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-~ 1. Introduction

One day a student came to Moon and said, "I understand how to make a
better garbage collector. We must keep a reference count of the pointers to
each cons. " Moon patiently told the student the following story-

"One day a student came to Moon and said, I understand how to
make a better garbage collector...””

- Danny Hillis

In Lisp, and similar systems with dynamically allocated storage the lifetimes of
objects can vary widely. Some objects are used to store relatively "permanent" data,
and remain in the system for long periods of time. Others are used by programs to
store "temporary” results - these objects are created, used for a short while, then are
no longer needed. These short-lived objects account for a large proportion of
~ storage use.

The traditional garbage collection algorithms [1] have the defect that storage for
objects with short lifetimes is just as costly as storage for objects with long lifetimes.
- When an object becomes inaccessible, the time needed to recover it is independent of
the lifetime of the object. Our observations of large Lisp programs indicate that
there is much to be gained in performance by optimizing the special case of

recovermg storage for short-lived objects. '

In this paper, we propose a new garbage collection algorithm whicH takes account of

the lifetimes of objects to improve efficiency. To use an analogy, our scheme can be
thought of as "renting” memory space, where the storage management cost for an
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object is proportional to the time during which the object is used. Traditional
methods are more like "buying" memory space, since the cost for an object is paid
once and is always the same, regardless of how much the object is used. When
large numbers of objects are used, but each object may be used only for a short
period of time, the "renting" strategy will cost less overall than the "buying" strategy.
Our garbage collector should also turn out to be more efficient on long-lived objects,
since the garbage collector will spend less effort continually considering them as
candidates for reclamation.

- We were led to work on the garbage collection problem by considering the
performance needs of applications in Artificial Intelligence (AD. The performance ‘of
the new generation of object oriented, message passing systems which we believe to
be the best vehicle for Al applications [15] [17] [20] will rely increasingly on the
efficiency of storage for short-lived objects. Programs which do a lot of internal
“thinking" will need lots of short-lived objects as "thinking material" before they
commit themselves to decisions.  These programs will need to construct hypothetical

. worlds, which may eventually be thrown away after their purpose in helping to make

decisions has been served.

Some systems use reference counts instead of garbage collection, primarily because a
reference count system can reclaim short-lived objects more quickly. A reference
count system has the property that short-lived objects are re-usable as soon as they
become inaccessible, when their reference counts reach zero. However, reference
count systems have formidable problems of their own. Reference counting cannot
reclaim circular structures (as our introductory story points out). Circular structures
are becoming an increasingly important programming technique in sophisticated Al
applications. Making sure reference counts are always updated when necessary and
kept consistent is sometimes tricky. Maintaining the reference counts often consumes
a considerable percentage of the total processor time. If a large proportion of
objects which are created are eventually lost, garbage collectors which trace the
accessible objects will be preferred to reference counts, which trace the inaccessible
- objects. Some have also proposed more complicated systems which combine reference
counts with garbage collection [11] [24}

Our garbage collector incorporates a simple extension to a garbage collection
algorithm devised by Henry Baker [4] Baker's garbage collector performs garbage
collection in real time - the elementary object creation and access operations take
time which is bounded by a constant, regardless of the size of the memory. We
would also like a garbage collection algorithm which will work well on machines with
a very large address space [6] We believe these properties will be essential to make
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garbage collection practical' on the next generation of computers.  The suggestions
described in this paper are currently being explored for implementation on the Lisp
Machine [13], [25] a high performance personal computer currently in use at MIT,

and on the Apiary [16], a proposed multiprocessor machine for object oriented
programming. | .

2, A review of Baker’s algorithm

Baker proposes the address space be divided into fromspace and fospace. Objects are
created (by operations like Lisp's CONS) from successive memory locations in fospace.
The garbage collection process traces accessible objects, incrementally evacuating
objects, moving them from fromspace to tospace. When no more accessible objects
- remain in fromspace, its memory can be re-used. An operation called a flip occurs,
where the tospace becomes the fromspace and vice versa.

When a object is evacuated from fromspace to tospace, an invisible pointer (or
Sforwarding pointer) is left in the fromspace memory cell pointing at its new location
in tospace. To make an analogy with mail, an invisible pointer is like a forwarding
address. When a person moves, the post office sends mail destined for the old
address to the new address instead. In addition, the sender should be informed to
send mail to the new address from now on.

‘When a fromspace cell containing an invisible pointer is referenced, the link to
tospace is followed and the tospace object is returned. Furthermore, the original

~ reference is altered to point to the tospace object. On a microcoded machine, this

occurs in microcode and is completely transparent to the user's program.

The operations which access components of an object (like CAR and CDR in Lisp)
check the address to make sure the address is in tospace. Any object located in
fromspace is evacuated to tospace, and the reference updated.

When a object is first evacuated to tospace, one of its components can point back to
fromspace. We'd like to remove all pointers back to fromspace so that fromspace's
memory can be recycled. Whenever a pointer from tospace to fromspaée is found,
we can remove the pointer by evacuating the fromspace object, movmg it to tospace,
‘and updatmg the tospace pointer to the newly evacuated object in tospace. This
process is called scavengmg

Real Time GC Based on Object Lifetime 2. A review of Baker's algorithm
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Tospace is divided into two areas, the creation area where newly created objects
appear, and the evacuation area, which contains objects evacuated from fromspace.
(In Baker's scheme, the creation area was allocated from the highest location in
tospace, downward, and the evacuation area was allocated from the bottom, upward.)

Scavenging is a process which linearly scans the evacuation area of tospace and if a
component of an object points to fromspace, the fromspace object is evacuated to
tospace (appended to the evacuation area). Like the mark phase of traditional
garbage collectors, scavenging touches all accessible objects. It does so in breadth-
first order, and does not require a stack. '

The scavenger process can be interleaved with object creation, evacuating a few
fromspace objects to tospace every time an object is created.  Since only a small
amount of work must be done whenever an object is created, or parts of an object

are accessed, the garbage collection operates in real time.

Figure [1]

(See next page)
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(For reference, a more detailed descriptidn of the Baker algorithm appears in an
~ appendix.)

3. Small regions of memory can replace Baker's spaces

We now present a description of our alternative to Baker's algorithm. (A more
detailed, step-by-step description of this procedure appears in an appendix) We will
start with the key concepts behind the algorithm, and then discuss special-case
modifications, optimizations and alternative implementations. ’

For the moment, let's pretend that all references to objects reside in the heap
memory. We will consider other sources of object references later.

We will retain some of the essential aspects of Baker's algorithm. Garbage collecting
a space will involve moving all the accessible objects out of the space, evacuating
them to another space, then scavenging to remove all pointers pointing into the old
space so the memory for the space can be recycled.

Our scheme will involve two major improvements to Baker's. Baker divides the
address space into two halves, fromspace and tospace (cutting down the effectively
usable address space by a factor of two). In our scheme, the address space is
allocated in small regions. ‘

A region is a small set of pages of memory (not necessarily contiguous). We won't
commit ourselves to a particular size for regions, but regions should be small
compared to the address space. Of course, allocating address space in regions opens
up the possibility that we will waste some space because partially filled regions will
occupy memory. However, it should be possible to choose the region size large
enough to minimize the effects of fragmentation of regions. The machine should be
able to quickly tell, for a given page, to what region it belongs.

We ‘will use these fine divisions of the address space to vary the rate of garbage
collection for each region, according to the age of the region. Recently created
- regions will contain high percentages of garbage, and will be garbage collected

frequently. Older regions will contain relatively permanent data, and will be garbage
_collected very seldom. | :

New objects are created from storage allocated in creation regions. At any time,
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‘there's a current creation region, in which operations like CONS can create new
objects. When the current creation region is filled, a new one is allocated.

We introduce a mechanism to keep track of how recent each region is, so we can
distinguish between data likely to be relatively temporary or more permanent
Regions are organized into generations. The system keeps track of a current
generation number and when a creation region is born, it is given the current
generation number. The current generation number is periodically incremented.

The process of garbage collecting a particular region is initiated by condemning the
region. We'll call objects obsolete if they reside in a region that's been condemned.
Condemning a region announces our intention to move all the accessible objects out
of the region so that we can recycle the memory for that regionn When we
condemn a region, we create new regions to hold the objects evacuated out of a
condemned region. Each of these evacuation regions inherits the same generation
number as the condemned region, but is assigned a version number one higher. The
version number of a region counts how many times regions of that generation have
been condemned. -

Objects are evacuated in the same way as in the original Baker algorithm. We
allocate space for a new object in the evacuation region, and copy the contents of
the old object into the new space. An invisible pointer is left in the old memory
cell pointing to the new object. If we encounter any reference to a cell containing a
invisible pointer, the reference is updated to point to the new object.

Figure [2]

(See next page)
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The correspondence between our algorithm and Baker's is that obsolete areas of
memory play the role of fromspace, everything else in memory is like Baker's
‘tospace. Condemning a region is like Baker's flip operation, on a much smaller scale.

4. Scavenging is reduced by grouping pointers from older to newer objects

In order to release memory for a condemned region, we have to make sure that no
pointers from outside the condemned region point to it This is done, as in Baker's
algorithm, by scavenging, linearly scanning all regions which might contain a pointer
to an obsolete object, evacuating any obsolete object and updating the reference.

Let's examine the reasons for performing scavenging A primary reason for
scavenging is to be able to re-use the address space. (Note that re-using real memory
is not an issue in virtual memory systems, since paging manages the use of real
. memory.) If the address space is small, it may be necessary to re-use addresses that
~ previously held objects which became inaccessible, to avoid exhausting the address
space. Another reason for scavenging is to compact the address space. In systems
with large address spaces, the page tables themselves may be subject to paging, so
performance can be improved by compacting the address space. Additional reasons
for scavenging are concerned with the disk. It may be necessary to re-use space on

the disk, or compacting the storage on the disk may result in reduced disk access
time. ‘

Figure [3 |>

(See next page)
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Scavenging is potentially a lot of work, and since our algorithm is designed to
~ condemn regions at a much faster rate than Baker does flips, the efficiency of
scavenging is more crucial for our system. We will attempt to hold down the
scavenging time by enforcing restrictions on where pointers may point, so that we
will have a better chance of knowing where to look to find all references to a
condemned region. These restrictions will cut down the amount of storage which has
to be scanned to find and update obsolete references.

We intend to exploit some empirically observed properties of heap storage. Most
pointers point backward in time, that is, objects tend to point to objects which were
created earlier. This is because object creation operations like CONS can only create
backward pointers, since the components of the object must exist before the object
itself is created. Pointers which point forward in time can only arise as a result of a
destructive operation like RPLACA which can assign a newer pointer as a component of
an older object. Since we intend to condemn regions in recent generations more
frequently than older generations, we will try to engineer a scheme which reduces

scavenging for newer generations at the expense of making scavenging more costly for
older generations.

The idea is to allow objects to point backward any number of generations, but keep track
of forward pointers. By restricting pointers from older generations to newer
generations, we can arrange that references to a region will come from either the
same generation, or from younger generations. Thus, when a region is condemned,
we need not scavenge regions in any of the older generations. This will mean it will
be much faster to reclaim regions in recent generations, since there will be
comparatively little storage that needs to be scavenged.

What happens when an attempt is made to create a pointer from an older generation
to a younger generation? Instead of pointing directly from the older object to the
newer object, we require that the older object point indirectly through another cell
held in an entry rable We now associate with each region containing objects,
another region called its entry table, which contains the indirect cells for all pointers
to objects in that region from older generations. All pointers directly into an object-
containing region from older generations must lie in the entry table. Of course,
when the user's program references a pointer which points to an entry table, the link
to the younger object is automatically followed, so this extra indirection is
transparent to the user's program. '

When an region R is condemned, only newer generations must be scavenged to find
and update pointers into the condemned region. Instead of scavenging the older

'Rnl Time GC Based on Object Lifetime 4, Scavenging s reduced by grouping pointers from older to newer objects
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generations, the entry table associated with R is scavanged instead, since its purpose
is to collect all pointers from older generations. Since pointers from older to
younger generations are only produced by destructive operations like RPLACA, these
operations must check to see if they might cause an older object to point to a
younger object. We expect these pointers to be relatively rare compared to object
creation operations so the size of entry tables should be relatively small compared to
the size of object regions. This is in keeping with our philosophy of making object
creation cheap even if it requires a little more overhead on object modification

Figure |4 |'

(See next page)
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What about storage reclamation for the entry tables themselves? How do we recover
storage in the entry table when a pointer from an older to a younger object becomes
inaccessible? Since we expect there to be a relatively small number of forward
pomters, efficiency of storage management for entry tables is not as critical an issue
as it is for objects. There are several alternatives, and here we present a suggestion
of Lucassen [21]. If we record the name of the region of the originating object with
each entry in the entry table, this provides us a means of detecting inaccessible
pointers in the entry table. When the system completes garbage collection and
scavenging for a region, it is known that all objects in the region are inaccessible,
and the system records the region in a list. When looking at entry tables, any cell
created for an object in an inaccessible region is known to be inaccessible. This
requires that region names are unique, which is not hard to assure, and also that
entries are not shared, every forward pointer gets its own entry.

The reader should be sure to understand that it is not necessary to wait for
scavenging to be completed for one condemned region before another region can be
condemned. Condemning a region starts a wave of scavenging scanning all memory
more recent than the condemned region. The wave stops when the scan reaches the
most recent region, and memory for the condemned region is released. Many such
waves can be present in the system at any time, without interfering with each other.
Each wave of scavenging just needs to keep a pointer saying where it currently is
working, and the pointer is advanced each time more scavenging is performed.

There is some flexibility about the order in which scavenging is performed. We
would probably recommend always scavenging the oldest objects first. Paging during
scavenging might be reduced by adopting a suggestion of Greenblatt, or a similar one
by Knuth [19], which would always prefer scavenging a resident page to one which is

‘out on the disk.

We should point out that the idea of restricting pointers which point forward in time
to go through entry tables is independent of the particular method used to
accomplish garbage collection for each generation. It would be possible to substitute
a more standard mark and sweep algorithm for the Baker-style copying garbage
collection that we advocate.

S. (__)ldérj objects are garbage collected more slowly than younger objects

The pérformance of our garbage collector is improved by varying the rate at which

Real Time GC Based on Object Lifetime 5. Older objects are garbage collected mare slowly than younger objects
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regions in a generation are condemned according to the age of the objects. A good
“heuristic is to assume that if objects have been around for a long time, that they are
relatively permanent and will continue to be accessible. This makes it reasonable to
use the generation number and version number of a region as a guideline to decide
when to condemn it

As the objects in a region get older, the operation of garbage collecting the region
by making the region obsolete and evacuating all its accessible pointers will happen
less frequently. This will save time which would have been wasted moving permanent
objects around, at the cost of increasing the time it takes to reclaim those objects in
the region which do become inaccessible. For regions containing mostly objects with
long lifetimes, this tradeoff will be worthwhile. Young regions will contain a high
percentage of garbage, so it is advantageous to reclaim inaccessible objects in these
regions as soon as possible.

Recovering storage for old inaccessible objects is costly, since all the more recent
memory must be scavenged. Since garbage collection is so expensive for old objects,
we should do it infrequently, so the cost can be amortized over a long time period.
Recovering storage for new inaccessible objects is cheap, since very little storage has
to be scavenged.

Another consideration for deciding when to condemn regions is that it is necessary to
be able to reclaim circular structures that cross generation boundaries. Some
provision for these cycles must be made, otherwise our entry tables, which are
analogous to reference counts in keeping track of references to* a region, would
inherit the same inability to deal with circular structures. Because of locality of
reference, we expect the number of such cross-generation circular structures to be
small. The easiest solution is to synchronize the condemnation operations, to assure
that condemning a region implies condemning all regions younger than the
condemned region. This needn't be done every time the region is condemned, since
it incurs additional expense, only from time to time to assure the circular structures
are eventually reclaimed. Many regions will contain no forward pointers, so it might
be worth marking these as such to avoid extra condemnations solely to recover
circular structures.

- An additional optimization that might be worthwhile for very old objects is to
coalesce several adjacent generations. Since the number of objects in a generation
decays with time, old generations may contain few objects. It would reduce
scavenging time to look for pointers to any generation of a group rather than to just
one generation, since scavenging for old generations requires going through many

Real Time GC Based on Object Lifetime 5. Older objects are garbage collected more slowly than younger objects
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generations. This would reduce paging time necessary to bring in all the pages
between a very old generation and the present generation. Coalescing generations
also tends to decrease the number of forward pointers, since combining generations
collapses the two ends of the pointer into a single generation This should also
reduce the number of cross-generation circular structures.

6. Wehk pointers are treated like forward pointers

Normally, having a pointer to an object is an indication that the object is needed by
some active program, and the garbage collector is only allowed to recover an object
if no pointers exist to it. A few Lisp systems allow another kind of pointer, called a
weak pointer which does not protect the object pointed to from garbage collection.
Why are weak pointers useful? Sometimes, it is desired to keep track of all currently
~ available objects of a certain type in a list, so the user can ask "What are all the
objects I currently have?. But even if the user's program forgets about a certain
~ object, the global list of all objects still points to the object, preventing it from
being garbage collected. Or, representing part/whole relationships may require parts
to have back-pointers to a containing object, which should not necessarily protect that
object from garbage collection.

Weak pointers are not followed by tracing in garbage collection schemes. In our
'scheme, objects connected by weak pointers would not be subject to evacuation
Implementing weak pointers poses a problem since we don't want to leave dangling
references. When the object pointed to by a weak pointer is recycled, the weak
pointer should be set to nullL. Thus weak pointers have to be controlled, and we can
use the same mechanism to restrict weak pointers as we do forward pointers. Weak
pointers are constrained to point indirectly through entry tables in the same manner
as forward pointers. When a region is condemned, it becomes easier to find all the
~weak pointers into the condemned region. When an object is recycled, the pointer
in the entry table is modified. We assume the number of weak pointers is relatively
small compared to ordinary, strong pointers. :

7. Value cells and stacks may need special consideration

In presenfing our garbage collection algorithms above, we acted as if all pointers to
objects were resident in the object memory itself. However, most present-day Lisp

Real Time GC Based on Object Lifetime 7. Value cells and stacks may need special consideration
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implementations also involve internal stacks, which store control state information and
variable In shallow binding implementations of Lisp, such as MacLisp and Lisp
Machine Lisp, each atomic symbol representing a variable has a value cell associated
with it to hold its current value. We must consider object references which reside in
these places as well as those stored in object memory. (Alternatively, deep binding or
lexical binding implementations of Lisp store values in data objects called
environments, and are not subject to this problem.)

The stack and value cells must be scavenged for pointers to obsolete objects before
the memory for a condemned region may be recovered. No modification to our
algorithm is essential, if we agree that value cells and stacks are to be treated as
objects, even though they are not user-accessible objects in many implementations.
Conceptually, we will consider the stack to be a part of the "oldest" generation (since
it is always present in the system). Value cells should be part of the oldest
generation too, regardless of when they are actually created, since they are usually
"permanent". When a reference to an object is created from the stack or from a
value cell to an object, this will create a forward pointer, which must go through the
entry table of the object. Thus, when the entry table is scavenged, all stack slots
and value cells pointing to objects in its region will be scavenged.

Since in many Lisp systems, the performance of PUSH and POP operations on the stack
is critical, it may be necessary to optimize these operations. Since objects stored on
the stack are likely to be very temporary, and modifications occur at a high rate, we

might like some way of avoiding creating entry table pointers for each stack
reference. A solution is to always consider the stack as part of the youngest
generation instead of the oldest, so that no entry table pointers are kept for it, The
stack must then be scavenged for each condemned region.

Two tricks make it possible to save some work in scavenging the stack. First, if
more than one region is condemned at a time, it might pay to scavenge the stack for
several condemned regions simultaneously rather than each individually. Second,
keeping track of the fop of the stack as it is pushed and popped may result in
having to scavenge fewer objects. We observe that after a region is condemned, no
new references may be created directly to objects in the condemned region, since our
algorithm provides for evacuation of the object in that case. Popping the stack can .
remove references to a condemned region, but pushing objects on the stack can never
result in new references to a condemned region. The number of references to a
condemned region can only decrease due to pushing and popping after the region is
condemned. Therefore, scavenging can always stop at the point where the scavenger
meets either the current top of the stack, or the top of the stack at the time the
region was condemned, whichever is lower.

Real Time GC Based on Object Lifetime 7. Value cells and stacks may need speclal consideration
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Figure [5]

(See next page)
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A suggestion which might help performance is to notice that the lifetime of short-
lived objects is approximately (though not exactly!) correlated with pushing and
popping the stack. This suggests that a good time to expect there will be a lot of
garbage is when returning from functions. This might lead to a policy of
condemning regions after a certain number of stack pops.

Using linear stacks for temporary storage is a popular technique mainly because it
has the property that we seek for our garbage collector: temporary storage is
reclaimed quickly after it becomes inaccessible When Lisp calls a function, the
arguments are pushed on a stack, and automatically popped off when the function
returns. The storage used for the arguments on the stack is immediately re-usable
as soon as the function returns. However, sticking to a strict stack discipline has its
well-known problems, leading to the traditional funarg problem of Lisp [23] Object
oriented languages do not follow a stack discipline, and we would like temporary
storage in these languages to be efficient.

There's currently a sharp discrepancy between cheap stack storage and expensive heap
storage. It should be the case that holding on to an object only slightly longer is
only slightly more expensive. We would like to reduce reliance on stacks, yet retain
reasonable efficiency. Our hope is that we can reduce the cost of garbage collection
in the case of temporary storage so that it is competitive with using a stack for
temporary storage. ' '

8. How good is the performance of our garbage collector?

Judging garbage collection algorithms is tricky. They are heavily dependent on the
empirical properties of data used by programs, and their performance depends upon
whether certain kinds of operations are cheap or expensive in the underlying
machine. We believe our algorithm has the potential for good performance,
considering tradeoffs appropriate for the machines which will be prevalent in the next
couple of years, and the needs of large-scale Al software.

The primary reason we expect good performance from our garbage collector is that it
takes into consideration the lifetimes of objects. Our garbage collector should be
more efficient than traditional alternatives for objects with short lifetimes, since it
recovers the storage for these objects quickly after the object becomes inaccessible.
Our garbage collector should be more efficient for objects with long lifetimes since
the garbage collector wastes less time repeatedly examining objects which remain
accessible for long periods.

Real Time GC Based on Object Lifetime 8. How good Is the performance of our garbage collector?
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One way to think about the efficiency of garbage collectors is to ask the question,
"How much work does the garbage collector have to do per memory cell reclaimed?
Since the purpose of garbage collection is to recycle memory, more efficient garbage
collectors should do as little work as possible to collect the garbage. We assert that
considering the lifetime of objects results in reducing the amount of work necessary
per inaccessible object recovered.

. All the work our garbage collector does occurs in either the evacuation or scavenging

phases. How does the amount of work for each phase compare with conventional
alternatives?

Since regions in younger generations are condemned more frequently than regions in
older generations, most of the scavenging time is spent in younger generations. We
make the plausible assumption that the proportion of garbage is higher in younger
generations than older generations. Thus most of the scavenging time is spent where
there is the highest proportion of inaccessible objects, which tends to minimize the
amount of scavenging that needs to be performed per inaccessible object.

Our algorithm tends to require fewer evacuations per object for older objects, at the
expense of more evacuations per object for younger objects, as compared with the
standard Baker algorithm. Our algorithm is at least no worse in this respect than
Baker's since the rate of condemnation can always be adjusted so that the average
number of evacuations per object is comparable.

Baker [5] considers another criterion for the efficiency of garbage collection: the

density of accessible objects. A garbage collector is good if it maintains a high
proportion of accessible objects to inaccessible objects in the address space, especially

- in primary memory for virtual memory systems. A problem with our algorithm is
- that it introduces fragmentation, since partially filled regions will waste some space,

lowering the average density of accessible objects. However, just like the
fragmentation problem in paging systems, the region size should be chosen so that
fragmentation is not a significant source of inefficiency.

To maintain high density of accessible objects, it is necessary to remove inaccessible
objects as soon as possible. If we grant our hypothesis that most of the garbage
occurs in younger generations, then most of the garbage will be removed quickly,
since the rate of garbage collection is faster for younger generations.

Real Time GC Based on Object Lifetime ' ' 8. How good Is the performance of our garbage collector?




October 12, 1981 at 22:18 Page 18 Henry Lieberman and Carl Hewitt

9. What aspects of program behavior affect efficiency of garbage collection?

A next step in trying to determine whether our garbage collection scheme would be
feasible involves observing the behavior of currently existing large-scale Lisp
programs. The few simple kinds of measurements we describe below would help
greatly in predicting the performance of our proposals To our knowledge, no
currently existing Lisp system is instrumented in such a way that the kinds of
measurements we suggest are easily obtainable. We would strongly encourage readers
to try to collect such data for their systems.

Rate of object creation. How fast are objects created?

Average lifetime of objects. How fast do objects become inaccessible? If there is a
high proportion of short-lived objects, our proposals become advantageous.

Proportion of forward vs. backward pointers. How often do pointers point to objects
that are younger than themselves, versus pointing to older objects? Forward pointers
can only be created by object modification operations, or by creation of circular
structures, not by creation of non-circular objects. Delayed evaluation (also called
suspended or lazy evaluation) also results in creating forward pointers, but these can
be implemented using invisible pointers, which are eventually removed in the course
of garbage collection. The proportion of forward pointers will depend to some
extent on the programming style adopted. A high percentage of pointers pointing to
older ob]ects bodes well for our scheme.

The _average “length” of pointers. How much locality is there in the program? .Do
pointers often point to nearby objects, or to objects far away? Our proposal would
fare well with programs which naturally have a high degree of locality of reference.

We believe it is plausible to expect that empirical observations would bear out our
assumptions about program behavior, and justify the design choices in our garbage
collector. Certainly the trends are in the direction of programs with increased

locality, and towards programs which rely on object creation rather than
modification.

Our future research plans include constructing a simulator which will allow us to test
the behavior of real programs, and pick sensible values for parameters such as region
~ size for a wide variety of conditions. Precise determination of how well our garbage
collector will perform on real programs and comparison with more conventional
alternatives must await actual implementation and measurement.

Rea! Time GC Based on Object Lifetime ' 9. What aspects of program behavior affect efficlency of garbage collection?
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10, Users can predict the lifetimes of objects to help the garbage collector

Often, a sophisticated user is in a position to know whether a particular object is
likely to be relatively temporary or more permanent The system should be able to
take advantage of such knowledge to improve the performance of the the program. It
might be advantageous to supply the user with several different flavors of object
creation operations, so that the system can choose the best allocation strategy
appropriate for that kind of object An operation could be supplied which creates
objects directly in some older generation, rather than in the current generation. Of
course, this decision will have no effect upon the semantics of the program, it will
only affect the efficiency of garbage collection.

Adjusting the region size can control the efficiency of using short term versus long
term memory. Short-lived objects should be allocated in small regions, so the
storage for the object will be recovered very soon after it is abandoned. On the
other hand, long-lived objects should be allocated from larger regions. This saves
the system the trouble of having to frequently evacuate the object from generation
to generation, at the cost of having to wait longer before the storage can be
recovered. Larger regions also reduce the expense of inter-region pointers.

Since we expect that most storage is used for short-lived objects, we recommend that
objects be created in short term memory by default. System primitives, like Lisp's
PUTPROP, which expect to create relatively permanent objects can use longer term
versions of CONS. :

Being able to take advantage of a priori knowledge of the lifetimes of objects may
become important for some kinds of systems. Trends are developing towards systems
which create many structures which are known to be permanent at the time they are
- created. Several recently developed languages for artificial intelligence research have
the property that they produce some types of data which never become inaccessible.

Current implementations of new pattern directed invocation languages like AMORD [9]
or ETHER [18] do not have any operations which completely remove or let go of
assertions in the data base. Once an assertion is made, it remains forever, though
belief in the assertion may be renounced by further processing Description
languages such as KRL [7] or OMEGA [2] currently have this characteristic as well
(However, future versions of ETHER and OMEGA are developing a notion of viewpoints,
which may allow some knowledge to become inaccessible and be reclaimed.) These
" languages have not yet been applied to sufficiently large problems so that reclamation
becomes an important issue in present-day implementations.
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Data bases for business applications also may have the property that records are
virtually permanent once created. Improvements in computer technology will make
feasible keeping data for long periods, through storage hierarchies which make older
data progressively harder to access, but never impossible. Very large address spaces
may obviate the need for re-use of the address space. We may reasonably expect
computers in the next generation that may be able to run for weeks to years without
needing to re-use address space [26] Write-once media such as video disks may be
used for secondary storage, so that re-using or compacting secondary storage space
becomes less of an issue.

Under circumstances such as these, knowing that data is permanent helps the garbage
collector avoid performing too much work scavenging, trying to find inaccessible
objects where there aren't any. The need for garbage collection isn't totally
eliminated in these systems, however, as processing of individual data base entries,
indexing and retrieval may require creating short-lived objects.

11. Our garbage collector is suitable for parallel processor machines

- Since processors are continually getting cheaper, multiprocessor machines will soon
appear. The incentive for using multiple processor machines is especially important
for AI applications. Our garbage collection scheme has been designed to be suitable
for implementation on multiple processor machines.

On a multiprocessor system in which several processors share common memory, an
attractive way to exploit parallelism is to allocate processors to be scavengers,
performing the scavenging task concurrently with worker processors, which run user
programs. Care must be taken to avoid timing errors and contention for shared
resources. The major potential trouble spot with our scheme occurs when objects
are being evacuated. Objects can be evacuated either by a worker who references
an obsolete object, or a scavenger. The danger here is that one processor may
attempt to evacuate an obsolete object, creating a new object, and before the
invisible pointer to the new object is installed, another processor may try to evacuate
the same object. Evacuation operations on the memory must have sufficient
synchronization to prevent this.

We prefer a multlprocessor architecture such as the Apiary [16] in whnch each

worker processor has its own memory, not shared by other processors. We will
briefly describe how our algorithm can be extended to operate on such a machine.

Real Time GC Based on Object Lifetime 11. Our garbage collector Is sultable for paralle! processor machines
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Each worker maintains its own storage, allocating its own regions, condemning them
periodically, evacuating and scavengmg exactly as described for the single processor
case above. One consideration arises when a worker must reference an object which
lives on another worker. Such an object may be in a condemned region and need
evacuation. Another consideration is that when a region is condemned, pointers to
that region from other machines must be scavenged.

On the Apiary, each worker maintains two tables to manage pointers which reference
objects which reside on other workers. The first table is an exir rable for references
to other machines. When an object on another machine is referenced, a message is
sent out over the network to fetch the object, so the user's program objects on other.
machines do not have to be treated differently than objects on one's own machine.
We arrange that a worker receiving a request for an object first checks to see if the
object is obsolete, and if so, evacuates it, returning the evacuated object. This
- assures that workers will never reference condemned regions on other machines.

Each worker also has an interest table, which keeps track of references to objects on
that worker from other machines. When a region on a worker is condemned, the
interest group must be scavenged since it may reference the condemned region. Here
our solution to the problem of forward pointers comes in handy. We can require all
pointers from other machines to go indirectly through the entry table in the same
manner as we required for forward pointers. This reduces the amount of work
during scavenging, and the extra overhead on inter-machine pointers (which we
assume to be relatively rare compared to intra-machine pointers) should not be
significant.

12, Cheaper short term memory may improve programming style

Its our hope that making the use of short-lived objects cheaper will lead to
improvements in program clarity. Often, complications in program structure are
motivated by the need to avoid creating short-lived objects for intermediate results.

Here's an example of how the cost of short-lived objects can affect design decisions
in programming. Consider the problem of writing a matrix multiplication routine in
Lisp, to operate on matnces represented as lists of rows, each row represented as a
list of numbers.

Real Time GC Based on Object Lifetime 12. Cheaper short term memory may Improve programming style
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(1 2) (5 6) (19 22)
C( ) x ()= )
(3 4) v (7 8) (43 58)

This example would be represented as
(HATRIX-HULTIPLY "((1 2) (3 4)) '((56) (7 8))) evaluates to ((19 22) (43 50))

Let's imagihe, that as part of our mathematics library we already have a function
- which takes the dor product of vectors, and a function which produces the transpose
~ of a matrix :

(Dor-pkonncr (1 2) (5 7)) evaluates to 19
(TRANSPOSE '((5 6) (7 8))) evaluates to ((5 7) (6 8)))

The usual procedure for multiplying a matrix is to compute the elements of the
product by multiplying elements of the rows of the first matrix by elements of the
columns of the second matrix Using the transpose procedure, we can turn the
columns of the second matrix into rows, so that they "line up" with the rows of the
first matrix, then use the dot product function to multiply corresponding rows. This
solution is elegantly expressed as follows:

Define MATRIX-MULTIPLY of a LEFT-MATRIX and a RIGHT-MATRIX:
Let COLUMNS be the TRANSPOSE of RIGHT-MATRIX.
Create a list whose elements are:
For each ROW in the LEFT-MATRIX,
Create a list whose elements are:
For each COLUMN in the COLUMNS matrix,
the DOT-PRODUCT of the ROW and the COLUMN.

(The actual Lisp code corresponding to the descriptions of algorithms in this section
appears in an appendix.)

This solution has a potential efficiency problem: The TRANSPOSE function creates a
new list which is thrown away after the matrices are multiplied.

In a conventional Lisp system, using lists like this is expensive, since the lists are
created and only used for a short time before being subject to garbage collection

Real Time GC Based on Object Lifetime 12. Cheaper short term memory may improve programming style
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This leads programmers to want to try to optimize out the creation of intermediate -
~ list structure. Instead of doing a "two-pass" procedure over the matrix, one to
transpose, another to multiply, we can use instead a more complicated "one-pass”
procedure. Instead of creating a new list whose elements are in a convenient order,
the one-pass procedure extracts the appropriate elements from the columns of the
matrix when needed. Especially if multiplications of small matrices are frequent, the
following version might be considerably faster in a conventional Lisp system.

Define MATRIX-MULTIPLY-WITHOUT-TRANSPOSING
- of LEFT-MATRIX and RIGHT-MATRIX:
Create a list whose elements are:
For each ROW in the LEFT-MATRIX,
Create a list whose elements are:
For COLUMN-INDEX from 8 to the number of columns of RIGHT-MATRIX:
The DOT-PRODUCT-COLUMN of ‘

the ROW,
the RIGHT-MATRIX, and
the COLUMN-INDEX.

This now forces us to write a new DOT-PRODUCT routine, which can extract the
elements of the second vector from the columns of the matrix This duplicates some
of the knowledge we already had in the DOT-PRODUCT function.

Define DOT-PRODUCT-COLUMN of a ROW, a MATRIX, and a COLUMN-INDEX:
If the ROW is empty, return 9.
Otherwise, return the sum of:
the product of
The FIRST element of the row,
and the element indexed by COLUMN-INDEX of the FIRST element of the MATRIX.
and the DOT-PRODUCT-COLUMN of
the REST of the ROW,
the REST of the MATRIX,
‘and the COLUMN-INDEX. .
Instead of being able to modularly build a solution using the TRANSPOSE and DOT-
PRODUCT functions we already had, we were forced to write new lower-level routines.
The need to avoid using short-lived objects encourages more complex and obscure
~ programming techniques.

This example is an illustration of a general situation where an N-pass procedure will
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“use data objects to store the output of intermediate passes. There is a temptation to
substitute a one-pass procedure to avoid using storage for intermediate results, but
this procedure has to be more complicated and specialized, because the code inside
the loop must do a little piece of all of the passes.

Another approach for reducing inefficiency due to creating objects to store
intermediate results is program transformation [8], [14] The hope is that a smart
compiler could replace a program which uses temporary storage with another
equivalent version that didn't, much as in our two versions of matrix multiplication.
We consider research in program transformation techniques extremely valuable, but
program transformation is no substitute for an efficient garbage collector.

Besides introducing difficulty in debugging (the system must be able to relate bugs in
‘the transformed version of the program to bugs in the original), programs may use
short-lived objects in a dynamic way which might thwart static compilation. The
lifetime of objects is often short, but unpredictable, and we would like our system to
deal with this kind of object efficiently. The simplest class of short-lived objects are

' those created by a procedure for its own use, and abandoned when the procedure

returns. This is the kind which is most amenable to optimization by program
transformation systems. There's another kind, represented by the matrix
multiplication example, where a procedure creates an object that is returned, and
used temporarily by some caller of the procedure. These are much more difficult to
compile out, especially in compilers which allow separate compilation of procedures.

The optimization may also depend on the outcome of run-time events, making it
impossible for any static optimizer to perform the optimization. A third class
involves using a short-lived object as part of some data structure, and later
modifying it making the object inaccessible within a short time. Some uses of these
objects are not correlated with the procedure calling stack at all, and program
transformation systems will have little success with these.

For example, a user may keep a directory, containing objects like files which the user
may choose to delete at any time, The exact moment at which a file is deleted is
completely unpredictable by a program transformation system, and therefore a
garbage collector is necessary.

Our aim is to make the use of short-hved objects more efficient, so that the creation
of short-lived objects is not much worse than allocating temporary results on a stack.
If programmers aren't severely penalized in terms of efficiency for choosing cleaner
programming styles, we hope this will encourage programmers to improve their style.
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A_gpendlx 1. The Baker real time garbage collection algorithm
We present a summary of Henry Baker's original algorithm.

The CREATE operation creates objects, like Lisp's CONS. ACCESS retrieves a component
of an object, like Lisp's CAR and CDR, or accessing a subscripted element of an array.
MODIFY performs assignments to components of objects, like Lisp's RPLACA and RPLACD,
or storing into a subscripted element of an array.

The address space is divided into two semispaces, fromspace and tospace. Object

creation happens in tospace, and the semispaces are exchanged in a flip when tospace
fills.
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Define CREATE an object, given an INITIAL-CONTENTS:
If the INITIAL-CONTENTS is in FROMSPACE,
EVACUATE the INITIAL-CONTENTS to TOSPACE.
Allocate memory space at the location CREATE-OBJECTS-FROM-HERE.
Fill the memory with its INITIAL-CONTENTS.
Advance the CREATE-OBJECTS-FROM-HERE pointer the new object.
Call the SCAVENGER to perform a bit of the work to reclaim memory.
Return the pointer to the new object.

Define ACCESS an ELEMENT of an OBJECT:
If the CONTENTS of the cell containing the ELEMENT is in TOSPACE, return it.
If it's in FROMSPACE, .
Check to see if the cell contains an INVISIBLE-POINTER.
[which means it has already been evacuated.]
If so, change the ELEMENT to
where the INVISIBLE-POINTER points
and return that forwarded object.
If it's in FROMSPACE and there's no INVISIBLE-POINTER,
EVACUATE it from FROMSPACE to TOSPACE. '
Update the ELEMENT of the OBJECT to point to the new object in TOSPACE,
and return the new object in TOSPACE.
When an object in fromspace is accessed, it is EVACUATEd, moving it to tospace. An
INVISIBLE POINTER is left behind so references to it will still work.

Define EVACUATE an OLD-OBJECT:
If the OLD-OBJECT is in FROMSPACE,
Copy the OLD-OBJECT into the EVACUATION area of TOSPACE,
creating a NEW-OBJECT.
Leave a INVISIBLE-POINTER in the old cell to the NEW-OBJECT.
Return the NEW-OBJECT.
If the OLD-OBJECT is in TOSPACE, just return it.

The SCAVENGER makes sure all objects in tospace also have their components in
tospace. There's a variable SCAVENGER-SLICE which controls how much work in
- reclaiming storage is performed every time an object is created. There's a pointer
SCAVENGE-HERE which points to the next object to be scavenged.
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‘Define the SCAVENGER:

Repeat the following until either
No more UNSCAVENGED objects remain in the EVACUATION area of TOSPACE,
or the loop has been repeated SCAVENGER-SLICE times:
SCAVENGE the object at the location SCAVENGE-HERE by
EVACUATING each element which lies in FROMSPACE,
moving that element to TOSPACE,
and changing the element to point to the TOSPACE object.
Advance the SCAVENGE-HERE pointer.

When no more UNSCAVENGED objects are left,

do a FLIP, exchanging FROMSPACE and TOSPACE.

Define the procedure to MODIFY an ELEMENT of an OBJECT
to have a NEW-CONTENTS: '
If the NEW-CONTENTS is in FROMSPACE,
EVACUATE the NEW-CONTENTS, yielding an object in TOSPACE.
Store the TOSPACE object NEW-CONTENTS into the cell
containing the ELEMENT of the OBJECT.

| Appendix 2. Our real time garbage collector

Creation and access are similar to Bakers, except that instead of fromspace and
tospace, memory is allocated in regions, creation regions to create objects, evacuation
regions to move objects from older to newer regions. Instead of Baker's flips,
regions are condemned, which begins moving the accessible objects out of the region.
Condemning a regions starts scavenging to remove pointers to the region. When
scavenging is complete, the memory for the region can be recycled.

- The description that appears here has been somewhat simplified for expository
- purposes. We have omitted code for handling the stack, value cells, storage
management for entry tables, and multiprocessing These considerations have been
discussed in the body of the paper, and modifications to the algorithms below to
incorporate them are straightforward.
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Define CREATE an object, given an INITIAL-CONTENTS:
If INITIAL-CONTENTS is OBSOLETE [its region was CONDEMNED],
EVACUATE the INITIAL-CONTENTS.
If there's no more room in the current CREATION region,
Make a new CREATION region from which to create objects,
Inheriting GENERATION and VERSION numbers from the previous one.
Call the SCAVENGER coroutine to incrementally try to reclaim memory.
If the POPULATION of the current generation is high enough,
Start a new GENERATION by
Incrementing the CURRENT-GENERATION-NUMBER.
Allocate memory space at the location CREATE-OBJECTS-FROM-HERE.
Fill the memory for the object with its INITIAL-CONTENTS.
Advance the CREATE-OBJECTS-FROM-HERE pointer past the new object.
Return the pointer to the new object.

Define the SCAVENGER:
Each time an object is created, A
do SCAVENGER-SLICE steps of the following procedure:
Look for a region which is scheduled to be CONDEMNED.
A region is CONDEMNED when it is considered Iikely to contain garbage:
Young regions are CONDEMNED frequently, older ones more seldom.
SCAVENGE for all pointers into the CONDEMNED region.
Abandon the memory for the CONDEMNED region
when the scavenger has removed all pointers to it.

Define CONDEMN a REGION:

Mark the REGION as being CONDEMNED.

Allocate a new EVACUATION-REGION whose
GENERATION number is taken from the CONDEMNED region, and
whose VERSION number is one higher than the CONDEMNED region.

Real Time GC Based on Object Lifetime Appendix 2. Our real time garbage collector
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Define ACCESS an ELEMENT of an OBJECT:
If the CONTENTS of the cell containing the ELEMENT isn't OBSOLETE,
~ then return it.
If the CONTENTS is OBSOLETE [resides in a CONDEMNED region],
Check to see if the cell contains an INVISIBLE-POINTER.
[which means it has already been evacuated.]
If so, change the ELEMENT to
where the INVISIBLE-POINTER points
and return that forwarded object.
If it's OBSOLETE, and there's no INVISIBLE-POINTER,
EVACUATE 1it. :

Update the ELEMENT of the OBJECT to pbint to the EVACUATED object,
and return that new object.

Define EVACUATE an OLD-OBJECT:

If the OLD-OBJECT is OBSOLETE, [in a CONDEMNED region]

Copy the object to an EVACUATION region

~ of the same GENERATION as the region containing the OLD-OBJECT

and whose VERSION number is one higher.

Creating a NEW-OBJECT.

Store the contents of OLD-OBJECT into the NEW-OBJECT.

Leave an INVISIBLE-POINTER in the old cell to the NEW-OBJECT.
And return the NEW-OBJECT.

The scavenger removes pointers to obsolete objects by evacuating such objects. As

soon as the scavenger is finished removing all such pointers, the memory for the
region can be reclaimed.

Define SCAVENGE for pointers to a CONDEMNED-REGION:
Repeat the following for each region

in the GENERATION of the CONDEMNED-REGION,

and the ENTRY TABLE for the CONDEMNED-REGION,

and all GENERATIONS more recent than the GENERATION of the CONDEMNED-REGION:
For each OBJECT in each REGION:

SCAVENGE the OBJECT,
looking for pointers to the CONDEMNED-REGION.

.

Real Time GC Based on Object Lifetime Appendix 2. Our real time garbage collector




October 12, 1981 at 22:18 Page 30 Henry Lieberman and Carl Hewitt

Define SCAVENGE an OBJECT, which may point to a CONDEMNED-REGION:
Check to see if any element of the OBJECT points to the CONDEMNED-REGION.
If it does, EVACUATE the element of the OBJECT
and modify the element of the OBJECT to point to the evacuated object.

Define the procedure to MODIFY an ELEMENT of an OBJECT
to have a NEW-CONTENTS:
If the NEW-CONTENTS is OBSOLETE,
EVACUATE the NEW-CONTENTS.
Is the GENERATION of the NEW-CONTENTS
“younger than the GENERATION of the OBJECT?
No, store the object NEW-CONTENTS into the cell
containing the ELEMENT of the OBJECT.
If it is, create a new ENTRY for the OBJECT
in the ENTRY TABLE of the NEW-CONTENTS.
Modify the cell containing the ELEMENT of the OBJECT
- to point to the ENTRY.
Modify the ENTRY to point to the NEW-CONTENTS.
Otherwise, store the NEW-CONTENTS
in the cell containing the ELEMENT of the OBJECT directly.
If the OLD-CONTENTS of the cell pointed to a younger object,
Remove its entry in the ENTRY TABLE.

Appendix 3. Lisp code for the matrix multiplication example

First, the solution which transposes the right matrix

(DEFUN DOT-PRODUCT (LEFT-VECTOR RIGHT-VECTOR)
(COND ({OR (NULL LEFT-VECTOR) (NULL RIGHT-VECTOR)) 8.)
((+ (* (CAR LEFT-VECTOR) (CAR RIGHT-VECTOR)) .
~ (DOT-PRODUCT (CDR LEFT-VECTOR) (CDR RIGHT-VECTOR))))))

(DEFUN TRANSPOSE (MATRIX)
(COND ((NULL (CAR MATRIX)) NIL)
((CONS (MAPCAR 'CAR MATRIX) (TRANSPOSE (MAPCAR 'CDR MATRIX))))))
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(DEFUN MATRIX-MULTIPLY (LEFT-MATRIX RIGHT-MATRIX)
- (LET ((COLUMNS (TRANSPOSE RIGHT-MATRIX)))
(MAPCAR '(LAMBDA (ROW)
(MAPCAR '(LAMBDA (COLUMN)
(DOT-PRODUCT ROW COLUMN))
.COLUMNS))
LEFT-MATRIX)))

The solution which avoids transposing the matrix replaces MATRIX-MULTIPLY-WITHOUT-
TRANSPOSING for MATRIX-MULTIPLY and DOT-PRODUCT-COLUMN for DOT-PRODUCT:

(DEFUN MATRIX-MULTIPLY-WITHOUT-TRANSPOSING (LEFT-MATRIX RIGHT-MATRIX)
(MAPCAR
'(LAMBDA (ROW)
(LET ((COLUMN-INDEX 8.))
(MAPCAR
'(LAMBDA (COLUMN)
! (PROG1 (DOT-PRODUCT-COLUMN ROW
RIGHT-MATRIX
COLUMN- INDEX)
(SETQ COLUMN-INDEX (+ COLUMN-INDEX 1.))))
, (CAR RIGHT-MATRIX))))
LEFT-MATRIX))

| (DEFUN DOT-PRODUCT-COLUMN (ROW MATRIX COLUMN-INDEX)

(COND ((NULL ROW) 8.)
((+ (* (CAR ROW)
(NTH COLUMN-INDEX (CAR MATRIX)))
(DOT-PRODUCT-COLUMN (CDR ROW)
‘ (CDR MATRIX)
COLUMN-INDEX)))))
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