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ABSTRACT

The human visual system has the ability to utilize motion information to infer the shapes
" of surfaces. More specifically, we are able to derive descriptions of rigidly rotating smooth
surfaces entirely from the orthographic projection of the motions of their surface mark-
ings.

A computational analysis of this ability is proposed based on a “shape from motion” propasition.
Phis proposition states that given the first spatial derivatives of the orthographically projected
velocity and acceleration fields of a rigidly rotating regular surface, then the angular velocity
and the surface normal at each visible point on that surface are uniquely determined up to a
reflection.

The computational analysis proceeds in three main steps. First it is shown that surface tilt and
one component of the angular velocity may be obtained entirely from the first spatial derivatives of
the velocity field. Sccond it is shown that surface slant and the remaining two components of the
angular velocity are computable if the first spatial derivatives of the acceleration ficld arc also given.
Finally the problem of constructing a velocity field from the temporally changing optic array is briefly
discussed.
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1. Introduction

Visual motion provides a powerful base for inferences about the layout of the immediate cnviron-
ment and the motions of the various constituents of that environment. The focus of this paper is
one inference that the human visual system does appear to perform routinely based on visual motion
alone. In particular, the human visual system has a remarkable ability to utilize motion information to
infer the three dimensional shapes of surfaces. More specifically, we are able to derive correct descrip-
tions of rigidly rotating smooth surfaces entirely from the orthographic projection of the motions of

their surface markings.

A demonstration of this ability, similar to that of Ullman (1979), is illustrated in figure 1. Iﬁots
are randomly placed on a sphere in the memory of a computer. Successive snapshots of this random
dot sphere are generated at five degree intervals and orthographically projected in quick temporal
succession (using an ISI of 20 msec and a presentation time per frame of 20 mscc) on a computer
driven crt. Figure la shows three successive frames as they would appear statically on the crt. As
is obvious from the figure cach individual frame gives no impression of being a sphere.! Rather it
just looks like a somewhat circular array of random dots. However, when the frames are presented
in quick temporal succession one obtains a compelling perception of a smooth sphere in rotation (see
figure 1b).

It is important to note that the perception is of a smooth spherical surface, not, for example, of
invisible wires connecting the individual dots as in Johannson’s biclogical motion (Johannson, 1973).
One has the feeling that there is an almost tangible smooth black pearl with little lights attached to
its surface. The importance of noting this is that it indicates the typce of description that appears to
be built by the visual systcm It is a description whose primitives relate to surfaces rather than to
positions of isolated points.2

That this visual ability is a nontrivial feat becomes apparent when it is realized that the mapping
from the environment onto the retina is many to one. The information available to the visual system
underdctermines the surface which is the source of the motion observed, so that any conclusions
drawn about that surface are in principle nondemonstrative. Yet, surprisingly, our perception is, in
general, of a unique surface in rotation. More surprisingly, it is more often than not correct, Clearly
the visual system must be utilizing generally valid constraints about the nature of surfaces and objects
in our world in order to obtain this unique solution. One constraint of central importance in obtaining
a unique surface is the rigidity constraint; the environment is usually, though not always, composed of
rigid objects (Ullman, 1979; Johansson, 1964 & 1975; Hay, 1966: Green 1961: Wallach & O’Connell,
1953; Gibson & Gibson, 1957). Later this constraint will be given a precise mathematical formulation
and its utility in arriving at a unique interpretation clearly illustrated.

The goal of this paper is to provide a description of this perceptual ability at a level which Marr

and Poggio have called a computational theory (Marr & Poggio, 1977). The computational analysis
proposed is based on a “shape from motion” proposition3 which states that given the first spatial

This eliminates single frame information such as texture gradients from being a plausible explanation of this ability.

2This does not discount the possibility, of course, that positions of points might be computed first and smooth surfaces
fitted through them afterwards. In fact, just such a scheme appears to be utilized in stereo vision (Grimson, 1980).

3The term “proposition™ is not intended to imply any hubristic claims regarding the complexity of this result or its
derivation. Rather it is intended to emphasize that the prcqcm inquiry is a computational analysis.
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Figure 1. (a) Three successive frames of a rotating random dot sphere. Each frame is rotated five
degrees to the right about the vertical axis with respect to the previous frame. (b) The resulting
spherical percept when the frames are presented in quick succession.
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surface

=

g igui‘e 2. Surface representations using slant, o, and tilt, 7. Rather than representing the surface normal at a
point in terms of surface gradients (z; and z,) it is convenient 1o adopt the slant and tilt convention proposed
by both Stevens (1980) and Attneave (1972). Briefly, tilt indicates in which direction a surface is rotated from
the observer’s frontal plane and slant indicates how much it is rotated away from the frontal plane in that
direction. Whereas surface gradients tend to infinity at occluding contours, tilt ranges on]y between 0 and 180
degrees and slant ranges from 0 to 90 degrees. The equauons of transformation are o = tan—! /72 +z§

and 7 = tan—1 /2, /7.

derivatives of the orthographically projected velocity and acceleration fields of a rigidly rotating
regular surface, its angular velocity and the surface normal at each visible point on the surface are
uniquely determined up to a reflection about the image plane.

— e fe e e m o o] = = - —

- image

For clarity the computational analysis is presented in three main steps. First it is shown that surface
tile (sec figure 2) and one component of the angular velocity may be obtained from the first spatial
derivatives of the velocity ficld. Then it is shown that surface stant and the remaining two components
of the angular velocity are computable if the first spatial derivatives of the acceleration field are also
given. Finally, since the computational analysis assumes as one of its givens a velocity field, the
problem of constructing a velocity ficld from the temporally changing optic array is discussed briefly.




HOFFMAN ‘ ’ 5 ' SHAPE FROM MOTION

2. Two Previous Computational Analyses

The ability of the human visual system to infer the correct three dimensional description of an ob-
ject from its projected motion alone has been investigated computationally several times before. Two
of these previous analyses will be briefly discussed to illustrate the two basic types of computational
approaches that can be taken to this problem and the two basic types of resulting descriptions.

Ullman (1979) took what may be called the “discrete approach” to the problem. The givens
for his computational analysis arc three successive snapshots of isolated points moving in a rigid
configuration. The resulting description he builds is essentially a st of triples giving the three dimen-
sional positions of the points in relation to cach other. Fundamental to Ullman’s clegant analysis is his
“structure from motion” theorem which states that the structure of four non—copianar points in a rigid
configuration is recoverable from three orthographic projections.

An example of the “continuous approach™ to the problem can be found in I.onguet-Higgins and
Prazdny (1980).* Rather than utilizing discrete orthographic projections as input, they assume a
velocity field arising from a perspective projection. The resulting description computed involves sur-
faces instead of sets of triples. In short they prove that given the perspective projection and first and
second spatial derivatives of the velocity field presented to a moving observer it is in principle possible
to compute both the observer’s motion and the surface gradients at each point in the visual field.

The present analysis falls into the continuous category. Flow fields are assumed as the input and a
description of the surface of interest in terms of the surface normal (slant, tilt) at each visible point is
the desired result. Where the current analysis differs from that of Longuet-Higgins and P;a;gny a,nq
other previous work within the continuous approach is that here orthographic projection is assumed
instead of perspective projection. Consequently in this analysis it proves impossible to derive both
the observer’s motion and a complete surface description merely from the velocity field and its spatial
derivatives. The relations of these various approaches is summarized in figure 3.

3. Why Use Orthographic Projection?

Why bother performing a computational analysis of the problem assuming orthographic
projection? After all it will be shown that less information about local surface propertics can be
computed from the velocity ficld in orthographic projection than in perspective. Specifically, surface
slant computation requires the temporal derivative of the velocity field. There are several motivations.

First, as Ullman (1979) points out, perspective effects are often rather noisy and unreliable. To
utilize them locally would require very careful measurcments by the visual system.

Sccond, orthographic projection provides a good local approximation to the actual retinal projec-
tion. A theorem from differcntial topology allows us to conclude that whatever the true retinal

4Scveral other researchers have examined aspects of this problem from a continuous point of view (Koenderink & Van
Doorn, 1976; Nakayama & loomis, 1974; Gibson, 1950). '
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Figure 3. A categorization of the various computational approaches to the problem of deriving shape from
thotion. The categorization scheme is given by crossing projection type (orthographic or perspective) with
motion type (discrete frames versus optical flow).

projection is, it is locally equivalent to orthographic projection.’

A third motivation is provided by the results of some psychophysical tests done by Ullman. Using a
cylinder composed of random dots he showed that observers can recover the correct structure entirely
from the orthographic projection of the motion of the dots when the cylinder is rotated about its
axis. However obscrvers cannot recover the structure under perspective projection when the object
is alternately receding and approaching without any rotation. This is significant because a computa-
tional analysis shows that if perspective effects are taken into account the structure can in principle be
recovered from receding and approaching motion alone. These results tend to support the psychologi-
cal reality of a computational theory based on a locally orthographic projection for the recovery of
shape from motion. '

Alternate computational analyses provide clear candidate hypotheses that may be tested for their
psychological reality and that cach lend different insights into the subject of study. For example it
will be shown later that the tilt component of the surface normal is much more easily recovered than
the slant component, both in the nature of the motion information required and the computations in-
5The theorem is called the Loeal Submersion Theorem (sce, for example, Guillemin & Pollack (1974)). It states, “Suppose

that f:X + Y is a submersion at z, and y == f(x). Then there exists local coordinates around x and y such that for
k>1, f(zy,..,2x) = (21,...,3). That is, [ is locally cquivalent to the canonical submiersion near z.”
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volved. This is an interesting result and one that could provide a basis for psychophysical examination
of the psychological reality of this analysis.

Finally, the equations for surface orientation and motion derived using orthographic projection
arc much simpler than those derived under perspective projection. Not only are the the equations
simpler, they do not requirc measurements of the second spatial derivatives of the velocity field as is
typical in the perspective case.

4. Geometrical Model

The idealized geometry underlying the following computational ana]&sis is illustrated in figure 4. A
rigid patch of surface, S, is considered to be an open set of points each of which has an associated
position vector R. The position vector for a point on S with respect to the z, y, z coordinate system is
given by:

R = zi+ yj + 2(=z, y)k 1)

where i, j, k are unit vectors along the z, y, z axes respectively. The surface, S, has an angular velocity
Q2 given by: ,
(1 = wii 4 wyj + wsk 0}

with respect to the z, y, 2 coordinate system.

Note that {2 may ecither result from rotary motions of the surface or from movement of the image
plane, I, with respect to S or both. As long as €2 is not zero it doesn’t matter whether the surface is
rotating and the observer remains stationary or whether the surface is stationary and the observer’s
motion with respect to the surface includes an angular component. '

Associated with S is a velocity vector field, V, which at any point pe S is given by:
V=QXR+T (©))

where T is any net translation between the observer and the surface.3

The velocity field available to the observer is an orthographic (parallel) projection of the velocity
field, V, associated with S onto the image plane, I.

Now this is clearly an idealization. The real observer is definitely not given a velocity field but
must construct such a ficld from the temporally changing optic array. This problem will be discussed
bricfly later. For the analysis of the present problem of inferring the shape of S, the orthographically
projected velocity ficld is assumed as a given.

With this simple geometrical model as background the computational analysis of the problem of
inferring shape from orthographically projected motion is now presented as the proof to the following
proposition. '

IERRIN

SActually T is any net translation betwcen the obscrver and the axis of rotation of the surface. However, the translation
term is of no consequence for the present analysis since it will drop out when the spatial derivatives of (3) are taken.
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Figure 4. Geometrical model underlying the computational analysis. S is some surface with angular
velocity 2. The resulting velocity ficld V is orthographically projected onto the image plane I.
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5. The Shape From Motion Proposition

Given the first spatial derivatives of the orthographically projected velocity and acceleration fields of
a rigidly rotating regular surface, the angular velocity and surface normal at each visible point on the
surface are uniquely determined up to a reflection about the image plane.

Proof. The proof of this proposition involves deriving equations for the two components (o, 7) of
the surface normal, N, at cach visible point and for the three components of the angular velocity (wy,
wy, wy). For clarity of presentation the proof is divided into two lemmas. In the first lemma equations
for the tilt, 7, and onc component of the angular velocity, ws, are derived and discussed. In the second
lemma the same is done for the slant, o, and the remaining two components of the angular velocity,
wy and wo.

5.1 Lemma 1.

Both the till, T, at each visible point on S and the component of angular velocity about the axis
orthogonal to the image plane, w3, are computable given only the first spatial derivatives of the or-
thographically projected velocity field.

To make the claims of this lemma clearer figure 5 illustrates the tilt fields associated with two
simple surfaces and figure 4 illustrates with which axis the angular velocity component, ws, is as-
sociated.

Proof of Lemma 1. Since the projection plane, I, is orthogonal to the unit vecfor, k, the or-
thographic projection of the velocity field, V', is given by:’

Vi=V— (VK (4)

What this essentially means is that the components of the velocity ficld along the z and y axes survive
orthographic projection unaltered, whereas the component along the z axis (i.e., along the observer’s
line of sight) is climinated completely. Consequently the only spatial derivatives of the velocity field
that nced be computed are along the z and y directions. Denoting spatial partial derivatives by
subscripts, the first spatial derivatives of the velocity ficld (cquation 3) along the z and y axes are:

V,=Q, X R+Q XR, )

V,=0Q, X R+Q X R, (6)

Before investigating cquations (5) and (6) further it is helpful to introduce a mathematical expres-
sion for the rigidity constraint that will allow these cquations to be simplified. The motivation for the
particular mathematical expression to be used here is simple. One conscquence of surface rigidity is
that the cntire surface can have only one angular velocity, 2. Regardless of which neighborhood of

TThis characterization of the orthographic projection of a vector is borrowed from Witkin (1980).
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Figure 5. Tilt ficlds compared with fields of surface normals for two surfaces. According to lemma
1 one can obtain the correct tilt ficld (1, 7) from the velocity field but, unfortunately, not the field of
surface normals (o, 7). A tilt ficld is an example of a field of directions (Do Carmo, 1976, p.178). Since
no magnitude information is known, only the direction of tilt, the tilt ficlds in (a) and (b) are indicated
by constant length vectors pointing in the direction of tilt. The surfaces arc (a) a sphere and (b) a

cylinder.

.
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5.4 Remarks on the Shape From Motion Proposition

It has been shown that the angular velocity and the surface normal at cach visible point of a rigidly
rotating regular surface are uniquely determined up to a reflection if one is given the orthographic
projection and first spatial derivatives of the associated velocity and acceleration ficlds. This proposi-
tion and its proof are proposed as the basis for a computational theory of the human visual ability to
perceive the shape of a smooth moving surface from its motion alone.

Some disclaimers are in order. First, only arguments for the sufficiency of this approach, not its
necessity, have been suggested. Alternative computational theories are available, some of which were
discussed carlier. It is a matter for empirical investigation to determine which, if any, of the current
theories is to some extent psychologically real.

Two picces of psychophysical evidence may be adduced to suggest the greater psychological reality
of the present approach over previous ones. First are Ullman’s (1979) experiments, mentioned before,
which indicate that only orthographic, not perspective, information seems to be utilized by the visual
system in recovering surface shapes. The sccond is that the resulting perceptual effect (illustrated
in figure 1) is of a smooth surfacc as opposcd to isolated points connected by invisible wires. This
suggests greater psychological reality for an approach which builds a description whose primitives
relate to surfaces. ’

A second disclaimer must be mentioned. The visual system may utilize additional generally valid
constraints for the interpretation of surface shapes from motion. For example, shortcuts in computing
the slant, o, might be based on noting that o must be 90 degrees at external occluding contours
and must vary smoothly between them. Another potentially powerful constraint is that the tilt field
muist be locally orthogonal to the image of its occluding contour (for smooth surfaces). Thus further
investigation of valid means to reduce the computational complexity of this approach is warranted
“before serious claims for its psychological reality can be sustained.

6. Computing Velocity Fields

To this point the analysis has assumed the velocity ficld and its first spatial derivatives are given,'3

Clearly this is not the case for a real observer. The real observer is prescnted with a temporally
changing optic array. If a velocity ficld is required it must be constructed from the changing optic
array. : '

The problem of computing a velocity field has remained nontrivial despite much recent rescarch.
Onc can show that the motion information available at any singlc point in a changing optic array is
insufficient to uniquely determine the velocity field at that point. Consequently much of the research
in the ficld of optical flow has been devoted to discovering valid means of integrating motion informa-
tion from local ncighborhoods to uniquely determine the flow at cach point in the neighborhood.

A detailed analysis of the prbblcm of determining optical flow is presented in Horn and Schunck
(1980), which also includes a representative list of references on the topic.

13Actually only the first spatial derivatives have been used.
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(a)

Au/Oz =~ [(uz — up) + (w — wy)]/2d ufBy = [(ug — o) + (u3 — w)]/2d
9v[z == [(va — o) + (v —wll/2d O0/8y = [(v, — w) + (25 — w)]/2d

Figure 6. The orthographically projected velocity field and its first spatial derivatives. (a) illustrates
the decomposition of a velocity vector at a point in the field into its £ component, u, and its y
component, v. (b) illustrates how the spatial derivatives u,, u,, v, and v, can be approximated at
somc point, p, from the local velocity field.



HOFFMAN 13 SHAPE FROM MOTION

5.2 Remarks on lemma 1,

An important problem for the computational investigation of early vision is the initial carving up of
the visual array into tentative objects and a background. This is important because it is a fundamental
contention of the bottom up computational approach that there exist autonomous low level visual
processes capable of providing a useful initial segregation of the visual world independent of higher
level cognitive influences. For example, it is a primary goal of the primal sketch and 2-%D sketch,
carly visual representations proposed by Marr (1976) and Marr and Nishihara (1978), to make explicit
exactly that information in a visual image which is required to build useful descriptions of the image
in terms of objects and their relations. The processes proposed both to build and to operate upon
these representations are invariably bottom up. If this endeavor fails, so too does much of the com-
putational approach to vision. Therefore a high priority activity of computational research in vision is
to provide convincing existence proofs (e.g., running computer programs) for this contention.,

Visual motion scems a likely candidate basce for tentative structuring of the visual array via
autonomous processes. This has been suggested many times before. Ullman (1979. p. 76) proposes
that a primitive motion correspondence process might be causally related to the child’s acquisition
of object constancy over changing views of an object. Marr and Ullman (1979) have suggested that
retinal velocity ficlds may be used to segregate the visual world by exploiting the “principle of con-
tinuous flow”". This principle states that “the velocity ficld of motion within the image of a rigid object
varies continuously almost everywhere.”

The results of lemma 1 suggest four further motion based segregation methods. The first two arise
again from the fact that a rigid body can have but one angular velocity at any instant. Since lemma 1
provides methods to compute w; and w) /wy locally, it is possible to segregate the field into regions of
constant w3 and constant wy /we. In fact, the segregations obtained by the two methods should agree,
providing the necessary redundancy to check for gross errors.

The third method is based on noting that the discriminant of equation (16) for w3 remains real over
regions in the image which are the projections of smooth rigid surfaces.? Therefore points where w3
becomes complex indicate regions in the image where the rigidity constraint is violated (or where the
surface has a discontinuity from the current viewpoint).

Finally, we can utilize constraints on tilt fields. For smooth rigid surfaces a “principle of continuous
tilt” analogous to that proposed by Marr and Ullman for optical flow may be invoked to segregate
the visual array. This principle states that “the tilt ficld within the image of a rigid object varies
continuously almost everywhere.” .

These four segregation techniques are not isomorphic to Marr and Ullman’s principle of con-
tinuous flow. The methods suggested here segregate the image into regions which are the projections
of rigid objects. The principle of continuous flow cannot. Since it does not explicitly incorporate a
rigidity constraint,'” the principle of continuous flow cannot be used to distinguish regions of smooth

%This is easily proved by substituting from equations (12)-(15) into the appropriate terms of the discriminant of (16).
Simplifying gives (wozy + wiz:)? which is always greater than zero. Implicit in equations (12)-(15) is the rigidity
assumption.

10The word rigid does appear in the statement of their principle, but it is equally true that “the velocity field of motion
within the image of a bending object varies continuously almost everywhere.”
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flow in the image which arisc from rigid objects from those which arise from bending or otherwise
non-rigid substances. Consequently the segregations provided by the different methods are not identi-
cal but are useful for different purposes.

5.3 Lemma 2.
The surfaée slant, o, and the remaining two components of the angular velocity, w, and wy, are
computable given the spatial derivatives of the orthographically projected acceleration field in addition to
those of the velocilty field.

Proof of Lemma 2. The acceleration field associated with a smooth rigid surface is found by taking
the time derivative of equation (3). Indicating temporal derivatives by primes we have:

. V=OXR+OQXR4+T (19)
where

R=(QXR=V (20)

0 = w|i + whj + wik ¥2))

If we take the first spatial derivatives of (19), simplify the results using the rigidity constraint of (7),
and expand the indicated cross products as before, we obtain the four equations:

U, = whz, — wi — Wi + wwz, (22)
= why — wy + wion -+ sz, @)
v, = W) — W)z + waunz, -+ wiwy | | (24)
v, = —wiz + wwnzg, —wl —wl (25)

Equations (12)~(15) and (22)—(25) relate cight quantitics measurable in principle from the image,
(s, Uy, vz, Vy, U, Uy, VY, V), to the cight unknowns of interest: the local surface normal, (o, 7),
the threec components of the angular velocity, (wy, wy, w3), and the three components of the angular
acceleration, (W), wi, wf). The simple fact that we have cight equations in cight unknowns does not
necessarily imply that this system has but a finite number of solutions. To ascertain if there arc a finite
number of solutions we apply the inverse function theorem.!! This theorem allows us to conclude

"For an informal discussion of the utility of the inverse function theorem, Bezout's theorem, and Sard’s thcorem for
problems involving systems of nonlinear equations sce Richards, Rubin, and Iloffman (1981).
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that wherever the Jacobian of thesc equations is nonsingular the mapping defined by the equations is
locally one to one and onto (ie, a local diffeomorphism). Conscquently any roots at points where the
Jacobian is nonsingular are isolated and not part of a continuum of solutions. The determinant of the
Jacobian of (12)-(15) and (22)—(25) is:

wo 0 0 2 0 0 0 0

—w) 0 —2Z 0 1 0 0 0

0 wo 0 2y —1 0 0 0

0 —wy —2y 0 0 6 0 0

wywz + wh 0 W32, —2wy wz,—2w3 0 2z 0
0 wiwy + wh  wyzy + wo wy wizy 0 2z —I1

Wyt — W) 0 wy w32z + wy WZy —z 0 1

0 wywy — w —2w; w32y Wy — 2wz —zy 0 0

This Jacobian has rank cight. Consequently the system of equations has but a finite set of solutions
in general.!? By Bezout’s thcorem!! we know that the sum of the multiplicities of the solutions does
not exceed the product of the degrees of the equations.

We have shown that there are but a finite number of solutions given the spatial derivatives of the
velocity and acceleration ficlds at one point. In fact (12)«15) and (22)~(25) can be solved uniquely (up
to a reflection) for o, wy, and wy in terms of wj:

1, /B4 (26)

a

o = (v — w)ﬁ - :t:\/; @7
wy = F(uy + wa)\/g = :Fuz\/'—g'- | (28)

= tan—

where
= (w} + u,)(v, — wh) — (v}, + wi)(w] + v)) 29
B = (w3 — v2)2 (W} + uf) + ua(v), + ul)ws — v2) + ud(w] + v)) (30)
v = (W} + v} )(ws + uy)? — vy(u, + v )ws + uy) + vi(w] + o)) (€3))

This concludes the proof of lemma 2 and of the shape from motion proposition.

12Degenerate conditions can be found by determining when this determinant is zero.
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5.4 Remarks on the Shape From Motion Proposition

It has been shown that the angular velocity and the surface normal at cach visible point of a rigidly
rotating regular surface are uniquely determined up to a reflection if one is given the orthographic
projection and first spatial derivatives of the associated velocity and acceleration ficlds. This proposi-
tion and its proof are proposed as the basis for a computational theory of the human visual ability to
perceive the shape of a smooth moving surface from its motion alone.

Some disclaimers are in order. First, only arguments for the sufficiency of this approach, not its
necessity, have been suggested. Alternative computational theories are available, some of which were
discussed carlier. It is a matter for empirical investigation to determine which, if any, of the current
theories is to some extent psychologically real.

Two picces of psychophysical evidence may be adduced to suggest the greater psychological reality
of the present approach over previous ones. First are Ullman’s (1979) experiments, mentioned before,
which indicate that only orthographic, not perspective, information seems to be utilized by the visual
system in recovering surface shapes. The sccond is that the resulting perceptual effect (illustrated
in figure 1) is of a smooth surfacc as opposcd to isolated points connected by invisible wires. This
suggests greater psychological reality for an approach which builds a description whose primitives
relate to surfaces. ’

A second disclaimer must be mentioned. The visual system may utilize additional generally valid
constraints for the interpretation of surface shapes from motion. For example, shortcuts in computing
the slant, o, might be based on noting that o must be 90 degrees at external occluding contours
and must vary smoothly between them. Another potentially powerful constraint is that the tilt field
muist be locally orthogonal to the image of its occluding contour (for smooth surfaces). Thus further
investigation of valid means to reduce the computational complexity of this approach is warranted
“before serious claims for its psychological reality can be sustained.

6. Computing Velocity Fields

To this point the analysis has assumed the velocity ficld and its first spatial derivatives are given,'3

Clearly this is not the case for a real observer. The real observer is prescnted with a temporally
changing optic array. If a velocity ficld is required it must be constructed from the changing optic
array. : '

The problem of computing a velocity field has remained nontrivial despite much recent rescarch.
Onc can show that the motion information available at any singlc point in a changing optic array is
insufficient to uniquely determine the velocity field at that point. Consequently much of the research
in the ficld of optical flow has been devoted to discovering valid means of integrating motion informa-
tion from local ncighborhoods to uniquely determine the flow at cach point in the neighborhood.

A detailed analysis of the prbblcm of determining optical flow is presented in Horn and Schunck
(1980), which also includes a representative list of references on the topic.

13Actually only the first spatial derivatives have been used.
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7. Summary

A computational analysis of the human visual ability to infer surface shapes entirely from their mo-
tion has been presented. The analysis proceeded in three main steps. First it was shown that surface
tilt, 7, and the component of angular velocity orthogonal to the image plane, w, may be derived from
just the spatial derivatives of the velocity ficld (assuming orthographic projection). Then it was shown
that surface slant, o, and the two components of angular velocity lying parallel to the image plane, wy
and wy, are computable if the first spatial derivatives of the acceleration field are also available. Finally
the problem of computing velocity fields from changing optic arrays was discussed briefly.
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