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ABSTRACT: Recently, Marr and Poggio (1979) presented a theory of human stereo vision. An im-
lementaiion of that theory is presented, and consists of five steps: (1) The left and right iinages are_cach
Hiered with masks of four sizes that increase withy eccentricity: the shape of these masks is given b*
e faplacian of a gaussian [unction. (2) Zero-crossings in the fltered im: wes are tound along horizontal -can
lines. (3) For cach mask size, matching iikes place between zero- crossings of the sanse sign and toughly the
same ericniation in the two images, for a range of disparitics up to about the width of the mask’s central

cgion. Wiihin this disparity range, Marr and Poggio showed that false taigels pose only a simple protlom.
(4) [he ouput of the wide masks can control vergence movements, thus causing small masks to come into
correspondence. In this way, the matching process graduaily moves from dealing with large disparitics at a
low resolution to deating with small disparitics at a high resolution. (5) Whien a correspondence is achieved,
it is stored in a dynamic buffer, called the 24 -ditaensional sketch. To suppott the sufliciency of the Marr-
Poggio model of human sterco vision, the impiementation was tested on a wide range of stercograms from
the human stercopsis literature. ‘The performance of the implementation is illustrated and compared with
human pereeption. As well, statistical assumptions made by Marr and Poggio are supported by comparison
with siatizties found in practice. Finally, the process of implementing the theory has led to the clarification and
refinement el a number of detiils within the theory; these are discussed in detail.
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1. Introduction

If two objects are scparated in depth from a viewer, then the relative positions of their images will
differ in the two cyes. This dxffexcncc in relative positions — the disparity — may be measured and used to
Lstlmatc depth. The process of stereo vision, in essence, measures this disparity and uses it to compute depth
information for surfaces in the scene. .

The steps involved in measuring disparity are (Marr and Poggio, 1979): (S1) a particular location én a
surface in the scene must be selected from onc'image; (S2) that same location must be identified in th.e other
image; and (S3) the disparity between the two corresponding image points must be measured. The difficulty
of the problem lies in steps (S1) and (S2), that is, in matching the images of the same location — the so-
called correspondence px.‘oblcm. For the case of the human stereo system, it can be shown that this matching -
takes place very caily in the analysis of an iimage, prior {o any recognition of what is being viewed, using
primitive descriptors of the scenc. This is illustrated by the example of random dot patterns. Julesz (1960)
demonstrated that two images, consisting of random dots when viewed monocularly, may be fused to form
patterns separated in depth when viewed stercoscopically. Random dot stercograms are particularly interesting
because when one tries to set up a correspondence between two arrays of dots, false targets occur in profusion.
A false target refers to a possible but incorrect match between elements of the two views. In spite of such
false targets, and in the absence of any monocular or high level cues, we are able to determine the correct
correspondence. Thus, the computational problem of human stereopsis reduces to that of obtaining primitive
descriptions of locations to be matched from the images, and of solving the corrcépondcncc problem for these
descriptions,

A computational theory of the sterco process for the human visual system was recently proposed by Marr
and Poggio (1979). According to this theory, the human v;‘sual processor solves the stercoscopic matching
problem by means of an algorithm that consists of five main steps: (1) The left and right images are each
filtered at different orientations with bar masks of four sizes that increase with cceentricity; these masks have

a cross-section that is approximately the difference of two gaussian functions, with space constants in the ratio
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1:1.75. Such masks essentially perform the operation of a second directional derivative after low pass filtering
or smoothing, and can be used to detect changes in intensity at different scales. (2) Zero-crossings in the
filtered images are found by scanning them along lines lying perpendicular to the orientation of the mask.
Since convolving the image with the masks corresponds to performing a second directional derivative, the
zero-crossings of the convolutions correspond to extrema in the first directional derivative of the image and
thus to sﬁafp éhanges in the original intensity function. (3) For cach mask size, matching takes place between
zero-crossing segments of the same sign and roughly the same orientation in the two images, for a range of
disparities up to about the width of the mask’s central region. Within this disparity range, Marr and Poggio
showed that false targets pose only a simple problem, because of the roughly bandpass narure of the filters.
@ ‘Thc output of the wide masks can control vergence movements, thus causing smaller masks to come into
'correspondcnce. In this way, the matching process gradually moves from dealing with large disparities at low
resolution to dealing with small disparitics at high resolution. (5) When a correspondence is achicved, it is

stored in a dynamic buffer, called the 24 -dimensional sketch (Marr and N ishihara, 1978).

An important aspect in the development of any computational theory is the design and implementation
of an explicit algorithm for that theory. There are several benefits from such an implementation. One concerns
the act of implementation itsclf, which forces one to make all details of the theory explicit. This often uncovers

previously overlooked difficultics, thereby guiding further refincment of the theory.

A sccond bencefit concerns the performance of the implementation. Any proposed model of a system
must be testable. In this case, by testing on pairs of sterco images, one can cxamine the performance of the
implcmcntation; and hence of the theory itself, provided, of course, that the implementation is an accurate
representation of that thcbry. In this manner, the performance of the implementation cain be combarcd with
human performance. If L‘hc algorithm differs strongly from known human pcrf'drmnncc, ‘its suitability as a

biological model is quickly brought into question (c.f, the cooperative algorithm of Marr and Poggio (1976)).

This article describes an implementation of the Marr-Poggio sterco theory, written with particular ecm-

phasis on the matching process (Grimson and Marr, 1979). For details of the derivation and justification of the
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theory, sce Marr and Poggio (1979).

The first part of this paper describes the overall design of the implementation. Several examples of the
implementation’s pc'rformancc on different images are then discussed, including random dot stereograms from
the human stereopsis literature such- as with one image defocussed, noise introduced into part of the images’
spectra, and so forth. It is shown that the implementation behaves in a manner similar to humans on these
special cases. Thirdly, the theory makes some statistical assumptions; these are compared with the actual
statistics found in practice. Next, some points.about the theory that were clarified as a result of writing the

program are discussed. Finally, the results of running the program on some natural images are shown.

2. Design of the program

The implementation is divided into five modules, roughly corresponding to the five steps in the summary
~ above. These modules, and the flow of information between them, are illustrated in Figure 1. Each of the

components is described in turn.

2.1 Input

There arc two aspects of the human stereo system, embedded in the MarﬁPoggio theory, which must be’
made explicit in the input to the algorithm. The first is the position of the cyes with_rcspcct to the scene, as eye
movements will be critical for ob‘.taining fine disparity information. The sccond is Lhé changc in resolution of
analysis of the image with increasing ceeentricity.

| To account for these cffects, the algorithm maintains as its initial input a sterco pair of images, repre-

senting the entire scenc visible to the viewer. This pair of images corresponds to the environment around the
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Figure 1. Diagram of the aleorithm. The images ol the scene are mapped into the images of the retinas, takin
< fwl o < O fe

into account the eye positions. Fach image is convolved with a set of diflerent sized masks and zero-crossings

arc located for cach convolution, For cach size mask, the left and right zero-crossing deseriptions are matched.

These matched descriptions are combined into a single representation. As well, the matches from the larger

channcls can drive eye vergenee movements, causing new retinal images to be created and allowing the sm

aller

channels to come into correspondence.
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visual system, rather than some integral part of the system itself, To create this representation of the scene,
natural images were digitized on an Optronix Photoscan System P1000. The sizes of these images are indicated
in the legends. Grey-level resolution is 8 bits, providing 256 intensity levels. For the random dot patterns

illustrated in this article, the images were constructed by computer, rather than digitized from a photograph,

For a given position or' the eyes, relative to the scene, a representation of the images on the two retinas is
extracted. The algorithm creates this retinal representation by obtaining a second, smaller pair of images from
the images representing the whole scenc. The mapping from the scene images into the retinal images accounts
for the two factors inherent in the Marr-Poggio theory. First, different sections of the scenes will be mapped to
the ccntcf (fovea) of the retinal images as the positions of the eyes are varied. Since the matchin g process will
take place on the array representing the retinal'imagcs, it is important that the coordinate systems of those ar-
ray$ coincide with the current positions of the eyes. Note thaf the portion of the scene image which is mapped
into the retinal image may differ for the two eyes, depending on the relative positions of the two g)[)tical axes.
In particular, there may be differences in vertical alignment as well as in horizontal alignment. Second, the
Marr-Poggio theory also states that the resolution of the carlier stages of the algorithm — the convolution and
zero-crossings — scales linearly with eccentricity. The most convc:‘nicn,t method for dealing with this fact is to
account for the. scaling with eccéntricity at the level of the extraction of the images. This means that rather
than extracting a set of retinal images in a lincar manner, we may map the scene into thg retinal images by
a mapping whose magnification varics with céccgtricity. By so doing, the later stages of processing need not
explicitly account for the variation with cccentricity. Rather, these processes arc considered as operating on a
uniform grid. Note that this eccentric mapping is not essential, especially for small images. In nost of the cases.

illustrated in this artiélc, the mapping was not used.

After the completion of this stage, the implementation has created a representation of the images that
has accounted for eye position and for retinal scaling with cccentricity. For cach pass of the algorithm,
the matching will take place on the representation of the retinal images, thereby implicitly assuming some

particular cye positions. Once the matching has been completed, the disparity values obtained may be used to
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change the positions of the two optic axes, thus causing a new pair of retinal images to be extracted from the

representations of the scene, and the matching process may proceed again,

2.2 Convolution

Given the retinal representations ‘of the images, it is then necessary to transform them into a form upon
which the matcher may operate. Marr and Poggio (1979) argued that the items to be matched in an image
must be in one-to-one correspondence with well-defined locations on a physical surface. This led to th(_a use of
image predicates which correspond to changes in intensity. Since these intensity changes can occur over a wide

range of scales within a natural image, they are detected separately at different scales. This is in agrecment with

the findings of Campbell and Robson (1968), who showed that visual information is processed in parallel by B

a number of independent spatial-l‘rcqx‘xenc'y-’tuncd channels, and rwi?th the findings of Julesz and Milicr (1975)
and Mayhew and Frisby (1976), who showed that spatial-frequency-tuned channels are used in stercopsis and
arc independent. Recent work by Wilson and Bergen (1979) and Wilson and Gicse (1977) provided evidence
for the particular form of these spatial-frequency-tuncd operators. Mecasuring. contrast sensitivity to vertical
line stimuli, Wilson and his collaborators showed that the image is convolved with an operator which in one
dimension may be closcly approximated by a difference of two gaussian functions (DOG).

In the original theory (Marr and Poggio, 1979), the proposed masks were oriented bar masks whose cross-
section was a difference of two gaussians, as given by the Wilson and Bergen data. If an intensity change
occurs along a particular orientation in the image, there will be a pcak in the .ﬁrst dircctional derivative of
intensity, and a zcro-crossillg in the sccond dircctional derivative. Thus, the intensity changes in the image
can be located by finding zero-crossings in the output of a sccond directional derivative opcerator. However,
a number of practical considcmtioqs have led Marr and Hildreth (1979) to suggcest that the initial operators
not be directional operators. The only m)n-'dircctional lincar second derivative operator is the Laplacian. Marr
and Hildreth have shown that provided two simple conditions on the intensity function in the ncighbourhood

of an edge are satisfied, the zero-crossings of the second directional derivative taken perpendicular to an edge
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will coincide with the zero-crossings of the Laplacian along that edge. Therefore, theoretically, we can detect
intensity changes occuring at all orientations using the single non-oriented Laplacian operator. Thus, Marr and
Hildreth propose that intensity changes occuring at a particular scale may be detected by locating the zero-
crossings in the output of V2@, the Eaplacian of a gaussian distribution. The operator, together with its fourier

transform, is illustrated in Figure 2. The form of the operator is given by:

V2G(r,0) = |2 — r e:cp{~_—r2}.
L o? 202

Given the form of the operators, it is only left to determine the size of these masks. To do this, we
first note that Marr and Hildreth (1979) showed that the operator V2@ is a closc approximation to the DOG
-function. Wilson and Bergen’s data indicated DOG filters whose sizes — specified by the width w of the filter's
central excitatory region — range from 3.i’ to 21" of visual arc. The variable w is related to the constant o of

V2@ by the relation:

w

0= —

o)

Wilson and Bergen’s values were obtained by using oriented line stimuli. To obtain the diameter of the
corresponding circularly symmetric center-surround receptive field, the values of w must be multiplied: by
V2. Finally, we want the resolution of the initial images to roughly represent the resolution of processing by
the cones, and the size of the filters to representthe size of the retinal operators. In the most densely packed
region of the human fovea, the center-to-center spacing of the cones is 2.0 to 2.3 um, corresponding to an
angular spacing of 25 to 29 arc seconds (O'Brien, 1951). Accounting for the conversion of Wilson and Bergen’s
data, and using the figure of 27 seconds of arc for the separation of cones in the fovea, one arrives at values of
w in the range 9 to 63 image clements, and hence, values of o in the range 3 to 23 image clements.,

Recently, it has been proposed (Mz\rr,' Poggio and Hildreth, 1979) that a further, smaller channel may be
present. This channel would have a central excitatory width of w = L.5°, roughly corresponding to 4 image

clements.
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Figure 2. The operators G” and V2G. The top left figure show G”, the second derivative of a one-dimensional

guassian distribution. The top right figure shows V2@, its rotationally symmetric two-dimensional counterpart.

The bottom figures show their Fourier transforms,
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The present implementation uses four filters, cach of which is a radially syrﬁmetric difference of
gaussians, with w values of 4,9, 17 and 35 image clements. The coefficients of the filters were represented to
a precision of 1 part in 2048. Cocfficients of less than 5078 th of the maximum value of the mask were sct to
zero. Thus, the truncation radius of the mask (the point at which all further mask values were treated as zero)
was approximately 1.8w, or equivalently, 0.680.

The actual convolutions were performed on a LISP machine constructed at the MIT Artificial Intelligence

- Laboratory, using additional hardware specially designed for the purpose (Knight, et al. 1979). Figures 3 and 4

illustrates some images and their convolutions with various sized masks.
Alfter the completion of this stage of the algorithm, one has four filtered copics of each of the images, each

copy having been convolved with a different size mask.

2.3 Detection and description of zero-crossings

According to the Marr-Poggio theory, the elements that are matched between images are (i) zero-
crossings whose oricntations are not horizontal, and (ii) terminations. The exact definition and hence the
detection of terminations is at present uncertain; as a consequence, only zero-crossings arc used as input to the
matcher.

Since, for the purpose of obtaining disparity information, we may ignore horizontally- oriented segments,
the detection of zero-crossings can be accomplished by scanning the convolved image horizontally for adjacent
elements of opposite sign, or for three horizontally adjacent clements, the middlc onc of which is zero, the
other two containing conyolution values of opposite sign. This gives the position of zcro-crossings to within an
image clement.

In addition to their location, we record the sign of the zero-crossings (whether convolution values change
from positive to negative or negative to pqsitivc as we move from left to right) and a rough cstimate of the

local, two-dimensional orientation of picces of the zero-crossing contour. In the present implementation, the

oricntation at a point on a ZCro-crossing segment is computed as the direction of the gradicnt of the convolu-
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Figure 3. Examples of convolutions with V?G. The top figure shows a natural image. The bottom figures show

the convolution of this image with a sct of V2@ opcrators. The sizes of these operators are w = 36, 18,9 and

4 image clements.
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Figure 4. Examples of convolutions with V2G. The top figure shows a random dot pattern. The bottom

figures show the convolution of this image with a set of V2@ operators. The sizes of these operators are

w = 36, 18, 9 and 4 image clements.
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tion values across that segment, and recorded in increments of 30 degrees. Figures 5 and 6 illustrate zero-
crossings obtained in this way from the convolutions of Figures 3 and 4. Positive zero-crossings are shown
white, and negative crossings, black.

We compute this zero-crossing description for each image and for each size of mask.

2.4 Matching

. The matcher implements the second of the matching algorithms described by Marr and Poggio (1979,
- p.315). For cach size of filter, matching consists of 6 steps:
(1) Fix the eye positions,

(2) Locate a zero-crossing in one image.

(3) Divide the region about the corresponding point in the second image into three pools.

(4) Assign a match to the zero-Acrossing based on the potential matches within the pools.

(5) Disambiguate any ambiguous matches.

(6) Assign the disparity values to a buffer.

These steps may be repcated several times during the fusion of an image. Given a position for the optic
axes, these matching stéps are performed, with the results stored in a buffer. These results may be used to
refine the eye positions, causing a new set of retinal images to be extracted from the scene, and the matching
Stcps are performed again. |

We now expand upon each of the six steps of the matching précess. Tﬁe first step consists of fixing the
two eye positions. The alignment Betwecn the two zero-crossing descriptions, corresponding to the positions
of the optical axcs, is dctcrmincd in two ways. The initial offsets of the descriptions are arbitrarily set to zero.
Thereafter, the offsets of the two optical axes are determined by accessing the current disparity valucs for
a region and using these valucs to adjust the vergence of the eyes. In this implementation, this is done by
modifying'me extraction of the retinal imagcs from the images of the entire scene, accounting for the positioné

of the optical axes.
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Figure 5. Examples of zero-crossing descriptions. The top figure show a natural image. The bottom figures
show the zero-crossings obtained from the convolutions of Figure 3. The white lines mark positive zero-

crossings and the black lines, negative ones.
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Figure 6. Examples of zero-crossing descriptions. The top figure show a random dot pattern. The bottom
figures show the zero-crossings obtained from the convolutions of Figure 4. The white lines mark positive

zero-crossings and the black lines, negative ones.
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Once the eye positions have been fixed, and the retinal images extracted, the images are convolved with
the DOG filters, and the zero-crossing descriptions are extracied from the convolved images. For a zero-
crossing description corresponding to a particular mask size, the matching is performed by locating a zero-
crossing and exccuting the following-operation. Given the location of a zero-crossing in onc image, a horizon-
tal region about the same location in the other image is partitioned into three pools. These pools form the
region to be searched for a possible matching zero-crossing and consist of two larger convergent and divergent
regions, and a smaller one lying centrally between them. Together these pools span a disparity range cqual to
2w, where w is the width of the central cxcitatory region of the corresponding two-dimensional convolution
mask.

The following criteria are used for matching zero-crossings in the Ieft and right filtered images, for each
pool: “

(1) the zero-crossings must come from convolutions with the same size mask.

(2) the zero-crossings must have the same sign.

(3) the zero-crossing segments must have roughly the same orientation.

A match is assigned on the basis of the number of pools containing a matching zero-crossing. If exactly
one zero-ctossing of the approbriate sign and oricntation (within 30 degrees) is found within a pool, the
location of that crossing is transmitted to the matcher. If two candidate zero-crossings arc found within one
pool (an unlikely cvent), the matcher is notified and no attempt is made to assign a match for the point in
question, If tl;c matcher finds a single crossing in only one of the three pools, that match is accepted, and the
disparity associated with the match is recorded in a buffer. If two or three of the pools contain a candidate’

match, the algorithm records that information for future disambiguation.

‘

Once all possible unambiguous matches have been identified, an attempt is made to disambiguate double
or triple matches. This is done by scanning a neighbourhood about the point in question, and rccbrding the
disparity sign of the unambiguous matches within that neighbourhood. (Disparity sign refers to the sign of

the pool from which the match comes: divergent, convergent or zero.) If the ambiguous point has a potential
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match of the same disparity sign as the dominant type within the neighbourhood, then that is chosen as the
match (this is the "pulling" effect). Otherwise, the match at that point is left ambiguous.

There is the possibility that the region under consideration does not lie within the —+w disparity range
handled by the matcher. This situation is detected and handled by the following opcration. Consider the case
in which the region does lie within the disparity range 4w. Excluding the case-of occluded points, every zero-
crossing in the region will have at least one candidate match (the correct one) ip the other filtered image. On
the other hand, if the region lies beyond the disparity range --w, then the probability of a given zero-crossing
having at least onc Eandidate match will be less than 1. In fact, Marr and Poggio show that the probability of
a zero-cyossing having at least one candidate match in this casc is roughly 0.7, We can perform the following
operation in this case. For a given cye position, the matching algorithm is run for all the zer‘o-crossings. Any
crossing for which there is no match is marked as such. If the percentage of matched points in any rcgion is
less than a threshold of 0.7 then the region is declared to be out of rénge, and no disparity valucs are c;xcccpted
for that region.

The overall effect of the matching process, as driven from the left image, is to assign disparity values to
most of the zero-crossings obtained from the loft image. An example of the o;xtpuAt appears in Figure 7. In
this array, a zero-crossing at position (z, y) with associated disparity d has been placed in a three-dimensional
array with coordinate (z, y, d). For display purposcs, the array is shown in the figures as viewed from a point
some distance away. The heights in the figure correspond to the assigned disparities. |

After completion of this stage of the implementation, we have obtained a disparity array for cach mask

size. The disparity values are located only along the zero-crossing contours obtained from that mask,

2.5 Vergence Control

The Marr-Poggio theory states that in order to obtain fine resolution disparity information, it is necessary
that the smallest channels obtain a matching. Since the range of disparity over which a channel can obtain

a match is directly proportional to the size of the channel, this means that the positions of the eyes must
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Figure 7. Results of the algorithm. The top stereo pair is an image of a painted coffee jaf. The next two figures
show two orthographic views of the disparity map. The disparities arc displayed as {z, y, ¢ — ad(z, y)},
where ¢ is a constant and d(z, y) is the difference in the location of a zero-crossing in the right and left images.
For i)tlrposes of illustration, a has been adjusted to enhance the fca_tures of the disparity map. The left view
of the disparity map shows the jar as viewed from the lower cdge of the image, and the right view show the
jar as viewed from the left edge of ‘the image. Note that the background plane appears tilted in the disparity
' - map. This agrees with the fused perception. The second stereo pair is a 50% density random dot pattern,
The bottom figure shows the dispariiy map as v'iewed orthographically ffom some distance away. All disparityu

maps arc those obtained from the w = 4 channel.
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be assigned appropriately to ensure that the corresponding zero-crossing descriptions from the two images
are within a matchable range. The disparity information required to bring the smallest channels into their
matchable range is provided by the larger channels. That is, if a region of the image is declared to be out of
range of fusion by the smaller channels, one can frequently obtain a rough disparity value for that region from
the larger channels, and use this to verge the eyes. In this way, the smaller channels can be brought into a

range of correspondence,

Thus, after the disparities from the different channels have been combined, there is a mechanism for

- controlling vergence movements of the eyes. This operates by scarching for regions of the image which do

not have disparity values for the smallest channel, but which do have disparity values for the larger channels.
These large channel values are used to provide a refinement to the current ¢ye positions, thereby bringing the
smaller channels into range of correspondence. Two possiblc mechanisms for extracting the disparity value
from a region of the image include using the peak value of a histogram of the disparities in that ncighbour-
hood, or using a local average of the disparity values. In the current implcmc.ntation, the scarch for such a

region proceeds outwards from the fovea.

It should be noted here that although the use of disparity information from coarser channels to drive
¢yc movements, allowing smaller channels to come into correspondence, is a necessary condition of the Marr-
Poggio theory, it is not necessarily the only such condition. In other words, there may be other modules of
the visual system which can initiate cye movements, and thereby affect the input to the matching component,
by altering the retinal images presented o the matcher, An example of this would be the evidence of Kidd
et al. (1979) concerning the ability of texture contours to facilitate stercopsis by initiating cye movements.
However, such cffects are somecwhat orthogonzll to the question of the sufficiency of the matching component
of the Marr-Poggio theory, since they affect the input to the matcher, but not the actual performance of the

matching algorithm itself.
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~ 2.6 The 2} -Dimensional Sketch

Once the separa&c channels have performed their matching, the results are combined and stored ina
buffer, called the 24-D sketch. There are several possible methods for accomplishing this. As far as the Marr-
- Poggio theory is concerned, the iméortant point is that some type of storage of disparity information occurs.
(Perhaps the strongest argument for this is the fact that up to 2 degrees of disparity can be held fused in the
fovea.)

We shall outline two different possibilities for the combination of the different channels. The method
currently used in the implementation will be described below. A more biologically feasible method will be
outlined in the discussion.

Onc of the critical questions concerning the form of the 2 %-D sketch is whether it reflects the scene or the
retinal images. For all the cases illustrated in this article, the sketch was construcied by directly relating the
coordinates of the sketch to the coordinates of the images of the entire scene. That is, as disparity information
was obtained, it was stored in a buffer at the position corresponding to the position in the original scene from
which the qnderlying zero-crossing came. Since disparity information about the scene is extracted from several
eye positions, in order to store this information into a buffer, explicit information about the positions of the
eyes is required. It will be argued in the discussion that this is probably inappropriate as a model of the
human system. However, for the purposcs of demonstrating the effectiveness of the matching module, such a
representation is suflicient, . -

The actual mechanism for storing the disparity values requires some combination of the disparity maps
obtained for cach of the channels. Currently, the sketch is updated, for cach region of the image, by writing
in the disparity values from the smallest channel which is within range of fusion. Vergence movements are
possible in order to bring smaller channels into a range of matching for some region. Further, for those regions
of the image for which none of the channqls can find matches, modification of the cye positions over a scale
larger than that of the vergence movements is possible. By this method, onc can attempt to bring thosc regions

of the image into a range of fusion.




Stereo Implementation 27 E. Grimson

There are several possibilitics for the actual incthod of driving the vergence movements. Two of these
were outlined in the previous section.
The final output of the algorithm consists of a representation of disparity values in the image, those

disparities being restricted to positions in the image lying along zero-crossings segments.

2.7 Summary of the process

The complete algorithm, as currently implemented, uses four mask sizes. Initially, the two vicws of the
scene are mapped into a pair of retinal images. These images are convolved with cach mask. The zero-
crossings and their oricntation are computed, for cach channcl and each view. The initial alignments of
the e.yes determine the registration of the images. The matching of the descriptions from cach channel is
perl"ormcd for this alignment. Any points'“'/ith cither ambiguous matchings or with no maich arc marked as
such.

chf, the pereentage of unmatched points is checked, for all square neighbourhoods of a particular size.
This size is chosen so as to enstirc that the measurement of the statistics of matching within that neighbour-
hood is statistically sound. Only the disparity points of those regions whose pereentage of unmatched points
is below a certain threshold, determined by the statistical analysis of Marr and Poggio (1979), are allowed
to remain. All other points are rcmovcd. The values which arc kept are stored into a buffer. At this stage,
vergence movements may take place, using information from the larger channels to bring the smaller channels
into a range where matching is possible. Further, if there are regions of the image which do not have disparity
values at any level of channel, an eye movement may take place in an attcmpt- to bring thosc portions of the’
image into a range where at least the largest mask can perform its matching.

Note that the match_‘ing préccss takes place independently for cach of the fo'ur channels. Once the
matching of cach channel is comglctc, the results are combined into a single rcprcsc,;ntation of the disparities.

. The final output is thus a disparity map, with disparitics assigned along most portions of the 2Cro-crossing

contours obtained from the smallest masks. The accuracy of the disparities thus obtained depends on how
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accurately the zero-crossings have been localized, which may, of course, be to a resolution much finer than the

initial array of intensity values that constitutes the image.

3. Examples and Assessment of Performance

A standard tool in the examination of human stereo perception is the random dot stereogram (Julesz,
1960, 1971). This is a p;'lil' of sterco images where cach image, when viewed monocularly, consists only of a
randomly distributed dots, yet when viewed stcrcoscopically, may be fused to yield patterns scparated in
depth. Such patterns are a uscful tool for analysing the sterco component of the human visual system, since.
there are no visual cues other than the stereoscopic ones. We can test the sufficiency of the algorithm by
comparing human perception with the performance of the algorithm on such patterns. As well, since random
dot stercograms have well demarked disparity valucs, it is casy to assess the correctness of the algorithm’s
performance on such patterns.

Table 1 lists some of the matching statistics for various random dot patterns. These are illustrated in
Figures 8-13 and discussed below. _ :

The first pattern consisted of a central square separated in depth from a second plane. The pattern had
a dot density of 50% and its analysis is shown in Figure 7. Each dot was a square with four image clements
on a side. For the algorithm, this corresponds to a dot of approximately two minmcs of visual arc. The total
pattern was 320 image clements on a side. The central plance of the figure was shifted 12 image clements in
onc image relative to the other. The final disparity map assigned after the matching of the smallest channel
had the following statistics. The number of zero-crossing points in the left description which were assigned

a disparity was 11847. Of these 11847, 11830 were disparity vz\'lucs which were exactly correct, and an
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| __TABLEOF MATCHFS | -

| paltern density total exact one pjx‘d wrong ~-_T_7}6\-\/1'()11g

~square 50% Usd7 11830 N

_square 25% 9661 9632 | 2T 07
square 10% 5286 5264 R N
square [ 5% 3500 3498 0 2 | 06
wedding 50% 11162 109s 61 6 06

| hnoiscl 50% 20 1909 S T 7
hnoise2 50% 8683 [T Geal 188 | 194 2

__hoise3 [T T50% 63 28 ¥ | 17.

- hooised 50% 8543 5194 2864 oss I T
utcorr | 50% 9545 9091 I O

uncor2 | 50% BB T qw O S0 T
uncort3 50% 134 127 R 1

_uword | 50% | o3 6325 271 157 | ]

Table 1.

additional 14 deviated by once image clement from the correct value, Approximately 0.03% of the matched
points, or roughly 3 points in 10000 were incorrectly matched.

A similar test was run on patterns with a dot density of 259, 109 and 593, The results are illustrated in
Figure 8. |

For cach of these cases, the number of incorreetly matched points was extremely low. These points
which were assigned incorrect disparitics all occured at the border hetween the two planes, that is, along the
discontinuity in disparity.

A more complex random dot pattern consisted ofawedding cake, built from four different planar layers,
cach separated by 8 image elements, or 2 dot widths, Thisis illustrated in Pigure 9.

In this case, the number or"./vcrwcmsﬂng points assigned o disparity was 11162, Of these points, 11045
were assigned a disparity value which was exactly correct, and an additional 61 deviated from the correct value
by-(mc image clement, Approximately 0.06% of the points were inqorrcctly matched. Again, these incorrect

points all occured at the boundaries between the planes. A second complex pattern is illustrated in Iieure 9,
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* Figure 8. The top stereo pair is a 25% density random dot pattern. The disparity map below it is displayed as

in Figure 7. The bottom stereo pair is a 5% density random dot pattern. Its disparity map is shown below it.

Both disparity maps are obtained from the w — 4 channel.
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Figure 9. The top stereo pair is a 50% density wedding cake, composed of four planar levels. The disparity
map is shown below it. The bottom stereo pair is a 50% spiral. The disparity map is showh below it, in a

manner similar to Figure 7. Both disparity maps are obtained from the w = 4 channel,
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The object is a spiral with a range of continuously varying disparities.

‘There are a number of special cases of random dot patterns which have been used to test vérious aspects
of the human visual system. The algorithm was also tested on several of these stercograms. They are outlined
below and a comparison between the performance of the algorithm, and human perécption is given.

It is known that if one or both of the images of a random dot stereogram are blurred, fusion of the
stereogram is still possible (Julesz 1971, p.96). To test the algorithrh in this case, the left half of a 50% density
pattern was blurred by convolution with a gaussian mask. This is illustrated in Figure 10. The disparity
valucs obtained in this'cése were not as exact as in the case of no blurring. Rather, there was a distriﬁution
of disparities about the known correct values. As a result, the percentage of points that might be considered in-
correct (more tﬁan one image element deviatioﬁ from the correct value) rose to 6%. However, the qualitative
performance of the algorithm is still that of two planes separated in depth. It is interesting to note that slight
distribution of disparity valucs about those corresponding to the original planes is consistent with the human

perception of a p_ai'r of slightly warped planes.

Julesz and Miller (1975) showed that fusion is also possible in the presence of some types of masking
noise. In particular, if the spectrum of the noisc is disjoint from the spectrum of the pattern, it can be
demonstrated that fusion of the pattern is still possible. Within the framework of the Marr-Poggio theory, this
is equivalent to‘stating that if one introduces noise of such a spectrum as to interfere with one of _thé stereo
channels, fusion is still possiblc among the other channels, provided the noise does not have a substantial
spectral component overlapping other channels as well. This was tested on the algorithm by high pass filtering
a sccond random dot pattern, to create the noise, and adding the noise to one image. In the case illustrated in
Figures 10 and 11, the spectrum of the noisc was designed to interfere .maximally With the smallest channel,
In the case shown by HNOISEl and HNOISE2 in Table 1, the noise was added such that the maximum
magnitude of the noise was equal to the maximum magnitude of the original image. HNOISE] illustrates
the performance of the smallest channel. HNOISE? illustrates the performance of the next larger channel. It

can be seen that for this case, some fusion is still possible in the smallest channcl, although it is patchy. The -
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Figure 10. The top sterco pair is a 5093 density pattém in which the left image has been blurred. The disparity
map is shown below it. It can be seen that two planeé are still evident, although they are not as sharply defined
as in Figure 7 or Figure 8 The disparity map is that obtamcd from the w = 4 channel. The bottom stereo
pair is a 50% density pattcrn The left image has had high pass filtered noise added to it so that the maximum
magnitude of the noise is equal to the maximum magnitude of the image. The dxspanty map shown is that

obtained by the w == 9 channel,

BRI T et e ey
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Figure: 11. The top stereo pair is a 50% densify patterﬁ. The lc‘ﬁ image has ahd high pass filtered noise added
10 it so that the maximum magnitude bf the noise is half the maximum magnitude of the image. The top
disparity map is thét obtained from the w = 9 channel, while the next disparity map is that obtained from the
w == 4 channel. It can be seen that the w = 4 channcl obtains a matching only in a fgw sections of the image.
The bottom sterco pair is a 50% density pattern in which the left image has been compressed in the horizontal
direction. The disparity map frorﬁ the w = 4 is displayed below. It can be scen that the two planes ére still

‘evident, although the entire pattern appears slanted. This is in agreement with human perception.
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next larger channel also obtains fusion. In both cases, the accuracy of the disparity values is reduced from
the normal case. This is to be expected, since the introduction of noise tends to displace the positions of the
zero-crossings. In the case shown by HNOISE3 and HNOISE4 in Table 1, the noise was added such that the
maximum magnitude was twice that-of the maximum magnitude of the original image. Here, matching in the
smallest channel is almost completely climinated (HNOISE3). Yet matching in the next larger channel is only

marginally affected (HNOISE4).

The implementation was also tested on the case of adding low pass filtered noise to a random dot pattern,
with results similar to that of adding high pass filtered noise. Here, the larger channels arc unable to obtain a

good ma'tching, while the smaller channels are relatively unaffected.

If one of the images of a random dot pattern is compressed in the horizontal direction, the human stereo
system is still able to achieve fusion (Julesz 1971, p. 213). Thc alnoruhm was tested on this case, and the results
arc shown in Fxgure 11 It can be scen that the program still obtains a reasonably good match. The planes are

now slightly slanted, which agrees with human perception.

If some of the dots of a pattern are decorrelated, it is still possible for a human observer to achieve
some kind of fusion (Julesz 1971, p.88). Two different types of decorrelation were tested. In the first type,
increasing percentages of the d(;ts in the left image were decorrelated at random. In particular, the cases of
10%, 20% and 30%% were tried, and are illustrated in Figure 12. For the 109 case, (table entry Uncorrl)
it can be seen that the algorithm \\}as still able 40 obtain a good matching of the two planes, although the
total number of zero-crossings assigned a disparity decreased, and the pcrccxitagc of incorrectly matched
- points increased. thn the percentage of decorrelated dots was muwsccl to 209% (table entry Uncorr?.), the
number of matched pomm decreased again, although the pereentage of those w lnch were incorrectly matched
remained about the same., Fmally, when the pereentage of decorrelated dots was mcrcascd to 30% (table entry

Uncorr3), the algorithm found virtually no section of the image which could be fused.

The failure of the algorithm to match the 309 decorrelated pattern is caused by the component of the

algorithm which checks that cach region of the-image is within range of correspondence. Recall that in order
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Figure 12. The top stereo pair is a 50% density pattern in which the left image has had 109 of the dots
decorrelated. The disparity map is shown below. The bottom sterco pair is a 50% density pattern in which
the left image has had 20% of the dots decorrelated. The disparity map is shown below. Note that in this case

there are large regions of the image for which no match was made.
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to distinguish between the case of two images beyond range of fusion (for the current eye positions) which
will héve only randomly matching zero-crossings, and the'case of two image within range of fusion, the Marr-
Poggio theory requires that the percentage of unmatched points is less than some threshold. This threshold
is approximately 0.3, according to the statistical analysis of Marr and Poggio (1979). For the case of the‘
pattern with 309% decorrelation, on the average, each region of the image will have roughly 30% of its zero-
crossings diﬂ“ereﬁﬁ and hence the algorithm decides that the region is out of range of correspondence. Hence,
no disparitites are accepted for this region.
| For the algorithm, the computational rcason for the failure to process patterns with 30% de;orrelation
is that it could not distinguish a correctly rﬁatched region of such a pattern from a region which was out of
‘range of correspondence, but had a random set of matches for many of the pointsin the region. It is interesting
to nofe that many human subjects observe a similar behavior; that is, some kind of fusion for up to 20%
decorrelation, although the fusion becomes increasingly weaker, and virtually no fusion for patterns with 30%
decorrelation. |
One can also decorrelate the pattern by breaking up all white triplets along one set of diagonals, and
all black triplets along the other sef: of diagonals (Julesz 1971, p.87). The table entry Uncorrd indicates the
matching statistics for this case. Again, it can be seen that the program still obtains a good match, as do human

observers. The performance of the algorithm is illustrated in Figure 13.

4. Statistics

A number of parameters are important for the theory, which makes assumptions about them, and they

have been measured on random dot images. The worst cases occur for patterns with a density of 50%, and




Stereo Implementation : 43 _ E. Grimson

Figure 13. The top stereo pair is a 50% density pattern in which the left image has been diagonally decorre-
lated. Along one set of diagonals, every triplet of white dots has been broken by the insertion of a black dot,
and along the other sct of vdiagonals, every triplet of black dots has been broken by the insertion of a white dot.
The disparity map is shown below. The bottom stereo pair is a special case of Panutn’s limit. The left 'm";age is
formed by superimposing two slightly displaced copies of the right image.V The disparity map is shown below,

and consists of two superimposed planes.
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TABLE OF STATISTICS

paramecter expected worst large channel medium channel smal!l channel

case-behavior w = 3§ w = 17 w =0

average distance
between zero-crossings 2w 151w 1.88 w 1.87w
of same sign

probability of
candidates in at > 50 77 75 | 69
most one pool

probability of

t
wn

candidates in < 45 21 3l

{two pools

probability of )
candidates in all <.05 02 01

three pools

01

given acandidate
near /ero,

probability of no >.9 .88 .85 .87

other candidates

Table 2.

for such patterns the worst case values enceuntered for the parameters have the values shown in ‘Table 2. The

theoretical worst case bounds used by Marr and Poggio appear for comparison.
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5. Comments and Discussion '

Implementing a computational theory offers us the opportunity of testing its adequacy. In this case, I
have found that the performance of the implementation coincides well with that of human subjects over a
broad range of random dot test cases obtained from thc‘literature, including defocussing of, compression of.,‘
and the introduction of various kinds of masking noise to one image of a random dot stereo pair.

The process of implementing the theory also led to the following observations and refinements of the
theory. '

(1) There are a number of questions concerning the form of the 24-D sketch. The first critical questioﬁ
concerns whether the sketch reflects the initial or the retinal images. In the first case, the coordinates of thé
sketch would be directly ‘related to the coordinates of the images of the entire scene., However, since disbari&
information about the scene is umactcd from several cye posmons in order to store this information into a
buﬂ“ex with coordinate system connected to the i image of the scene, explicit information about the positions of
the eyes is required. For the computer implementation, this is possible, but for a model of the human visual
system, it seems unlikely that such information is available to the sterco process. In the second case, no such
problem arises. Here, the coordinates of the sketch are directly related to the coordinates of the retinal images.
Such a system would be retinocentric, reflecting the current positions of the eyes. This seems to be the most
natural representation,

The sccond question concerns the use of a fovea. Different sections of the images arc analyzed at different
resolutions, for a given position of the optical axes. An important conscquence of this is that the amount of
buffer space required to storc the disparity will vary widely in the visual ficld, being much greater for the fovea
than for the periphery. This also suggests the use of a retinocentric representation, bccausc if onc used a frame
that had alrcady allowed for eye- movements, it would have to have foveal resolution cverywhere. Not only
does such a buffer waste space, b}lt it does not agree with our own experience as perceivers. If such a buffer
were used, we should be able to build up a pereeptual impression of the world that was everywhere as detailed

asitis at the centre of the gaze, and this is clearly not the case.
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The final point about the 2-D sketch is that it is intended as an intermediate representation of the
current scene. It is important for such a representation to pass on its information to higher level processes as
quickly as possible. Thus, it probably cannot wait for a Iepresentation to be built up over several positions
of the eyes. Rather, it must be refreshed for each eye position. Thus, a refinement to the implementation, as
outlined above, would be to use a representation that is retinocentric, and which represents disparities with

decreasing resolution as eccentricity increases.

For the cases illustrated in this article, the 24-D sketch was created by storing fine resolution disparity
values into a scene-centered representation. A second alternative is to store values from all channels into a
retinocentric representation, using disparity values from the smaller channels where available, and the coarser
disparities from the larger channels clsewhere. In this way, a disparity representation for a single fixation of the

| eyes may be constructed, with disparity resolution varying across the retina. Such a method of creating the 2%-

D sketch has been tested on the implementation, with good results,

(2) The neighbourhood over which a search for a matching zcro-crossing is conducted is broken into
three pools. In the present implementation, the pools are used to deal with the ambiguous case of two
matching zero-crossings, whilc the disparity valucs associated with a match arc represented to within a image
clement. A sccond possibility is to use the pools not only to disambiguate multiple matches, but also to assign
a disparity to a match. Thus, a single disparity value, cqual to the disparity value of [lllC midpoint of the
pool, would be assigned for a matching zero-crossing lying anywhere within the pool. In this scheme, only
three possible disparities could be assigned to a zero-crossing: zero, corresponding to the middle pool, or %ﬂ,
corresponding to the divergent or convergent pools.

Computer expcrimcﬁts show that cither scheme will work. In the case of a single disparity value for each
pool, the disparitics assig;lcd by the smallest channel are within an image clcmc.nt of those obtained using
cxact disparities for each match. This modification was tried on both natural images and random dot patterns,

and suggests that the accuracy with which the pools represent the match is not a critical factor.

(3) Although the Marr-Poggio matcher is designed to match from one image into the other, there is no
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inherent reason why the matching process cannot be driven from both eyes independently. In fact, there
may be some evidence that this is so, as is shown by the following experiment of Q. Braddick (1978) on an
extension to Panum’s limiting case. First, a sparsc random dot pattern was constructed. From this pattern, a
partner was created by displacing the entire pattern by slight amounts to both the left and the right. Thus, for
each dot in the right image, there corresponded two dots in the left image, one with a small displacement to
the left and one with a small displacement to the right. The perception obtained by viewing such a random dot

stereogram is onc of two supcrimposed planes. ‘

Suppose the matching process were only driven from one image, for example, matches were made from
the right image to the left. In this case, the implementation would not be able to account for the Braddick
perception, since all the zero-crossings would have two possible cdndidates. However, suppose that the ma;ch-
ing'process were driven independently from both the right and left images, and an unambiguous match from
cither side accepted. In this case, although every zero-crossing in the right image would have an ambiguous
match, the implementation would obtain a unique match for each zero-crossing in the Ieft image. The

implementation was designed to account for matching from either image.

Braddick’s case has been tested on the implementation, and the results are shown in figure 13. It can be

seen that the results of the implementation are that of two transparent planes.

" (4) The points that were incor_rcctly motched in the test cases all lay along depth discontinuities. The
major reason for this is connected with occlusion of regions. Note that at any depth discontinuity, there will
be an occluded region which is present in one image, but not the other. Any zero-crossings within that region
cannot, of course, have a matching zero-crossing in the other image. Howcvér there is a certain probability
of such a zero-crossing bunn matched incorrectly to a random zero-crossing in Lhc other image. In principle,
the algorithm detects regions wlmh arc occluded, by checking the statistics of the numbcr of unmatched zero-
crossings, and using such results to mark all zero-crossing matches in the region as unknown, However, for a
rcgion which contains a depth discontinuity, only part of the region will have the above clmmctcrxsllcs Zcro-

cxossmgs in the rest of the region will have a unique match. Thus, when the statistical cheek on the number
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of unmatched points is performed, it is possible for the entire region to be considered in range, and thus all

matches, including the incorrect ones of the occluded region, will be accepted.

(5) It is interesting to comment on the effect of depth discontinuities for the different sized masks. For
random dot patterns, the zero-crossings obtained from the larger masks tend to outline blobs or clusters of
dots. Thus in general, the positions of the zero-crossings do not correspond to single elements of the underly-
ing image. Suppose the dot pattern consists of one plane sepafatcd in depth from a second piane. Insuch a
case, one might well find a zero-crossing that belongs at one end to dots on the first plane, and at the other end
to dots belonging té the second plane. Such zero-crossings will be assigned disparitics that reflect, to within
the resolution of the channel, the structure of t;hb image. The zero-crossings lying between the two ends will,
however, receive disparities that smoothly vary from one extreme to the other. The largest channel would thus

not see a plane separated in depth from a sccond plane, but rather a smooth hump.

For the smaller mask this does not occur, as the zcro-cfossing contours tend to outline individual dots or
connected groups of dots. Thus the disparities assigned are such that the dots belong to one plane or the other
and the final disparity map is one of two separated planes,

To achieve perfect results from stereo, it is probably necessary to include in the 2%-dimcnsional sketch
a way of dealitlg competently with discontinuities. Some initial work has alrcady been done in this direction
(Grimson, in preparation). Interestingly, when one looks at a 5% random-dot stercogram portraying a square
in front of its background, one sces vivid subjective contours at its boundary, although the output of the
matcher does not account for this.

(6) Onc consequence of the Marr-Poggio theory is that cxplicit disparity valucs will be obtained only
along the zero-crossing contours. It may be desirable to create a more complete reconstruction of the shapes of
the objects in the scene, b); filling in disparity values between the ZCro-Crossing co‘nvlours. Some work has been

done in this dircction (Grimson, in preparation) and an example is shown in Figure 14,

(7) An integral part of most computational theories, proposed as models of aspects of the human visual

system, is the usc of computational constraints based on assumptions about the physical world (Marr and
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-Figure 14. Example of filling in the disparity map. The top left figure is the initial image. The top right figure
shows the disparity map associated with thc image, where the disparity is represented by the intensity of the
pomt Thc bottom figures show the filled in map, again using intensity to represent disparity. In the left ﬂgure
 the full range of disparity is shown, mdlcatmg the slant of the background plane, and the extreme difference in
disparity between the jar and the background. In the right figure, the intensitics have been adjustcd to cnhance

the dlSpallthS of the jar, indicating the general shape of the interpolated surface.
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Poggio, 1979, Marr and Hildreth, 1980, Ullman, 1979). The constraints so derived are critical in the formation
of the computa;\tional theory, and in the design of an algorithm for solving the problem. An interesting ques-
tion to raisc is whether the algorithm explicitly checks that the constraints imposed by the theory are satisfied,
For example, Ullman’s rigidity constraint in the analysis of structure from motion is explicitly checked by his
algorithm. For the case of the Marr-Poggio stereo theory, two constraints were outlined, uniqueness and con-
tinuity of disparity values. It is curious that in the algorithm used to solve the stereo problem, the continuity
constraint is explicity checked while the uniqueness constraint is not. Uniqueness of disparity is required in
one direction of matching, since only those zero-crossing segments of one image which have exactly one fnatch
in the second image are aqéepted. However, it may be the case that more than one element of the right image
* could be matched to an element of the left image, for matching in this direction. When matching from the
right image to the left, the same is true. Note that one could easily alter the algorithm to include the checking
of uniqueness, thereby retaining only those disparity values corresponding to zero-crossing segments with a
unique disparity value when matched from both images. However, the evidence of Braddick discussed above
would indicate that this is not the case. Hence, in the Marr-Poggio stereo theory, although both the require-
 ment of uniqueness and continuity are subsumed, only one of these two constraints is explicitly checked by the

algorithm.

(8) It is worth observing the disﬁﬁction between the performance of the implementation on random
dot patterns and the 'performance of the implementation on natural images. Some examples are shown inf
Figure 15. The main point is that on the whole, the performance is quite accebtable for random dot patterns,
However, the implementation can occasionally fail in the case of natural images. The question is whether this
reflects a basic inadequacy in the theory and its implementation, or whether there are other aspects of the

visual process interacting with stereo which have not been included in this implementation.

This can be approached in two ways: (1) Is the assumption of modularity incorrect? In other words, is
there something wrong with the matching module as developed by Marr and Poggio, and as implemented

here. (2) Are there other modules, not considered here, which may affect the input or the output of the




Stereo Implementation ' .53 E. Grimson

‘ ‘-F igure 15. Examples of natural images. The top stereo pair is a scene of a basketball game. The dispaﬁty map
below is viewed ffom the side, so that the width of the black bars indicates the relative disparity. The bottom
stereo pair is of a sculpture by Henry Moore. The disparity maps below it are also viewed from the side. The
left map illustrates the extreme range of disparity between the trees in the background and the sculpture itself,

- The right map has been adjusted to enhance the disparities of the sculpture, indicating its form.
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matching module? : S AR S : g L he

The results of testing the implementation on the broad range of images, indicated in previous sections,’
seems to indicate that the matching module is acceptable as an independent one. In particular, the agreement
between the performance of the algorithm and that of human observers on the many random dot patternsS
seems to indicate that the matching module is acceptable, since in these cascs, all dthcr visual cues have been

isolated from the matcher. .

When we ttlfn.to natural imagés, it is reés(mable to expect that other visual modules may affec( [lzlc iﬁpi&
to the mzitéher’ahd that they may alter the output of the matcher. This is"n:ot to suggest that the mafcher is
incorrect, only that the effects of other modules must be taken into account in order to explain the complete
human perception. For éxample, the evidence of Kidd, Frisby and Mayhew (1979) concerning the ability of .
texture boundaries to drive eye vergence movements indicates that other visual in formation besides.disparity
may alter the position of the eyes, and thus the input to the matcher. However, it does not necessarily imply

that the matcher itself needs to be modified.

Interestingly, the performance of the implementation supports this point. The implementation, which lS
considered a distinct module, also performs very well on random dot patterns, where there is no possibility
of interaction with other visual processes. For many natural images, this is still true. However, occasionally
it is the case that a natural image provides some difficulty for the implementation. A particular example of
this cccurs in the image of Figure 16 . Here, the regular pattern of the windows provides a strong false targets
problem. In running the implementation, the foflowing behavior was observed. If ‘Lhc optical axes were aligned
at the level of the building, the zero-crossings corresponding to the windows were all assigned a correct dis-
parity. If, however, the optical axes were aligned at the level of the trees in front of" the building, the windows
were assigied an incorrect disparity, duc to the regular pattern of zero-crossings associated with them, Cleatly,
this seems wrong. Yet is the hnp}cmcntatiqn wrong? Curiously, if one fuses the zero-crossing descriptions of
the convolved images without eye movements, human observers have the same problem: if the eyes are fixated

at the level of the building, the windows arc correctly matched; if the eyes are fixated at the level of the trees,
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Figure 16. The false targest problem. The top figures are a sterco pair of a group of buildings, The b()(toxn
figures show the zero-crossing descriptions of these images. The regular paitern of the windows of the rear
building caases difficultics for the matcher, If the alignment of the eyes cerresponds to fixating at the level
of the building, the algorithm matches the zero-crossings corresponding to the windows correctly. If the
alignment of the cyes corresponds to fixating at the level of the trees in front of the building, the algorithm
matches the zero-crossings corresponding to the windows incorrectly. Experiments indicate that under similar

conditions humans have a similar perception,
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the windows are incorrectly matched. I would argue that this implies that the implementation, and hence the

'

theory of the matching process is in fact correct. Given a particular set of zero-crossings, the module finds

any acceptable matching and writes it into the 21-D sketch. However, it is probably the case that some later

processing module, which examines the contents of the 24-D sketch, is capable of altering the contents stored

-there, based on more global information than is available to the matching component of the stereo process.

Thus, I would suggest that future refinements to the Marr-Poggio theory must account for the interac-
tions of other aspects of visual information processing on the input and output of the matching module. Some

initial work has already been done in this direction (Grimson, in preparation).
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to distinguish between the case of two images beyond range of fusion (for the current eye positions) which
will héve only randomly matching zero-crossings, and the'case of two image within range of fusion, the Marr-
Poggio theory requires that the percentage of unmatched points is less than some threshold. This threshold
is approximately 0.3, according to the statistical analysis of Marr and Poggio (1979). For the case of the‘
pattern with 309% decorrelation, on the average, each region of the image will have roughly 30% of its zero-
crossings diﬂ“ereﬁﬁ and hence the algorithm decides that the region is out of range of correspondence. Hence,
no disparitites are accepted for this region.
| For the algorithm, the computational rcason for the failure to process patterns with 30% de;orrelation
is that it could not distinguish a correctly rﬁatched region of such a pattern from a region which was out of
‘range of correspondence, but had a random set of matches for many of the pointsin the region. It is interesting
to nofe that many human subjects observe a similar behavior; that is, some kind of fusion for up to 20%
decorrelation, although the fusion becomes increasingly weaker, and virtually no fusion for patterns with 30%
decorrelation. |
One can also decorrelate the pattern by breaking up all white triplets along one set of diagonals, and
all black triplets along the other sef: of diagonals (Julesz 1971, p.87). The table entry Uncorrd indicates the
matching statistics for this case. Again, it can be seen that the program still obtains a good match, as do human

observers. The performance of the algorithm is illustrated in Figure 13.

4. Statistics

A number of parameters are important for the theory, which makes assumptions about them, and they

have been measured on random dot images. The worst cases occur for patterns with a density of 50%, and
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Figure 13. The top stereo pair is a 50% density pattern in which the left image has been diagonally decorre-
lated. Along one set of diagonals, every triplet of white dots has been broken by the insertion of a black dot,
and along the other sct of vdiagonals, every triplet of black dots has been broken by the insertion of a white dot.
The disparity map is shown below. The bottom stereo pair is a special case of Panutn’s limit. The left 'm";age is
formed by superimposing two slightly displaced copies of the right image.V The disparity map is shown below,

and consists of two superimposed planes.
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TABLE OF STATISTICS

paramecter expected worst large channel medium channel smal!l channel

case-behavior w = 3§ w = 17 w =0

average distance
between zero-crossings 2w 151w 1.88 w 1.87w
of same sign

probability of
candidates in at > 50 77 75 | 69
most one pool

probability of

t
wn

candidates in < 45 21 3l

{two pools

probability of )
candidates in all <.05 02 01

three pools

01

given acandidate
near /ero,

probability of no >.9 .88 .85 .87

other candidates

Table 2.

for such patterns the worst case values enceuntered for the parameters have the values shown in ‘Table 2. The

theoretical worst case bounds used by Marr and Poggio appear for comparison.
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5. Comments and Discussion '

Implementing a computational theory offers us the opportunity of testing its adequacy. In this case, I
have found that the performance of the implementation coincides well with that of human subjects over a
broad range of random dot test cases obtained from thc‘literature, including defocussing of, compression of.,‘
and the introduction of various kinds of masking noise to one image of a random dot stereo pair.

The process of implementing the theory also led to the following observations and refinements of the
theory. '

(1) There are a number of questions concerning the form of the 24-D sketch. The first critical questioﬁ
concerns whether the sketch reflects the initial or the retinal images. In the first case, the coordinates of thé
sketch would be directly ‘related to the coordinates of the images of the entire scene., However, since disbari&
information about the scene is umactcd from several cye posmons in order to store this information into a
buﬂ“ex with coordinate system connected to the i image of the scene, explicit information about the positions of
the eyes is required. For the computer implementation, this is possible, but for a model of the human visual
system, it seems unlikely that such information is available to the sterco process. In the second case, no such
problem arises. Here, the coordinates of the sketch are directly related to the coordinates of the retinal images.
Such a system would be retinocentric, reflecting the current positions of the eyes. This seems to be the most
natural representation,

The sccond question concerns the use of a fovea. Different sections of the images arc analyzed at different
resolutions, for a given position of the optical axes. An important conscquence of this is that the amount of
buffer space required to storc the disparity will vary widely in the visual ficld, being much greater for the fovea
than for the periphery. This also suggests the use of a retinocentric representation, bccausc if onc used a frame
that had alrcady allowed for eye- movements, it would have to have foveal resolution cverywhere. Not only
does such a buffer waste space, b}lt it does not agree with our own experience as perceivers. If such a buffer
were used, we should be able to build up a pereeptual impression of the world that was everywhere as detailed

asitis at the centre of the gaze, and this is clearly not the case.
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The final point about the 2-D sketch is that it is intended as an intermediate representation of the
current scene. It is important for such a representation to pass on its information to higher level processes as
quickly as possible. Thus, it probably cannot wait for a Iepresentation to be built up over several positions
of the eyes. Rather, it must be refreshed for each eye position. Thus, a refinement to the implementation, as
outlined above, would be to use a representation that is retinocentric, and which represents disparities with

decreasing resolution as eccentricity increases.

For the cases illustrated in this article, the 24-D sketch was created by storing fine resolution disparity
values into a scene-centered representation. A second alternative is to store values from all channels into a
retinocentric representation, using disparity values from the smaller channels where available, and the coarser
disparities from the larger channels clsewhere. In this way, a disparity representation for a single fixation of the

| eyes may be constructed, with disparity resolution varying across the retina. Such a method of creating the 2%-

D sketch has been tested on the implementation, with good results,

(2) The neighbourhood over which a search for a matching zcro-crossing is conducted is broken into
three pools. In the present implementation, the pools are used to deal with the ambiguous case of two
matching zero-crossings, whilc the disparity valucs associated with a match arc represented to within a image
clement. A sccond possibility is to use the pools not only to disambiguate multiple matches, but also to assign
a disparity to a match. Thus, a single disparity value, cqual to the disparity value of [lllC midpoint of the
pool, would be assigned for a matching zero-crossing lying anywhere within the pool. In this scheme, only
three possible disparities could be assigned to a zero-crossing: zero, corresponding to the middle pool, or %ﬂ,
corresponding to the divergent or convergent pools.

Computer expcrimcﬁts show that cither scheme will work. In the case of a single disparity value for each
pool, the disparitics assig;lcd by the smallest channel are within an image clcmc.nt of those obtained using
cxact disparities for each match. This modification was tried on both natural images and random dot patterns,

and suggests that the accuracy with which the pools represent the match is not a critical factor.

(3) Although the Marr-Poggio matcher is designed to match from one image into the other, there is no
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inherent reason why the matching process cannot be driven from both eyes independently. In fact, there
may be some evidence that this is so, as is shown by the following experiment of Q. Braddick (1978) on an
extension to Panum’s limiting case. First, a sparsc random dot pattern was constructed. From this pattern, a
partner was created by displacing the entire pattern by slight amounts to both the left and the right. Thus, for
each dot in the right image, there corresponded two dots in the left image, one with a small displacement to
the left and one with a small displacement to the right. The perception obtained by viewing such a random dot

stereogram is onc of two supcrimposed planes. ‘

Suppose the matching process were only driven from one image, for example, matches were made from
the right image to the left. In this case, the implementation would not be able to account for the Braddick
perception, since all the zero-crossings would have two possible cdndidates. However, suppose that the ma;ch-
ing'process were driven independently from both the right and left images, and an unambiguous match from
cither side accepted. In this case, although every zero-crossing in the right image would have an ambiguous
match, the implementation would obtain a unique match for each zero-crossing in the Ieft image. The

implementation was designed to account for matching from either image.

Braddick’s case has been tested on the implementation, and the results are shown in figure 13. It can be

seen that the results of the implementation are that of two transparent planes.

" (4) The points that were incor_rcctly motched in the test cases all lay along depth discontinuities. The
major reason for this is connected with occlusion of regions. Note that at any depth discontinuity, there will
be an occluded region which is present in one image, but not the other. Any zero-crossings within that region
cannot, of course, have a matching zero-crossing in the other image. Howcvér there is a certain probability
of such a zero-crossing bunn matched incorrectly to a random zero-crossing in Lhc other image. In principle,
the algorithm detects regions wlmh arc occluded, by checking the statistics of the numbcr of unmatched zero-
crossings, and using such results to mark all zero-crossing matches in the region as unknown, However, for a
rcgion which contains a depth discontinuity, only part of the region will have the above clmmctcrxsllcs Zcro-

cxossmgs in the rest of the region will have a unique match. Thus, when the statistical cheek on the number
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of unmatched points is performed, it is possible for the entire region to be considered in range, and thus all

matches, including the incorrect ones of the occluded region, will be accepted.

(5) It is interesting to comment on the effect of depth discontinuities for the different sized masks. For
random dot patterns, the zero-crossings obtained from the larger masks tend to outline blobs or clusters of
dots. Thus in general, the positions of the zero-crossings do not correspond to single elements of the underly-
ing image. Suppose the dot pattern consists of one plane sepafatcd in depth from a second piane. Insuch a
case, one might well find a zero-crossing that belongs at one end to dots on the first plane, and at the other end
to dots belonging té the second plane. Such zero-crossings will be assigned disparitics that reflect, to within
the resolution of the channel, the structure of t;hb image. The zero-crossings lying between the two ends will,
however, receive disparities that smoothly vary from one extreme to the other. The largest channel would thus

not see a plane separated in depth from a sccond plane, but rather a smooth hump.

For the smaller mask this does not occur, as the zcro-cfossing contours tend to outline individual dots or
connected groups of dots. Thus the disparities assigned are such that the dots belong to one plane or the other
and the final disparity map is one of two separated planes,

To achieve perfect results from stereo, it is probably necessary to include in the 2%-dimcnsional sketch
a way of dealitlg competently with discontinuities. Some initial work has alrcady been done in this direction
(Grimson, in preparation). Interestingly, when one looks at a 5% random-dot stercogram portraying a square
in front of its background, one sces vivid subjective contours at its boundary, although the output of the
matcher does not account for this.

(6) Onc consequence of the Marr-Poggio theory is that cxplicit disparity valucs will be obtained only
along the zero-crossing contours. It may be desirable to create a more complete reconstruction of the shapes of
the objects in the scene, b); filling in disparity values between the ZCro-Crossing co‘nvlours. Some work has been

done in this dircction (Grimson, in preparation) and an example is shown in Figure 14,

(7) An integral part of most computational theories, proposed as models of aspects of the human visual

system, is the usc of computational constraints based on assumptions about the physical world (Marr and
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-Figure 14. Example of filling in the disparity map. The top left figure is the initial image. The top right figure
shows the disparity map associated with thc image, where the disparity is represented by the intensity of the
pomt Thc bottom figures show the filled in map, again using intensity to represent disparity. In the left ﬂgure
 the full range of disparity is shown, mdlcatmg the slant of the background plane, and the extreme difference in
disparity between the jar and the background. In the right figure, the intensitics have been adjustcd to cnhance

the dlSpallthS of the jar, indicating the general shape of the interpolated surface.
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Poggio, 1979, Marr and Hildreth, 1980, Ullman, 1979). The constraints so derived are critical in the formation
of the computa;\tional theory, and in the design of an algorithm for solving the problem. An interesting ques-
tion to raisc is whether the algorithm explicitly checks that the constraints imposed by the theory are satisfied,
For example, Ullman’s rigidity constraint in the analysis of structure from motion is explicitly checked by his
algorithm. For the case of the Marr-Poggio stereo theory, two constraints were outlined, uniqueness and con-
tinuity of disparity values. It is curious that in the algorithm used to solve the stereo problem, the continuity
constraint is explicity checked while the uniqueness constraint is not. Uniqueness of disparity is required in
one direction of matching, since only those zero-crossing segments of one image which have exactly one fnatch
in the second image are aqéepted. However, it may be the case that more than one element of the right image
* could be matched to an element of the left image, for matching in this direction. When matching from the
right image to the left, the same is true. Note that one could easily alter the algorithm to include the checking
of uniqueness, thereby retaining only those disparity values corresponding to zero-crossing segments with a
unique disparity value when matched from both images. However, the evidence of Braddick discussed above
would indicate that this is not the case. Hence, in the Marr-Poggio stereo theory, although both the require-
 ment of uniqueness and continuity are subsumed, only one of these two constraints is explicitly checked by the

algorithm.

(8) It is worth observing the disﬁﬁction between the performance of the implementation on random
dot patterns and the 'performance of the implementation on natural images. Some examples are shown inf
Figure 15. The main point is that on the whole, the performance is quite accebtable for random dot patterns,
However, the implementation can occasionally fail in the case of natural images. The question is whether this
reflects a basic inadequacy in the theory and its implementation, or whether there are other aspects of the

visual process interacting with stereo which have not been included in this implementation.

This can be approached in two ways: (1) Is the assumption of modularity incorrect? In other words, is
there something wrong with the matching module as developed by Marr and Poggio, and as implemented

here. (2) Are there other modules, not considered here, which may affect the input or the output of the
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‘ ‘-F igure 15. Examples of natural images. The top stereo pair is a scene of a basketball game. The dispaﬁty map
below is viewed ffom the side, so that the width of the black bars indicates the relative disparity. The bottom
stereo pair is of a sculpture by Henry Moore. The disparity maps below it are also viewed from the side. The
left map illustrates the extreme range of disparity between the trees in the background and the sculpture itself,

- The right map has been adjusted to enhance the disparities of the sculpture, indicating its form.
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matching module? : S AR S : g L he

The results of testing the implementation on the broad range of images, indicated in previous sections,’
seems to indicate that the matching module is acceptable as an independent one. In particular, the agreement
between the performance of the algorithm and that of human observers on the many random dot patternsS
seems to indicate that the matching module is acceptable, since in these cascs, all dthcr visual cues have been

isolated from the matcher. .

When we ttlfn.to natural imagés, it is reés(mable to expect that other visual modules may affec( [lzlc iﬁpi&
to the mzitéher’ahd that they may alter the output of the matcher. This is"n:ot to suggest that the mafcher is
incorrect, only that the effects of other modules must be taken into account in order to explain the complete
human perception. For éxample, the evidence of Kidd, Frisby and Mayhew (1979) concerning the ability of .
texture boundaries to drive eye vergence movements indicates that other visual in formation besides.disparity
may alter the position of the eyes, and thus the input to the matcher. However, it does not necessarily imply

that the matcher itself needs to be modified.

Interestingly, the performance of the implementation supports this point. The implementation, which lS
considered a distinct module, also performs very well on random dot patterns, where there is no possibility
of interaction with other visual processes. For many natural images, this is still true. However, occasionally
it is the case that a natural image provides some difficulty for the implementation. A particular example of
this cccurs in the image of Figure 16 . Here, the regular pattern of the windows provides a strong false targets
problem. In running the implementation, the foflowing behavior was observed. If ‘Lhc optical axes were aligned
at the level of the building, the zero-crossings corresponding to the windows were all assigned a correct dis-
parity. If, however, the optical axes were aligned at the level of the trees in front of" the building, the windows
were assigied an incorrect disparity, duc to the regular pattern of zero-crossings associated with them, Cleatly,
this seems wrong. Yet is the hnp}cmcntatiqn wrong? Curiously, if one fuses the zero-crossing descriptions of
the convolved images without eye movements, human observers have the same problem: if the eyes are fixated

at the level of the building, the windows arc correctly matched; if the eyes are fixated at the level of the trees,
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Figure 16. The false targest problem. The top figures are a sterco pair of a group of buildings, The b()(toxn
figures show the zero-crossing descriptions of these images. The regular paitern of the windows of the rear
building caases difficultics for the matcher, If the alignment of the eyes cerresponds to fixating at the level
of the building, the algorithm matches the zero-crossings corresponding to the windows correctly. If the
alignment of the cyes corresponds to fixating at the level of the trees in front of the building, the algorithm
matches the zero-crossings corresponding to the windows incorrectly. Experiments indicate that under similar

conditions humans have a similar perception,
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the windows are incorrectly matched. I would argue that this implies that the implementation, and hence the

'

theory of the matching process is in fact correct. Given a particular set of zero-crossings, the module finds

any acceptable matching and writes it into the 21-D sketch. However, it is probably the case that some later

processing module, which examines the contents of the 24-D sketch, is capable of altering the contents stored

-there, based on more global information than is available to the matching component of the stereo process.

Thus, I would suggest that future refinements to the Marr-Poggio theory must account for the interac-
tions of other aspects of visual information processing on the input and output of the matching module. Some

initial work has already been done in this direction (Grimson, in preparation).
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