has been making "satisfactory

progress’™ it should be allowed to continue, otherwise halted.

The primitives described are just that, primitives. We need to build on this a higher level fanguage for
discussing resource control that speaks in the language of problem solving rather than these low level

concepts.

6.2 Quicscence

This paper discusses the desirability and possibility of doing reasoning in pavaliel, Emphasis has been placed
on useful interaction between concurrent processing in order to fimit scarch,  In section 0.1.2 we present
control structure ideas for making use of notions of variable processing power to implement depth fi rf;t-likca

scarches, characteristic of "sequential” problem solving.

One thing we can't do with the primitives presented so far in any casy way is to: "Order some methods. Try
them one at a time, Only whea you have exhausted off possible regimes for employing a given method do you
go onto the next.”  Considering this to be the onfly natural control structure in our distant ancestor,

Micro-Planner, it may scem somewhat edd that we cannot bandle ith This does not really cause us concern




because in a problem solving situation it is rarely possible to be sure that @/l activity that could possibly
“accomplish some goal has terminated; new information may be learned that could give a quiescens activity,
one with no work to do currently, new things to do. [For most applications we believe it desirable to use the
merits of what the activity has or has not done so far as a gauge on whether to allow it to continue or not.
Quicscence is really a degenerate case of the much more important problem of detecting when an activity has

ceased to make useful progress.

There do seem to be, however, certain kinds of problem solving situations in which it is desirable to determine
whether an activily has gone quicscent. I belicve one such problem is eryptarithmetic. A well-known example

of a cryptarithmetic problem from Newell and Simon’s book [19] is: .

The problem is to find an assignment of digits to letters so that this template represents a valid summation.

This kind of problem is most usefully solved by multi-stage process of constraint propagation and case
splitting. Coustraint propagation can be accomodated in Ether by antecedent reasening. For example, if we
learncd that (HAS-VALUE D 5), an antecedent sprite could assert (by examining the Tast column) that R must
have a value greater than five and G a value less than 5. These constraints would "propagate” to other
columns containing the letters R and G, and to other letters that were competing with G and R for values. In
this way the problem solving space hecomes constrained monotonically with time.  When antecedent
processing has terminated (becomes quiescent), as it must in a reasonable amount of time, either all letters
will be assigned unique digits making the problem sofved, or there will be some letters that are not yet fully

constrained.

The scarch for a solution can continue by case splitting on the value of some digit. For example, if we know
that R must be cither 7 or 2, two new viewpoints can be created, inheriting from the current one, in which
(HAS-VALUE R 7) and (nAS-vALUE R @) arc placed respectively. Antecedent processing continues in those
viewpoints until one of three things happen: a contradiction is determined to exist in the viewpoint in which
case aptecedent processing activily is stifled, a solution is reached, or a quicscent state is reached. T the third

possibility happens case splitting can be effected again on some other digit.

To detect quiescence, the pattern of a sprite may be the special form: (QUIESCENT acrivity). The sprite will
then trigger when the designated activity bas gone quicscent, Using this the cryptarithmetic problem solver

described above can be implemicnted i a straight forward manner.,
)

Micro-Planner-style depth first scarches can be implemented using the guiescence detection mechanism. This
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is done by starting up one alternative, waiting for its activity to become guiescent, and then starting the next.

This is shown in figure 21,

Tig. 21. Code for Implementing Depth First Search

(1et ((activityl (new-activity)))
(broadcast (GOAL (alfernativel)) activityl)
{when (QUIESCENT activityl)
(1ot ((activity2 (new-activity)))
(broadcast (GOAL (dalfernativel)) activity?)
(when (QUIESCENT activity2)
(et ((activityd {new-activity)))
(broadcast (GUAL (alternative3)) activity3)
{when (QUIESCENT activity3)

)]
6.3 Virtual Collections of Assertions

The value of pattern-directed invocation as a basis for artificial intelligence programming is in the gencrality
different methods have for communicating with cach other. The different methods communicate in a
language based on the semantics of the problem domain rather than one based on the control structure of the
program. It is certainly a poweful idea yet one that has met little application outside of "toy” domains. This
can be attributed principally to the lack of efficiency of all extant implementations. The lack of cfficiency can
be traced to two sources: (1) Any assertion broadcast is potentially processable by any sprite. (2) All
information flow in the program involves the creation of asscrtions, structures that need to be CONS'd,

Discrimination nets and other technical aids ameliorate the situation somewhat, though net cnough,

Compilation schemes, although attractive at first glance, do not scem very plausible in the general case.
Compilation of Ether-like languages would entail converting broadeast-when interactions into function calls
with arguments. If we knew that goal assertions of a certain form were only and always received by a certain
set of sprites, the broadeast of this assertion could be replaced by function calls of the code associated with the
sprites. However, sprites can be created while the system is running. There is no way a compiler can know
frora syntactic considerations when this is the case. You might imagine a scheme in which the user specifics
when this more restricted condition holds, While this can certainly be done, the progmm writer might just as

well have specified the code in terms of the function calls it would be c,o,mpilcd into.

It is the case that many subsections of a typical Ether-like program can be easily coded in a host language such
as Lisp. We would Tfike a scheme for such fhand-coded methods to communicate with other hand-coded
methods and with subscctions of the systern that are more naturally written using pattern-directed invocation.
The inspiration for the method T will present comes from the object-oriented language formalisms. (Using
actor terminology) an actor is described solely by its message passing behavior, the messages it accepts and
replies with.  Efficiency can be incorporated very natuarally in these systems without sacrificing program

‘clarity. For example, a matrix is an actor that accepts two kinds of messages, one for storing new values and




one for requests as to values of its clements. Many matrices in applications are sparse, that is their values are
zero for almost all clements. A sparse matrix is most cfficiently stored as a hash table containing eatries for
the non-zero elements. A function that took matrices as arguments in a non-object-oricnted language might
have to check first to sce how the matrix is represented to know how to access it. An object-oriented language
allows the programmer to create a sparse matrix by specifying how it responds to the two kinds of messages
mentioned. After this actor is created, it will behave functionally identically to any other matrix. The rest of
the program is effectively shiclded from the intricacies of how the individual kinds of matrices are represented

and accessed.

A subset of a pattern-directed invocation system is exactly described by (1) a description of the assertions it is
interested in responding to, and (2) a description of the assertions that get added to the database when one of
the assertions that it is interested in is added to the database. Any method embodied in code that can provide
these two descriptions can be interfaced to the rest of an Ether-like language completely transparently. This
does not mean the assertions it would add (o the database are actually present; only that the method supplies
code for deciding if they are virtually present. A method described this way is known as a viral collection of

asserlions.

Incorporating property (1) of a virtiial collection of assertions, indicating what assertions it is interested in and
what it docs when they are broadcast requires no additions to the Frher language; sprites (at least in the
current implementation, whose bodies can contain arbitrary Lisp code} already do exactly this. The only new
facility we must supply is one to handle the queries about virtual presence in the database. For this we must
specify a set of procedures that specify (1) the membership questions they are capable of answering, and (2)
how to decide for an individual assertion query whether the assertion is actually present. A possible syntax
for this is:

(when-asked (patlern viewpoinl)

--arbitrary Lisp code== )

The pattern specifics the class of assertions this procedure can handle. The arbitrary Lisp code returns a list of

all asscrtions it considers to virtually exist matching the pattern in the given viewpoint.

For example, suppose we had a virtual collection of assertions that modeled a semantic net. It should be
capable, among other things, of deciding that an object known to be human is also a mamumal. An entry point

to the semantic net would look something like: R

(when (HUMAN =x)
--code lo enter X into the semantic net-)

Then for cach of the characteristics that the net will answer questions about, we have a when-asked as follows:
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{whon-asked (MAMMAL =x) :
-=code to check if x is a mammal in the net-=)

Then a spritc of the form:

(whon (MAMMAL FRED)
do something)

will trigger if FRED was previously known to be a human. From the point of view of the Ether program there
is a very large collection of assertions available for pattern matching. However, the information is represented

in the most compact and efficient way the programmer could devise,

There are many attributes a virtual collection must have to function correctly. These include ensuring proper
interaction with the viewpoint mechanism and invariance of behavior with respect to the order of virtual
insertion into the database and request for presence by sprites. T think this approach will make possible a
synthesis of the very general but inefficient Ether mechanisms with efficient Lisp code wherc it is known how
to construct this code. The MIT Lisp machine with stack groups and alarmclock interrupts supplics an
implementation vehicle for Ether that will allow the running of Lisp code without removing the parallel

behaviour of Ether programs.




Chapter VII  Comparison With Other Work
7.1 Pattern-Directed Invocation Languages

Many of the concepts of pattern-directed invocation languages originate with Planner {20]. A subsct of
Planncr known as Micro-Planner [21] was implemented. [t embodied the ideas of antccedent and consequent
theorems or procedures that were invoked automatically by the system. Micro-Planner investigated all goals

by simple depth-first search with backtracking when failure points were reached.

There were a couple of interesting bugs discovered in Micro-Planner. It was not possible to. distinguish
between wanting o know if a certain fact is known to be truc and investing effort in trying fo prove it. In Ether

we would say:

(when (INTERESTING FACT)
(Do something))

if we wanted to do something only if the fact was true. [f we wanted to start some work attemipting to show it

is true we would do:

(broadcast (GOAL (INTERESTING FACT)) ACTIVITY)

In Micro-Planner the two were lumped under the primitive THGoAL. Another, similar, problem with
Micro-Planner was an ambiguity between knowing something is not the case and not knowing if something is
the case. [11] Negation was handled via the primitive THNOT. THROT succeeded if and only if its argument

faled. Tor example;

{THHOT (THGOAL (HAS ALPHA-CENTAURI LIFE}))

would, in the absence of any way to prove the goal, succeed. This is the Miciro-Planner equivalent of proving
(MOT (HAS ALPHA-CENTAURI LIFE)). languages developed subsequently, like gas [22], Conniver [23] and
Paopler [24] made further conteibutions. Qa4 introduced the notion of contex(s as a means of structuring the
Lisp enironiment (property lists, variable bindings, ete.). Contexts could form a tree structure; it was possible
to create a context, leave it for a while, and go back to it later on. Qa4 was found to be very inefficient and a
subset of it known as QLISP was embedded more dircetly in Lisp [25], Conniver had a context mechanism
stmilar to gaA4’s. Tt principle contribution was a way of controlling backtracking by means of generators and
possibility lists.  Instead of the language implementation trying possibilities in some arbitrary order, the
program could manipulate possibilities to try next as dam structures, hopefully optimizing its scarch.
Programs in Conniver becoine complex beyond the point of understandability. These systems lacgely failed
becanse of ynexpected interactions between methods that were conceptuadly unordered (i running in

parallel). Popler [24] was an implementation of many of the original Planner ideas in the language Pop-2, Tt




was the first of these languages to allow methods to be run in paratlel, though it was not designed for the

massive parallelism Ether is.

aMorD made use of explicit goal assertions (see section 3.3). The sole means of structure in the language
(above the basic notions of sprites and assertions) is a backbone of justifications that arc manipulated by a
truth maintenance system [26]. Justifications are used to maintain the consistency of the database as well as
the goal structure. While allowing some powerful new control strucutres via the justifications, AMORD has given
up certain facilities that are found in other procedural deduction systems such as a viewpoint mechanism. Itis
the philosophy of their approach that higher leve! concepts such as viewpoints and activitics can be simulated
with justifications and truth maintenance. The view taken by the present work is that these ideas are best
"unbundled" to make the semantics of what you are doing clearer, By creating the notion of an activity we
can deal with various different approaches to solving a problem as objects that can be manipulated (stifled,
speeded up, etc.). A corollary of the usce of a truth maintenance system is that all visible assertions must be
consistent with one another. This makes it impossible to reason about several conflicting world models

concurrently.

7.2 Parallel AT Systems :

The Hearsay speech-understanding system [27] makes use of decentralized parallel processing in a
fundamental way. Tt presents many fevels of deseription (raw input, phonological, word, phrase, cte.) that are
constructed in paraliel with one another. The basic philosophy of the approach is that cach level is inherently
noisy and incomplete, and thus the only way anything can get done is if processing at one level helps t©
constrain work at other levels. Tn this sease their approach is quite similar to ours. Theirs Is a more special
purpese system; Hearsay is not a programuning language in which such concepts as opponents could be

written,

[.cnat [18] presents the most interesting use of notions of resource control that 1 have seen. His domain is
mathematical discovery; the object is to have the program discover new mathematical concepts from ones it
already knows about. Many possible avenues of discovery are explored in parallel. There is a criterion for
interestingness of the potential discovery that guides the scheduler in determining what to run vext, and for
how long. Lenal’s basic control structure is an agenda mechanism with resource limitation information based
on how interesting the result would be if achieved. "The important point of agreement between his work and”
ours is the observation that you cannot tell how successful a path will be short of trying it; for this reason
many paths should be pursucd in paratlel to avoid having "all your eggs in one basket.” Lenat's thesis ingpired

the concepts of processing power and encrgy in Fither,

Fahlinan [4] discusses a special purpose language and hardware network fur doing the kinds of problems




appropriate for semantic nets. He shows that many problems can be solved by doing set intersections that can
be casny simulated by p‘mmg tokens thmmh thu network, He argues thaf con\-'cntional seq ucntiznl control
structures cannot do the sc(ugh that seems to be uqnncd 0 solve these pmblc- ns fn real time as clearly
happens with pcople. His system is designed to be connected to a problem solving system as a semantic net
subroutine box. Fahlman’s approach to combining paralictism with artificial intelligence, in contrast to ours,
isto make brute force searches tractable. 'We have demonstrated that parallelism can be used to make

scarches more controfled.

Smith [28] introduces a mechanism known as the conrract net, The problem solver itself is distributed around
a resource-limited network. The nodes of the network interact with each other in a manner reminiscent of
commercial systems consisting of contractors, contracts, bids, and awards. The bidding protocols result in a
distribution of tasks throughout the system in a manner that wtilizes the available processing resources

reasonably. Contract nets, in contrast with Ether, deal with issucs of task distribution on physical hardware.

The reasons bids are awarded include such items as Toad balancing, better suitability of the processor, etc. We

have concerned ourselves only with paralicl language design and the uses of parallel processing for artificial

intelligence. A protocol such as contract nets may well be necessary to implement Ether on parallel hardware,

Minsky and Papert [29] are developing a theory of intelligence they call the "socicty theary of the mind™, The
theory asserts the existence of an enormous number of agents or specialists in cortain areas or points of view,
Tntelligence is manifest through the interaction of these agents i a massive parallel scheme. The emphasis in
their scheme seems to he the p'x'cséncc of lots dfs,i:‘npic computational clements all "spes ka their mind"”; the

final Behavior of the system secms o represent a compromise between the various ageats. They develop the

notion of a eritic which bears some resemblance to our opponents. The socicty theory as it now stands is

~metaphorical and suggestive of how a computer system might be implemented to exhibit intelligent behavior

rather than a specific technical proposal.

7.3 Languages {or Paraliel Processing

There 15 now a large literature on languages for parallet processing. There are several distinet reasons why
parallel processing languages and systems have been proposed. We will fist four of these and then suggest a

fifth proposcd by the present work.

L. To make compiters useful in an inherently parallel society. We are used to, in our own lives, interacting with
such diverse and distant information sources as banks, schools, governments, cic. If we want to integrate
computers iite this society, they in turn must be able to deal with these diverse sources. The sequential
machine model is not applicable here, As it was realized computer systems needed these capabilities, schemes

for interrupt handling were developed.  These schemes natrally fed into a consideration of paraliel




processing languages.

2. To /')ro‘vic'le'robus!tompiz/alion. Compu{i'ng machines, being inhcrcmly'complex,kakrc prone to errorful
performance. With current hardware trends as they are, a practical solution to this problem is to compute
redundantly making use of several processors. Discrepancies and hardware signaled errors will cause some
backup or rcconfiguration operation to happen. This approach has been successful in such critical
applications as the design of jet airplane flight control computers [30], onboard space vehicle computers [31],

and remote message relay processors [32].

3. To increase overall program speed, The idca here is to exploit cheaply available multi-processor
architectures by making it convenient to separate certain tasks to be performed in parallel. Friedinan and
Wise [33] note that "applicative™ languages, such as pure Lisp, can have function execution transparently
done in parallel, They advocate a scheme in which one processor is given charge of the evaluation; as it runs
across subtasks to be handled they are farmed out to other processors. Baker [34] develops the notion of a

Jiture. Futures give the program writer explicit control over what activities are farmed out.

4. To increase program understandability. As more familiarity is gained with concepts of parallcl programming
several researchers have discovered that certain tasks are more casily described as parailel algorithms. These

points arc stressed by Hoare [35] and Kahn and MacQueen [36].

Ether has been used to explore what is perhaps a fifth use of parallcl processing: combinatorial implosion.
Uscful interaction between running processes can occur that simplify the overall computational effort. These
ideas have applicability in artificial intcltigence. Possible application to other arcas is suggested by chapter 2

although T know of no other clearly useful algorithm than the one in that chapter.

7.3.1 Svachronivationand Communication

The principle means of communication beiween processes discussed in the literatwre is by shared data
stenetures modificd by programs embodying erifical regions. The first development in this area was the
semaphore by Dijkstra {37]. Tmprovements on the semaphore led to the monitor by Hoare [38] and
subscquently the serializer by Atkinson and Hewitt [39] improved upon in [40].  Other schemes for
communication between concurrent processes require information to flow along predesignated topologices.
The Communicating Sequential Processes of Hoare [35] is of this kind, The applicative schemes mentioned

above allow information to flow alung the dynamically created paths of expression evaluation only.

Ether presents a model of paralie] computation that allows information flow in arbitrary ways without having
shared data structures manipulated inside critical regions, Tt is fnstead based on the notion of broadeasting

information that interested partics have the option of intercepting. We have argued already why arbitrary




information traffic between differcnt activitics is desirable,

Ccrtdinly, at 'ankimplémchtatiohai ‘klé‘vrckl,"}‘ithct”muét S\S;S;)or[‘ interprocess S}di(‘hi‘énim’tioynkf Ether is an
alternative language level formulation that when usable is superior in its ability to suppress unwanted detail,
There are, of course, many problems that require synchronization (such as the "airline reservation system')
and, as such, cannot be handled by the existing Ether system.  We have made plausible that useful

communication between parallel processes can be done without synchronization,
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