MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

. AlmemoNo.$9l | o |  April, 1980

INTERFACING THE ONE-DIMENSIONAL SCANNING OF AN IMAGE
WITH THE APPLICATIONS OF TWO-DIMENSIONAL OPERATORS

S. Ullman

Abstract: To intcrfac‘c between the one-dimensional scanning of an image, ahd the application of a twb-
di'men'sional operator, an intermediate storage is réquircd. For a squarc image of size n2, and a square
' operator of si"ze m?, the minimum intermediate storage is shown to bé n-(m —1). An interface of tﬁis size can
be conveniently realized by using a. serpenting dcléy line. New kinds of imagers would :bc ’requircd to reduce

the size of the intermediate storage below n - (m — 1).
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1. Introduction

Image processing often requires the application of a two-dimensional operator over the image. Imaging
devices usually scan the image along a one-dimensional path, and producc a stream of data points. In such
cases, an intermediate storage is required, to interface between the one-dimensional scanning and the applica-

tion of the two-dimensional operator.

In this paper, the interface problem will be examined. In particular, we shall determine the minimum
size required of the intermediate storage. For a square image of size n?, and a square operator of size m?, the
minimum intermediate storage is shown to be n - (m — 1). For small-size operators the intermediate storage

~may not add substantially to the overall size of the system. For example, a recent two-dimensional CCD
scanner developed by Texas Instruments (Hall & Awtrey, 1979) incorporates the intermediate storage required
for a 3 * 3 operator on the scanner chip itself. For larger operators, however, the size of the intermediate
storage becomes significant. For example, a recent CCD convolution chip constructed by Hughes is designed
to supbort a 26 % 26 operator (Nudd ef al., 1979). Itis intended to be applied to images of 1000 points on a
side, in which case an intermediate storage of 25000 image points would be required. ’ln‘ such cascs the size of
the system is determined almost entirely by the intermediate storage requirement. Given the theoretical lower
bound on the size of this storage, it is suggested that new kinds of imagers wmﬂd be required for systems for

which size is a dominant consideration.

2. Using a serpentine delay line of size n - (m — 1)

A simple method for interfacing a onc-dimensional scanner to a two-dimensional operator is shown in
Figure 1. The camera ¢ scans the image (assumed to be a square of n? points) row by row. The intensity values
measured by the camera are fed into a serpentine delay line (S in Figure 1), consisting of m — 1 rows, cach
of length n. The serpentine delay line is tapped in m — 1 positions that are connected to the two-dimensional

operator M (of size m?). In addition, there is a direct line from the camera to M, so that there arc a total of m




input lines to M.

| }\fter the firstm — 1 ro§vs have been scahncd‘ they fill the intermediate storage S, and the first column
of thcsc rows resides in the rightm(')st column of S, ready to be delivered to ‘M. The scanner thcﬁ rcads{ point
(m,1) in ‘the(imagc;ahd ;he first column of m poihts (point (1,1) to (ln,I)) is transferred to M. Point (m,1) |

also cnicrs the d_elay line, shifting each point in S by one position. The point in the lower-right corner of S

‘is dropped from the memory and lost. Whenever a new point is now read by the scanner, a column of m
* points is transferred to M. After hayving scanned m points from the m*? row, the entire upper-left square of m?
- points resides in M, and the operator is applied to it. When the scanning of the entire image is completed, the

operator has been applied to all the squares of size m? in the image.

"The intermediate storage S in this scheme is required to hold n - (m — 1) imagc points. The next section

will establish that this rcqulrcmcnt cannot be reduced. Even if one uses arbltrary scannmg pattern (e.g., the

o mxagc may be dmded into sub-blocks, and cach block scanncd and opcratcd upon separately), and arbitrary

intcrconnectnons between S and M (i.e., M may have access to all the points in S ), the minimal intermediate

storage would still be n - (m —1).
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Figure 1: A scrpentine delay tine 'S, with m — 1 rows of length n cach, ‘interfaces a scanncr C with the

operator M of size m?,




7 3. The minimal intermediate storage is n - (m — 1)

Let the size of the intermediate storage be S. In this part we wish to show that S > n - (m—1).
Notation: We shall think of the image as a grid of n * n squares, n > 2. Fach square in the grici is also
called a point in the image. A two-dimensional operator of size m * m is a function of m?2 arguments. The
'_fuhction is to be épplicd to every square of size m? points in the image. We shall assume that the size of the

“operator (m) is at most %. Finally, for aset P of points, || P|| will denote the number of pointsin P.
3 l)eﬁnition&- Two distinct points in the image are called partners if they can be covered simultancously by
a square of size m2. That is, their distance in the image in cither the horizontal or the vertical direction is

at most m points. Sumlally, the partners of a set P of pomts arc the parmers of all the points in P, but not

: mcludmg thc points in the set P itself. That is,

partners(P) = U bartners(i) —P - (1)
; : ic P

When the scanner has rcad k points, k > AS', some of the k points are no longer in the storage, and can no |
longer be retrieved. Let-P be the set of 'ppipts that have been scanned, but are no longer in the storage. It is not
difficult to see that at this‘ stage tilc partncrs of the s.ct P must reside in the intermediate storage. The reason is
that if points p and q are partners, then there must exist a stage at which both p and q are in the intermediate
storage. We can now obtain a lower bound on the size of the intermediate storage by eétimat'mg the number
of p'artncrs of a sct of k points. We shall establish the lower bound on the size of the intermediate storage by
'showing that for a certain choice of k, the number of partners is at least ro - (m —1).

Propos:tz(m I: Letk be the smallcsl integer such thatk > % 22 For this chmcc of Ic any sct of k points has
at lcaqt n{m — 1) partners, |

Proof: By induction on m, the size of the two-dimensional operator. For m = 1 the claim holds, since
* the number of bartners is zero. To prove the induction step we shall show that, in an image of size n2, when
the sizc of the opcrator is increased fromm = M tom=M + 1, (assuming M +- 1 < %), the set of partners

is mcrcascd by at lcast n new pomts Fo provc the induction step, we shall use the followmg two dcﬁmtlons




Definition 1: Let I be the image, and P a collection of points in the fmage. ‘A neighbor of the'set P is a
pointin I - P that shares an edge or a vertex on the grid with a'pointin P.
Definition 2: In a grid of size n?, a set of k points is called admissible (and the grid itselfis admissible) if:

,12

" <k< in forn >2 {2)

< 1’ ==

Comment: Let P be the set of the k originalpoints, and all their partners for an operator of size M. When
the operator increases in size to M 4 1, all the neighbors of P become new partners of the k original points.
To prove proposition 1 it will be sufficient, therefore, to show that the sct P has at least n ncighbors. This will
be the goal of‘ proposition 2. A

Wiihout loss of generality, we can assume that the sct P is admissible. Since P contains the k original
points, clearly % 2 < ||P|l. If |IPH > in?, then the k ongmal points have at least §n? — k partners.
Ry tsince kb < ” + 1, and § > M + Lt would follow that the'k original points have at least n -'m

partners. Proposition 1jwould.th'ercforc’hold for the gperator of size M + 1, and the induction step would be

unnecessary.

Proposition 2: In a grid of n? points, any admissible sct of K points has at least n ncighbors.

_ Proof* By induction on n, the size of the grid. Forn = 2 the proposition holds, since K = 1 or K =2,
and in cither case there are at least 2 neighbors. We next assume that proposition 2 holds for n ==- N and
proveit forn == N -4 1.

'The general structure of the proof will be as follows. For convcnic‘ncc of reference, the K points will be

alkd the black pomte and the remaining points white. In thcsc terms, we wish to show that in a grid of size
(N 4 1)? any sct of K points, (N + l)2 < K < 3N + 1)2, has at lcast N + 1 white nc:ghbors lo use

_the induction hypoams:s-wcshall prove the following claim:




Proposition 3: 1t is possible to remove a row and a column from the grid in such a way, that the resulting
grid of size N will be admissible.

Ffom thc indt'lction hypothesis, in the reduced grid the sct of black points has at least N neighbors. The
proof will be concluded by showing that when the missing row and column are re-introduced, the number of
ncighbors of thé black set is increased by at least one.

Proposition 3.1: From ﬁn admissible grid of size (N + 1)2 it is possiblc to remove a row and a column, so
that in the remaining grid of size N'% the number of black points will be fess than 3 N2,

 Proof: Lét an 41 denote the fraction of black points in the original grid. That is, the number K of
black points is equal to an 1 - (N + 1)%. Similarly, ap is the fraction of black points in the reduced grid. In
these terms, we assume in proposition 3.1 that § < an41 << 3, and wish to establish that ay << 3.

Let B;; denote the totél number of black points in row i and column j. Bij is the (number of black points
in row i) + (thc number of black points in row j). The difference between B;; and B,-j is that if point (ij) is
black, it is counted twice in B;; but only once in B;;. Let B = Zfljtll 351 B= ZﬁvjtllB

* There are aN_H(N +1)? ‘black points in the grid, and each one is counted 2(N -+ 1) times in B,

therefore:

B=2N+1)-anp(N+1)? (3)
In B cach black point is counted one additional time, compared with B, therefore:
B=B —anvp(N+1)? = (4)

There are (N + 1)? terms B; ; contributing to the sum B, therefore the avcrage contribution is:

B

=2 1)— - 6
N T 1)2 aN+1(N +1)—anti | (5)
‘There must cxist a term B;; that contributes at least the average contribution, Pr()posmon 3.1 will therefore be

mnsﬁcd 1f

Can4i(N —I-:l)2 —(Qan (N + 1) —an 1) < %Ng (6)




If this inequality does not hold, then:
an41(N 4+ 1)2 — 2an41(N + 1) — en41) = ZN2 @)

But this implics an4-1 = 2, which is a contradiction, since § << an-4+1 < 3. 1§
p + 4 -+

Proposition 3.2: In the conditions of proposition 3.1 it is possible to removce a row and a column so that in
the reduced grid ay > 4. “
| The proof will be omitted, since it is entircly analogous to the proof of proposition 3.1.

Comlﬁcnt: The row and column chosen in propositions 3.1 and 3.2 are not necessarily the same. If] in
proposition 3.1, an > }1, or if, in proposition 3.2, any < ,% then proposition 3 is established. Proposition
3 may still fail, however, to be satisfied if in proposition 3.1 an < }1 and in proposition 3.2 an > %. It is
required therefore to show that in this case we can still remove a row and a column such that in the reduced
grid the st of black points is admissible.

Let the row and column chosén in proposition 3.1 be row i and column j. The row and column chosen
in nroposition 3.2 will be denoted row k and column £ Let us now remove from the grid row i and column
* Since the definition of an admissible set is slightly different for N' = 2, we shall start with the case N 2 3. In

this case, proposition 3 would fail to be satisfied if either:

1 .
an (N + 1) =By < ‘4‘N2 ’ (8)

or:
an41(N + 1) — By > %N2 9)

Let us cxamine the first case. We may assume that

an-4i(N + 12— Ba 2 SN? | (10)




(sce the comment above). From (8) and (10) we conclude that:
1 2 '
Bil - Bkl 2 §N (11)

B,:l — By is the difference in the number of black points between rows / and £, after removing the I*? column,
- hence By — Bk; < N. This, together with (11), impliecs N << 2, in contradiction with the assumption that
N > 3; We éoncludc that for N > 3 (8) is impossible, and the inequality ey (N + 1)2 — B > IN?
must hold. To include the case N = 2, a similar argument establishes that an4((N + 1)2 — By > IN?2
must hold for N > 2.

The case in (9) can be handled analogously, yielding

1
Bij —B; > §N2 (12)
which again cannot hold for N > 2.
In conclusion, the fraction ay satisfies § < an' < 3 for N >3, and § < ay < 3 for N = 2. The

set of black points in the reduced grid is therefore admissible.

Proposition 3 has establishcd' that a row and a column can bc‘removcd from the original grid of size

(N + 1)?, resulting in an admissiblc grid of size N. From the induction hypothesis, in the reduced grid the set

| of black points has at least N neighbors. To show that the set of ncighbors in the ériginal grid is larger (by at
leést one), we shall usc the following claim:

" - Proposition 4: proposition 3 can be satisficd by removing a row and a colux'nrn that are not entirely black.

Proof: It is sufficient to show that proposition 3.1 can be satisficd with a fow and a column that contain

at lcast ()hc whitc point. We can assume without loss of generality that the original grid contains the maximal

possible ﬁtnmbcr of black poi.nts, since if proposition 3.1 can be satisfied (with a row and a column that are

not entirely black) for a maximal number of black points, it c‘anral.so be satisfied for grids with fewer black

points. For N 41 = 2m (an even number), the maximal number of ‘black points is (N + 1)2 — 1. For
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N -+ 1 = 2m + 1, the maximal number is (N + 1)2 3 . We shall examine the latter case (the firstcan be
established analogously).

Let r be the nurﬁber of completely black rows in the original grid, ¢ the number of completely black
columns. We can assume that r > 1 ¢ > 1, since otherwise proposition 4 followes directly from proposition
3. Since an 1 < ,31 cither ¢ < Lorr < N'H must hold Without loss of generality we shall assume
thate < N—iﬂ

The 7 black rows and ¢ black columns contribute a total of
(r+c)(N+1)—rc (13)
black points. The number of black points in the remaining rows and columns is therefore:
3 9y 3 _
SN = = N ) e R (T

This number of black points is divided among N - 1 — ¢ columns, hence the average per column (denoted

by A) is:
INF P =3 —(r N+ +re

A=A N+1_c.. (15)

There must exist a column which contains at least » -} A black points. By removing this column and one of the
black rows we remove at least:

(N+1)+rt+A—1 (16)

black points. It therefore remains to establish that:

SN 13 (VA <IN (7)
‘ ?nequaiiity {17y reduces to:
N? +N—«—§(2—c—c>9 (18)

Fore < Mt mcquallty (18) holds, thcrcforc proposatmn 4 is cstablished. &
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Corollary: using the same argument, proposition 3.2 can be established with a row and a column that

- are not entirely white. Combin‘ihg the two claims, it is straightforward to establish that proposition 3 can be

satisficd by arow and a column that are neither entirely black nor entirely white.

Proposition 5: The set of black points in the original grid has at least N + 1 ncighbors.

Proof:  From propositions 3 and 4, we can remove a row R and a column C (neither entirely black nor

entirely whitc) from the original grid, and obtain an admissible grid. From the induction hypothesis, the set of

 black points in the reduced grid has at least N' neighbors. We have to show that by re-introducing R and C

the number of neighbors increases by at least one.

Since R and C contain both black and white points, they contain at least one "internal neighbor”, i.c., a
white point that borders a black point, where both points are in R UC’ We shall show that without the inter-
nal ncighbor the number of neighbors in the original grid is at least N , hence the total number of neighbors is

atleast N + 1, as required.

If a given point p is a neighbor of the black set in the reduced grid, it may or may not remain a neighbor

_ when the missing row and column are re-introduced. Let us examine first the case where p is not a neighbor-

of the black set in the original grid. In this case p must be surrounded in the original grid by white poiﬁts (see
hgure 2). In this conﬁguratlon point g in R becomes a new neighbor, since at least one of the points a, b, <
must be black Note that ¢ cannot beI an internal nelghbor (Comment: in Figure 2, point p borders the re-
mtroduced column R. The argumcnt is unchanged when it bordcrs C instead of R. The case where p borders

both R and'C rcquircs aslight cxtension of the argumcnt, which will not be claborated.)

We conclude that there cxnsts a one- to-onc mapping from the ncighbors in the reduced grid into the
ncnghbors in the orlgmal gnd and that this mapping docs not include the intcrnal neighbor. The number
of ncighbors in the grid of size N + 1 is therefore at least N 4 1. This establishes the induction step in

proposition 2, and concludes the proof of propositions 2 and 1.' ]




B

F igurc' 2+ After column R has been re-introduced, point p is no longer a neighbor of the black set. All the
squarcs bordering p must therefore be white. Prior to the re-introduction of column R , p was a neighbor of
“the black set, hence at least onc of the points a, b, ¢, must be black. Point ¢ is theicfore a nc,-ighfbof of the black

set.
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4. Reducing the size of the intermediate storage

The lower bound established in the preceding section implies that the intermediate storage may play a
dominant fole in determining the size of the system. The intermcediate storage can, however, be reduced by
scaﬁni_ng the image more than once. Suppose, for example, that s rows are scanned in parallel. The first scan-
path scans rows 1 to s, the sccond scans rows 2 to s —|— 1, etc. Each image point is scanned in this scheme s
times. Using the scrpentine delay line of Section 2, it is possible now to connect s lines directly to tf\e two-
dimensional operatof M. The intermediate storage S will then have only (m — s) rows. This scheme gives
a simple (though not optimal, in terms of the storage size) method of reducing the size of the intermediate
étorége ton- (Im — é), where s is the number of times each point is scanned. In particular, by having s = m

the intermediate storage becomes unnecessary.
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