MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 602 : November, 1920

Flavors: Message Passing in the Lisp Machine

Daniel Weinreb
David Moon

The object oriented programming style used in the Smalltalk and Actor languages is available in
Lisp Machine Lisp, and used by the Lisp Machine software system. It is used to perform generic
operations on objects. Part of its implementation is simply a convention in procedure calling
~style: part is a powerful language feature, called Flavors, for defining abstract objects. This
chapter attempts to explain what programming with objects and with message passing means, the
various means of implementing these in Lisp Machine Lisp, and when you should use them. It
assumes no prior knowledge of any other languages.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory's artificial intelligence research is provid.d
in part by the Advanced Research Projects Agency of the Department of Defense under Oftice
of Naval Research Contract number N00014-80-C-0505.

Keywords: Flavor, Message Passing, Actor, Smalltalk,

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1980

&

Flavors

Table of Contents

1. Objects, Message Passing, and Flavors

1.1 Introduction

1.2 Objects .

1.3 Modularity

1.4 Generic Operations

1.5 Generic Operations in Lisp

1.6 Simple Use of Flavors

1.7 Mixing Flavors

1.8 Flavor Functions

1.9 Defflavor Options

1.10 Flavor Familics

1.11 Vanilla flavor .

1.12 Method Combination

1.13 Implementation of Flavors
1.13.1 Order of Definition
1.13.2 Changing a Flavor
1.13.3 Restrictions

1.14 Entitiess

1.15 Useful Editor Cominands

Index

Table of Contents

16-JAN-81

RN

Preface

This memo is intended to become a chapter in the Lisp Machine manual the next time it i
published. Since there is a pressing need for documentation on flavors, we are publishing it
immediately as a memo, The authors therefore assume that the reader has encountered this tost
while reading the manual. We assume that the reader is familiar with the basics of Lisp and the
Lisp Machine's dialect in particular; we also make particular references to an example fiom
section 17.1 in the manual.

Any comments, suggestions, or criticisms will be welcomed. The authors can be reached by
any of the following communication paths:

ARPA Network mail to BUG-LMMANG@MIT-AI
U.S. Mail to ‘ :
Daniel L. Weinreb or David A. Moon

545 Technology Square
Cambridge, Mass. 02139

Note

This document was edited with the Zmacs and Emacs editors, and formatted by the Bolio tuvt
justifier. It was printed on the MIT's Dover Printer.

Flavors 1 Objects, Message Passing, and Flavors
i g £

i. Objects, Message Passing, and Flavors

I.1 Introduction

The object oriented programming style used in the Smalltalk and Actor familics of languages
is available in Lisp Muachine Lisp, and used by the Lisp Machine software system. It is used to
perform generic operatioins on objects. Part of its implementation is simply a convention in
procedure calling style; part is a powerful language feature, called Flwors, for defining abstract
objects. This chapter attempts to cxplain what programming with Hsbjecis and with message
passing means, the various meens of implementing these in Lisp Maciine Lisp, and when you
should use them. It assumes no prior knowledge of any other languages.

1.2 Objects

When writing a program, it is often convenicnt to model what the program docs in terms of
objects: conceptual entitics that can be likened to real-world things. Choosing what objects to
provide in a program is very important to the proper organization of the program. In an object-
oriented design. specifying what objects exist is the first task in designing the system. In a text
cditor, the objects might be "pieces of text”, "pointers into text”, and "display windows". In an
clectrical design system, the objects might be "resistors’. "capacitors', "transistors”, "wires”, and
"display windows". After specifying what objects there are, the next task of the design is to
figure out what operations can be performed on each object. In the text cditor example,
operations on "picces of text” might include inserting text and dcleting text; opcrations on
"pointers into text” might include moving forward and backward; and opcrations on "display
windows" might include redisplaying the window and changing with which "picce of text" the
window is associated.

In this model, we think of the program as being built around a set of objects, each of which
has a set of operations that can be performed on it. More rigorously, the program defines several
types of object (the editor above has threc types), and it can create many instances of each type
(that is, there can be many picces of text, many pointers into text, and many windows). The
program defines a set of types of object, and the operations that can be performed on any of the
instances of cach type.

This should not be wholly unfamiliar to the reader. Earlier in this manual, we saw a few
examples of this kind of programming. A simple example is disembodied property lists, and the
functions get, putprop, and remprop. ‘the disembodied property list is a type of object; you
can instantiatc one with (cons nil nil) (that is, by cvaluating this form you can creatc a ncw
disembodied property list); there are three operations on the object, namely get, putprop, and
remprop. Another example in the manual was the first example of the usc of defstruct, which
was called a ship. defstruct automatically defined some operations on this object: the operations
to access its clements. We could define other functions that did uscful things with ships, such as
computing their speed, angle of travel, momentum, or velocity, stopping them, moving them
clsewhere, and so on.

DSK:I.MMAN:FLAVOR 55 | 16-JAN-81

Flavors 2 Modularity

In both cases, we represent our conceptual object by one Lisp object. The Lisp object we use
for the representation has simucture, and refers to other Tisp objects. In the property list case,
the Lisp object is a list with altcinating indicators and values; in the ship case, the Lisp object is
an array whose details are taken care of by defstruct. In both cases. we can say that the object
keeps track of an internal state. which can be examined and altered by the operations available
for that type of object. get examines the state of a property list. and putprop alters it; ship-x-
position and ship-get-momentum cxamine the state of a ship, and (setf (ship-mass) 5.0) and
(ship-move-to 3.0 4.0) alter it.

We have now scen the cssence of object-oriented programming. A conceptual object is
modelled by a single Lisp object, which bundles up some state information. For cvery type of
object, there is a set of operations that can be performed to examine or alier the state of the
object.

1.3 Modularity

An important benefit of the object-oriented style is that it lends itself to a particularly simple
and lucid kind of moduiarity. If you have modular programming constructs and techniques
availabile, it helps and cncourages you to writc programs-that are casy to read and understand,
and so are more reliable and maintainable. Object-oriented programming lets a programmer
implement a useful facility that presents the caller with a set of external interfaces, without
requiring the caller to undeistand how the internal details of the implementation work. In other
words, a program that calls this facility can treat the facility as a black box; the program knows
what the facility’s external interfaces guarantee to do, and that is all it knows.

For example, a program that uscs disembodied property lists never needs to kiacw that the
property fist is being maintained as a list of alternating indicators and values; the program simply
performs the operations, passing them inputs and getting back outputs. The program only
depends on the external definition of these operations: it knows that if it putprops a property,
and doesn’t remprop it (or putprop over it), then it can do get and be sure of getting back the
same thing it put in. The important thing about this hiding of the details of the implementation
is that someone reading a program that uses disembodied property lists nced not concern himself
with how they are implemented; he need only understand what they undertake to do. This saves
the programmet a lot of time, and lets him concentrate his cnergics on understanding the
program he is working on. Another good thing about this hiding is that the representation of
property lists could be changed, and the program would continue to work. For example, instcad
of a list of alternating elements, the property list could be implemented as an association list or a
hash table. Nothing in the calling program would change at all.

The same is tiue of the ship cxample. The caller is presented with a collection of operations,
such as ship-x-paosition, ship-y-position, ship-speed, and ship-direction; it simply calls
these and looks at their answers, without caring how they did what they did. In our example

“above, ship-x-position and ship-y-positicn would be accessor functions, defined automatically

by defstruct, while ship-speed and ship-direction would be functions defined by the
implementor of the ship type. The code might look like this:

DSK:ILMMAN;FLAVOR 55 16-JAN-81

lavors ’ 3 Modularity

(defstruct (ship)
ship-x-position
ship-y-position
ship-x-velocity
ship-y-velocity
ship-mass)

(defun ship-speed (ship)
(sqrt (+ (~ (shin-x-velocity ship) 2)
(~ (shir-y-velocity ship) 2))))

(defun ship-direct.on (ship)
(atan (ship-y-velocity ship)
(ship-x-velocity ship)))

The caller need not know that the first two functions were structire accessors and that the
sccond two were written by hand and do arithmetic. Those facts would not be considered part of
the black box characteristics of the implementation of the ship type. The ship type does not
guarantee which functions will be implemented in which ways; such aspects are not part of the
contract between ship and its callers. In fact, ship could have been written this way instcad:

(defstruct (ship)
ship-x-position
ship-y-position
ship-speed
ship-direction
ship-mass)

(defun ship-x-velocity (ship)
(* (ship-speed ship) (cos (ship-direction ship))))

(defun ship-y-velocity (ship)
(# (ship-speed ship) (sin (ship-direction ship))))

In this sccond implementation of the ship type, we have decided to store the velocity in polar
coordinates instead of rectangular coordinates. This is purely an implementation decision; the
cailer has no idea which of the two ways the implementation works, because he just performs the
operations on the object by calling the appropriate functions.

We have now created our own types of objects, whose implementations are hidden from the
programs that usc them. Such types are usually referred to as abstract types. The object-oriented
style of programming can be used to create abstract types by hiding the implementation of the
operations, -and simply documenting what the operations are defined to do.

Some more terminology: the quantitics being held by the clements of the ship structure are
referred to as instance variables. Fach instance of a type has the same operations defined on it;
what distinguishes one instance from another (besides identity (eqness)) is the values that reside in
its instance variables. The example above illustrates that a caller of operations does not know
what the instance variables are; our two ways of writing the ship operations have different

DSK:LMM AN;FLAVO R 55 16-JAN-81

i“favors 4 Modularity

instance variables, but from the outside they have exactly the same operations.

Onc might ask: "But what if the caller evaluates (aref ship 3) and notices that he gets back
the x-velocity rather than the speed? Then he can tell which of the two implementations were
used.” This is true; if the caller were to do that, he conld tell. However, when a facility is
implemented in the object-oricnted style, only certain functions are documented and advertised:
the functions which are considercd to be operations on the type of object. The contract from
ship to its callers only speaks about what happens if the caller calls these (unctions. The contract
makes no guarantees at all about what would happen if the caller were to start poking around on
his own using aref. A caller who does so is in error; he is depending on something that is not
specified in the contract. No guarantees were cver made about the resu ts of such action, and so
anything nay happen: indeed, ship may get reimplemented overnight, wnd the code that does the
aref will have a different cffect entirely and probably stop working. This example shows why the
concept of a contract between a callee and a caller is important: the contract is what specifies the
interface between the two modules.

Unlike some other languages that provide abstract types, Lisp Machine Lisp makes no attempt
to have the language automatically forbid constructs that circumvent the contract. This is
intentional. One reason for this is that the lisp Machine is an interactive system, and so it is
important to be able to examine and alter internal state interactively (usually from a debugger).
Furthermore, there is no strong distinction between the “system” programs and the "user”
programs on the Lisp Machine; users are allowed to get into any part of the language systcm and
change what they want to change. ‘

In summary: by defining a sct of operations, and making only a specific sct of cxternal
entrypoints available to the caller, the programmer can create his own abstract types. Thesc types
can be useful facilitics for other programs and programmers. Since the implementation of the
type is hidden from the callers, modularity is maintained, and the implementation can be changed
casily.

We have hidden the implementation of an abstract type by making its operations into
functions which the user may call. The important thing is not that they are functions—in Lisp
everything is done with functions. The important thing is that we have defined a new conceptual
operation and given it a name, rather than requiring anyone who wants to do the operation to
write it out step-by-step. Thus we say (ship- x-velocity s) rather than (aref s 2).

It is just as true of such abstract-operation functions as of ordinary functions that sometimes
they are simple enough that we want the compiler to compile special code for them rather than
really calling the function. (Compiling special code like this is often called open-coding.) The
compiler is dirccted to do this through use of macros, defsubsts, or optimizers. defstruct
arranges for this kind of special compilation for the functions that get the instance variables of a
structure. '

When we use this optimization, the implementation of the abstract type is only hidden in a
certain sense. It does not appear in the Lisp code written by the user, but docs appear in the
compiled code. The reason is that there may be some compiled functions that use the macros (or
whatever); even if you change the definifion of the macro, the existing compiled code wil
continue to use the old definition. Thus, if the implementation of a module is changed programs
that use it may need to be recompiled. This is something we sometimes accept for the sake of

DSK:IMMAN;FLAVOR 55 : 16-JAN-81

e

Ilavors , 5 Generic Operations

cfficiency.

In the present implemeitaticn of Navors, which is discussed below, there is no such compiler
incorporation of nonmodular knowledge into a program, except when the Moutside-accessible
instance variables™ feature is used. sec page 22, where this problem is explained further. If you
don’t use the "outside-accessible instance variables feature, you don’t have to worry about this.

1.4 Generic Operations

Suppose we think about the rest of the program that uses the ship abstraction. 1t may want
o deal with other objects that arc like ships in that they are movable objects with mass, but
unlike ships in other ways. A 1301¢ advanced model of a ship might include the concept of the
ship’s engine power, the numbei of passengers on board, and its name. An object representing a
metcor probably would not have any of these, but might have another attribute such as how
much iron is in it.

However, all kinds of movable objects have positions, velocities, and masscs, and the system
will contain some programs that deal with these quantities in a uniform way, regardless of what
kind of object the attributes apply to. bor example, a piece of the system that calculates every
abject’s orbit in space need not worry about the other, more peripheral attributes of various types
of objects; it works the same way for all ohjects. Unfortunately, a program that trics to calculate
the orbit of a ship will need to know the ship’s attributes, and will have to call ship-x-position
and ship-y-velocity and so on. The problem is that these functions won't work for metcors.
There would have tc be a second program to calculate orbits for meteors that would be exactly
the same, except that where the first one calls ship-x-position, the sccond onc would call
meteor-x-position, and so on. This would be very bad; a great deal of code would have to
exist in miultiple copics, all of it would have to be maintained in parallel, and it would take up
space for no good reason.

What is needed is an operation that can be performed on objects of scveral different types.
For cach type, it should do the thing appropriate for that type. Such operations are called
generic operations. ‘the classic example of generic operations is the arithmetic functions in most
programming languages, including Lisp Machine Lisp. The + (or plus) function will accept
either fixnums or flonums, and perform cither fixnum addition or flonum addition, whichever is
appropriate, based on the data types of the objects being manipulated. In our example, we need
a gencric x-position operation that can be performed on cither ships, meteors, or any other
kind of mobile object represented in the system. ‘This way, we can writc a single program to
calculate orbits. When it wants to know the x position of the object it is dcaling with, it simply
invokes the generic x-position operation on the object, and whatever type of object it has, the
correct operation is performned, and the x position is returned.

A terminology for the use of such generic operations has emerged from the Smalltalk and
Actor languages: performing a generic operation is called sending a message. ‘The objects in the
program arc thought of as little people, who get sent MESSALES and respond with answers. In the
example above, the objects are sent X-position messages, o which they respond with their x
position. This message passing is how generic opcrations arc performed.

DSK:LMMAN;FLAVOR 55 16-JAN-81

Flavors 6 Generic Operations in Lisp

Sending a message is a way of invoking a function. Along with the name of the message, in
general, some arguments are passed; when the object is done with the message, some values are
returned. The sender of the message is simply calling a function wth some argumients, and
getting some values back. The interesting thing is that the caller did not specify the name of a
procedure to call. Instead, it specified a message name and an object; that is, it said what
operation to perform, and what object to perform it on. The function to invoke was found from
this information.

When a message is sent to an object, a function thercefore mnust be found to handle the
message. ‘The two data used to igure out which function to call are the npe of the object, and
the name of the message. ‘The sime set of functions are used for all insances of a given type, so
the type is the only attribute of e object used to figure out which furction o call. The rest of
the message besides the name are data which arc passed as arguments to the function, so the
name is the only part of the message used to find the function. Su:h a function is called a
method. For example, if we send an x-position message to an object of type ship, then the
function we find is "the ship type's x-position method". A method is a function that handles a
specific kind of message to a specific kind of object; this method handles messages named x-
position to objects of type ship.

In our new terminology: the orbit-calculating program finds the x position of the object it is
working on by sending that object a message named x-position (with no arguments). The
returned value of the message is the x position of the object. If the object was of type ship,
then the ship type’s x-position method was invoked; if it was of typc meteor, then the metecr
type's x-position method was invoked. The orbit-calculating program just sends the inessage, and
the right function is invoked based on the type of the object. We now have true generic
functions, in the form of message passing: the same operation can mean different things

depending on the type of the object.

L5 Generic Operations in Lisp

How do we implement message passing in Lisp? By convention, objects that reccive messages
are always finctional objects (that is, you can apply them to arguments), and a message is sent to
an object by calling that object as a function, passing thc name of the message as the first
argument, and the arguments of the message as the rest of the arguments. Message names are
represented by symbois; normally these symbols are in the keyword package (see chapter 19 of
the Lisp Machine Manual) since messages are a protocol for communication between different
programs, which may reside in different packages. So if we have a variable my-ship whose value
is an object of type ship, and we want to know its x position, we send it a message as follows:

(funcall my-ship ’:x-position)

This form returns the x position as its returned value. To sct the ship's x position to 3.0, we
send it a message like this:

(funcall my-ship ':set-x-position 3.0)

It should be stressed that no new features are added to Lisp for message sending; we simply
define a convention on the way objects take arguments. ‘The convention says that an object
accepts messages by always interpreting its first argument as a message name. ‘The object must

DSK:LMMAN;FLAVOR 55 16-JAN-81

Flavors 7 Simple Usc of Flavors

consider this message name, find the function which is the method for that message name, and
invoke that function.

This raises the question of how message receiving works. The object must somchow find the
right mcthod for the message it is sent. l-urthermore, the object now has to be callable as a
function; objects can't just be defstructs any more. since those aren’t functions. But the structure
defined by defstruct was doing something uscful: it was holding the instance variables (the
internal state) of the object. We need a function with internal state; that is, we need a coroutine.

Of the Lisp Machine Lisp features presented so far, the most apprpriate is the closure (see
chapter 10 of the Lisp Machine Manual). A message-receiving object ¢ould be implemented as a
closure over a set of instance variables. The function inside the closure would have a big selectq
form to dispatch on its first argument. (Actually, rather than using closures and a selectq, the
Lisp Machine provides entities and defselect; sce page 30.)

While using closures (or entities) docs work, it has several serious problems. The main
problem is that in order to add a new opcration to a system, it is nccessary to modify a lot of
code; you have to find all the types that understand that operation, and add a new clause to the
selectg. The problem with this is that you cannot textually separate the implementation of your
new operation from the rest of the sysiem; the methods must be interleaved with the other
opcerations for the type. Adding a new opcration should only require adding Lisp code; it should
not require modifying Lisp code.

The conventional way of making genceric operations is to have a procedure for each operation,
which has a big selectq for all the types: this means you have to modify code to add a type.
The way described above is to have a procedure for cach type, which has a big selectq for all
the operations; this means you have to modify code to add an operation. Neither of these has
the desired property that extending the system should only require adding code, rather than
modifying code.

Closures (and entities) are also somewhat clumsy and crude. A far more streamlined,
convenient, and powerful system for creating message-receiving objects exists; it is called the
Flavor mechanism. With flavors, you can add a new method simply by adding code, without
modifying anything. Furthermore, many common and uscful things to do are very easy to do
with flavors. The rest of this chapter describes flavors.

1.6 Simple Use of Flavors

A flavor, in its simplest form, is a dcfinition of an abstract type. New flavors are created
with the defflavor special form, and methods of the flavor are created with the defmethod special
form. New instances of a flavor are crcated with the make-instance function. This section

explains simple uses of these forms.

For an cxample of a simple usc of flavors, here is how the ship example above would be
implemented.

DSK:LMMAN;FLAVOR 55 | : 16-JAN-81

Flavors 8 Simple Use of Flavors

(deffTavor ship (x-pbsition‘y—position
x-velocity y-velocity mass)
0)

:gettable-instance-variables)

(defmethod (ship :speed) ()
(sqrt (+ (~ x-velocity 2)
(~ y-velocity 2))))

(defmethod (ship :direction) ()
(atan y-veTocity x-velocity))

The code above creates a ne'v flavor. The first subform of the defflavor is ship, which is the
name of the new flavor. Next i3 the list of instance variables; they are the five that should be
familiar by now. The next subfrrm is something we will get to later, The rest of the subforms
arc the body of the defflavor, and cach onc specifics an option about this flavor. In our
example, there is' only one option, namely :gettable-instance-variables. This means that for
each instance variable, a method should automatically be generated to return the value of that
instance’ variable. The name of the message is a symbol with the same name as the instance
variable, but interned on the keyword package. Thus, methods are created to handle the
messages :x-position; :y-pdsition and so omn.

Each of the two defmethod forms adds a mcthod to the flavor. The first one adds a handler
to the flavor ship for messages named :speed. The second subform is the lumbda-list, and the
rest is the body of the functicn that handles the :speed message. The body can refer to or set
any instance variables of the favor, the same as it can with local variables or special variables.
When any instance of the ship flavor is invoked with a first argument of :direction, the body of
the sccond defimiethod will be cvaluated in an environment in which the instance variables of
ship refer to the instance variables of this instance (the one to which the message was sent). So
when the arguments of atan are evaluated, the values of instance variables of the object to which
the message was sent will be used as the arguments. atan will be invoked, and the result it
returns will be returned by the instance itself,

Now we have seen how to create a new abstract type: a new flavor. Fvery instance of this
flavor will have the five instance variables named in the defflavor form, and the seven methods
we have secn (five that were automatically generated because of the :gettable-instance-variables
option, and two that we wrote ourselves). The way to create an instance of our new flavor is
with the make-instance function. Here is how it could be used: '

(setq my-ship (make-instance ’ship))
This will return an object whose printed representation is;
#<SHIP 13731210>
(Of course, the value of the magic number will vary; it is not interesting anyway.) The
argument to make-instance is, as you can sc¢, the name of the flavor to be instantiated.

Additional arguments, not used here, are init options, that is, commands to the flavor of which
we are making an instance, sclecting optional features. This will be discussed more in a moment,

DSK:T MMAN;FLAVOR 55 ‘ 16-JAN-81

Ilavors 9 Simple Usc of Flavors

Fxamination of the flavor we have defined shows that it is quitc uscless as it stands, since
there is no way to set any of the parameters. We can fix this up casily, by putting the
'settable-instance-variables option into the defflavor form. 'This option tils defflavor to
generate methods for messages named :set-x-position, set-y-position, and so on; cach such
method takes one argument, and sets the correspending instance variable to the given value.

Another option we can add to the defflavor is sinilable-instance- variables, to allow us to
initialize the valucs of the instance variables when an instance is first created. initable-instance -
variables does not create any methods; instead, it makes initialization keywords named X-
position, :y-position, clc.. tha can be used as init-option argumerts to make-instance to
initjalize the corresponding instace variables. The set of init options arc sometimes ¢alled the
init-plist because they are like a property list.

Here is the improved defflavor:
(defflavor ship (x-position y-position
x-velocity y-velocity mass)
()
:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

All we have to do is evaluatc this new defflavor, and the existing flavor definition will be
updated and now include the new methods and initialization options. In fact, the instancc we
generated a while ago will now be able to accept these new messages! We can sct the mass of
the ship we created by evaluating

(funcall my-ship ’':set-mass 3.0)
and the mass instance variable of my-ship will properly get set to 3.0. If you want to play
around with flavors, it is uscful to know that describe of an instance tells you the flavor of the
instance and the values of its instance variables. If we were to evaluate (describe my-ship) at
this point, the following would be printed:

#<SHIP 13731210>, an object of flavor SHIP,
has instance variable values:

X-POSITION: unbound
Y-POSITION: unbound
X-VELOCITY: unbound
Y-VELOCITY: unbound
MASS : 3.0

Now that the instance variables are "initable”, we can create another ship and initialize some
of the instance variables using the init-plist. Let's do that and describe the result:

DSK:LMMAN;FILAVOR 55 16-JAN-81

Flavors 10 Simple Use of Flavors

PR

(setq her-ship (make-instance ’ship ’':x-position 0.0
' ‘:y-position 2.0

>:mass 3.5))
==> f#<SHIP 13756521> ‘

(describe her-ship)
#<SHIP 13766521>, an object of flavor SHIP,
has instance variable values: :

X-POSITIGH: 0.0
Y-POSITION: 2.0
“X-VELOCITY: unbound
Y-VELOCITY: unbound
MASS : 3.5

A flavor can also establish default initial values for instance variables. These default values are
used when a new instance is created if the values are not initialized any other way. The syntax
for specifying a default initial value is to replace the name of the instance variable by a list,
whose first element is the name and whose second is a form to evaluate to produce the default
initial value. For example: v _ -

(defvar =default-x-velocity* 2.Q)
(defvar =*default-y-velocity* 3.0) -

(defflavor ship ({x-position 0.0)
(y-position 0.0)
(x-velocity *default-x-velocityx)
(y-velocity xdefault-y-velocityx*)
mass) :
0)
:gettable-instance-variables
:settable-instance-variables
:initable-instance-variables)

(setq another-ship (make-instance ’ship ':x-position 3.4))
{describe another-ship)

#<SHIP 14563643>, an object of flavor SHIP,
has instance variable values:

X-POSITION: 3.4
Y-POSITION: 0.0
X-VELOCITY: 2.0
Y-VELOCITY: 3.0
MASS: unbound

x-position was initialized explicitly, so the default was ignored. y-position was initialized
from the default value, which was 0.0. The two velocity instance variables were initialized from
their default values, which camie from two global variables. mass was not explicitly initialized
and did not have a dcfault initalization, so it was left unbound.

DSK:LMMAN;FLAVOR 55 16-JAN-81

Flavors 11 Mixing [Flavors

There are many other options that can be used in defflavor, and the init options can be used
more flexibly than just to initialize instance variables; full details arc given later in this chapter.
But even with the small set of features we have scen so far, it is casy to write object-oriented
programs,

1.7 Mixing Flavors

Now we have a system for defining message-receiving objects so that we can have generic
operations, If we want o creac a new type called meteor that would accept the same generic
operations as ship, we could simply write another defflavor and two more defmethods that
looked just like those of shin, and then meleors and ships would both accept the same
operations. ship would have scnie more instance variables for holding attributes specific to ships,
and some more methods for ofcrations that are not generic, but are only defined for ships; the
same would be truc of meteor.

However, this would be a a wasteful thing to do. The same code has to be repeated in
several places, and several instance variables have to be repeated. The code now nceds to be
maintained in many places, which is always undcsirable. The power of flavors (and the name
"flavors") comes from the ability to mix several flavors and get a new flavor. Since the
functionality of ship and meteor partially overlap, we can take the common functionality and
move it into its own flavor, which might be called meving-object. We would define moving -
object the same way as we defined ship in the previous section. Then. ship and meteor could
be defined like this:

defflavor ship (engine-power number-of-passengers name
g g
(moving-object)
:gettable-instance-variables)

(defflavor meteor (percent-iron) (moving-object)
:initable-instance-variables)

These defflavor forms use the second subform, which we ignored previously. The sccond
subform is a list of flavors to be combined to form the new flavor; such flavors are called
components. Concentrating on ship for a moment (analogous things arc truc of meteor), we see
that it has exactly onc component flavor: moving-object. It also has a list of instance variables,
which includes only the ship-specific instance variables and not the ones that it shares with
meteor. By incorporating moving-object, the ship flavor acquires all of its instance variables,
and so need not name them again. It also acquires all of moving-object’s methods, too. So
with_the new definition, ship instances will still accept the :x -velocity and :speed messages, and
they will do the same thing. However, the :engine-power message will also be understood (and
will return the valuc of the engine-power instance variable).

What we have done here is to take an abstract type, moving-object, and build two more
specialized and powerful abstract types on top of it. Any ship or meteor can do anything a
moving object can do, and cach also has its own specific abilitics. This kind of building can
continue; we could define a flavor called ship-with-passenger that was built on top of ship,
and it would inherit all of moving-object’s instance variables and methods as well as ship’s
instance variables and methods. Furthermore, the sccond subform of defflavor can be a list of

DSK:LMMAN;IFILAVOR 55 16-JAN-81

Flavors ‘ ' 12 Mixing Flavors

several components, meaning that the new flavor should combine all the instance variables and
methods of all the flavors in the list, as well as the ones rhose flavors are built on, and so on.
All the components taken together form a big tree of flavors. A flavor is built from its
components, its components’ components, and so on. We sometimes use the term "components”
to mean the immediate compaonents (the ones listed in the defflavor). and sometimes to mean all
the components (including the components of the immediite components and so on). (Actually, it
is not strictly a tree, since some flavors might be components (hrough more than one path. It is
really a directed graph; it can even be cyclic.)

The order in which the comsonents are combined to form a flavor is important. The tree of
flavors is turned into an order:d list by performing a top-down, devih-first walk of the tree.
including non-terminal nodes fefore the subtrees they head, and ciiminating duplicates. For
example, if flavor-1’s immecdiatc components are flavor-2 and flavor-3. and flavor-2's
components arc flavor-4 and flavor-5, and flavor-3's component was flavor-4, then the
complete list of components of flavor-1 would be:

flavor-1, flavor-2, flavor-4, flavor-5, flavor-}
The flavors earlier in this list are the morc specific, less basic ones: in our exaraple, ship-with-
passengers would be first in the list, followed by ship, followed by moving-object. A favor is
always the first in the list of its own components. Notice that flavor-4 does not appear twice in
this list. Only the first occurrence of a flavor appears: duplicates are removed. (The climination
of duplicos is done during the walk; if there is a cycle in the directed graph, it will not cause a
non-terminating computation.)

The set of instance variables for the new flavor is the union of all the sets of instance
variables in all the component flavors. If both flavor-2 and flavor-3 have instance variables
named foo, then flavor-1 will have an instance variable named foo, and any methods that refer
to foo will refer to this same instance variable. Thus different components of a favor can

communicate with one another using shared instance variables. (Typically, only one component °

ever scts the variable, and the others only look at it.) The default initial value for an instance
variable comes from the first component flavor to specify one.

The way the methods of the components are combined is the heart of the flavor system.
When a flavor is defined, a single function, called a combined method, is constructed for cach
message supported by the flavor. This function is constructed out of all the methods for that
message from all the components of the flavor. There are many different ways that methods can
be combined; these can be selected by the user when a flavor is defined. The user can also
create new forms of combination.

There arc several kinds of mecthods, but so far, the only kinds of methods we have seen are
primary methods. The default way primary methods are combined is that all but the carliest one
provided are ignored. In other words, the combined method is simply the primary method of the
first flavor to provide a primary method. What this means is that if you are starting with a flavor
foo and building a flavor bar on top of it, then you can override foo’s method for a message by
providing your own method. Your method will be called, and foo’s will never be called.

Simple overriding is often uscful; if you want to make a new flavor bar that is just like foo
except that it reacts completely differently to a few messages, then this will work. However, often
you don’t want to completely override the base flavor’s (foo’s) method: =omctimes you want to
add some cxtra things to be done. This is where combination of methods is used.

DSK:LMMAN;FLLAVOR 55 16-JAN-81

Flavors 13 Mixing Flavors

The usual way methods are combined is that onc flavor provides a primary method, and other
flavors provide daemon methods. 'The idea is that the primary method is "in charge” of the main
business of handling the message, but other flavors just want to keep informed that the message
was sent, or just want to do the part of the operation associated with their own arca of
]'CSp()ﬂ§ibi|i[Y.

When methods are combined, a single primary method is found: it comes from the first
component flavor that has onc. Any primary methods belonging to later component flavors are
ignored. This is just what we saw above; bar could override foa's primary method by providing
its own primary method. '

However, you can defined other kinds of methods. In particular, you can defined daemon
methods. They come in two kinds, before and affer. There is a special syntax in defrnethod for
defining such methods. Here is an example of the syntax. To give the ship flavor an after-
dacmon method for the :speed message. the following syntax would be used:

(defmethod (ship :after :speed) ()
body)

Now, when a message is sent, it is handled by a new function called the combined method.
The combined method first calls all of the before dacmons, then the primary method, then all the
after dacmons. Fach method is passed the same arguments that the combined method was given.
The returned values from the combined method are the values returned by the primary mecthod;
any values returned from the dacmons arc ignored. Before-dacmons are called in the order that
flavors are combined, while after-dacmons are called in the reverse order. In other words, if you
build bar on top of foo, then bar’s before-dacmons will run before any of those in foo, and
bar's after-daemons will run after any of those in foo.

The reason for this order is to keep the modularity order correct. If we create flavor-1 built
on flavor-2: then it should not matter what flavor-2 is built out of. Our new before-dacmons
go before all those of flavor-2, and our new after-dacmons go after all those of flavor-2. Note
that if you have no dacmons, this reduces to the form of combination described above. The most
recently added component flavor is the highest level of abstraction; you build a higher-level object
on top of a lower-level object by adding new components to the front. The syntax for defining
dacmon methods can be found in the description of defmethod below. -

To make this a bit more clear, let’s consider a simple example that is easy to play with: the
:print-self method. The Lisp printer (i.c. the print function; scc sections 18.2 and 18.4 in the
1.isp Machine Manual) prints instances of flavors by sending them :print-self messages. The first
argument to the :print-self message is a sircam (we can ignore the others for now), and the
receiver of the message is supposed to print its printed representation on the stream. In the ship
cxample above, the reason that instances of the ship flavor printed the way they did is because
the ship flavor was actually built on top of a very basic flavor called vanilla-flavor; this
component is provided automatically by defflavor. 1t was vanilla-flavor’s :print-self method that
was doing the printing. Now, if we give ship its own primary mecthod for the :print-self
message, then that method will take over the job of printing completely; vanilla-flavor’s method
will not be called at all. However, if we give ship a before-dacmon method for the :print-self
message, then it will get invoked before the vanilla-flavor message, and so whatever it prints will
appear before what vanilla-flavor prints. So we can use before-dacmons to add prefixes to a
printed representation: similarly, after-dacmons can add sullixes.

DSK:L.MMAN:FLLAVOR 55 16-JAN-81

Flavors 14 Flavor Functions

There are other ways to combine methods besides dacmons, but this way is the most
common. The more advanced ways of combining methods are explained in a later scction; sce
page 25. ‘The vanilla-flavor an¢ what it does for you are also explained later; see page 24.

1.8 Flavor Functions

defflavor AMacro
A flavor is defined by a form
(defflavor flovor-name (varl varl...) (flavl flav2. . .)
optl opi2...) '
Sfavor-name is a symbol which serves to name this flavor. It will get an sicflavor property
of the internal data-struc ure containing the details of the flavor,

(typep obj), where obj is an instance of the flavor named Aavor-name, will return the
symbol flavor-name. (tyjep obj flavor-name) is t if obj is an instance of a flavor, one of
whose components (possibly itsclf) is flavor-name.

varl, var2, ectc. arc the names of the instance-variables containing the local state for this
flavor. A list of the naine of an instance-variable and a default initialization form is also
acceptable; the initialization form will be cvaluated when an instance of the flavor is
created if no other initial value for the variable is obtained. If no initialization is
specified, the variable will remain unbound.

favl, flav2, ctc. are the names of the component flavors out of which this flavor is built.
The features of thosc flavors are inherited as described previously.

optl, opt2, etc. arc options; each option may be cither a keyword symbol or a list of a
keyword symbol and arguments. The options to defflavor are described on page 20.

all-flavor-names Variable
This is a list of the names of all the flavors that have ever been defflavor’ed.

defmethod AMacro
A method, that is, a function to handle a particular message sent to an instance of a
particular flavor, is defined by a form such as
(defmethod (flavor-name method-type message) lambda-list
Jorml form2. . .)

flavor-name is a symbol which is the name of the flavor which is to receive the method.
method-type is a keyword symbol for the type of method: it is omitted when you are
defining a primary method, which is the usual case. message is a keyword symbol which
names the message to be handled.

The meaning of the method-1ype depends on what kind of method-combination is declared
for this message. For instance, for dacmons :before and :after are allowed. See page 25
for a complete description of method types and the way mcthods are combined.

lambda-list describes the arguments and "aux variables” of the function; the first argument
to the mcthod, which is the message keyword, is automatically handled, and so it is not
included in the Jambda-iist. Note that methods may not have &quole arguments; that is

DSK:LMMAN;FLLAVOR 55 16-JAN-81

Flavors

15 Flavor Functions

they must be functions, ot special forms. forml, form?2, ctc. are the function body; the
value of the last form is returned.

The variant form

(defmethod (fluvor-name message) function)
where function is a symbol, says that flavor-name’s method for message is function, a
symbol which names a function. That function must takc apprepriate arguments; the first
argument is the inessage keyword.

If you redefine a method that is alrcady dcfined, the old definition is replaced by the new
one. Given a flavor, @ message name, and a mcthod type there can only be one
function, so if you defin. a :before dacmon method for the foc flavor to handle the :bar
message, then you replace the previous before-dacmon; howev:r, you do not affect the
primary method or methods of any other type, message namc or flavor.

defmethod actually defines a symbol, called the flavor-method-s: mbol, as a function, and
the flavor system goes through that symbol to call the method. Sometimes it is useful to
deal with such a symbol: for example, you can use it to trace a method with trace (sce
page 252 in the Lisp Machine Manual). ‘The flavor-method-symbol is formed by
concatenating (with hyphens) the flavor name, the method type, the message name, and
"method" (for cxample, ship-x-position-method, ship-after-y-velocity-method,
ship-combined-mass-method, ctc.).

make-instance jluvorname init-option! valuel init-option2 value2...

Creates and returns an instance of the spccified flavor. Arguments after the first are
alternating init-option kevwords and arguments to those keywords. These options are used
to initialize instance variables and to sclect arbitrary options, as described above. If the
flavor supports the :init message, it is sent to the newly-created object with one argument,
the init-plist. This is a disembodicd property-list containing the init-options specified and
those defaulted from the flavor’s :default-init-plist. make-instance is an easy-to-call
interface to instantiate-flavor; for full details refer to that function.

instantiate-flavor flavor-name init-plist &optional send-init-message-p

return-unhandled-keywords area
This is an extended version of make-instance, giving you more features. Note that it
takes the init-plist as an argument, rather than taking a &rest argument of init-options
and valucs.

The init-plist argument must be a disembodied property list; locf of a &rest argument
will do. Beware! This property list can be modified; the properties from the default-init-
plist arc putprop’cd on if not alrcady present.

In the event that :init methods do remprop of propertics already on the init-plist (as
opposed to simply doing get and putprop), then the init-plist will get rplacd’ed. This
means that the actual list of options will be modified. It also mecans that locf of a &rest
argument will not work; the caller of instantiate-flavor must copy its rest argument (c.g.
with append); this is because rplacd is not allowed on &rest arguments,

DSK:LMMAN;FILAVOR 55 16-JAN-81

Flavors

16 Flavor unciions

First, if the flavor's method-table and other internal information have not been computed
or arc not up to date, they are computed. This may take a substantal amount of time
and invoke the compiler, but will only happen once for a particular flavor no matter how
many instances you make, unless you change something.

Next, the instance variobles are initialized. There are several ways this initialization can
happen. Il an instance variable is declared initable, and a keyword with the same spelling
as its name appears in init-plist, it is set to the value specified after that keyword. 1f an
instance variable does not get initialized this way, and an initialization form was specified
for it in a defflavor, that form is cvaluated and the variable is sct to the result. The
initialization form may not depend on any instance variables nor on self: it will not be
evaluated in the "inside" cnvironment in which methods are calted. If an instance variable
does not get initialized either of these ways it will be left unbound:; presumably an init
method should initialize it (sce below). Note that a simple cmpty disembodied property
list is (nil), which is what you should give if you want an empty init-plist. If you use nil,
the property list of nil will be used, which is probably not what you want.

If any keyword appears in the init-plist but is not used to initialize an instance variable
and is not declared in an :init-keywords option (see page 20) it is presumed to be a
misspelling. 1f the return-unhandled-keywords argument is not supplied, such keywords are
complained about by signalling an error. But if return-unhandled-keywords is supplied non-
nil, a list of such kevwords is returned as the sccond value of instantiate -flaver.

Note that default values in the init-plist can come from the :lefault-init-plist option to
defflavor. Sce page 20.

If the send-init-message-p argument is supplied and non-ril, an :init message is sent to the
newly-created instance, with onc argument, the init-plist. get can be used (o exiract
options from this property-list. Each flavor that needs initialization can contribute an :init
method, by defining a daemon.

If the area argument is specified, it is the number of an arca in which to cons the
instance; otherwisc it is consed in the default area.

defwrapper Macro

This is hairy and if you don’t understand it you should skip it.

Sometimes the way the flavor system combines the methods of different flavors (the
daemon system) is not powerful cnough. In that case defwrapper can be used to define a
macro which expands into code which is wrapped around the invocation of the methods.
This is best explained by an example; suppose you needed a lock locked during the
processing of the :foo message to the bar flavor, which tkes two arguments, and you
have a lock-frobboz special-form which knows how to lock the lock (presumably it
gencrates an unwind-protect). lock-frobboz neceds to see the first argument to the
message; perhaps that tells it what sort of operation is going to be performed (read or
write).

DSK:LMMAN;FLLAVOR 55 16-JAN-81

Flavors

17 Flavor Functions

(defwrapper (bar :foo) ((argl arg2) . body)
“(lock-frobboz (self argl)
,body ")
The use of the body macro-argument prevents the defwrapper’ed macro froin knowing
the exact implementation and allows scveral defwrappers from different flavors to be
combined properly.

Note well that the argument variables, argl and arg2. are not referenced with commas
before them. 'These mey look like defmacro "argument” variables, but they arc not.
Those variables are not Lound at the time the defwrapper-defired macro is expanded and
the back-quoting is done; rather the result of that macro-expansion and back-quoting is
code which, when a message is sent, will bind those variables to the arguments in the
message as local variables of the combined method.

Cousider another exampte. Suppose you thought you wanted a :before dacmon, but
found that if the argumr:nt was nii you nceded to return from processing the message
immediately. without exccuting the primary method. You could write a wrapper such as
(defwrapper (bar :foo) ((argl) . body)
“(cond ((null argl)) ;Do nothing if argl is nil
(t before-code
,body)))

Suppose you nced a variable for communication among the daemons for a particular
message; perhaps the :after dacmons nced to know what the primary method did, and it
is something that cannot be casily deduced from just the arguments. You might use an
instance variable for this, or you might create a special variable which is bound during
the processing of the message and used free by the methods.

(defvar =communications*)

(defwrapper (bar :foo) (ignore . body)

‘(let ((+*communication* nil))
,body))

Similarly you might want a wrapper which puts a *catch around the processing of a
message so that any one of the methods could throw out in the event of an unexpected
condition.

If you change a wrapper, the change may not take effect automatically. You must use
recompile-flavor with a third argument of nil to force the cffect to propagate into the
compiled code which the system generates to implement the flavor. The reason for this is
that the flavor system cannot reliably tell the difference between reloading a file containing
a wrapper and really redefining the wrapper to be different, and propagating a change to
a wrapper is expensive. [This may be fixed in the future.]

Like dacmon methods, wrappers work in outside-in order; when you add a defwrapper
to a flavor built on other flavors, the new wrapper is placed outside any wrappers of the
component flavors. However, all wrappers happen before any dacmons happen. When
the combined method is built, the calls to the before-daemon methods, primary methods,
and after-dacmon mcthods arc all placed together, and then the wrappers arc wrapped
around them. Thus, if a component flavor defines a wrapper, methods added by new

I_)SK:LMMAN;]*‘LAVOR 55 16-JAN-81

Ilavors 18 Flavor Functions

flavors will execute within that wrapper’s context.

sel1f Variable
When a message is sent to an object, the variable self is automatically bound to that
object, for the benefit of methods which want to manipulate the object itself {as opposcd
to its instance variables).

funcall-self message arguments...
When self is an instance or an entity, (funcall-self args..) has the same cffect as
(funcall self args...) exceot that it is a little faster since 1t doesr’t have to re-cstablish the
context in which the instince variables evaluate correctly. If self is not an instance (nor
an "entity", scc page 30), funcall-self and funcall self do the same thing.

When self is an instance, funcall-self will only work correctly if it is used in a method
or a function, wrapped in a declare-flavor-instance-variabless, that was called from a
method. Otherwise the instance-variables will not be already set 1 p.

Texpr-funcall-self message arguments... list-of arguments
This function is a cross between lexpr-funcall and funcali-self. When self is an instance
or an entity, (lexpr-funcall-self args...) has the same effect as (lexpr-funcall self args...)
except that it is a little faster since it doesn’t have to re-establish the context in which the
instance variables evaluate correctly. If self is not an instance (nor an "entity”, see page
30), lexpr-funcali-self and lexpr-funcall do the same thing. ‘

declare-flavor-instance-variabies Macro
Sometimes you will write a function which is not itsclf a method, but which is to be
called by methods and wants to be able to access the instance variables of the object self.
The form
(declare-flavor-instance-variables (flavor-name)
Sunction-definition)

surrounds the function-definition with a declaration of the instance variables for the
specified flavor, which will make them accessible by name. Currently this works by
declaring them as special variables, but this implementation may be changed in the future.
Note that it is only legal to call a function defined this way while executing inside a
method for an object of the specified flavor, or of some flavor built upon it.

recompile-flavor flavor-name &optional single-message (use-old-combined-methods t)
(do-dependents t)

Updates the internal data of the flavor and any flavors that depend on it. If single-
message is supplied non-nil, only the methods for that message are changed. The system
does this when you define a new methed that did not previously exist. If use-old-
combined-methods is t, then the cxisting combined method funciions will be used if
possible. New ones will only be generated if the set of methods to be called has changed.
This is the default. [If use-old-combined-methods is nil, automatically-gencrated functions to
call multiple methods or to contain code generated by wrappers will be regenerated
unconditionally. If you change a wrapper, you must do recompile-flavor with third
argunent nil in order to make the new wrapper take effece. If do-dependents is nil, only
the specific flavor you specified will be recompiled. Normally it and all flavors that
depend on it will be recompiled.

DSK:LMMAN;FLAVOR 55 16-JAN-81

Flavors 19 Flavor FFunctions

recompile-flavor only affects flavors that have alrcady been compiled. Typically this
means it affects flavors that have been instantiated, but does not bother with mixins (see
page 23).

compile-flavor-methods AMacro

The form (compile-flavor-methods flavor-name-1 flavor-name-2...), placed in a file to be
compiled, will cause the compiler to include the automatically generated combined
mcthods for the named flavors in the resulting gfasl file. provided all of the necessary
flavor definitions have been made. Use of compile-Havor-mathods for all flavors that
arc going to be instantiated is recommended to climinate the need to call the compiler at
run time (the compiler will still be called if incompatible chan,es have been made, such
as addition or deletion of methods that must be called by a combined method).

get-handler-for object message
Given an object and a message, will return that object’s methed for that message, or nil
if it has none. When object is an instance of a flavor, this function can be uscful to find
which of that flavor’s components supplics the method. If you get back a combined
method, you can use the List Combined Methods editor command (page 31) to find out
what it does.

This function can be used with other things than flavors, and has an optional argument
which is not relevant here. '

symeval-in-instance instance symbol &optional no-error-p
‘This function is used to find the value of an instance variable inside a particular instance.
Instance is the instance to be examined, and symbol is the instance variable whose value
should be returned. If there is no such instance variable, an error is signalled, unless no-
error-p is non-nil in which case nil is returned.

set-in-instance instance symbol value
This function is used to alter the value of an instance variable inside a particular instance.
Instance is the instance to be altercd, symbol is the instance variable whose value should
be set, and value is the new value. If there is no such instance variable, an error is
signalled.

si:describe-flavor jlavor-name
This function prints out descriptive information about a flavor; it is self-explanatory. An
important thing it teils you that can be hard to figure out yourself is the combined list of
component flavors; this list is what is printed after the phrase "and directly or indirectly
depends on”.

si:*flavor-compilations® _
This variable contains a history of when the flavor mechanism invoked the compiler. It is
a list; clements toward the front of the list represent more recent compilations. Elements
arc typically of the form
(:method flavor-name type message-name)
and type is typically :combined.

DSK:EMMAN;FLLAVOR 55 ' 16-JAN-81

Flavors 20 Defflavor Options

You may setq this variable to nil at any time: for instance before loading some files that
you suspect may have missing or obsolete compile-flavor-methods in them.

1.9 Defflavor Options

There are quite a few options to defflavor. They are all described here, although some are

for very specialized purposes and not of interest to most users. Fach option can be written in two
forms; cither the keyword by itself. or a list of the keyword and "arguments” to that keyword.

Several of these options dec are things about instance variables. These options can be given
with arguments which arc instance variables, or without any arguments in which case they rcfer to
all of the instance variables list:d at the top of the defflavor. This is not necessarily all the
instance variables of the comporent flavors; just the ones mentioned in this flavor’s defflavor.
When arguments are given, they must be instance variables that were listed at the top of the
defflavor; otherwise they are as.umed to be misspelled and an error is signalled. Tt is legal to
declare things about instance variables inherited from a component flavor, but o do so you must
list these instance variables explicitly in the instance variable list at the top of the defflavor.

:gettable-instance-variables
Enables automatic generation of methods for getting the values of instance variables. The
message name is the name of the variable, in the keyword package (i.e. put a colon in
front of it.)

:settable-instance-variables
Enables automatic generation of methods for setting the values of instance variables. The
message name is “:set-" followed by the name of the variable. All scttable instance
variables are also automatically made gettable and initable.

sinitable -instance -variables
The instance variables listed as arguments, or all instance variables Tisted in this defflavor
if the keyword is given alone, are made initable. This means that they can be initialized
through use of a keyword (a colon followed by the name of the variable) as an init-option
argument to make-instance.

iinit-keywords
The arguments are declared to be keywords in the initialization property-list which are
processed by this flavor’s :init methods. This is just used by error-checking which looks
for entries (presumably misspelled) in the initialization property-list which are not handled
by any component flavor of the object being created, neither as initable-instance-variables
nor as init-keywords.

‘default-init-plist
‘The arguments arc alternating keywords and value forms, like a property-list. When the
flavor is instantiated, these properties and values arc put into the init-plist unless alrcady
present. This allows one component flavor to default an option to another component
flavor. The valuc forms are only evaluated when and if they are used. For cxample,
(:defauit-init-plist :frob-array
(make-array nil ‘art-q 100))

would provide a default "frob array" for any instance for which the user did not provide
one explicitly.

DSK:LMMAN;FLAVOR 55 » 16-JAN-81

Flavors v 21 DeMavor Options

required-instance-variables
Declares that any flavor incorporating this one whichh is instantiated into an object must
contain the specified instance variables. An cerror occurs if there is an attempt to
instantiate a flavor that incorporates this one if it does not have these in its set of instance
variables. Note that this option is not onc of those which :hecks the spelling of its
arguments in the way described at the start of this section.

Required instance variables may be freely accessed by methods just like normal instance
variables. The difference between listing instance variables here and listing them at the
front of the defflavor is :hat the latter declares that this flavor "owns™ these variables and
will take carc of initiali; ing them, while the former declares that this flavor depends on
those variables but that come other flavor must be provided to rianage them and whatever
features they imply.

required-methods .
The arguments are names of messages which any flavor incorporating this one must
handle. An crror occurs if there is an attempt to instantiate sucii a flavor and it is lacking
a method for one of these messages. Typically this option appears in the defflavor for a
base flavor (see page 23).

iincluded-flavors

The arguments are namces of flavors to be included in this flavor. The difference between
declaring flavors here and declaring them at the top of the defflavor iz that when
component flavors are ccmbined, all the included flavors come after all the regular favors.
Thus included flavors act like defaults. For an example of the use of included flavors,
consider the ship example given carlier, and suppose we want to define a relativity -mixin
which increases the mass dependent on the speed. We might write,

(defflavor relativity-mixin () (moving-object))

(defmethod {relativity-mixin :mass) ()

(// mass (sqrt (- 1 (~ (// (funcall-self ’:speed)
s*speed-of-lightx)
2))))

but this would lose because any flavor that had relativity-mixin as a component would get
moving-object right after it in its component list. As a base flavor, moving-object
should be last in the list of componeuts so that other components mixed in can replace its
methods and so that dacmon methods combine in the right order. So instead we write,

(defflavor relativity-mixin () ()

(:included-flavors moving-object))

which allows relativity -mixin's methods to access moving-object instance variables such as
mass (the rest mass), but does not specify a place for moving-object in the list of
components. (Actually it puts it at the end, where it will usually be eliminated as a
duplicate.)

:no-vanilla-flavor
Unless this option is specified, si:vanilla-flavor is included (in the sense of the
sincluded-flavors option). vanilla-flavor provides some default methods for the :print-
self, :describe, :which-operations, :get-handler-for, :eval-inside-yourself, and
funcall-inside-yourself messages. Scc page 24.

:default-handler
‘The argument is the name of a function which is to be called when a message is received

DSK: LM M/\N;FLA VOR 55 16-JAN-81

Flavors

22 Defllavor Options

for which there is no method. 1t will be called with whatever arguments the instance was
called with, including the message name; whatever values it returns will be returned. If
this option is not specified on any component flavor, it defaults to a function which will
signal an error.

:ordered -instance -variables

This option is mostly for csoteric internal system uses. The arguments are names of
instance variables which must appear first (and in this order) in all instances of this flavor,
or any flavor depending on this flavor. This is used for instance variables which are
speciaily known about by microcode, and in connection with the :outside-accessible -
instance-variables option. If the keyword is given alone, thc arguments default o the
list of instance variables given at the top of this defflavor.

:outside -accessible-instance-variables

:select-

‘The arguments are instance variables which are to be accessible from "outside" of this
object, that is from functions other than methods. A macro (actually a defsubst) is
defined which takes an object of this flavor as an argument and returns the value of the
instance variable; setf may be used to sct the value of the instance variable. The name
of the macro is the name of the flavor concatenated with a hyphen and the name of the
instance variable. These macros are similar to the accessor macros created by defstruct
(see chapter 17 of the Lisp Machine Manual.) ’

This feature works in two different ways, depending on whether the instance variable has
been declared to have a fixed slot in all instances, via the :ordered-instance-variables
option.

If the variable is not ordered, the position of its value cell in the instance will have to be
computed at run time. This takes noticcable time, although less than actually sending a
message would take. An crror will be signalled if the argument to the accessor macro is
not an instance or is an instance which docs not have an instance variable with the
appropriatc name. However, there is no error check that the flavor of the instance is the
flavor the accessor macro was defined for, or a flavor built upon that flavor. 'This error
check would be too expensive.

If the variable is ordered, the compiler will compile a call to the accessor macro into a
subprimitive which simply accesses that variable’s assigned slot by number. This
subprimitive is only 3 or 4 times slower than car. The only crror-checking performed is
to make surc that the argument is really an instance and is really big cnough to contain
that slot. There is no check that the accessed slot really belongs to an instance variable of
the appropriatc namec. Any functions that use these accessor macros will have to be
recompiled if the number or order of instance variables in the flavor is changed. The
system wiil not know automatically to do this recompilation. If you aren’t very careful,
you may forget to recompile something, and have a very hard-to-find bug. Because of
this problem, and because using these macros is less eclegant than sending messages, the
use of this option is discouraged. In any case the use of these accessor macros should be
confined to the module which owns the flavor, and the "general public” should send
messages.

method -order /
This is purcly an cfficiency hack due to the fact that currently the method-table is

DSK:L.MMAN;FLLAVOR 55 16-JAN-81

Flavors 23 Flavor Families

searched lincarly when a1 message is sent. The arguments are names of messages which
are frequently used or for which speed is important. Their methods are moved to the
front of the method tabl» so that they are accessed more quickly.

‘method-combination
Declares the way that m.cthods from different flavors will be combined. Fach "argument"
to this option is a list {iype order messagel message2...). Messagel, message2, etc. are
names of messages whote methods are to be combined in the declared fashion. ype is a
keyword which is a defined type of combination; sce page 25. Order is a keyword whose
interpretation is up to fyoe; typically it is cither :base-Havor-first or :base-flavor-last.

Any component of a flavor may specify the type of methed combination to be used for a
particular message. If no component specifies a type of method combination, then the
default type is used, nanely :daemon. [f more than one component of a flavor specifies
it, then they must agree on the specification, or else an error is signalled.

:documentation
The list of arguments to this option is remembered on the flavor's property list as the
.documentation property. The (loose) standard for what can be in this list is as follows;
this may be cxtended in the future. A string is documentation on what the flavor is for;
this may consist of a bricf overview in the first line, then several paragraphs of detailed
documentation. A symbol is onc of the following keywords:

:mixin A flavor that you may want to mix with others to provide a useful
VY - feature.
:essential-mixin
A flavor that must be mixed in to all flavors of its class, or inappropriate
behavior will ensue. '

lowlevel-mixin
A mixin uscd only to build other mixins.

:combination A combination of flavors for a specific purpose.

:special-purpose
A flavor used for some internal or Kkludgey purpose by a particular
program, which is not intended for gencral use.

This documentation can be viewed with the si:describe-flavor function (see page 19) or
the editor’'s Meta-X Describe Flavor command (see page 30).

1.10 Flavor Families
The following organization conventions are recommended for all programs that use flavors.

A base flavor is a Ravor that defines a whole family of related flavors, all of which will have
that basc flavor as onc of their components. Typically the base flavor includes things relevant to
the whole family, such as instance variables, :required-methods and :required-instance-
variables declarations, default methods for certain messages, :method-combination declarations,
and documentation on the general protocols and conventions of the family. Some base flavors are

S complete and can be instantiated, but most are not instantiatable and merely serve as a base upon

DSK:I.MMAN;FLAVOR 55 16-JAN-81

Flavors 24 Vanilla Qavor

which to build other flavors. The base flavor for the foo family is often named basic- foo.

A mixin flavor is a flavor that defines one particular feature of an Hbject. A mixin cannot be
instantiated, because it is not a complete description. Fach module or feature of a program is
defined as a separate mixin; a usable flavor can be constructed by choosing the mixins for the
desired characteristics and combining them, along with the appropriate base flavor. By organizing
your flavors this way, you keep scparate features in separate flavors, and you can pick and choose
among them. Sometimes the order of combining mixins does not matter, but often it docs,
because the order of flavor combination controls the order in which dacmons are invoked and
wrappers are wrapped. Such order dependencies would be documented as pait of the conventions
of the appropriate family of flivors. A mixin flavor that provides the mumble feature is often
named mumble - mixin,

If you arc writing a program that uses somecone clse’s facility to do something, using that
facility's flavors and methods, your program might still define its own flavors, in a simple way.
The facility might provide a base flavor and a sct of mixins, and the caller can combine these in
various combinations depending on exactly what it wants, since the facility probably would not
provide all possible uscful combinations. Even if your private flavor has exactly the same
components as a pre-existing flavor, it can still be uscful since you can use its :default-init-plist
{sce page 20) to sclect options of its component flavors and you can define one or two methods to
customize it "just a little".

1.11 Vanilla flavor

Unless you specify otherwise (with the :no-vanilla-flavor option to defflavor), every flavor
includes the "vanilla" flavor, which has no instance variables but provides some basic useful
methods. Thus, nearly every instance may be assumed to handle the following messages.

sprint-self sweam prindepth slashify-p

The object should output its printed-representation to a strcam. The printer sends this
message when it encounters an instance or an entity. The arguments arc the stream, the
current depth in list-structure (for comparison with prinlevel), and whether slashification is
enabled (prin1 vs princ; see page 154 in the lisp Machine Manual). Vanilla-flavor
ignores the last two arguments, and prints something like #<flavor-name octal-address>.
The flavor-name tells you what type of object it is, and the octal-address allows you to tell
different objects apart (provided the garbage collector doesn’t move them behind your
back).

tdescribe
The object should describe itself, printing a description onto the standard -output stream.
The describe function sends this message when it encounters an instance or an entity.
Vanilla-flavor outputs the object, the name of its flavor, and the names and valucs of its
instance-variables, in a rcasonable format.

DSK:LMMAN;FILAVOR 55 16-JAN-81

Flavors ‘ 25 Method Combination

:which-operations
The object should return a list of the messages it can handle. Vanilla-flavor gencrates the
list once per favor and remembers it, minimizing consing and compute-time. If a new
method is added, the list is regencrated the next time somecone asks for it

:get-handler-for operation
"The object should return the method it uses to handle operation. If it has no handler for
that message, it should return nil. 'This is like the get-handler-for function (sce page
19), but, of course, you can only use it on objects known to aceept messages.

reval-inside-yourself form

The argument is a form- which is cvaluated in an cnvironment in which special variables
with the names of the instance variables are bound to the values of the instance variables.
It works to setq onc of these special variables; the instance variable will be modified.
This is mainly intended to be used for debugging. An especially uscful value of SJorm is
(break t); this gets you a Lisp top level loop inside the cnvironment of the methods of
the flavor, allowing you to cxamine and alter instance variables, and run functions that
use the instance variables.

:Tuncall-inside-yourself function &rest args
Jinetion is applied to args in an cnvironment in which special variables with the names of
the instance variables are bound to the values of the instance variables. It works to setq
one of these special variables; the instance variable will be modified, This is mainly
intended to be used for debugging.

1.12 Method Combination

As was mentioned carlier, there arc many ways to combine methods. The way we have seen
is call2d the :daemon type of combination. To usc one of the others, you use the :method-
combination option to defflavor (sce page 23) to say that all the methods for a certain message
to this flavor, or a flavor built on it, should be combined in a certain way.

The following types of method combination are supplied by the system. It is possible to
define your own types of method combination; for information on this, see the code. Note that
for most types of method combination other than :daemon you must define the order in which
the methods are combined, cither :base-flavor-first or :base-flavor-last. In this context, base-
flavor means the last clement of the flavor’s fully-cxpanded list of components.

Which method type keywords are allowed depends on the type of method combination
selected. Many of them allow only untyped methods. There are also certain method types used
for internal purposes.

:daemon This is the dcfault type of method combination. All the :before methods are
cailed, then the primary (untyped) method for the outermost flavor that has one is
called, then all the :after methods are called. The value returned is the value of
the primary method.

:progn All the methods are called, inside a progn special form. No typed mcthods are
allowed. This mcans that all of the methods are called, and the result of the
combinced mcthod is whatever the last of the methods returns.

DSK:IMMAN:FLAVOR 55 16-JAN-81

IFlavors 26 Method Combination

:or All the methods are called, inside an or special form. No typed methods are
allowed. This means that cach of the methods is called in wrn. If a method
returns a nen-n’t value, that value is returned and none of the rest of the
methods are called; otherwise, the next method is called. In other words, ecach
method is given a chance to handle the message: if it doesn’t want to handle the
message. it should return nil, and the next method will get a chance to try.

:and All the methods are called, inside an and special form. No typed methods are
allowed. The basic idea is much like :or; scc above.

list Calls all the m:thods and returns a list of their retrned values. No typed
methods are allowed.

inverse-list Calls each method with one argument; these arguments are successive clements of
the list which is the sole argument to the message. No typed mcthods are
allowed. Return: no particular value. If the result of a :list-combined message is
sent back with 1 :inverse-list-combined message, with the same ordering and
with correspondiag method definitions, each component flavor receives the value
which came from that fQavor.

Here is a table of all the method types used in the standard system (a user can add more, by
defining new forms of method-combination).

(no type) If no type is given to defmethod, a primary mecthod is created. This is the most
common type of method.

‘before '

:after These arc used for the before-dacmon and after-dacmon methods used by
:daemon method-combination.

default If there are no untyped methods among any of the flavors being combined, then
the :default methods (if any) arc treated as if they were untyped. . If there are any
untyped methods, the :default methods are ignored.
Typically a base-flavor (see page 23) will define some default methods for certain
of the messages understood by its famnily. When using the default kind of
method-combination these defauit methods will not be calied if a flavor provides
its own method. But with certain strange forms of method-combination (or for
examplc) the base-flavor uses a :default method to achieve its desired effect.

:wrapper Used internally by defwrapper.

:combined Used internally for automatically-generated combined methods.

The most common form of combination is :daemon. Onc thing may not be clear: when do
you use a :before dacmon and when do you use an :after dacmon? In some cases the primary
method performs a clearly-defined action and the choice is obvious: :before :launch-rocket puts
in the fuel, and :after :launch rocket turns on the radar tracking.

In other cases the choice can e less obvious. Consider the :init message, which is sent to a
newly-created object. ‘To decide what kind of dacmon to use, we observe the order in which
dacmon methods are called. Virst the :before dacmon of the highest level of abstraction is called,
then :before dacmons of successively lower levels of abstraction are called, and finally the :before

DSK:LMMAN;FLLAVOR 55 16-JAN-81

Flavors 27 Implementation of Flavors

dacmon (if any) of the base flavor is called. Then the primary method is called. After that, the
.after daemon for the lowest level of abstraction is called, followed by the :after dacmons at
successively higher levels of abstraction.

Now, if there is no interaction among all these methods, if th"‘ll’ actions _are completely
orthogonal, then it doesn’'t ‘matter whether you use a :before dacmon or‘an after dacmon. It
nakes a difference if there is some interaction. The interaction we are talking about is usually
done through instance variables; in general, instance variables are how the methods of different
component flavors communicate with cach other. In the case of the ‘init message, the init-plist
can be used as well. The important thing to remember is that no nethod knows beforchand
which other flavors have been mixed in to form this flavor; a 1acthod cannot make any
assumptions about how this flaver has been combined, and in what order the various components
arc mixed.

This means that when a :before dacmon has run, it must assume that none of the methods
for this message have run yet. But the :after dacmon knows that the :tefore dacmon for each of
the other flavors has run. So if onc flavor wants to convey information to the other, the first one
should "transmit" the information in a :before dacmon, and the second one should "receive” it in
an :after dacmon. So while the :before dacmons are run, information is "transmitted"; that is,
instance variables get set up. ‘Then, when the :after dacmons are run, they can look at the
instance variables and act on their values.

In the case of the :init method, the :before dacmons typically set up instance variables of the
object based on the init-plist, while the :after dacmons actually do things, relying on the fact that
all of the instance variables have been initialized by the time they are cailed.

Of course, since flavors are not hicrarchically organized, the notion of levels of abstraction is
not strictly applicable. However, it remains a uscful way of thinking about systems.

1.13 Implementation of Flavors

An cbject which is an instance of a flavor is implemented using the data type dtp-instance.
The representation is a structurc whose ﬁlS[word, tagged with dtp-insiance-header, points to a
structure (known to the microcode as an "instance descriptor”) containing the internal data for the
flavor, and whose remaining words arc value cells containing the values of the instance variables.
The instance descriptor is a defstruct which appcars on the si:flavor property of the flavor name.
It contains, among other things, the name of the flavor, the size of an instance, the table of
methods for handling messages, and information for accessing the instance variables.

defflavor creates such a data structure for each flavor, and links them together according to
the dependency relationships between flavors.

A message is sent to an instance simply by calling it as a function, with the first argument
being the message keyword. The microcode binds self to the object, binds the instance variables
(as special closure variables) to the valuc cells in the instance, and calls a dtp-select-method
associated with the flavor. This dtp-select-method associates the message keywerd to the actual
function to be called. [f there is only one method, this is that method, otherwise it is an
automatically-generated function which calls the appropriate methods in the right order. If there
are wrappers, they arc incorporated into this automatically-gencrated function.

DSK:LMMAN;FLAVOR 35 16-JAN-81

Flavors 28 Implementation of Flavors

“The function-specifier syntax (:method flavor-name optional-method-1ype message-name) 18
understood by fdefine and related functions. It is preferable to refer 10 methods (his way rather
than by explicit use of the flavor-method-symbol (sce page 15).

1.13.1 Order of Definition

There is a certain amount of freedom to the order in which you do defflavor’s, defmethod’s,
and defwrapper’s. This freedom is designed to make it casy to load programs containing complex
flavor structures without having to do things in a certain order. It is considered impottant that
not all the methods for a flavor need be defined in the same file. “hus the partitioning of a
program into files can be along modular lines.

The rules for the order of definition are as follows.

Before a method can be defined (with defmethod or defwrapper) its flavor must huvc_ been
defined (with defflavor). This makes sense because the system has to have a place to remember
the method, and because it has to know the instance-variables of the flavor if the method is to be
compiled.

When a flavor is defined (with defflavor) it is not necessary that all of its component flavors
be defined already. This is to allow defflavor’s to be spread between files according to the
modularity of a program, and to provide for mutually-included flavors (sec the :included-Havors
defflavor option, page 21). Methods can be defined for a flavor some of whose component
flavors are not yet defined. however in certain cases compiling those methods will produce a
spurious warning that an instance variable was declared special (because the system did not realize
it was an instance variable). In the current implementation these warnings may be ignored,
although that may not always be true in the future. ' ‘

The methods automatically generated by the :gettable-instance-variables and :settable-
instance-variables defflavor options (see page 20) are generated at the time the defflavor is
done, '

Fhe fisst time a flavor is instantiated, the system looks through all of the component flavors
and gathers various information. At this point an error will be signalled if not all of the
components have been defflavor'ed. This is also the time at which certain other errors are
detected, for instance lack of a required instance-variable (sce the required -instance -variables
defflavor option, page 21). The combined mcthods (see page 12) are generated at this time also,
unless they already exist. ‘They will already exist if compile-flavor-methods was used, but if
those incthods arc obsolete because of changes made to component flavors since the compilation,
new combined methods will be made.

After a flavor has been instantiated, it is possible to make changes to it. These changes will
affect all existing instances if possible. This is described more fully immediately below.

DSK:ILMMAN;FLLAVOR 55 ' : 16-JAN-81

Flavors 29 _ Implementation of FFlavors

1.13.2 Changing a Flavor

You can change anything about a flavor at any time. You can change the flavor's general
attributes by doing another defflavor with the same name. You can add or modify mecthods by
doing defmethod’s. If you do a defmethod with the same flavor-name, message-name, and
(optional) method-type as an cxisting mecthod, that method is replaced with the new definition.
Currently there is no good way to remove a method.

These changes will always propagate to all flavors that depend upon the changed flavor.
Normally the sysiem will propag: te the changes to all existing instances of the changed flavor and
all flavors that depend on it. However, this is not possible when the flavor has been changed so
drastically that the old instances would not work properly with the new flavor. This happens if
you change the number of instince variables, which changes the size of an instance. [t also
happens if you change the order of the instance variables (and hence the storage layout of an
instance), or if you change the component flavors (which can change several subtle aspects of an
instance). The system docs not tcep a list of all the instances of cach flavor, so it cannot find
the instances and modify them to conform to the new flavor definition. Instead it gives you a
warning message, on the error-output stream, to the cffect that the flavor was changed
incompatibly and the old instances will not get the new version. The system leaves the old flavor
data-structure intact (the old instances will continue to point at it) and makes a new one to
contain the new version of the flavor. 1If a less drastic change is made, the system modifies the
original flavor data-structure, thus affecting the old instances that point at it.

Onc cxception to this is that changes to defwrapper’s are never automatically propagated.
This is because doing so is expensive and the system cannot tell whether you really changed it or
just redefined it to be the same as it was. (Note that the initial definition of a wrapper is
propagated, but redcfinitions of it are not) Sce the documentation of defwrapper for more
details.

1.13.3 Restrictions

There is presently an implementation restriction that when using dacmons, the primary
method may return at most three values if there are any :after dacmons. This is because the
combined method needs a place to remember the values while it calls the daemons. This will be
fixed some day.

In this implementation, all message names must be in the keyword package, in order for the

flavor-method-symbols (sce page 15) to be unique, and for various tools in the editor to work
correctly.

DSK:LMMAN;FLAVOR 55 16-JAN-81

Flavors 30 Entitics

1.14 Entities

An entity is a Lisp object; the entity is one of the primitive datat 'pes provided by the Lisp
Machine system (the data-type function (see page 111 in the Lisp Machine Manualy will return
dtp-entity if it is given an entity). FEntities arc just like closurcs: they have all the same
attributes and functionality. The only difference between the two primitive types is their data
type: entities arc clearly distinguished from closures because they have a different data type. ‘The
reason there is an important difference between them is that various pars of the (not so primitive)
Lisp system treat them differently.

A closure is simply a kind of function, but an entity is assumed to be a message-recciving
object. Thus, when the Lisp pranter (sce sections 18.2 and 184 in the Lisp Machine Manual) is
given a closure, it prints a simple textual representation, but when it is handed an entity, it sends
the entity a :print-self message, which the entity is expected to handl: The describe function
(sce page 261 in the Lisp Machine Manual) also sends entities messages when it is handed (hem.
So when you want to make a message-recciving objeci out of a closurc, as described on page 7,
you should use an entity instead.

Usually there is no point in using cntities instcad of flavors. Entitics were introduced into
Lisp Machine Lisp before flavors were, and perhaps they would not have been had flavors already
existed. Flavors have bhad considerably more attention paid to efficiency and to good tools for
using them.

[The rest of this scction is not yet written. It would explain how to create entities, and how
the defselect function is used to make a function that dispatches on its first argumeint at relatively
high speed.]

1.15 Useful Editor Commands

Since we presently lack an cditor manual, this section briefly documents some editor
commands that are useful in conjunction with flavors.

meta-. :
The meta-. (Edit Definition) command can find the definition of a flavor in the same
way that it can find the definition of a function.

Edit Definition can find the definition of a method if you give

(:method flavor ype message)
as the function name. The keyword :method may be omitted. Completion will occur on
the flavor name and message name as usual with Edit Definition.

meta- X Describe Flavor

+ Asks for a flavor name in the mini-buffer and describes its characteristics. When typing
the flavor name you have completion over the names of all defined flavors (thus this
command can be used to aid in guessing the name of a flavor). The disptay produced is
mouse sensitive where there arc names of flavors and of mcthods; as usual the right-hand
mouse button gives you a menu of operations and the left-hand mouse button docs the
most common operation, typically positioning the editor o the source code for the thing
you arc pointing at,

DSK:LMMAN;FLLAVOR 55 16-JAN-81

FFlavors 3 Useful Editor Commands

meta-X List Methods

meta-X Edit Methods
Asks you for a message in the mini-buffer and lists all the flavors which have a method
for that message. You may type in the message name. point to it with the mouse, or let
it default to the message which is bcing sent by the Lisp form the cursor is inside of.
List Methods produces a mouse-sensitive display allowing vou to edit selected methods or
just sce which flavors have methods. while Edit Mecthods skips the display and proceeds
dircetly to editing the methods. As usual with this type of command, the editor
command control-. is redefined to advance the editor cursor to the next method in the
list, reading in its source file if nccessary. Typing control-. while the display is on the
screen cdits the first method.

meta- X List Combined Methods

meta- X Edit Combined Methods
Asks you for a message and a flavor in two mini-buffers and lists all the methods which
would be called if that message were sent to an instance of that flavor. You may point to
the message and favor with the mousc, and there is completion for the flavor name. As
in List/Edit Mcthods, the display is mousc sensitive and the Edit version of the command
skips the display and proceeds directly to the editing phase.

List Combined Mecthods can be very useful for telling what a flavor will do in responsc 10

a message. It shows you the primary method, the dacmons, and the wrappers and lets
you sec the code for all of them; type control-. to get to successive ones.

DSK:LMMAN:FLAVOR 55 16-JAN-81

Flavors

ali-flavor-names Variable
:describe Message .
seval-inside-yourself Message
:funcall-inside-yourself Message
:get-handler-for Message
:print-self Message
:which-operations Message
base-flavor

combined-method
compile-flavor-methods Macro
declarc-flavor-instance-variables AMacro
defflavor Macro

defmethod Macro

defwrapper Macro

flavor . .

flavor-method- symbol

funcall-sclf Function

get-handler-for Function

instance .

instantiate-flavor F unctzon

lexpr-funcall-self Function
make-instance Function

message

method

mixin

object

recompile-flavor I“uizclzon

self Variable

set-in-instance Function

si:*flavor-compilations* Function

si:describe-flavor Function

symeval-in-instance Function

32

Index

Index

16-JAN-81

