MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AI Memo No. 587 August 19080

Destructive Reordering of CDR-Coded Lists
by

Guy L. Steele Jr. x

Abstract:

Linked list structures can be compactly represented by encoding the
CDR ("next") pointer in a two-bit field and linearizing 1list structures as
much as possible. This "CDR-coding" technique can save up to 50% on storage
for linked lists.

The RPLACD (alter CDR pointer) operation can be accommodated under
such a scheme by using indirect pointers. Standard destructive reordering
algorithms, such as REVERSE and SORT, use RPLACD quite heavily. If these
algorithms are used on CDR-coded lists, the result is a proliferation of
indirect pointers.

We present here algorithms for destructive reversal and sorting of
CDR-coded lists which avoid creation of indirect pointers. The essential idea
is to note that a general list can be viewed as a linked list of array-like
“chunks". The algorithm applied to such "chunky lists" is a fusion of
separate array- and list-specific algorithms; intuitively, the array-specific
algorithm is applied to each chunk, and the list algorithm to the list with
each chunk considered as a single element.

Keywords: 1list structure, linked lists, compact lists, CDR-coding, LISP, data

structures, data representations, sorting, merge sorting, reversing,
destructive list operations

CR Categories: 4.34, 4.49, 5.31

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for the laboratory's
artificial intelligence research is provided in part by the Advanced Research

Projects Agency of the Department of Defense under Office of Naval Research
contract N00014-75-C-0643.

* Fannie and John Hertz Fellow

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1980

~ Guy L. Steete Jr. 1 Destructive Reordering

Introduction

; With the advent of microprogrammable processors (such as the LISP
Machine [Greenblatt] [LISP Machine Group]) it has been possible to use highly
encoded, bit-efficient representations of data structures without loss of
speed. Here we shall be concerned with LISP-style linked lists which are
"CDR-coded".

Each LISP list cell conceptually has two pointers, a CAR and a CDR,
which in.principle can each point to any LISP object. In "traditional® LISP
implementations, such as LISP 1.5 [McCarthy], MacLISP [Moon], and InterLISP
[Teitelman], such a cell is represented as two full memory addresses; this is
a convenient representation for use on general-purpose computers. ‘

In practice, list cells are usually used in highly stylized ways. For
example, the CDR is used almost exclusively to point to another list cell, in
order to form linked chains of CAR pointers. Most CDR pointers which do not
point to list cells point to the atom NIL, which by convention terminates such
a linked chain (see Figure 1).

) E= S = I3 K= S A K

E | Fl= ,_"I‘,G,.._E_—v)w’«vu

Figure 1
A Standard List of Seven Elements (ABCDE F G)

In fact, studies have shown that a CDR pointer very often points to the
sequentially following cell in memory, because of the usual memory allocation
strategy, and special "linearizing"” allocation strategies typically cause 98%
of all CDR pointers to other lists to point to the next cell [Clark]. One can
take advantage of this asymmetry of use by encoding the CAR and CDR pointers
in different ways. Let memory be divided into cells each of which contains a
full memory address for the CAR, but only a two-bit field for the CDR [Hansen]
[Greenblatt] [LISP Machine Group]. This two-bit field is used to encode the
location of the CDR as follows: :

00 (Normal) The CDR is in the next cell.

01 {Next) The CDR is the next cell.

10 (NIL) The CDR is NIL. :

i1 (Indirect) The cell has been moved to another location.

If the CDR code in a cell is 00, then the cell is represented in the
traditional way; two consecutive cells hold two full addresses, one for the
CAR and one for the CDR. (The CDR code in the second cell doesn't matter.)
If the CDR code is 01, then the CDR is the cell following the one containing
the 01 code. The CDR code 10 means that the CDR is NIL. Using codes 01 and
10, a linked chain of n CAR pointers can be represented as a linear block of n
contiguous cells in memory (see Figure 2).

>Gug L. Stesle Jr. 2 Destructive Reordering

otiocijosloijoijoljlo

Figure 2
A Compact CDR-Coded List of Seven Elements

We call such a linear block a "CDR-coded list®. Assuming the two-bit CDR
field to be insignificant compared to the size of a full address, this
representation provides a 50% memory saving.

Code 11 is provided for handling the RPLACD operation, that is, for
altering the CDR pointer of a list cell. Suppose, in the previous diagram, we
wished to alter the CDR pointer of the cell whose CAR is "A" to point to some
cell other than the following one (whose CAR is "B"), say to the cell whose
CAR is "C". (The effect of doing this would be to splice the second element
out of the list, producing the list (A C D E F G}).) We cannot simply change
the CDR code, because we need to use a Normal CDR code, and the cell whose CAR
is "B™ may still be in use {pointed to from elsewhere). The solution is to
change the CDR code of the cell whose CAR is "A" to Indirect (11), and
allocate a pair of consecutive cells elsewhere. The CAR pointer of the cell
"A* is altered to point to the new pair, the old CAR pointer (to "A") is
copied into the CAR of the new pair, and the CDR pointer of the new pair is
made to point to the cell whose CAR is "C*. The new situation is shown in
Figure 3.

—)

tijoljol joi tol ol {i0O 00 XX
Blc|D|E|F |G A
f
\\‘__ . e ! ‘ j
Figure 3

A Compact CDR-Coded List with One Element Spliced Out,
Using an Indirect Pointer to a New Pair

When taking the CAR of a cell one must therefore first check the CDR code; if
it is 11, one must follow the indirection pointer and then take the CAR; and

Guy L. Steele Jr. : 3 . e Destructive Reordering

similarly for the operations CDR, RPLACA, and RPLACD. The proliferation of
indirect pointers is not a permanent problem, because one can organize the
~_garbage collector (storage reclaimer) in such a way as to eliminate such
 pointers when reorganizing memory. The details of the CAR, CDR, RPLACA, and
- RPLACD operations, as well as of possible garbage collection methods, are
given in [Baker].

Unfortunately, there are a few commonly-used functions which use the
RPLACD operation frequently to reorder a linked list by altering CDR pointers.
The best examples of these are destructive reversing (MacLISP NREVERSE, or
InterLISP DREVERSE) and destructive sorting of a list. If the traditional
algorithms are used straightforwardly on a CDR-coded list, then nearly all of
the cells will be replaced with Indirect pointers. This causes the list to
(temporarily) occupy 50% more space than in a traditional implementation, and
also is wasteful of time. Moreover, the entire reason for using a destructive
algorithm is to avoid copying the argument; the proliferation of Indirect
pointers and the consequent copying of list cells defeats the entire purpose
of using a destructive algorithm.

We shall consider here versions of the destructive reversing and
sorting algorithms which take advantage of CDR-coded lists to save time and
avoid creation of Indirect CDR codes. The essential idea is that in general a
list will be composed of CDR-Next-coded "chunks" chained together by Normal
(and possibly Indirect) pointers (see Figure 4).

—_— s Xx

ol |00 |XX ol |00 XX el ol Joo XX

AlB Fle v c|P|E

? _ L

Figure 4 !
A Typical CDR-Coded List of Seven Elements (ABC D E F G),
Which Is Only Partially Compact

NP

Of course, some chunks may consist of only a single CAR pointer, while others
may have many contiguous CAR pointers. (Indirect pointers may also be present
in the chain, but because they are invisible to CAR/CDR operations, they do
not affect the general picture.) - .

Notice that we can consider each chunk to be a single object, a kind
of array or vector, and view the entire list as a list of chunks rather than
single CAR pointers. On this basis we decompose each algorithm into two
levels. The. higher level is isomorphic to the traditional algorithm, but
operates on chunks rather than single list cells. The lower level operates on
each chunk, and performs the operation by treating the chunk as an array. If
all chunks are of length 1 (no Next CDR-codes occur in the list), then the
lower level does nothing, and the "chunky" version of each algorithm reduces
to the standard version. Hgﬁshal}“npte;;p;swipmppssiqg when appropriate.

Guy L. Stesle Jr. ‘ 4 Dﬁs\ruct‘ivo‘!!.eordering

Destructive Reversing

The traditional destructive reverse algorithm looks something like
this:

(DEFINE NREVERSE (X)
(DO ((A X (PROG1 (CDR A) (RPLACD A B)))
(B NIL A))
((NULL A) B)))

Here we have used the MacLISP DO loop [Moon] {Note MacLISP DO}, which allows
stepping of multiple variables. (This DO loop has a null body - the variable
steppers do all the work.) This loop initializes A to X and B to NIL. it
then checks the end-test (NULL A). If it succeeds (meaning A is NIL) then B
is returned. Otherwise the stepping forms (PROG1 (CDR A) (RPLACD A B)) and A
are evaluated, and then assigned respectively to A and B. Notice that the
value of the PROG1 is (CDR A), which is evaluated before the RPLACD, and that
the step value A for B is fully evaluated before the assignment to A is
performed. Thus A receives its CDR, B receives A's old value, and as a side
effect the old value of A has its CDR replaced by the old value of B. A
roughly equivalent pseudo-ALGOL version is:

procedure nreverse(X);

begin
A = X;
B := NIL;
while A # NIL do
begin
C := cdr(A);
cdr(A) := B;
B := A;
A:=C
end;
return B;
end

{Note Unrolled Loop) The result of applying this algorithm to the list of
Figure i is shown in Figure 5.

—— E A 3\
, A ' B L» C T’ P L
, ~ :j\
NIL € |
| Lr g ” jl
F:
__ =
Figure §

An Ordinary List after Destructive Reversal

Guy L. Stesle Jr. v S — Oostrggtivo Reordering .

If'we examine our picture of a "chunky" list above, we may note that
if the list of chunks is reversed, and if each chunk is reversed in place as

an array, then the overall effect will be to reverse the entire list. The
~ " effect of doing this to the CDR-Coded list of Figure 4 is shown in Figure 6.

ol oo x*ﬂ Ol |oo |xX o] jor oo Ixx

B | A vt G|F EID|C

- Ly :

. Figure 6
A Destructively Reversed CDR-Coded List, Done Cleverly

This leads us to the following algorithm:

procedure chunky nreverse(X);

begin
A :=X;
B := NIL;
while A # NIL do
... begin
Z := A;
comment Find end of current chunk. ;
while cdrcode(Z) = Next do
Z := cdr(2);
comment Reverse this chunk as an array. ;
for k := 0 until [(adr(Z)-adr(A)-1)/2] do
egin
comment Exchange two elements. ;
T := car{loc(adr(A)+k));
car(loc(adr(A)+k)) := car(loc(adr(Z)-k));
car(loc{adr(Z)-k)) := T
end;
comment Now do the standard nreverse thing on the chunks. ;
C := cdr(Z);
cdr(Z) := B;
B := A;
A :=C;
end;
return B
end

The function adr takes a pointer and returns the address of the cell pointed
to as a number. The function loc performs the inverse conversion, making a
number into a pointer. (These are respectively called VAG and LOC in
InterLISP, and MAKNUM and MUNKAM in MacLISP.) This algorithm works correctly
in the face of Indirect pointers, assuming, of course, that assignments of the
form car(...) := ... chase Indirect pointers properly.

Guy L. Steesie Jr. 6 ’ " Destructive Reordering

. If all the chunks are of length 1 (no Next codes present), then the
inner while loop always terminates immediately. We assume that the for loop
executes its body zero times if the specified final value is -1 {lx] denotes
the floor of x: [-1/2j=-1, not 0). In this case we always have Z=A, and the
algorithm is the same as the standard one.

The assignment "cdr(Z) := B" may cause the last cell of the last chunk
to be copied if its CDR-code is Nil.- Except for this no cells are copied.

This algorithm behaves a little differently from the original in that
it rearranges CAR pointers as well as CDR pointers. The traditional NREVERSE
has the property that a pointer into the middle of the list still has the same
CAR after the operation. This property is little used in practice.

Let us analyze the running times of the two reversing algorithms. We
count only the number of cells read or written; and we also assume that
appropriate care is taken (by using a finite number of "machine registers") to
avoid unnecessarily reading a cell twice. Thus, for example, in the chunky
version the assignment "C := cdr(Z)" can take advantage of the result of the
previous execution of "cdrcode(Z)®.

Using the traditional algorithm on a non-CDR-coded implementation,
there is one read and one write for each cell of the list.

For the traditional algorithm on a CDR-coded implementation (which
will involve copying any cell whose CDR-code is Next), the cost is two reads
and one write for cells which do not have CDR-Next, and one read and three
writes for CDR-Next cells (all this assumes that no Indirect pointers happen
to be present). Two of these writes are for the new copy of the cell. There’
may also be some cost associated with the garbage collection eventually
required because of the consing of the copy.

The chunky version takes two reads and one write per cell, regardless
of the CDR-code of the cell. Thus we see that the chunky version is no worse
than the traditional version in a CDR-coded implementation, and 1is
significantly better when a large percentage of the cells in the list to be
reversed have a CDR-code of Next.

Guy L. Steele Jr. - i 7 ; Destructive Reordering

Destructive Sorting

... In this application we wish to destructively sort a list by
' rearranging CDR pointers. (For the "chunky" version, we will allow
rearranging of CAR pointers as well, as for NREVERSE.) We are given a list
and an ordering predicate, and are to produce a list sorted according to the

predicate. Our algorithm is based on a "traditional®" list merge sort as used
in MacLISP:

(DEFINE SORT (X PREDICATE)
(DO ((HEIGHT -1 (+ HEIGHT 1)) .
(SOFAR NIL)
(HEADER (LIST 'HUNOZ)))
((NULL X) SOFAR) - ‘
(SETQ SOFAR (MERGE SOFAR (PREFIX HEIGHT)})))

(DEFINE PREFIX (HEIGHT)
(COND ((NULL X) NIL)
((< HEIGHT 1)
(RPLACD (PROGI X (SETQ X (CDR X))) NIL))
(T (MERGE (PREFIX (- HEIGHT 1))
(PREFIX (- HEIGHT 1))))))

(DEFINE MERGE (L1 L2)
(PROG (P)
(SETQ P HEADER) ;
A (COND ((NULL L1) (RPLACD P L2) (RETURN (CDR HEADER)))
((NULL L2) (RPLACD P L1) (RETURN (CDR HEADER)))
((PREDICATE (CAR L2) (CAR L1))
(RPLACD P L2) o
(SETQ P L2)
(SETQ L2 (CDR L2)))
(T
(RPLACD P L1)
(SETQ P L1)
(SETQ L1 (CDR L1))))
(GO A)))

The SORT function repeatedly calls PREFIX, which will return a sorted list of
the next 2T elements of the given 1list (or of all that remain if there are
fewer than 2'€"T). Notice that PREFIX uses and'modifies the variable X bound
in SORT. As before, PROGI evaluates both its arguments and then returns the
value of the first. SORT uses MERGE to merge the result of PREFIX with the
accumulation in SOFAR, which will also be a list of length 2'EISHT_ pREFIX
itself uses MERGE in a similar manner. MERGE is a straightforward destructive
merge of two sorted lists according to the ordering predicate. (Notice the
use of HEADER as a place to begin the destructive merge. MERGE never calls
itself, so the sharing of HEADER among the many calls to MERGE causes no
interference. The atom HUNOZ is not relevant to the algorithm; all that
matters is that we have a list cell to RPLACD. HEADER (like SOFAR) is
initialized by the DO loop but is unchanged on each iteration because no
stepping form is specified.) The overall effect of the SORT function is to
form the elements of the given list into the leaves of a binary tree, and to
form a sorted list at each interior node by merging its sons. The parameter

Guy L. Steele Jr. 8 » Darsﬁruci‘iva Reorder ing

e e

HEIGHT corresponds to the height of the node in the tree.

To produce a chunky SORT function, we change PREFIX to strip off
chunks rather than single cells, and change MERGE to merge chained chunks.
The latter is a little tricky. In the ordinary MERGE one simply compares the
first twe items of each list and then chooses the smaller to go into the
result. The chunky MERGE cannot be this simple, because it may be that
neither chunk is smaller than the other (we say that one chunk is smaller than
another if and only if all its CAR elements are smaller than all CAR elements
of the other: this is only a partial ordering). If neither is smaller than
the other, we must sort out the elements of the two chunks so that one is
lower than the other, and then proceed.

(DEFINE CHUNKY-SORT (X PREDICATE)
(DO ((HEIGHT -1 (+ HEIGHT 1))
{ SOFAR NIL)
(HEADER (LIST 'HUNOZ)))
({NULL X) SOFAR)
(SETQ SOFAR (CHUNKY-MERGE SOFAR (CHUNKY-PREFIX HEIGHT)))))

CHUNKY-SORT is identical to SORT (except for names).

(DEFINE CHUNKY-PREFIX (HEIGHT)
(COND ((NULL X) NIL)
((< HEIGHT 1)
(DO ((Z X (CDR Z)))
((# (CDR-CODE Z) Next)
(OR (EQ Z X)
(SORT-CHUNKY-ARRAY X Z))
(PROG1 X
(AND (SETQ X (CDR Z))
_ (RPLACD Z NIL))))))
(T (CHUNKY-MERGE (CHUNKY-PREFIX (- HEIGHT 1))
(CHUNKY-PREFIX (- HEIGHT 1))))))

If HEIGHT is less than 1, then the DO loop scans down the next chunk.
SORT-CHUNKY-ARRAY is assumed to sort the chunk using some algorithm
appropriate to an array (such as Quicksort or Heapsort [Knuth]); however, for
speed SORT-CHUNKY-ARRAY is not called if the chunk is only one element long.
If all elements are only one element long, we always have Z=X, and so
CHUNKY-PREFIX behaves exactly like PREFIX.

(DEFINE CHUNKY-MERGE (L1 L2)
(PROG (P)
(SETQ P HEADER)
A (COND ((NULL L1) (RPLACD P L2) (RETURN (CDR HEADER)))
((NULL L2) (RPLACD P L1) (RETURN {CDR HEADER))))

Guy L. Siesie Jr, o 9 _ _ Destructive Rcord‘rinq

(DO ((Z1 L1 (CDR Z1)))
((# (CDR-CODE Z1) Next)
- (D0 ((22 L2 (COR 22)))
" ((# (CDR-CODE Z22) Next)
(COND ((PREDICATE (CAR Z2) (CAR L1))
(RPLACD P L2)
(SETQ P Z2)
(SETQ L2 (CDR 22)))
((OR (AND (EQ L1 Z1) (EQ L2 22))
(PREDICATE (CAR Z1) (CAR L2)))
(RPLACD P L1)
(SETQ P Z1)
(SETQ L1 (CDR Z1)))
((PREDICATE (CAR Z1) (CAR 22))
(MERGE-TWO-CHUNKS-IN-PLACE
(ADR L1)
(+ (- (ADR Z1) (ADR L1)) 1)
(ADR L2)
(+ (- (ADR Z2) (ADR L2)) 1))
(RPLACD P L1)
(SETQ P 21)
(SETQ L1 (CDR 21)))
(T
(MERGE - TWO-CHUNKS- IN-PLACE
(ADR L2)
(+ (- (ADR Z2) (ADR L2)) 1)
(ADR L1)
(+ (- (ADR Z1) (ADR L1)) 1))
- {RPLACD P L2)
(SETQ P 22)
(SETQ L2 (CDR Z2))))))))
(GO A)))

If neither L1 nor L2 is NIL, then the two DO loops scan down the
respective chunks, leaving Z1 and 22 pointing to the cells containing the last
-CAR pointers of the chunks. Recall that at this point each chunk is
completely sorted. There are then three cases to check out:

(1) The last element of chunk 2 is less than the first element of chunk 1. In
this case chunk 2 is smaller than chunk 1, so chunk 2 is pulled off and placed
in the result.

(2) The last element of chunk 1 is less than the first element of chunk 2.
This case is symmetric to case (1). For speed, we first test whether both
chunks are of length 1; if so, the fact that case (1) failed means case (2)
must hold (or perhaps that the two chunks contain equal elements, which is all
right), and we avoid a redundant call on PREDICATE. This test also causes
CHUNKY-MERGE to be manifestly equivalent to MERGE when all the chunks are of
length 1.

(3) The two chunks must be merged together in place. One chunk will receive
the low elements of the merge, and one the high elements. The effect of this
is to rearrange the elements so as to reduce to case (1) or case (2): the
chunk receiving the low elements is then pulled off and put into the result
list. Care must be taken to ensure that the chunk that receives the high
elements is the one which originally had the highest element of the merged
set. This guarantees that the list whose chunk receives the high elements
remains totally sorted. For example, consider the two lists in Figure 7.

Guy L. Stesis Jr. 18 “D.s\ructivo Reorder ing

T ped e e

Ol 01100 IXX oile] 90X X

—3 |5 [lo| 12 |13 |lé| >

oliol ol |90 XX ol oo |xX

—4 ¢ |7 |89 |1 |
Figure 7
Twe Sorted CDR-Coded Lists to be Merged

If the two leading chunks were merged with the low elements going into the
first list's chunk, we would have the situation in Figure 8.

o] |ol joe XX ol | 00 [xX

——>|3 y S| e —allz 1306 | o4—> - -

ol lo] ol | oo |xx al oo |XX

—> 6|7 |2 [1o|jet—AF |l |1 *°"

.

Figure 8
An Incorrect Merging of the Leading Chunks of Two Sorted Lists

This would leave the second list unsorted. After stripping off the low chunk
from the first list and appending it to the output list P, we would return to
the top of the merge loop with the two lists shown in Figure 9.

Guy L. Steele Jr.)) 11 . .. Destructive Reordering

Ol | Ol Joo XX

%':z B3leloe=1>---

ol |ol o |eo Ixx) ol oo | XX

’—alé 7|8 |le| e |1 [e

Figure 9
The Disastrous Result of an Incorrect Merge

Now the remainder of the merge could not work correctly, because the second
list would not be sorted. This is the reason for the third test in the inner
COND of CHUNKY-MERGE. If the chunks are chosen so that the one which
originally had the largest element receives the larger elements in the merge,
the lists are guaranteed to remain sorted (see Figure 10).

ol lal |oo]xXx ol ol oo | XX

—AN7 |8 |Io|eT—HI2|I3|I6|eT—> -

ol 101 o] oo | XX Ol |00 | Xx

—{3 |4 |S|6|T—A 7|1 |e> -

Figure 10
The Felicitous Result of a Correct Merge

Guy L. Steeie Jr. v i2 Bosﬁrueﬁivo Rcordorlnq

(DEFINE MERGE-TWO-CHUNKS-IN-PLACE (M1 N1 MZ N2)
(DO ((N (+ N1 N2 -1))
(J NL (+J1)))
((= J N))
(DO ((K (-J 1) (-K 1))
(Q (GET-FROM-TWO-CHUNKS J)))
((OR (< K Q)
(NOT (PREDICATE Q (GET-FROM-TWO-CHUNKS K))))
{ STORE- INTO-TWO-CHUNKS (+ K 1) Q))
(STORE- INTO-TWO-CHUNKS (+ K 1) (GET-FROM-TWO-CHUNKS K)))))

This version of MERGE-TWO-CHUNKS-IN-PLACE uses a straight insertion
sort [Knuth] to merge two chunks, inserting elements of the upper chunk into
the lower chunk.

(There may be better ways to accomplish this. We use an insertion
sort because we can take advantage of the fact that each chunk will already be
sorted; hence we need only insert the elements of one into the other.
Conceptually we are merging the contents of the two chunks, and storing the
result back into the twe chunks, one receiving all the low elements and one
the high elements. However, a list merge will not do because we are trying to
perform the merge in place without creating Indirect pointers.)

M1 and M2 are the addresses of the twe chunks, and N1 and N2 are their
lengths. J ranges from N1 (inclusive) to N (exclusive)}. Notice that N 1is
Ni1#N2-1 rather than Ni+N2. The effect of this is not to bother with the last
element in doing the insertion sort. This is correct because the ordering of
~the chunks in case (3) of CHUNKY-MERGE guarantees that the highest element in
the merge is already in place.

The functions GET-FROM-TWO-CHUNKS and STORE-INTO-TWO-CHUNKS handle the
logical concatenation of the twe chunks into a single array for the purposes
of the insertion sort.

(DEFINE GET-FROM-TWO-CHUNKS (J)
(CAR (LOC (ADDRESS-WITHIN-TWO-CHUNKS J))))

(DEFINE STORE-INTO-TWO-CHUNKS (J X) -
(RPLACA (LOC (ADDRESS-WITHIN-TWO-CHUNKS J)) X))

(DEFINE ADDRESS-WITHIN-TWO-CHUNKS (J)
(COND ((< J N1) (+ M1 J))
(T (+ M2 (- J NI)))))

The traditional sort algorithm is stable if the predicate is a nw
predicate, failing for equal keys. The chunky version fails to be stable
because of the decision about chunk ordering which must be made in case (3) of
CHUNKY -MERGE .

Guy L. Steele Jr.) N o 13 Destructive Reordering

Notes

{Note MacLISP DO) o |
© " The general form of a (new-style) MacLISP DO loop is:

(DO ((var-1 init-1 step-1)
(var-2 init-2 step-2)
(var-n init-n step-n))

(test end-1 end-2 ... end-m)
body-1 body-2 ... body-p)

The initial values init-j are all evaluated, and then the variables var-j are
all bound in parallel to the respective values. Then the test is evaluated.
If the result is non-NIL (true), then all the end-j are evaluated, and the
value of the last is returned as the value of the DO. Otherwise all the
body-j are evaluated. Then all the step-j are evaluated, and all the values
are assigned to the var-j; no var-j is stepped until all of the step values
have been obtained. Then the test is tried again, etc. If a step-j is
omitted, that variable is not stepped; it is just an initialized variable
local to the DO. It is not unusual for a MacLISP DO loop to have a null body,
because the stepping forms can often carry all the work. .

{Note Unrolled Loop} B

In practice, the traditional NREVERSE should be implemented with three
copies of the loop to reduce the shuffling of variables:
procedure nreverse(X); nreconc(X,NIL);

procedure nreconc(X,Y);
begin

end

Notice that here we have defined NREVERSE in terms of NRECONC, which is a
useful function in its own right:

(NRECONC A B) = (NCONC (NREVERSE A) B)

except that NRECONC is faster, avoiding having NCONC chase down the reversed
list. In MacLISP on the PDP-10 this “unrolled" version of NREVERSE executes

only three instructions per cell of the list (asypptotically).

Guy L. Steeie Jr.) 14 Destructive Reordering

Acknowledgements

An unrolled version of NREVERSE was originally coded for MacLISP by
Stavros M. Macrakis. The "traditional® sort algorithm shown here was
originally coded by Michael J. Fischer. A version of the CDR-coded sort
algorithm was improved upon and coded for the LISP Machine by David A. Moon,
and has been used for two years. Johan de Kleer provided useful comments on
the content of this paper.

This work was supported in part by a National Science Foundation
Fellowship, and in part by a Fannie and John Hertz Foundation Fellowship.

References

[Baker]
Baker, Henry B., Jr. List Processing in Real Time on a Serial
Computer. Comm. ACM 21, 4 (April 1978), 280-294.

[LISP Machine Group] ‘
The LISP Machine Group: Bawden, Alan; Greenblatt, Richard;
Holloway, Jack; Knight, Thomas; Moon, David; and Weinreb, Daniel.
LISP Machine Progress Report. AI Memo 444. MIT Al Lab (Cambridge,
August 1977). o '

[Clark]
Clark, Douglas W., and Green, C. Cordell. "An Empirical Study of List
Structure in LISP." Comm. ACM 20, 2 (February 1977), 78-87.

[Greenblatt]
Greenblatt, Richard. The LISP Machine. Artificial Intelligence
Working Paper 79, MIT (Cambridge, November 1974).

[Hansen]
Hansen, Wilfred J. "Compact List Representation: Definition, Garbage
Collection, and System Implementation.® Comm. ACM 12, 9 {September
1969), 499-507.

~ [Knuth}
Knuth, Donald E. The Art of Computer Programming, Volume 3: Sorting
and Searching. Addison-Wesley (Reading, Mass., 1973).

[McCarthy] ,
McCarthy, John, et al. LISP 1.5 Programmer's Manual. The MIT Press
‘(Cambridge, 1962).

[Moon]
Moon, David A. MACLISP Reference Manual, Revision 0. Project MAC,
MIT (Cambridge, April 1974}).

[Teitelman]
Teitelman, Warren. InterLISP Reference Manual. Revised edition.
Xerox Palo Altc Research Center {Palo Alto, 1975).

