MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.L.Memo No0.599 December, 1980

A THREE-STEP PROCEDURE FOR LANGUAGE GENERATION

Boris Katz

ABSIRACT: This paper outlines a thrcesstep plan for generating English text from any semantic
representation by applying a set of syntactic transformations to a collection of kern:! sentences. ‘The paper
focuses on describing a program which realizes the third step of this plan. Sicp Jne separates the given
rapresentation into groups and generates from cach group a set of kernel sentences. Step Two must decide,
based upon both syntactic and thematic considerations, the set of transforinations that should be performed
upon cach set of kernels. The output of the first two steps provides the "TASK™ for Step Three. Each
ciement of the TASK corresponds to the gencration of one English sentence, and in turn may be defined as a
tiple consisting of: (a) a list of kernel phrase markers: (b) a list of transformations to be performed upon the
list of kernels: (¢) a "syntactic separator” to separate or connect generated sentences. Step Three takes as
input the results of Step One and Step Two. ‘The program w hich implements Step ‘Three "reads” the TASK,
exeeutes the transformations indicated there. combines the altered kernels of cach set into a sentence,
performs a pronominalization process. and finally produces the appropriate English word string. This
approach subdivides a hard problem into three more manageable and relatively independent picees. It uses
linguistically motivated theories at Step Two and Step Three. As implemented so far, Step Three is small
and highly cfficient. The system is flexible; all the wransformations can be applied in any order. The system
is general; it can be adapted casily to many domains. Below is an actual example of English text generated
by the program from the kernels and transformations of an appropriate input TASK:

" At the beginning of the story Lady Macbeth is bothered by the fact that Macbeth is not the king. Macbeth who was
a nobleman is persuaded by her to murder the king with a knife because she wants Macbeth to be the king. She dies and
Macbheth becomes unhappy. Macduff didn't see Macheth murder the king. In the end Macbheth is killed by Macduff who
was a good friend of the king. Were there some other siories written by Shakespeare?”

This rescarch was done at the Artificial Intelligence Laboratory of the Massachusetts Institute of ‘Technology.
Support for the Laboratory’s artificial intefligence rescarch is provided in part by the Advanced Research
Projects Agency of the Department of Defense under Office of Naval Rescarch contract N00O14-80-C-0505.
© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1980

keatz -2- Introduction

§0. Introduction

Suppose that a computer contains a semantic representation of a certain seque 1ce of events or facts.
For many reasons, it is uscful to generate English text from such a representation. This paper
outlines a three-step plan for generating English text from any semantic representation by applying
a sct of syntactic transformations to a ¢ llection of kernel sentences or phrase markers.! The paper
fycuses on describing a program called GEN which realizes the third step of this plan.

Step One of the Language Generation Procedure (LGP) separates the given semantic
representation into groups and generates from cach group a set of kernel phrase markers. A phrase
marker can be used in onc of several syntactic roles: a matrix clause K, an embedded clause K,, or
a relative clause K., The role of a given phrasc marker must be specified in Step One.

Step Two of the LGP must decide, based upon both syntactic and thematic considerations, the set
of transformations that should be performed upon each set of kernels. o

The output of the first two steps provides the input for Step Three. We will sometlmes refer to this
input as the "TASK" for Step Three. Each element of the TASK corresponds to the generation of
one English sentence, and in turn may be defined as a triple consisting of:

(a) a list of kernel phrase markers generated by Step One;

(b) a list of transformations, obtained from Step Two, to be performed upon the list of
kernels;

(¢) a "syntactic separator” (punctuation mark, conjunction, etc.) to separate or connect
gencrated sentences. ’

S___C_:p Three ‘takes as input the results of Step One and Step Two. The program GEN which
nnplemcms Step Three of the generator "reads” the TASK, executes the tmnsfonmatxons specified
there. combines the altered kernels of cach sct into a sentence, per forms a pronommallzatlon

process, and finally producces the appropriate English word string.’

1. The definition and the structure of kernel phrase markers (Semantic Frame Structure) is described in Scction 1.
2. A comprehensive review of previous approaches (o language generation can be found in [McDonald 1980},

Katz -3- Introduction

For example, given the following kernels:?

I

K =a young'woman asked it ()

0

K,

H

this man ate the cake

the program can apply different sets of transformations for altering the individual sentences or

¢ mbining them. Among the possible outputs are:’
1. After O‘-NPI-'I'OI: A young woman asked this man to cat the cake.

2. After QUESTION: Did a young woman ask this man to cat the cake?

3. After NOT]: Did a young woman ask this man not to cat the cake? R)
4. After PASSIVE: Was this man asked by a young woman not (o cat the cake?
5. After N'T: Wasn't this man asked by a young woman not to, cat the cake" E

Suppose that the program GEN takes as input the following TASK:
TASKY = (K, K)) (0-np-to, Question) (7))

Accordir‘)g to this TASK, the program applies the transformation 0-np -to to the embedded clause
K, and the transformation Question to the matrix clause K. Then the altered kernels are combined
and thc resulting output is: "Did a young woman ask thls man to eat the cake?" whgch is sentence

#2in (2) If, for instance, we want to obtain sentence #5 from the set {2) above, thc mput TASK
should be:

TASK2 = ((K, K)) (O-npl-to1 Question Not, Passive N't) (7))

The' last step of the Language Generation Procedure uses three different chsseé of ‘syntactic
opcmtlons to "solve” the TASK provided by Step One and Step Two: the systcm of optional
commutatwe Transformatzom the set of Transformational Iilters whose appllcauon is obhgatory
only 1f Lertam conditions are met, and the set of intrinsically ordered, obligatory Adjus;‘ments

3. The word _Lg is used here as a joining point.

4. For convenience, we append "1" to the name of g transformation which will be applied to ap embcddud clqus«, and
"2" 10 a transformation that will be applud o a relative clause. Nolhmg, is appended Lo 1};&, mamx daqse 'Ihe
significance of the names of tmnsformatxons sych as 0- NP TO, will be cxplamcd below in Se&:uon 6.

Katz -4- Introduction

£ Relow is an actual example of Fnglish text generated by the program GEN from the kernels and

transformations of an appropriate input TASK:?

An old professor wanted 1 large English class to learn a story about

Macbeth, He didn't notice a young man and a young lady cating a huge

cake under the desk. They were in danger, weren't they? Fortunately the

people who foved the story @bout Macheth did not sce them cither, Hear it
now! At the beginning of tie story Fady Macbeth is bothered by the fact

that Macbeth is not the king. Macbeth who was a nobleman is persuaded

by her to murder the king with a knife because she wants Macbeth to be -
the king. She dies and Macbeth becomes unhappy. Macduff didn’t see

Macbeth murder the king. In the end Macbeth is killed by Macduff who

was a good {riend of the kiag. Were there some other stories written by

Shakespeare? ¢ :

The pronouns found in this cxample we-e not present in the input TASK, but were created by the

program.’

Among the advantages of this approach are:

I -t nicely subdivides a hard protlem into three more manageable pieces, such that each is
rc}zitivcly independent of the others |
- it uses linguistically motivated theories at Step Two and Step Three of the LGP
-as implemented so far, Step Three is small and highly efficient '
- the system is flexible; all the transformations can be applied in any order
- the system is very general; it can be adapted casily to many domains.

5. The following fragments show the structure of the TASK:

(Ky= An old professor wanted it; K, =A large English class learns a story about Macbeth) (O-npl-tol))
(Ky=Macduff saw it; K, =Macbeth murdered the king) (N1 O-npl-infl))
(K,=1Inthe end Macduff kills Macbeth; K, = Macduff was a good friend of the king) (Relative, Passive) @)
(K0= Shakespeare wrole some other stories) (Question Passive There) (7)

6. ‘The author apologizes for possible historical inaccuracy in the computer output.
7. The pronominalization procedure is described in the Appendix 1.

kKatz -5- Semantic Frame Structure

§1. Semantic Frame Structure

We will assume that the input semantic representation consists of a set of frames.® Step One of the
Language Generation Procedure builds from the given representation a set of izernel phrase markers
using three types of templates (noun-template, verb-template, adverb-template) and two operations
(concatenation and conjunction) that assemble them. The structure of the templates is shown

below:

K

noun—tcmplate(NT):(prcp* det” adj noun)
verb-template (VT) = (tense aurl aux2 aux3 verb)
adverb-template (AT) = (mod adverb)

Here prep, det, adj. aux, mod are, respectively, abbreviations for preposition, (cterminer, adjective,
auxiliary and modifier. The superscript * indicates that a string of one or more symbols or their
conjunction is allowed. Tense also carries the grammatical features of NP, - its number, person, -

and gender.

Each template is implemented as a list of pairs, an gssociation list. The first clement of the pair is
the name of the constituent, the second is its value. All constituents are optional. If any constituent

is absent, its value in the template is nil,

Given below are some sample templates:

: NT = ((prep nil) (det a) (adj (young pretty)) (noun lady)) "a young pretty lady"
NT = ((prep with) (det (all the)) (adj nice) (noun books)) "with all the nice books"
NT = ((prep (from out of)) (det the) (adj nil) (noun darkness)) "from out of the darkness"

VT = ((tense past) (aux] can) (aux2 have) (aux3 nil) (verb notice)) “could have nouécd"
AT = ((mod very) (adverb well)) , "very well”

Th.»e following two operations are allowed:

8. The term "frame™ was introduced in [Minsky 1975]. The Frame Representation Language (FRL) developed in
[Roberts and Goldstein 1977} can be used as an example of such representation. In this paper, however, for testing
purposes, we will consider a set of kernel phrases as the input. A parser has been designed and implemented in order to
process the kernel phrases. The description of the parser can be found in the Appendix 2.

Katz -6- Semantic Frame Structure

1. Concatenation: CONC(X1 X2) —-> X1 X2

2. Conjunction: CONJ (X1 X2) > X1 conj X2
where X1 and X2 are two tcxpplules of the same type. and conj is a conjunction such as, and, or, etc.
The structure of the frames can be defined in terms of the templates and operations, as follows:

Noun-frame (NF) is any appropriate’ sequence of applications of the operations CONC and
CONUJ applied to the noun-template NT. '

Verb-frame (VF) and adverb-frame (AF) are defined in the same manner, as a sequence of
applications of CONC and CONJ applied to VT and AT, respectively.’ B

The noun-frame will be called prepositionless if it does not begin with a preposition.
For example:

NI = ((plep nil) (det nil) (adj nil) (noun Ivam) (com and)
(prep nil) (det nil) (adj nil) (noun Maria)) = "lvan and Maria".

E ach of the prep051t10nless noun-frames in a sentence has a particular semantic role qssomated w1th
it: agent, goal, or theme.

Agent is a thing that causcs the action to occur.
Goal is the recipient or the beneficiary of the action.
‘Theme is a thing that undergoes a state of change.

As an example, in the sentence "Ivan gave Maria all his money", lvan is the agent who causes the
action to happen; Maria is the goal, as the bencficiary of his action; and all his money is the theme

that transfers from Ivan to Maria.
To construct a kernel phrase marker we have to put together a subset of the following set of frames:
: NFiniti:\l NFagcm Nl:goa! N Flhcmc NFﬁnal AFinilia] Achdiai A‘Fﬁnal VF ' (3)

Here NF® NFd and NF"™™ are noun frames that play, respectively, the roles of agent, goal,

9. The present paper will not discuss restrictions on the usage of these two operations. This issue properly belongs to
Step One of the Language Generation Procedure.

10. In the implementation we have assumed that the verb-frame VF = tensc auxl aux2 aux3 verb.

Katz -7- Semantic Frame Structure

of theme in a sentence:'? NF™ and NF™' arc noun frames that will be transformed later into
the initial and final prepositional phrases; AF™ ™ AF™ and AF™ are adverb frames that will

be transformed into adverbs in initial, medial, and final positions. All these elements are optional.

In the actual implementation kernel pl rase markers have the structure of an association list. We

will call it a Semantic Frame Structure (SI°S). The English word string corresponding to the

Semantic Frame Structure of a kernel phirase marker we will call a kernel sentence,

IFor instance, the Semantic Frame Structure for the kernel sentence "Yesterday the young man

bought Maria a beautiful present” is:

((AF™5 (mod nil) (adverb yesterday)))

(NF®" ((prep nil) (det the) (adj young) (noun man)))

(VF ((tense past) (aux1 nil) (aux2 nil) (aux3 nil) (verb buy)))
(NF=* ((prep nil) (det nil) (adj nily (noun Maria)))

(NF™™ ((prep nil) (det a) (adj beautiful) (noun present))))

A set of such Frame Structures together with a sct of transformations to be performed'upon‘ them is
the input to the program GEN. The program does not require any order of constituents in the SFS,
but the following phrase structure rules arc assumed for kernel sentences: ™

KF ---> SF VF CF
SF > NE" Npert | R)
CF > NFd Npheme Npfind |

where KF stands for kernel frame, SF - subject frame, VF - verb frame, CF - complement frame.
Give'n’vtt;cvse phrase structure rules, the general form of a kernel phrase marker is: |

NFinilia] Nancnl VF NFgoal NFthume NFﬁnal . : (5)

As an example, here is the Semantic Frame Structure for the sentence "that young man with black
eyes could have been teaching our class in Boston": o

)

[1. In Section 7 we will describe how the semantic roles associated with the noun-frames are used to define the
transformation Dative Movement and its interaction with Passive.

12. Adverb-frames AFM AFmedial g ARl pave been, for simplicity, left out of the phrase structure rules.

- Katz . _ -8- Semantic Frame Structure

((NF ((prep nil) (det that) (adj young) (noun man)
(prep with) (det nil) (adj black) (noun eyes)))

(VF ((tense past) (aux1 can) (aux2 have) (aux3 be) (verb teach))) , 6)
(NF theme ((prep nil) (det our) (adj nil) (noun class)))

(NF™ ((prep in) (det nil) (adj nil) (noun Boston))))

§2. Transformational Structure

The Semantic Frame Structure provides a semantic description of a kernel sentence which includes
constituents such as NF= NFE? and NF"™™, Because these semantic coistituents represent in
some sense a part of the underlying "meaning” of the sentence, their values do not change after
applying transformations. However, the SES does not give a syntactic 1eplcsenmuon complete
enough to allow transformations to be directly apphcd We must first construct an augmented
representation from the Semantic Frame Structure, the Transformational : tmctme (TS) Wh]Ch

gives a stluctmal encoding of the information in the sentence. This structure will serve as the
domain of applxcatlon for all transformations. The Transformational Structuce consists of syntactlc
consutuents such as noun phrases (NP), prepositional phrases (PP), auxiliary system, several dummy
elements, etc. The process of building the Transformational Structure from the Semantic Frame
Structure is described as follows:

() The noun phrases and the prepositional phrases of the TS are derived from the noun frames of
the SFS. Each noun phrase indicates a certain fixed position in the Transformational Structure:
NP -position, NP -position, or]\JPQ-position.13 Fach noun phrase is associated with one of the
prepositionless noun frames NFeet - NFed or NF™™ in the Semantic Frame Structure and
derives its value from the noun frame. The valuc of a noun phrase is a "two-tuple™; it consists of a
semantic value, which is taken from the name of the noun frame and which indicates the role that

the noun phrase plays in the sentence: agent, goal, or theme, and a lexical value, which is the actual

~ word string in the noun phrase. Transformations (for example, Passive or Dative Movement) may

interchange the values of noun phrases; therefore, after such a transformation has becn applied, the
affected noun phrase receives not only the new word string as its lexical value, but also the new

13. Later on by a reference (o a noun phrase NP, NP, ;. or NP,, we will mean the noun phrase which is located in the
corresponding position in the Transformational Structure. For instance, reference to NP, calls for a noun phrase in the
NP -position in the TS.

katz -9- Transformational Structure

semantic role as its semantic value. In Scction 7 we will describe how this important feature is used

to define the transformations of Dative Movement and Passive.

We will assume that the noun phrases NP.. NP, .. and NP, initially obtain their values from the
frames NF® NFRE and NF™™, respectively. If only two noun frames NF®" and NF#heme
cre present in the input Semantic Frame Structure, the corresponding Transformational Structure
vill have only two NP-positions: NP and NP, MIf there is only one noun frame NF™™ in the

SFS. there will be only one noun plnasc NP in the TS, The Semantic Frame Structure in the
example (6) will be transformed to:*

((NP, (That young man with black eyes))
(TENSE past) (AUX1 can) (AUX2 have) (AUX3 be) (VERB teach) (Ta)
(NP, (our class)) (PP™" (in Boston)))

(0) A special procedure, "affix stripping”, is accomplished on the auxiliary elements of the
verb-frame to separate each auxiliary verb from its affix.’® The affixes of the auxiliaries Modal, BE,
and HAVE are, respectively, 0, en, and ing. The notation reflects the fact that in an English
sentence after a Modal comes an infinitive, alter HAVE comes the past participle, and after BE
comes the progressive form of the verb [Chomsky 1957]. If the sentence has ro auxiliary verbs in it,
the auxiliary do (without an affix) is inserted as a value of the AUXL.

((NP, (That young man with hlack eyes))

(TENSE past) (AUX1 can) (AFFIX1 0) (7b)
(AUX2 have) (AFFIX2 en) (AUX3 be) (AFFIX3 ing) (VERB teach)

(NP (our class)) (PP™ (in Boston)))

(c) Several dummy elements are inserted in the TS which are left unspecified'” until the appropriate
transformation activates them and assigns the necessary values. Two elements NEG1 and NEG2
that will be used in the contracted and full forms of English negative are inserted after the first
auxiliary verb. COMP is inscrted in the beginning of the structure and INFL - before the first
auxiliary verb. These will be used in constructing different embedded clauses. Thus the Semantic

14. This is the reason for having the obscure indices 1, 1.5, and 2 for the noun phrases.
15. n these diagrams we do not show the semantic valucs of the noun phrases.

16. The inverse operation, Affix Hopping, which is performed after all the transformations have been dpplled attaches
every affix to the immediately following verb.

17. In the implementation the values of unspecified clements NEG1, NEG2, COMP, and INFL are names of those
elements.

I(atj/. -10 - I ranstormational Structure

Irame Structure (6) has now been transformed into Transformational Structure (7¢) on which

transformations can opcrate:

((COMP comp) (NP, (That youag man with black eyes))

(TENSE past) (INFL infl) (AUX1 can) (NEGI negl) (NEG2 neg2) (AFFIX1 0) (7¢)
(AUX2 have) (AFFFIX2 cn) (A JX3 he) (AFFIX3 ing) (VERB teach) |

(NP, (our class)) (PP™ (in Boston)))

‘The Transformational Structure of a kernel sentence is a flut list structure which suggests a more
smple and flexible way to define and perform the transformations. On the othel hand, the
s:ntence obtained after combining several kernel sentences is representec as an embea’ded list
structure (tree structure). This allows the application of the transformational filters across the
lernels (sce Section 6), and also permit: an casicr interface with the results of other researchers, for
example, sentence internal pronominali-ation (see [Lasnik 1976], [Reinhart 1976], [Sidner 1979]).

§3. Transformations and Adjustments

] et K hc a surface word string that corxcsponds to the input Semantxc Frame Structure. In Sectxon
7 it has been described how the Semantic Frame Str uctune SPS(K) is mdpped into the
Transformational Structure TS(K). The Transformational Structure serves as the “domain of
apphcauon for all Transformations listed in the input TASK. Howeve1 after all the transformatlons _
have been applied, the resulting Transformation Structure TS (K) cannot yet be the source for the
correct English word string. Additional "clean-up™ operations on the Transformational Structure
Adjustments, must be employed in order to oblain the grammatical output -- the altered kernel K
Let us consider this process in detail:

(a) The Semantic Frame Structure of the kernel sentence K is mapped {M} into a Transformational
Structure TS S(K). -

(b) A set of transformations {1} is applied. Fach transformation operates on the Transformational
Structure, alters it and passes the altered structure to the next transformation, i

(c) A sct of special "clean-up” adjustments {A} is activated in order to get the tcnmnal anhsh word

string K The adjustments operate on the altered Transformationat Structure TS (K)

The following diagram () illustrates this process:

SFS(K) -w-seeveeer > TS(K) > TST(K) > K @®)

i |

Katz -11- Transformations vs. Adjustments

Diagram (8) provides a way to define Fransformations and Adjustments which shows an interesting
and important distinction between them based on comparing the input kernel sentence K with the

. . *
output word string K .
Definitions:

Assume that the set of transformations {T} is empty. A set of opc mtiorjs {A} on the
Transformational Structure TS(K) of an input kcmel sentence K will be caled Adjustments if in
ag,mm (8) the following equality holds: K = K

An operation T on the Transformational Structure TS(K) of an input kernel sentence K will be
o P . . - . * .

called a Lransformation if in diagram (3) the following incquality holds: K # K . In this paper we

will use the notation T(K) to refer to tae English word string that corresponds to the result of the

action of the transformation T on TS(K).

According to these definitions, such operations as Passive, Question, There Insertion,18 etc. are
T_ra,/'zsformations because they alter the original sentence. For example, as the result of successive
application of these transformations the sentence "lvan ate a carrot” will be transformed into
"A carrot was eaten by Ivan", "Was a carrot caten by Ivan" and then to "Was there a carrot eaten
by Ivan." The transformations are part of a planning vocabulary, that is, each of them must be
Jisted in the input TASK. it

On the other hand, the obligatory operations like Affix Hopping, Do Deletion, Nt Hopping, etc.
together constitute the clean-up Adjustments” of the Transformational Structure whose goal is to
obtain the necessary English output after all the transformations have been applied. They never
appear in ih_e input TASK. If the set of transformations {'} is empty, the original ker;mél se'ntence
K wiil not be altered.

Ac(/ustments are meaning-preserving, purely syntactical operations on the Transformatlonal
Structure. Transformations, on the contrary, can affect the meaning (or cmphas:s) of a kernel
sentence, In fact, the meaning of a sentence obtained after combining several kernels altered by
transformations is built with the help of these transformations. In that sense, oné can consider
Transformations as semantic (meaning-altering) operations on the Transformational Struéture.

18. The description of these transformations will be given in Section 7.
19. Section 5 examincs the Adjustments and the Separation and Ordering Constraints imposed upon them.

katz -12- Commutativity

§4. Commutativity
L_ef‘nitions:

Domain of Definition S(T) of a transformation T is the sct of all sentences K such that T(K) is a

g-ammatical sentence. The fact that the sentence K belongs to the domain of definition of the

-ansformation T is expressed in the following way: K CS(T).

Two transformations T, and T, arc commutative with respect to a sct of kernel phrase markers Nif
for each phrase marker K C 4 the following relations hold:

KC Q(Tl), KC &Z(Tz), T,(K) C Q('I‘z), Tz(K) C SZ(T]'I)
and

T(T(K) = T,(T(K) (10)

12 other words, the transformations T, and T, are commutative if the equality (10) holds for the
corresponding domains of definition of T, and T,

As an example let us consider again the sentence K = "Ivan ate a carrot.” The commutativity of
the transformations T, = = Passive and T = Question can be checked for thix sentence because all
the four outputs are grammatical ancl Tl,(TQ(K)) TQ(TP(K)) i.e. we have the following
commutative diagram (11):

Question

K = Ivanatcacarrot ~ -oemmeemmemeees > TQ(K) = Did Ivan cat a carrot
I I
I I
I I

Passive | | Passive 1D

I | I
| I

v y Question \ ‘

TP(K) = A carrot was eaten by Ivan ----=-=--=-=som- > TP(TQ(K)) = Was a carrot caten by Ivan

Considering another pair of transformations: T, = Passive and T, = There Insertion shows that
the commutativity of the transformations T, and T, cannot be checked for the sentence K =
“Ivan ate a carrot.” The transformations can be applicd in the order: 1. Passive, 2. There Insertion,
resulting in:

Katz | -13- Commutativity

TP(K) = A carrot was eaten by lvan.
TTI(TP(K)) = There was a carrot caten by Ivan.

But it is not possible to apply the transformations T, and T, in the reverse order because the
sentence K does not contain the verb b, which is necessary for There Insertion to work. This does
not mean, however, that the two transfc rmations: Passive and There Insertion are not, or cannot be
made, commutative. The previous example does not contradict our definition of commutativity
because the sentence K in this example dogs not belong to the domain of definition of the T here

Iisertion transformation.

A simitar problem arises with the sentence: K = "A boy was cating the cake.” Here itis possible to
apply either T, = Passive:
_ T.(K) = The cake was being eaten by a boy
or T, = There Insertion:
T,“(K) = There was a boy cating the cake

But we cannot apply There Insertion alter Passive, nor can we apply Passive after There Insertion. In
both cases the result will be unacceptable® because the noun phrase the cake is definite, but There
Insertion is restricted to sentences with an indefinite first noun phrase:

* There was the cake being eaten by a boy

The following diagram (12) illustrates this example:

There Insertion

K = A boy was cating the cake Rt ALY 'I‘,H(K) = There was a boy cating the cake
I |
I I
N |
- Passive | | Passive. (12)
I ' I
| | | | -
$ There Insertion $ S
'I‘P(K) = The cake was being caten by aboy ------ > * There was the cake being caten by a boy

20. The asterisk * before a sentence indicates that the sentence is "unacceptable™, or ungrammatical.

fatz - 14 - Commutativity

Again. as in the previous example. the fact that we can apply both T, and T, 10 the sentence K, but
cannot apply T, to TP(K) or T, o T, (K), does not mean that there is no commutativity in the
system. 1t means only that in this case the sentence K is irrelevant 1o the quession of commutativity
because K does not satisfy the conditions (9) specified in the definition of cemmutativity; K does
not belong to the set of kernel phrase markers 8 with respect to which commu:ativity was defined.

One of the requirements that we impose upon the system is the poscibility to apply the
transformations in any order (equality (10)). Once this is done, the domain me mbership (conditions
(9)) becomes crucial: all the sentences obtained at cach step of the transformation derivation must

be grammatical,
Definition;

N transformations T, T, ... T are commutative with respect to a set of kernc] phrase markers Rif
forany i and j the two tr dnsfm mations T and l arce commutative with respect 1o the set 8 and if for

any m < N the result of application ofany composullon of m different transformations T T w T
" 2 m

toa sentence KCRN: T, (T, .. (T, (K))...) is a grammatical sentence.
1 2

m

In this paper we will build a system of Commutative Transformations that wil! permit us to "solve"
the TASK given by Step One and Step Two of the Language Generation Procedure and to generate
conespondmg English text. The commutativity of the system gives more flexibility to the first two
steps of the LGP. The decisions of how to separate the input semantic representation into groups of
kernel phrase markers and which of the transformations to apply will not depend on the order of
the transformations. It will be based only on the domain of definition of each particular
transformation and on the meaning that this transformation adds to the meaning of the gencrated

sentence.

85. Adjustments

This section will examine the clean-up Adjustments, operations which further alter the
Transformational Structure after all the transformations have been applied, in order to obtain the
correct English output. We will start with an example. Consider the followmg kernel sentence
K, = "lvan was eating potatoes." The Transformational Structure lS(K) for the kernel K, is
shown in (13):

Katz -15- Adjustments

((COMP comp) (NP, (Ivan))

(TE NSE past) (INFL infl) (AUXI be) (NEG1 negl) (NEG2 negZ) (AFFIX1 ing) (13)
(AUX2 nil) (AFFIX2 nil) (AUX3 nil) (AFFFIX3 nil) (VERB eat)

(NP, (potatoes))) |

Suppose that the program GEN gets as input the following TASK:
TASK = ((Ko) (Nt Question) (.‘))

Fere, Nt is the notation for the contracted form of the negative transformat’on. It simply inserts
a1, the contracted form of not, as the vatue of the element NEGL of the TSiK). Question is the
name of the question transformation. This transformation takes the thre: elements: TENSE,
AUXI and NEG1 in the Transformational Structure of a kernel sentence and moyes them to the

front of the structure.

* . ' .
TS (K, the altered Transformation Structure of TS(K) after undergoing these two
transformations, is shown below in (14): |

((TENSE past) (AUX1 be) (NEG1 n’t) (COMP comp) (NP, (lvan))

(INFL infl) (NEG2 neg2) (AFFIX1 ing) | (14)
(AUX2 nil) (AFFIX2 nil) (AUX3 nil) (AFFIX3 nil) (VERB cat) o]

(NP, (potatoes)))

Now that all the transformations have been applied to TS(K) let us consider how certain

Adjustments work on the resulting Transformational Structure (14).

(a) Garbage Deletion removes all the elements in the TS which have been left unspecified at this
point. 1t also rejects all elements whose value is nil. The result is:

((TLNSE past) (AUX1 be) (NI 'G1 n’t) (NP, (!Vcln))
" (AFFIX1 ing) (VERB eat) (NP, (potatoes)))

(b) Da Deletion deletes the auxiliary do when it immediately precedes a verb. But the
Transformational Structure is designed in such a way that the auxiliary do is inserted in the TS as a
valpe of the AUX1 only when the original kernel sentence daes not contain any other auxiliary
verbs. There is no do in the Structure (14) since the auxiliary be is present, therefore the adjustment
Do Defetion is not applicable in this example. | i

(¢) Affix Hopping takes cvery affix that is immediately followed by a verb (including TENSE, which

PaneN

katz A -16 - Adjustments

as mentioned in Section 1 also carries the grammatical features of NP,) and attaches it to the verb so

that the affix becomes part of it:

((AUX1 was) (NEGI n't) (NP, (Ivan))
(VERB eating) (NP, (potatocs)))

(d) Nt Hopping takes the clement NEG1 of the Transformational Structure and attaches its value

n'tto the immediately preceding auxiliary verb.

((AUXT1 wasn’t) (NP, (lvam)) » (15)
(VERB cating) (NP, (potatoes))) '

Mow that all the adjustments have beer performed, the word string composed of the values of all
the constituents of the Transformational Structure (15) produces the correct kernel sentence

. * . . 1
K, = "Wasn't Ivan eating potatoes™:

Thus, we ;ha've cxamined the following four Adjustments:*
1. Garbage Deletion
~ 2. Do Deletion o . R (16)

3. Affix Hopping
4. N't Hopping

We are going to show now that in order to build a system of Commutative transformations the

following two constraints must be imposed:

Separation Constraint: Any adjustment in the list (16) should be executed only after all the

transformations from the TASK have been applied.

Ordering Constraint: The adjustments must be applied only in the order in which they are
listed in (16). |

First, in order to prove the necessity of the Separation Constraint we nced to show that none of the
adjustments can be performed before a transformation. This can be shown by contradiction: we
will demonstrate for each of the adjustments in (16) that the violation of the Separation Constraint
prevents the application of certain transformations or leads to an infructidn of commutativity.

21. In the implemented system there are a few other adjustments, but for simplicity we will not discuss them here.

Katz ‘ -17 - Adjustments

Finding one counterexample to every adjustment is sufficient for a proof because of the
Commutativity of the system. For clarity, we will consider the arguments in connection with either

the kernel sentence "lvan ate the carrot” and its corresponding Transformational Structure (17):

((COMP comp) (NP, (Ivan))
'('l‘ENSE past) (INFL infl) (AUX1 do) (NEGI negl) (NEG2 neg2) (VERB eat) (17
(NP, (the carrot))) '

or with the kernel sentence "Ivan was ccting the carrot” and its Transformational Structure (18):

(((.TONIP comp) (NP1 (Ivan))

(TENSE past) (INFL infl) (AUX1 be) (NEGI negl) (NEG2 neg2) (AFFIX1 ing) (18)
(VERB cat) |

(NP, (the carrot)))

1. Garbage Deletion cannot be performed before any transformation that uses the dummy elements

in the Transformational Structure; for instance, Negation, or any transformation that constructs
embedded clauses. This is because the clements required by such transformations would be deleted
by the Garbage Deletion adjustment before these transformations could have been applied.

2. QQ Deletion cannot be performed before the Question transformation. If it were, the auxiliary

verb do which is necessary for the construction of the correct output of the Question transformation,
"Did Ivan cat the carrot”, will be prematurely deleted by the adjustment Do Deletion.

3. Affix Hopping cannot be performed before any transformation that inserts a new verb or a new
affix into the Transformational Structure. Suppose that the transformation Passive is to be applied
to the Transformational Structure (18) of the kernel sentence "Ivan was eating the carrot." Among
other effects this transformation inserts the verb be with the affix en in front of the main verb cat
into the Transformational Structure (18) in order to obtain the past participle of the verb.?”

((COMP comp) (NP, (The carrot))

(TENSE past) (INFL. infly (AUX1 be) (NEG1 negl) (NEG2 neg2) (AFFI‘(l ing)
(BE-PASS be) (EN-PASS en) (VERB eat)

(BY-PASS by) (NP, (Ivan)))

If the adjustment Affix Hopping had been applied to the Transformational Structure (18) before the

22. The description of the Passive transformation can be found in Section 7.

Katz -18 - Adjustments

Passive transformation, the affix ing would "hop™ onto the wrong verb gat irstead of the verb be.
The alfi en, inserted afterwards by the Passive transformation, could not "hop" on the verb eat. As
a result, the system would not be able to output the expected sentence "The carrot was being eaten

by Ivan."

4 The adjustment Nt Hopping also cannot precede certain ransformations. Let us consider the
v 1 T * " ' H

T ransformational Structure TS for the sentence "lvan ate the carrot” after the two transformations

Cuestion and N't have been applied:

((TENSE past) (AUX1 do) (NEG1 n't) (COMP comp) (NP, (Ivan))
(INFL, infl) (NEG2 neg2) (VERB eat)
(NP, (the carrot)))

Irthe adjustment Nt Hopping is now applied before the transformation Passive, the element n't will
be prematurely attached to the auxiliary verb do. As a result, it will be impossible to execute the

transformation Passive and transform the sentence "Didn’t Ivan eat the cariot” into the sentence

"Wasn't the carrot eaten by Ivan."

Wc have shown that the adjustments are separated from the transformations. Now, to ‘demonstrate
that the Ordering Constraint is needed, we will again examine the sentence "Ivan ate the canot and
its Transformational Structure (17). We need to show that the adjustments must necessarily be
ordered as stated in (16): 1. Garbage Deletion, 2. Do Deletion, 3. Affix Hopping, 4. N’t Hopping.

1. Garbage Deletion differs from the other three adjustments in (16) because it does not employ the
notion of adjacency required by all the other adjustments: Do Deletion deletes the auxiliary do
when it immediately precedes a verb; Affix Hopping attaches the affix to the verb i nmedmtely to its

right; N” t Hoppmg attaches n 7 to the immediately preceding auxiliary verb.

Prior to the adjustment Garbage Deletion, the adjacency condition necessary for the qpphcahon of
the other adjustments does not hold because of the presence of unspecified clcments in the
Transformational Structure. Garbage Deletion should be exccuted first because it eliminates these
unspcéiﬁed élemcnts allowing the other adjustments to work. For example, Garbage Deletion
removes the unspecificd clements NEG1 and NEG2 in the Transformational Structure shown
below, making it possible for Do Deletion to delete the auxiliary do since do and the main verb are

now adjacent:

katz -19- Adjustments

((NP] (Ivan))
(TENSE past) (AUX1 do) (VERB eat)
(NP, (the carrot)))

[t should also be noted that the adjustiacnts Do Deletion, Affix Hopping, and N't Hopping do not
introduce any dummy or unspecified elements in the TS which would otherwise have to be

removed by the Garbage Deletion.

2. Do Deletion must be performed before Affix Hopping. Otherwise, the value past of the TENSE
would "hop" onto the verb do instead of eat, and after executing all the adjustments on the
Transformational Structure (17) we would obtain the sentence "lvan did eat he carrot” instead of
"Ivan ate the carrot."®

3. The adjustment Affix Hopping canqot follow Nt Hopping. To show this suppose that the
lmn%fm mation Nt has been applied to the Transformational Structure (17). Aftm the Garbage
Deletion adjuslmcnt the TS will have the following form:

(NP, (Ivan))
(TENSE past) (AUX1 do) (NEG1 n't) (VERB eat)
' (NP, (the carrot)))

If now the adjustment Nt Hopping is executed first, producing the new element don’t, the Affix
Hopping adjustment will not be able to attach the TENSE to the element don’t. This observation
completes the proof of the Ordering Constraint. :

Thus two different classes of operations on the Transformational Structure have been defined in
this paper so far: the optional commutative Transformations and the obligatory, intrinsically
ordered Adjustments. The Separation Constraint and the Ordering Constraint explain their mutual
relations.

§6. Connective Transformations

In this section we will examine the Connective Trunsformations, a particular class of English

transformations which are used to construct sentences with Embedded Clauses. In order to form a

23. The sentence "Tvan did eat the carrot” is, of course, fully grammatical. It is the emphatic form of the sentence "Ivan
ale the carrot” used to stress a certain semantic message. In designing the system we decided not to allow such sentences
so that all the adjustments would be obligatory.

Latz -20- Connective I ransformations

sentence of this type the system needs two kernel phrase markers as input: K - which plays the role
of matrix clause and K, - which is used as the basis for the embedded clause. The w01d it will be
used as a joining point. The kernel sentence K, must contain the word iz, in the role of either agent

or theme. A Connective Transformation when applied to the kernel sentence K, is said to produce
* . .

the altercd kernel K in the form approprmlc for an embedded clause. Other transformations

(ifany) Lhangc the kernel K into K Then, a special procedure combines !he two altered kernel

sentences by substituting the kernel K for the joining point it in the kernel K
As an example of the procedure just de: cribed, consider the following kernel s2ntences:

K, = It bothers Maria | (19)
K, = Ivan has ignored that letter

The embedded clause K has the Transformational Structure below:

((COMP comp) (NP, (Tvan))
('IV'FNSF present) (INFL infl) (AUXT have) (NEG1 negl) (NEG2 neg2) (AFFIX1 en) (20)
(VH{B I;,nore) (l\” (that letter))) '

Now suppose that onc of the Connective Transformations, FOR-NP TOI, is to be qpphcd This
transfor xmtton produces a for-to-complement clause by inserting FOR and TO as the values of the -
elements COMP and INFL, respectively, in the Transformational Structure (20). The result is:

((COMP For) (NP1 (Tvan))
(TENSE present) (INFL to) (AUX1 have) (NEG! negl) (NEG2 neg2) (AFFIX1 en)
- (VERB ignore) (NP, (that letter)))

. * . .
Then the transformed kernel sentence K, = "For [van to have ignored that letter" is substituted
for the word it in the kernel K = "It bothers Maria" producing the sentence: "For Ivan to have
ignored that letter bothers Maria” as the result,

The Connective Transformations form a family of transformations defined by three parameters,
each referring to a position in the Transformational Structure of the embedded clause: the
complementizer COMP, the first noun phrase NP, and the complementizer INFL.

The parameter COMP indicates the affix which introduces the embedded clause. It can reccxve one
of the l"ollowmg four values: {PO'%S THAT, FOR, 0}. The affix POSS actually "hops onto the
following noun during the Affix Hopping adjustinent to form a possessive noun phrase. THAT and

katz -21 - Connective Transformations

FOR are "independent” words and do not hop to the right like other affixes, 0 means that there is

no overt affix in this position.

““he parameter NPl takes on one of two values: {NPI, 0} indicating whether or not the first noun

phrase of the embedded clause is present in the resulting sentence.

““he parameter INFL may also be considered an affix specifying how the verb in the embedded
clause should be inflected. It can have one of four values: {ING. INF, TO, 0}. Asin the case of
POSS, the value ING is the only "real” affix which hops onto the following verb producing the
jrogressive form, The value INF indicates that the fb]lowing verb is in the infinitive form, TO is
¢n independent word which produces :he TO + infinitive form of the verb. 0 signals that no affix
is present, so the verb remains inflected for person, number and tense. o

A particular set of values for the three parameters COMP, NP, and INFL is sufficient to determine
the form of the embedded clause completely (although not every possible triple produces a
grammatical English clause). Hence the commutative transformation which generates the
vmbédded clause is also uniquely determined. Therefore, we will use the values of these three
parameters to form the names for the Connective Transformations. Each name is reprusemed asa
triple consisting of the current values of the parameters COMP, NP, and INFL w1lh the following
structure; COMP NP-INFL. We have already seen some exwmples of such names 0 NP -TO,
THAT- NP1 -0, FOR- NP -TO, etc.

The 'adjusmi,ent Affix Hopping deletes the clement TENSE in the Transformational Structure
unless the value of the parameter INFL is 0. Consequently, most of the Connective
Tmnsformations construct tenseless clauses. The exceptions are the transformations THAF NP0
and 0-NP -0. To give examples with tensed embedded clauses let us consider now anothel kemel
sentence for the matrix clause: K = "Maria knows it.” After combining the altered kernels, the

program outputs the following sentences:
L. After THAT-NPl-Ol: Maria knows that Ivan has ignored that letter
2. Aft'e'r O-NPI-OI: Maria knows Ivan has ignored that letter

The tmnsformatxons THAT-NP-0 and 0-NP-0 also differ from the transformations which
ploduce tensclvss clauses in their treatment of negative elements in the Tmnsfmmaﬂonal Structure,

A general description of the action of a Connective Transformation can be stated as fo]lQ’ws;

(a) Current values of the parameters COMP and INFL from the name of the transformation

Katz -22- Connective ‘T ransformations

are inserted in the Transformational Structure. ;

(b) IT the value of the parameter NP is 0. the clement NP is removed from the Structure.

(c) IT the value of INFL. is not 0, two negative elements, NEG1 and NEG2, are moved from
their usual position after the first auxiliary verb and placed in the front of TENSE. We will

call this phenomenon Neg Jump.

When the value of the parameter NP is 0. the first noun phrase in the matrix clause must be
coreferential with the first noun phrase in the embedded clause. As an example, consider the pair
of kernel sentences:

K0 = lvan wanted it

K1 = [van kissed Maria

Suppose that the transformation 0-0-TO applies. This transformation inserts the required values of
COMP and INFL into the Transformational Structure for the kernel sentence K, and deletes the
clement NP in the Structure:

((COMP 0) (NP, 0) (NEGI negl) (NEG2 neg2)
(TENSE past) (INFL to) (AUX1 do)
(VERB kiss) (NP, (Maria)))

After all the adjustments have been performed and the altered kernels have been combined the
program will output: "lvan wanted to kiss Maria."

in the example above Neg Jump takes place only vacuously because the unspecified elements
NEG1 and NEG2 are removed from the Transformational Structure. It is also difficult to see this
phenomenon if the kernel sentence K| does not have any auxiliary verbs because after the Garbage
Deletion adjustment nothing will be leftin the TS for NEG to jump over. This phenomenon can be
observed in a sentence in which the negative transformation Not also applies. The following TASK

provides us with the appropriate examples:
TASK = ((K, K) (That-np -0, Not, For-np -to, Poss-npl-ingl) (.))
Here K| and K, are the kem'el sentences from (19):

K, =1t bothers Maria , (19)
K, = Ivan has ignored that letter

Neg Jump can be observed by comparing cither sentences #2 with #3 or sentences #2 with #4

Katz -23 - Conniective Transformations

in(21):
I Afer THAT-NP -0: ‘That Tvan has ignored that letter bothers Maria |
2. After NG’]‘I: That Tvan has not ignored that letter bothers Maiia 2n
3. After FOR-NP-TO;: fFor Ivan not to have ignored that lcttcf bothers Karia

4. After I’OSS-NPI-INGI: Ivan's got having ighored that Tetter bothers Maria.

The system contains a family of ten different Connective Transformations used to construct
contences with various embedded clauses. An example of the application of each of these

transformations is given in the table below:

TABLE1
Transformation Matrix Clause Embedded C'lause Sentence
TH A'l‘-NP’l-O It bothers Maria Ivan ighored the letter ‘That Ivan ighiored the lettet bothers Maria
THAT-N Pl-lNF Maria suggests it~ Tvan is sifent Maria suggests that lvan be silent
0-NP -INF Maria watched it Ivan washed the dishes Maria watched Ivan wash the dishies
0-NP -0 Matia knowsit Ivan hasignored that fetter Maria knows Ivan has igniored that letter
[FOR-NP,-TO [t amuses Maria Ivan ignored the lettet For Ivan to ighore the letter amuses Maria
0-NP 1O Maria asked it Ivani ate the cake Maria asked Ivan to cat the cake
0-0-TO fvan claims it fvan las written that fetter Ivan claims to have written that letter
POSS-NP -ING It shocked Maria Ivati ignored the letter [van’s ignoring the fetter shocked Maria
0-NP-ING Maria saw it [van ate the cake Maria saw lvari ¢ating the cake
0-0-ING It amitises Marta ~ Maria watches movies Watching thovies amiuses Maria

The main verb of the matrix clause detettiines which c_iauséfﬁay be embedded under it and,
therefote. the kinid of Connective Transformation that may be applied in each particular case.
Coiseqitently, any computer implementation of the Lariguage Generation Procediife must contain
a list of perniissible transformations for every verb that cafi appear ifi 4 mvatrix clause.

The system prevents the genetation of the ill-formed sefitences by employing tratisformational
filters, a third class of operations on the Transformational Structure, which not only signal that a
ceftain combination of the transformations will result in an ungranithatical sentence, but also, if

P N

k.atz -24 - Connective 1ransformations

possible, suggest additional rules in order to correct the output.’t Although this paper will not
consider such rules in detail, here are several illustrative examples:

(a) If the transformations THAT-NP -0, and PASSIVE have been applicd to kernel sentences K
and K from (19). the resulting sentence obtained after combining the altered kernels is ill-formed:
* "Maria is bothered by that Ivan has ignored that letter.” The transformational filter rejects the
ungrammatical construction prep-THAT-clause and suggests that the words "the fact" be inserted
i1 the Transformational Structure of the embedded clause. Then, after all the Adjusiments have
Lieen applied, the system outputs the correct sentence: "Maria is bothered by the fact that Ivan has

ianored that letter."?

(b) If the transformations 0-NP-TO, and PASSIVE are to be performed nn the kernels K, =
"Maria forced it" and K = "Ivan peeled potatoes”, the program has to combine the altered kernel

}»L: = "It was forced by Maria" with the altered kernel KT = "[van to peel potatoes.” The
transformational filter rejects the resulting sentence: * "Ivan to peel potatoes was forced by Maria"
as ungrammatical. Then, taking into account the semantic class of the main verb force, the filter
proposes to "raise” the first noun phrase of the embedded clause Jvan to the poéition of the first
noun phrase in the matrix clause iz; the rest of the embedded clause moves to the end of the matrix

clause. Now the resulting sentence is correct: "Ivan was forced by Maria to peel potatoes.”

(¢) If the embedded clause is very long. the transformational filter suggests applying the
FExtraposition rule, a rule which shifts the embedded clause to the end of the matrix clause leaving
the word "it" in its original position in the matrix clause. Thus, the sentence #1 from (21) can be
changed to "It bothers Maria that Ivan has ignored that letter."?

A family of ten transformations for generating embedded clauses was introduced in this section.
This family is completely defined by the values of three parameters COMP, NP, and INFL and,

therefore, can be considered as a single Connective Transformation whose surface manifestation has
several different forms depending on the values of these parameters,

24. In contrast with the usual transformations, which operate within a kernel sentence, one can analyze transformational
Jiliers as interkernel transformations because they may operate across the kernels.

25. The noun "fact” is one of the so-called fuctive nouns which include also words like "idea", "report”, etc.

26. We leave aside for now the question of defining "length”. Notice, that the Extraposition rule may also apply to short
embedded clauses: "It bothers Maria that Ivan left.”

Katz -25- Other Transformations

&7. Other Transformations

In this section we will add three new transformations to the system of Commutative
Transformations: T, = Passive, T = Dative Movement, and T, = There Insertion. The
definitions of these transformations rcfer to the noun phrase positions in the Transformational

Structure: NPI. NP1 - M Pz, and to their exical and semantic values.
Definition:

Passive is a transformation that

(a) Permutes to the left the values of three noun phrases NP, NP, ., and NP,
"""‘""""“““‘“"""‘“"'?-"“'1‘*>
T !
NP, (eoreoseees NP, CooeenansoNP,

(b) Inserts the verb be afler the affix of the last auxiliary verb or, if AUX1 = do, substitutes
the verb be for the auxiliary do :

(c) Inserts the affix en in front of the main verb

(d) Inserts the preposition by in front of NP,

Consider the kernel sentence K = "Ivan gave Maria the bottle" with the Transformational
Structure (22):

((COMP comp) (NP (lvan))
(TENSE past) (INFL infl) (AUX1 do) (NEGl negl) (NEG2 neg2) (22)
(VERB give) (NP (Maria)) (NP, (the hottle)))

The Pussive transformation alters the kernel sentence K = "lvan gave Maria the bottle™ into the
sentence T,(K) = "Maria was given the bottle by Ivan" by changing the Transformational
Structure (22) into: |

((COMP comp) (NP (Maria))
(TENSE past) (INFL infl) (AUX1 be) (NEG1 negl) (NEG2 neg2) ' (23)
(EN-PASS en) (VERB give) (NP, (the bottle)) (BY-PASS by) (NP, (Ivam))

27. In (his definition, when referring to the words be, en, and by we mean elements (BE-PASS be), (EN-PASS en), and
(BY-PASS by) in the Transformational Structure.

Katz -26- Other Transformations

In the case when there are only two noun phrases in the input kernel sentence. to permute (wo
NP's means the same as to interchange them. In this case our dcﬁmllon comes closen 1o the

conventional definition of Passive.

The transformation Dative Movement changes the kernel sentence K = "!van gaVc Maria the
bottle" into the sentence TW(K) = "lvan gave the bottle to Maria." A p()SSlb| dcﬁnmon of Dative
Movement could refer 1o the syntactic constituents NP and NP, in tie Transformational

Structure:

(a)vlnterchange the valucs of NP, and NP,
(b) Insert the word o in frontof NP,

This dcf'nmon of Dative Movement when applicd to the kernel K gives the desired result T (K)

"lvan gave the bottle to Maria.” Suppose, however, that the Passive transform ation is to be applied
o the kernel K prior to Dative Movement producing the Transformational Structure (23)
cor lcspondm;, to the sentence T (K) = "Maria was given the bottle by Ivan." If Dative Movement
(asitis dc’ﬁned above) is now applied to T (K) the Transformational Su ucture will be transformed

into:

((COMP comp) (NP, '(Maria))
(TENSE past) (INFL infl) (AUXT be) (NEG1 negl) (NEG2 neg2)
(EN PASS en) (VERB give) (NP, (Ivan)) (BY-PASS by) (DAT te) (NP, (the bottle)))

The resulting sentence T (T (K)) is unacceptable: * "Maria was given Ivan by to the bottle

DM

In order to obtain the correct result we need a different definition of Dative Movement which refers
not to NP-positions in the Transformational Structure, but rather to semantic values of the noun
phrases which indicate the role that the noun phrase plays in the sentence: agent, goa_l or theme.

In this paper several transformations which operate on the Transformational Structure of a kernel -
phrase marker have been examined: the Question Transformation, Negation (full and contracted),
Passive, and the Connective Transformation. All of these transformations are defined in purely
syntactical terms: they move, insert, or delete syntactic constituents in the Tr. ansfm ‘mational
Structure. So far, we have seen semantic notions used only in the "decision- making" procedures.
For instance, the system needs the semantic class of the main verb in the matrix clause to determme
which of the Connective T fansformattons may be applied and what rule should combme the altered

kernel sentences.

Katz -27- QOther lfrr_ans.formations

i,

Dative Movement is the only transformation in our system that is defincd in seiantical terms,
Definition:

L'ative Movement is a transformation that

(a) Interchanges the noun phrase which plays the role of goal with the noun phrase which

plays the role of theme

(b) Depending on the main verb, assigns one of two values {TO, FOR} to the element DAT
| which will later be inscrted in front of the goal noun phrase in the TS by a speéia! adjustment

DAT Insertion

The result of this transformation is that the goal noun phrase will be in th: position previously
cccupied by theme noun phrase and the theme NP will be in the position occupied by goal NP.

For instance, the Dative Movement transforms the Transformational Structure (22) of the kernel
sentence K = "lvan gave Maria the bottle" into:

((COM’P comp) (NP, (Ivan))
(TENSE past) (INFL infl) (AUX1 do) (NEG1 negl) (NEG2 neg2) (2
(VERB give) (NP _ (the bottle)) (NP, (Maria)))

Then the édjustm‘ent DAT Insertion inserts the element (DAT to0) into the Trénstrmational
Structure (24) resulting in (25): '

((COMP comp) (NP, (Ivan)) S
(TENSE past) (INFL infl) (AUX1 do) (NEG1 negl) (NEG2 neg2) B L))
(VERB give) (NP, (the bottle)) (DAT to) (NP, (Maria))) '

After all the other adjustments have been performed the system outputs the correct scntence "Ivan

gave the bottle to Maria."”

Not only do we obtain the correct results by applying each of two transformaﬁons Passive and

Dative Movement to the TS of the kernel sentence, but also, our definitions are so formulated that

these transformations can be applied in any order. Dative Movement can be apphed to the .
Transformational Structure altered by Passive and vice versa. '

28. In the usual analysis (see, for instance, [Akmajian and Heny 1975]) Dative Movement transforms the sentence "[van
gave the bottle 10 Maria” into the sentence "Ivan gave Maria the bottle.”

Katz -28 - Other ’l"r‘unstblmations

et us. for example, apply Darive Movement 1o the TS in (23) altered by lh(’ Pamvolmnsfm m"mon
The noun phrase "Maria" which plays the rolc of goal is mtelchanged wnh the noun phrase "the
bottle" which plays the role of theme. Then, the DAT Insertion adjustment inserts the preposition
{0 in front of the goal noun phrase "Maiia" producing the TS (26):

(COMP comp) (Nl’ (the hottle)
(TENSE past) (INFL infl) (AUX1 he) (NEGI negl) (NEG2 negz) (0
(EN-PASS en) (VERB give) (DAT io) (NP (Mam)) (BY-PASS hy) (NP (lvan)))

Tae resulting sentence is TW(T(K)) "The bottle was given to Maria by lvan. The

T -ansformational Structure (26) can also be obtained if the transformation Passive is applied to the
TS (24) (that s, after Dative Movement has been applied).

The f‘olloWihg diagram (27) illustrates th= commutativity of these transformations:

Dative Movement

K = lviui gan Maria the bottle ===mmmmmemmomemmeenes > DM(K) = Ivan gave thc bottlc to Marla
:] | ;
| | |
Passive | " | Passive 2N
o | |
| | |
R Dative Movement $
TP(K) = Mar‘ia was given the bottle by Ivan - ---=-=-----==- S > The bottle was given to Mana by Ivan

The final transformation to be considered is There Insertion, defined below.
Definition:
There Insertion is a transformation that

(a) Substitutes the word there” for the the NP -position in the TS

29. More precisely, the element (TH there) of the Transformational Structure.

Katz ‘ - -29- Other Transformations

~ (b) Moves the NP -position in front of the affix associated with the lefimost occutrence of the

verb be in the Transformational Structure

As an example, consider the kernel sentence K = "A boy was cating a cake" with the
Transformational Structure (28): ’ o

((COMP comp) (NP (a boy))
(TENSE past) (INFL mﬂ) (AUXTI he) (NFGl negl) (NEG2 ncg2) (AFFle mg) (28)
(VERB eat) (NP (a cake)))

There is only one verb be in the TS above, therefore, AFFIX1 is the required affix. After applying
the transformation There Insertion the Transformational Structure (28) will be transformed to (29):

 ((COMP comp) (T there)
(TENSE past) (INFL infl) (AUX1 be) (NEGI negl) (NEG2 neg2d) — (29)
(NP, (aboy)) (AFFIX1 ing) (VERB cat) (NP, (a cake))) |

The corres :ondin English output is "There was a bo eatin y a cake."
g | 8

Suppose howevel that Passive was applied to the Transfox mational Structure (28) causing another
verb be to be inserted after AFFIX1: '

((COMP comp) (NP, (a cake))
(TENSE past) (INFL infl) (AUX1 be) (NEG1 negl) (NEG2 neg2) (AFF]Xl mg) (30)
 (BE-PASS he) (EN-PASS en) (VERB eat) (BY-PASS by) (NP, (aboy)))

Here the leftmost occurrence of be in the Structure (30) is the one referred to in the deﬁmtion of the
tr ansformamn There Insertion and the position of the first noun phrase is moved in front‘ of its
affix: ’ S

((COMP comp) (TH there) (TENSE past) (INFL infl) gL
~ (AUX1 be) (NEG1 negl) (NEG2 neg2) (NP, (acake)) (AFFIX1 ing) S ())
| (BE PASS be) (EN-PASS en) (VERD eat) (BY-PASS by) (NP, (a boy))) &

The Frfmsf()lm'itlonal Structure (31) produces the sentence: "There was a cake bemg eatén by a

boy.

Consider now the question of the commutativity of the three transformations intrbld'uvr:ed_in this
section. It follows from the definitions that There Insertion does not change the original disposition

Katz . -30- Other ransformations

ol thc noun phrases NP NP, . and NP in the Transformational Structure, Therefore. since There
Insertion does not inter fuc wnh the actxon of Passive and [)aave Movement, it does not prevent
taese transformations from permuting or interchanging the noun phrases. It is thus possible to
apply the Passive transformation and Dative Movement after There Insertion. On the other hand,
Lative Movement and Passive may freely interchange the noun phrases in the TS because it makes
no difference to the transformation There Insertion which of the noun phrases is located in the
l\lPl-position.30 There Insertion, therefore, can be applied after Passive and Dative Movement.
Since we have shown that There Insertion may precede or follow Passive and Dative M ovement, and
tiat the transformations Passive and Dative Movement are commutative, it follows that all three
transformations introduced in this section are commutative.

T he application of There Insertion is restricted to sentences with an indefinite noun ‘phrase in the
NP -position, but the transformations Passive and Dative Movement interchange the noun ph‘ases
i thc Transformational Structure. We, therefore, need a sentence with three mdeﬁmte noun
phrases to provide an appropriate example for showing the commutativity of the tmnsforma*xons
In this case the result of application of There Insertion would be grammatical regardless of the order
of the transformatlom Suppose that K = "A man was reading a boy some interesting stories." If
the three transformations are applied in the order: 1. There Insertion, 2. Passive, 3. Dative

Movement, the result is:
L. Aftc1 There Insertion: There was a man reading a boy some interesting stories.
2. Aftcr Passive: There was a boy being read somc interesting stories by a man.
3. Afier' Dative Movement. There were some interesting stories being read to a boy by a man.

The reverse order of the transformations: 1. Dative Movement, 2. Passive, 3. There Insertion
produces the following scntences: '

1. After Dative Movement: A man was reading some interesting stories to a boy.
2. After Passive: Some interesting stories were being read to a boy by a man. |

3. After There Insertion: There were some interesting stories being read to a boy by a man,31

30. There Inseruon merely moves the NP, -position in the Transformational Structure to the right.

31. We will not give here examples of all possxb!e permutations of these transformations because the commutativity of
Passive and Dative Movement has becn already shown before.

'
|
i
'
i
i
i
!
i
|

Kaz D S - Other Transformations

This section has introduced three additional transformations that refer to noun phrase positions and

their values.®? The Passive transformation refers to the positions NP, NP .. and NP2 permuting

their values. Dative Movement refers to the semantic values goal and theme and interchanges the
C()rx'espbn1clip1g NP-positions. There Irsertion moves the NP -position in the Transformational

Structure.

Step Three of the Language Generation Procedure uses the constructed system of optional
commutative Transformations, the set o~ conditionally obligatory Transformational Filters, and the
sct of ordered obligatory Adjustments to "solve" the TASK provided by Step One and Step Two

ar d to produce the corresponding English text.

32. The system contains other transformations, such as the Relative transformation, Imperative and Tag Question, but
they will not be discussed here.

Katz -32- Pronominalization

APPE NDI\ 1: Pronominalization

The program GEN which implements Step Three of the Language Generation Procedure lcads

the input TASK supplied by Step One and Step Two of the LGP and gencrates thekapplopndte
word string. Each element of the TASK consists of a list of kernel phrase markers, a list of
transformations, and a syntactic separator. There is a one-to-one correspondence between each
TASK element and cach Fnglish sentence in the output. Every noun phrase in a generated
sentence derives its lexical value from one of the prepositionless noun frames, NF®r NFed o
NF™™ of the Semantic Frame Struciure. Transformations may interchange the values of noun
phrases, but the actual word string is never altered; it can only be transferred into anothef
INP-position in the Transformational Stiucture. Therefore, if different phrase markers of the TASK
refer to the same noun frame, each instence of the corresponding noun phrase would have the same

fexical value.

This lepetmon is awkward and in order to make the text more fluent, tae system ieqmres a
pronammalzvatzon procedure which substitutes the repeated noun phrase with an appropriate
pronoun. The choice of the pronoun is deter mined by two parameters, the number and gender of
the corrcspondmg noun phrase. The values of these two parameters can be computed from the
number and gender of the nouns which are heads of the noun phrases and the conjuncuons that
connect them

The pronommahzahon procedure is activated every time the system * 'reads" the next element of the
TASK and genemtes the corresponding English sentence. In order to decide which noun phrase
should be pronominalized, two subsequent sentences, referred to by the names current and

previous, are examined.

Definitions.

C urr-przf~NI’-lz’sl is a list of a!l noun phrases in the last generated (current) sentence.
Previous-NP-list is a list of noun phrases in the previous sentence.

Prevmus-pzonouns-hst (PPL) is a list of pronouns corresponding to cach element of the prevzous-NP-lzst

R

33. In this paper we will not describe the rules that the system uses (0 calculate the number and gendel of a gwen noun
phrase. For instance, the number of the noun phmsc “Ivan and Maria" is "pluml" the gender is “indifferent.” Or, in the
case of another noun phrase, "the man with a red tic”, the number is "singular”, the gender is "masculme" Similar rules
can be found in [Katz 1978].

34. All the pronouns contained in the previous- pionozms-lzst are in the nominative case. But after the decision to
pronommdhze a noun phrase has been made, the appropriate lexical form of a pronoun (nominative, objective, or
possessive) is chosen depending on the case of the corresponding noun phrase. '

Katz -33- Pronominalization

Suppose, for example, that the following two sentences were generated by the system:
"Maria suspects that Tania is writing a letter to Ivan. Tania loves Ivan.” - (32)
n this emmplc we have:

current- *NP-list = ((Tania) (Ivan))
~ previous-NP-list = ((Maria) (Tania) (a letter) (Ivan))
previolis-pronouns-list = ((she)’ (she) (it) (he))

Livery nourt phrase in the current-NP-Tist which is also present in the previous-NP-list'is a possible

candidate for pronominalization. But the decision to pronominalize each noun phrase is made only

¢ fter comparing the pronoun that corresponds to'the noun phrase under consideration with all the
other elements of the PPL. e

Pronominalization Rule: A repetitive noun' phrase in the current senténce is replaced by its

pronoun’ only if the pronoun is unique in the previous-pronouns-list (Lhat is, no other noun

phtasesin ‘the previous sentence has the same pronoun).

‘n the example (32) the prograti will not substitute the pronoun “she" for the noun phrase "Tania™
becausé this pronotin is not unique ih the PPL. The Pronominalization Rule helps the system avoid

amblguuy that arises when this substitution is made: "Maria suspects that Tania is writing a letter to
Ich She loves Ivan =

On the othef hand. since there is only one occurrence of "he" in the Pﬁl the noun pﬁraSe "Tyan"

can be p‘rOnomlmhzed resulting in: "Maria suspects that Tania is writing a letter‘ to Ivan Tania
loves hﬂn n3s L

The Prohominalization Rule. However, is a necessary buf not a sufficient ¢oidition for the
pfohoﬁ\mallzdtnon pxocedure In some ¢ases complementary heuﬂsnc rules must be employed in
order to'make the final decision. --

35 i should be noted thal more than one pronoun is possxblc in a sentence as long as (he Pronommaltzauon Rule is not
violated. The example is: "Many people suspect that Tania is wriling a letter to Ivan. She loves him."

S

Katz | - 34- ~ The Parser

APPENDIX 2: The Parser

This section describes the parser, a program that processes kernel sentences and builds the
corresponding Semantic Frame Structu:es using the three types of templates defined in Section 1 of

this paper:
noun}-tcnmlntc (N"l‘):(prcp* dot” adj* noun)
verb-template (VT) = (tense au:l ziux2 aux3 verb) | (34
}advc‘rb-,term)late'(AT) = (mod adverb)

lZach word in the kernel sentence is always associated with a unique part of speechf(’ and, therefore,
with a unique position inside one of the templates NT, VT, or AT. We will assume that a kernel
sentence can be represented by the following sequence of frames:*’

NFinih’aJ NF%t VE NFgoal NFlheme NFﬁna] . (35)

Lach cohstituent in (35) can be obtained by applying the two operations Concatenation (CONC)
ond Conjunctzon (CONJ)38 o the templates NT, VT, or AT in (34). All constituents are optional;
for emmple the presence of the frames NF®" and NF"™™ depends on the type of main verb in

the kcmel sentence (transitive, intransitive, or double-transitive).

The parser‘analyscs every word in the input kernel sentence, scanning it from left to right and
mapping the appropriate pieces of the word string onto the corresponding templates. }_Thekparser
then de_éides which of the templates should be concatenated or conjoined in order to form the
necessary ‘noun-frame, verb-frame, or adverb-frame. Because each word in t,hie sentence is
asso'ciatéd with a unique template, the parser starts to create the appropriate type of template
("opens” the template) after examining the very first word in the sentence. The templaite must be
filled out from left to right. If any element in the template is left unspecified, the parser inserts nil
as the value of this element. When all the clements of the template arc filled Vou,t,’vthe parser
"closes” the template. Then, depending on the next word and its position in the sentence, the

parser has two choices:

36. The question of lexical ambiguily, that is the case when one word can serve as various parts of speech, is not discussed
in this paper. :

37. TForsimplicity, the adverb frames AF™M - AFmedid —yng AF™l gre not shown here.
38. These operations are defined in Section 1.

Katz -35- The Parser

(a) it either continues the constriction of the frame, starting to create another instance of a
template of the same type, or
(b) it "closes” the current frame and begins to fill out the elements of another template,

~ thereby starting a new frame.

Here is an example to clarify the procedure. Supposc that the parser takes the following sentence as

input:
"In the evening a young tall man with blue eyes gave Maria a beautiful book and a rose.” (36)

riggered by the preposition "in", the parser begins the construction of the noun- frame NF‘”““‘] by
filling out the noun—template as follows. ((prep in) (det the) (adj nil) (noun evening)). The next
word in the sentence is the determiner "a", which indicates the absence of a preposition in the next
noun-template, and, therefore, suggests that the frame (NF™8 ((prep in) (det the) (adj nil)
(noun evening))) should be closed and that the construction of a new prepo:ltlonless noun -frame
NF"%“l _should begin. This frame consists of the concatenation of two noun-templates:

B (N‘F“‘f’e“‘ ((prep nil) (det a)‘(adj (young tall)) (noun man)
- (prep with) (det nil) (adj blue) (noun eyes)))

Thue is no auxnhary verbs in the sentence (36), and hence the parser builds from the verb 'gave"
the followmb verb-frame (VF ((tense past) (auxl nil) (aux2 nil) (aux3 nil) (verb give))) with
the unspecified auxiliary elements. Then, the word "Maria" forms another noun-frame (NF&*
((prep m])}}(det nil) (adj nil) (noun Maria))). Finally, the parser uses the operation Conjunction
to cOhstruct ,the last prepositionless noun-frame NF"™ from two nlolm-templates: i

(NFlhemc ((prep nil) (det a) (adj beautiful) (noun hook) (conj and)
(prep nil) (det a) (adj nil) (noun rose)))

Fhe Semantw Frame Structure (37) below is the output of the parser after processmg the
‘;entencc (36) o

Fatz -36- | ‘T'he Parser

S (N _((prep in) (det thcA) (adj nil) (noun evening)))

(NF=" ((prep nil) (det a) (adj (young tall)) (noun man)
(prep with) (det nil) (adj blue) (noun eyes)))

(VE ((tense past) (aux] nil) (aux2 nil) (aux3 nil) (verb give))) 1))
(NP ((prep nil) (det nil) (adj nil) (noun Maria)))

(NF"™ ((prep nil) (det a) (adj beautiful) (noun book) (conj and)
(prep nil) (det a) (adi nil) (noun rose))))

Let us consider now the problem of closure that arises in two different contexts in the parsing
rrocess: the closure of a template and the closure of a frame.

A témplate is closed after a certain word if:

(a) The next word belongs to a template of another type.

(b) The next word belongs to the same type of template, but cor responds to a template
~clement located to the left of the template element filled last.”
Suppose now that a template has just been closed. The closure of a template implies the closure of

a frame if:

(a) The next word belongs to a template of another type. (The parser will then start to create
a frame of the new type). |
(b) The next word is an element of a noun-template®® but it is not a prepositioh. (The parser
starts to construct a new prepositionless noun-frame). ‘

If thcse’vconditions are not satisfied, the parser continues the construction of the corresponding
frame usmg, depending on the next word, one of the operations Concatenation or Conjunction.
The rules above allow the parser to open and close all the frames i in the kernel phrase marker (35),
except the last one, NF™ The system does not have a syntactic rule which can determine, when
the prepositionless noun-frame NF"™™ ends and NF™ begins. What, for example, should
happen in the sentence: "lvan saw Maria with the binoculars"? One possible rcading of this

39, ‘Remember that a template must be filled out from left to right.
40. We assume here that the previous lemplate was also a noun-template; otherwise, the condition a. holds.

Katz ' -37- The Parser

centence. where the parser closes the fiame NF™™ and opens NF™! ag soon as the preposition
with has been encountered, is represented befow in the Semantic Frame Structure (38) It suggests
that Ivan was watching Maria through his binoculars: ’

((NF= ((prep nil) (det nil) (adj nil) (noun Ivan)))

(VF ((tense past)‘ (aux1 nil) (aux2 nil) (aux3 nil) (verb sce))y
B 4 (3%)
(NE"™™ ((prep nil) (det nil) (adj nil) (noun Maria)))

(NEF™ ((prep with) (det the) {adj nil) (noun binoculars))))

Another reading of the sentence "fvan saw Maria with the binoculars” is represented by the
Semantic Frame Structure (39). In dhis case the parser uses the operation Concatenation to
continue the construction of the nour-frame NF"™"™ after finding the preposition with. This
reading suggests that Maria had the binoculars at the time when Ivan saw her: ' '

'((-‘NF?‘”“‘ ((prep nily (det nil) (adj nil) (noun Ivan)))
CVF (e ast) aunl i) (a2) 3 (verb see))) o ®

(NF‘“‘"‘c ((prep nil) (det nil) (adj nil) (noun Maria)
(prep with) (det the) (ad] nil) (noun binoculars))))

The probfem of attaching the last preposmoml phrase (PP Attachment) reqmres the use of
semanuc/sy atactic interaction for its resolution [Marcus 1979] and will not be dlscussed here

Fhe parser dcscrrbed here is restricted to processing the kernel sentences of the general form (35).
Howcver more compficated sentences with several clauses can also be analyzed by the par%er ifa
mechanisim that splits the sentence into kernels is provided. As an example, consider the sentences

with' embedded clauses generated by the lLanguage Generation Procedure with the help of the

Connective Transformations (sce Table 1 in Section 6). The use of simple heuristic procedures (for
example, counting the number of verbs and noun phrases, or searching for certain values of the
comp}ementlzels COMP and INFL) appears to be sufficient for reconstructing the kemels (matrix
clause and embcdded clause) which form cvery complex sentence in Table 1. For mstance the

41, At ihi'é“point, the parser makes the decision based on a list of prepositions which "usually"” begin a new roun-frame
(i.e. through).

,/'\.

Katz -38 - The Parser

sentence "van claims to have written that letter” consists of two clauses: "lvan claims it” and "Ivan
has written that letter”. which have been combined by the transformation 0-0-TO. The possibility
to reconstruct the kernels allows the parser to process any sentence generated by the Connective

Transformations.

Suppose that the input to the parser consists of several connected sentences “a coherent text), and
that a pronominalization procedure had been employed by the writer in order to make the text
more fluent. If this procedure had been accomplished obeying the Pronominalization Rule stated in
Appendix 1, the parser can casily resolve the anaphor, i.e. restore the noun phrases which were
replaced by the pronouns. ’

This parser has been used as a front end for Winston’s learning system [Winston 1980]. 1t translates
English descriptions of situations into descriptions in the extensible-relation representation. This
representation was suggested by Winston and is implemented in his learning system using a version
of Frame Representation Language [Roberts and Goldstein 1977]. In FRL, an agent-act-theme
combination is expressed as a frame, a slot in the frame, and a value in the slot. In the
extensible-relation representation, a supplementary description node for an agent-act-theme
combination is expressed as a comment frame attached to the frame-slot-value éombination.

Suppose, for example, that the following English text is the input to the parser:

In the beginning of the story Duncan was a king. Macbeth was a happy
noble. He married Lady-Macbeth. She was a greedy and ambitious
woman. She wanted Macbeth to be king. He also desired to be the king.
~ Lady-Macbeth persuaded him to murder Duncan. Soon Lady-Macbeth
decided to kill herself. Macduff was a loyal noble. He became angry.
Macbeth’s murder of Duncan caused him to kill Macbeth.

Below follow the frames which were generated after parsing the input text. Here, AKO stands for
A-KIND-OF, and HP - for HAS-PROPERTY relations.

(DUNCAN (ako (KING)))

(MACBETH (ako (NOBLE) (KING (ako-1)))
(hp (HAPPY))
(marry (LADY-MACBETH))
(desire (ako-1))
(murder (DUNCAN (murder-1))))

Katz

-39 - The Parser

(LADY-MACBETH (ako (WOMAN))
(hp (GREEDY) (AMBITIOUS))
(want (ako-1))
(persuade (murder-1))
(kill (LADY-MACBETH (kill-1)))
(decide (kill-1)))

(MACDUFF (ako (NOBLE))
(hp (LOYAL) (ANGRY))
(kill (MACBETH (kill-2))))

(AKO-1 (frame (MACBETH))
(slot (AKO))
(value (KING)))

(MURDER-1 (frame (MACBETH))
(slot (MURDERY))
(value (DUNCAN))
(cause (KILL-2)))

(KILL-1 (frame (LADY-MACBETH))
(slot (KILL))
(value (LADY-MACBETH)))

(KILL-2 (frame (MACDUFF))
(slot (KILL))
(value (MACBETHY)))

Kotz . - 40 - References
ACKNOWLEDGMENTS

| am deeply indebted to Beth Levin and Mitch Marcus for numerous disct ssions about this work
and friendly help. 1 also wish to thank Bob Berwick, Mike Brady, Jane Grimshaw, Bill Martin,
Dave McDonald, Candy Sidner, and Patrick Winston who read the draft of the paper and made

many valuable suggestions.

REFERENCES
Akmajian, A. and Heny, F., An Introduction to the Principles of Transfoimational Syntax, MIT
Press, 1975,
Chormsky, N A Theery of Syntactic Structures, Mouton & Co., 1957.
Katz, B., 4 Vérse\- Writing Program, Avtomatika i Tetemekhanika 2, 151-156, 1978.
Lasnik, H., Rvemarks on Co-reference, Linguistic Analysis 2, 1-22, 1976.
Marcus, M. P., 4 Theory of Syntactic Recognition for Natural Language, MIT Press, 1979.

McDonald, D. D.. Natural Language Production as a Process of Decision-making Under
Constraints, MIT PhD Thesis, 1980.

Minsky, M., 4 Framework for Representing Knowledge, in P. H. Winston (ed.), The Psychology of
Computer Vision, McGrow-Hill, 1975.

Reinhart, T., The Syntactic Domain of Anaphora, MIT PhD Thesis, 1976.

Roberts, R. B. and Goldstein, 1. P., The FRL Reference Manual, MIT Artificial Intelligence
Laboratory Memo 409, 1977.

Sidner, C. L., Towards a Computational Theory of Definite Anaphora Comprehension in English
Discourse, MIT Artificial Intelligence Laboratory Technical Report 537, 1979.

Winston, P. H.. Learning and Reusoning by Analogy, Communications of the ACM 23(12),
689-703, 1980.

