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2 Introduction

1. Introduction

An increasing range of computer applications deal with models of two- and three-dimensional
objects. In these applications, objects must often be placed among other objects or moved in such
a way so that no interference from. ncarby objects result. In this paper, these types of problems
are called spatial planning problems. Among the many applications where spatial planning plays an
important role are:

1. Planning the layout of a building [8], i.e. the arrangement of walls, corridors, rooms, and

equipment so as to fulfill a user’s design constraints as well as implicit consistency constraints.

2. Planning how to machine a part using a Numerically Controlled Machine Tool [47], which

requires plotting the path of one or more cutting surfaces so as o produce the desired part.

3. Planning the layout of an 1C chip [45] so as to minimize arca, subject to geometric design
constraints,

4. Planning how to assemble a part using an industrial robot [18] [19] [38], which requires

choosing how to grasp objects, move them without collisions and bring them into contact.

Problems in spatial planning generally involve (at least) two important types of considerations:

1. Geometric — The legal solutions must be characterized, which involves considering inter-

actions between the shapes of objects and obstacles.

2. Optimization — The best solution must be chosen from among the legal solutions.

. This paper deals primarily with computing constraints on the position of an object due to the presence
of obstacles, thus its focus is on the geometric aspect of spatial planning. The development throughout
will be based on polyhedral object models, although many of the results and approaches are ap-
plicable to other classes of object models.

Recently, there has been a rapid‘growth of interest in efficient algorithms for geometric problems.
Previous work! has focused on algorithms for (1) computing convex hulls [9] [12] [15] [29], (2) inter-
secting convex polygons and polyhedra [5][24] [33] [35], (3) intersecting half-spaces [7] [30] (4) decom-

posing polygons [32], and (5) closest-point problcms [34]. This paper formulates two other geometric

The references cited here are representative of the current literature; they are by no means a complete survey.
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problems, Findspace and Findpath, with important applications in spatial planning, describes an
approach to their solution and presents algorithms for the central problem posed by the approach.

Previous work on these problems is bricfly reviewed in Section 11.

2. Spatial Planning Problems

LLet R be a convex polyhedron that contains &j; other, possibly overlapping, convex polyhedra B;
designated as obsiacles. 1.ct A be the union of k. convex polyhedra 4;, ic. A = Ui'j_,l A;. Figure
1 iMlustrates two related geometric problems, defined below (where position is used to mean both
translation and orientation):

1. Findspace — Find a position for A, inside R, such that ViVj: A; N Bj = §. This is called a

safe position.

2. Findpath — Find a path for A from position s to position g such that A is always in R and A

never overlaps any of the B;. This is called a safe path.

Versions of the Findpath and Findspace problems occur in many spatial planning applications.
For example, the approaches to object layout (template packing) in [1] [2] [3] and [10] are based on
solutions to Findspace in two-dimensions. Also, systems for programming industrial robots using
object models [20] [38] must solve 3-dimensional Findspace and Findpath problems when choosing

grasp points on objccts or paths for the robot.

3. The C'space Approach to Spatial Planning

In this section, an overview of the Configuration Space approach to spatial planriing will be
presented. Sections 5 through 10 discuss the approach more formally.

The position and orientation of a rigid solid can be represented as a single 6-dimensional point,
called its configuration. The 6-dimensional space of configurations for a solid, A, is called its
Configuration Spacc and denoted C'spaces. For example, a configuration may have one coordinate

value for cach of the z, y, z coordinates of a sclected point on the object and one coordinate value for
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Figure 1. The definition of R, B, and A for Findspacc and Findpath problems in two dimen-
sions. (a) The Findspace problem is to find a position for A which does not overlap any of the
B;. (b) The Findspace problem is to find a path for A from s to ¢ that avoids the B;.
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Figure 2. The Cspacey obstacle due to B, for fixed orientation of A.

cach of the object’s Euler angles? . in general, an n-dimensional conﬁgufation space can be used to
model any system that can be characterized with n parameters. An example is the configuration of
an industrial robot with n joints, where n is typiqally 5 or 6. In Cspacey, the set of configurations
where A overlaps B will be denoted CO,4(B), the Cspacey Obstacle due to B. Similarly, those
configurations where A is completely inside B will be denoted C'Ly(B), the Cspace,y Interior of B.
Together, these two Cspaces constructs embody all the information needed to solve Findspace and
Findpath problems.

If the orientation of a convex polygon A is fixed, C'spacey is simply the (z, y) plane. This
is so because the (z, y) position of some reference vertex rv4 is sufficent to specify the polygon’s
configuration. In this case, the presence of another convex polygon B constrains rv,4 to be outside
of CO4(B). a larger convex polygon, shown as the shaded region in Figure 2. Thus, the Findspace
problem can be transformed to the equivalent problem of placing rv4 outside of COx(B), but inside

CI4(R). Similarly, for multiple obstacles B;, a location for A is safe iff rv, is not inside any of the

2The relative rotation of one coordinate System relative to another can be specified in terms of three angles usually
referred to as Luler angles [43). These angles indicate the magnitude of three successive rotations about specified axes,
but no uniform convention for the choice of axes exists.
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Figure 3. The Tindpath problem and its- formulation using the COZY(B)). The shortest collision-free paths

connect the origin and the destination via the vertices of the C'O polygons.

CO4(B)), but is inside CT(R). Subsequent sections discuss algorithms for CO4(B) and CI(B).

If the orientation of A is fixed, then the Findpath problem for the polygon 4 among the B; is
cquivalent to the Findpath problem for the point rv, among the CO4(B;). When the CO4(B;) are
polygons, the shortest® safe paths for rv, are piccewise lincar paths connccting the start and the
goal via the vertices of the CO polygons, Figure 3. Therefore, Findpath can be formulated as a
graph scarch problem. The graph is formed by connecting all pairs of CO vertices (and the start
and goal) that can "see” cach other, i.c. can be connected by a straight line that does not intersect
any of the obstacles. The shortest path from the start to the goal in this visibility graph (Vgraph) is
the shortest safe path for A among the B; [21]. This algorithm efficiently solves Findpath problems
when the oricntation of A is fixed, but the paths it finds are very susceptible to inaccuracics in the
object model. Thésc paths touch the C'spaces obstacles, therefore if the model were exact, an object
moviﬁg along this type of path would just touch the obstacles. But an inaccurate model may result in
a collision. Furthermore, the Vgraph algorithm with three-dimensional objects and obstacles does not

find optimal paths.

3This assumes Fuclidean distance as a metric. For the optimality conditions using a rectilinear (Manhattan) metric, see
[16]. .
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Figure 4. Slice projections of C'space, obstacies computed using the (r, y)-area swept out by A over a
range of 0 valucs. Lach of the shaded obstacles is the (x, y)-projection of a f-slice of C'O,(B). The figure
also shows a polygonal approximation to the slice projection and the polygonal approximation to the swept
volume from which it derives.

When A is a three-dimensional solid which is allowed to rotate, CO \(B) is a complicated curved
object in a 6-dimensional C’spac‘eA. Rather than compute thesc objects directly, the approach taken
here is to use a sequence of two- and three-dimensional projections of the high-dimensional Cspace,
obstacles. In particular, the 6-dimensional C'space, obstacles for a rigid solid can be approximated
by scveral 3-dimensional projections of CO slices. A j-slice of an object C € R is defined to be
{(Br,...B)EC |7 <6< v; }» where v; and v} arc the lower and upper bounds of the slice,
respectively. Then, if K is a sct of indices between 1 and n, a K -slice is the intersection of all the j-
slices for 7 € K. Notice that a K-slice of C is an object of the same dimension as C. Slices can then

be projected onto those coordinates not in K to obtain objects of lower dimension.

As an example of the slice projection tcchnique, Figure 4 shows, shaded, the (z, y) projection of

f-slices of CO4(B) when A and B are convex polygons. These slises represent configurations where
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A overlaps B for some orientation of A in the specified range of 8. Section 10 shows that these slice
projections are the Cspace y obstacles of the arca (volumce) swept out by A over the range of orienta-
tions of the slice. Note that approximating the swept volume as a polyhedron leads to a polyhedral

approximation for the projected slices, as shown in Figure 4.
The slice projection technique has two important properties:

1. A solution to a Findspace problem in any of the slices is a solution to the original problem,
but since the slices are an approximation to the C'space obstacle, the converse is not necessarily

true.

2. 'The slice projection of C'space,y obstacle can be computed without having to compute the

high-dimensional C'space, obstacle, sce Section 10.

The slice projection method can also be used to extend the Vgraph algorithm described carlier to
find safe (but sub-optimal) paths when rotations of A are allowed [21]. A number of slice projections
of the Cspace obstacles are constructed for different ranges of orientations of A. The prob]em of
planning safe paths in the high-dimensional C'spacey is decomposed into (a) planning safe paths
via CO vertices within each slice projection and (b) moving between slices, at configurations that
arc safc in both slices. Both of these typcs of motions can be modelled as links in the Vgraph,
therefore the complete algorithm can be formulated as a graph scarch problem. This approach is
ilustrated in Figure 5. However, the Vgraph algorithm has several drawbacks when the obstacles are

3-dimensional. In particular,
1. Optimal paths in higher dimensions do not typically traverse the vertices of the C'space
obstacles.

2. In higher dimensions, there may be no paths via vertices, within the enclosing polyhedral

region R, although other types of safe paths within R may exist.

These drawbacks may be alleviated by introducing additional nodes in the Vgraph which do not

correspond to vertices [21]. An alternative strategy to finding safe paths in C'space4 is discussed in

[20]. -
The key to the C'space approach outlined abo;/e is computing the C'space obstacles; the rest of

the paper is devoted to this problem.
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Figure 5. An illustration of the Findpath algorithm using slice projeciion deseribed by 1.ozano-Perez and
Wesley in [21]. A number of slice projections of the (Cspace obstacles are constructed for different ranges
of orientations of 1. The problem of planning safe paths in the high-dimensional C'space is decomposed
into_ (1) planning safe paths via 'O vertices within each slice projection and (2) moving between slices, at
configurations that arc safe in both slices. Ay represents A in its initial configuration. A3 represents A in its
final configuration and A, is a simple polyhedral approximation to the swept volume of A between its initial
and final orientation.

4. Notation and Conventions

A1l geometric entities — points, lines, edges, planes, faces and objects — will be treated as
(infinite) sets of points. All of these entities will be in R*, the k-dimensional real Euclidean space. a,
b, z, and y shall denote points of R, as well as the corresponding vectors. A, B, and C shall denote
sets of points in R¥, while I and K shall denote sets of integers. «, 8, and S, shall denote reals, while
n, 1, J,k shall be uscd for integers. The coordinate representation of a point ¢ € R™, for any n, shall
bec = (1) = (V,..., ). The magnitude of a vector a will be ||al| and the cardinality of a set A
will be |A[. The scalar (dot) product of vectors a and b will be denoted {a, b).

The following operations are defined on sets of points in R™:
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Figure 6. linked Pblyhedra can be used to model the gross geometry of manipulators.

APB={a+blacAbeB}
OCA={—ala€EA} :
1T set A consists of a single pointa, thena@ B = {a } B = AP B. Also, AOB = AG (SB).
Note that, typically AQ A 5% {2a |a € A} and A S A £ §, although A B B = B @ A. The set
difference and set complement operations will be denoted A — B and —A respectively.
Rigid objects will be represented as sets of possibly overlapping convex p()l)}hdi}ﬂ sincc this repre-

sentation simplifies the algorithms for computing CO. Theorem 1 below follows directly from the

definition of CO; it justifies the usc of this object representation.

Theorem 1: If A = (J52 A, and B = J*2 B;:

i=l j=1

ka kB :
c0B) = |J |J conB)).

i=1j=1
The position and orientation of a polyhedron will be defined relative to an initial position and
oricntation. In this initial position, some vertex of the polyhedron coincides with the origin of the
global coordinate frame. For a polyhedron P, this vertex is called the reference vertex of P, or rup.
In the sequel, a different kind of object, called Linked polyhedra, is used. These objects are

kinematic chains with polyhedral links and prismatic or rotary joints? Figure 6. The relative position

4Joints are represented abstractly, ie. their representation as polyhedra do not determine their motion properties. In
particular, some values of the joint parameters may cause overlap of adjacent links.




11 Configuration Space and ("space Obstacles

and orientation of adjacent links, A; and Ay, is determined by the i joint parameter (angle) [26).
The set of joint parameters of a linked polyhedron completely specifies the position and orientation of

all the links.

5. Conlfiguration Space and C'space Obstacles

The configuration of a k-dimensional polyhedron, A, is a pointa = (v, ..., ) € R, withd =
k 4 (5): where (i, . . ., )is the position of rv. and (V-1 - - -, W) are the Fuler angles specifying
the orientation of A relative to its initial orientation. The configuration of a linked polyhedron having
d joints is the d-vector of the joint parameters. The d-dimensional space of configurations of A is
denoted C'space,. A in configuration z is (A),; A in its initial configuration is (A)o.

The fundamental observation about Configuration Space is that, in Cspace,, the (A); is repre-
sented by the vector z. Given this, the basic problem in the Cspace approach to spatial planning is to
define how the obstacles B; map into C'space,. The mapping chosen here exploits two fundamental
propertics of objects: Their Irigidity, which allows their configurations to be characterized by a few

parameters, and their solidity, which requires that a point not be inside more than one object.

Definition: The Cspace obstacle due to B, denoted CO,(B), is defined as follows:
CO4(B) = {z € Cspaces | (A),NB # B}

Thus, if z € CO4(B) then (A), and B cither touch or overlap. Conversely, any configuration
z & CO4(X) (for all obstacles X) is safe. The following defines a C'space entity complementary to
CO4(B).

Definition: The C'space interior of B, denoted CI4(B), is defined as follows:
CI4(B) = {z € Cspacea | (A) C B}

The scts CO4(B) and CI4(B) are difficult to compute and manipulate since they are curved,

6-dimensional objects when A and B are polyhedra. Instead, this paper will deal with projections

5

- of stices and cross-sections® of CO4(B). For example, for fixed Euler angles of A, the Cspacey

5A cross-section is a slice whose lower and upper bounds are equal.




12 The Sliding Algorithm for CO%Y

obstacle duc to B is denoted CO'Y3(B) indicating that it is a set of zyz positions, rather than the
full configurations. CO'V*(B) is the projection onto the z, y, z cordinates of an Fuler angle cross-
section®

e.g. COY(B) and COTY?(B) denote sets of (z, y) and (z, y, 8) values respectively.

In general, the superseript to CO and CT will indicate the composition of their members,

6. 'The Sliding Algorithm for CO*Y

This section presents a "naive™ algorithm for computing COY(B) when A and B are convex
polygons and the orientation of A is fixed. Tn subsequent sections, more cfficient algorithms are
presented for this case.

When the orientation of A is fixed, the configurations of A are simply the positions of the
reference vertex rua. Clearly, the boundary of CO4(B) is the locus of rv4 where A just touches B.
This suggests a simple algorithm for computing CO?¥(B): slide A around the perimeter of B and
trace the path of rv4. The term sliding is merely suggestive: in practiée, knowing which vertex first
touches an edge completely defines the path of ru4 over that edge.

"The central step of this STiding algorithm is to determine what point (or edge) of A first contacts
cach edge of B and vice versa, Iigure 7. The normal vector of cach edge of B defines an approach
direction for the edge. If A is moving from a great distance towards an cdge of B along the normal
dircction, and no edge of A is parallel to one of B, then contact will first happen at a vertex of A. This
contact vertex is the one with the minimum perpendicular distance to the cdgc of B. As this vertex
"slides™ along the edge of B, rv4 traces an edge of COZY(B) which is parallel to the edge of B and
of cqual length. But this edge is displaced by the distance from the contact vertex to rv4, projected
along the normal to the edge of B. Interchanging the roles of A and B shows that cach edge of A and
some vertex of B gives rise to an cdge of COYY(B). This new cdge is traced out by rv, as the edge
of A "slides” along the contact vertex of B; therefore, the new edge is parallel to the edge of A and
of equal length, but displaced from the contact vertex of B by the perpendicular distance between the
cdge and rva. If A and B have pairs of parallel edges, then CO%Y(B) will have a parallel edge for
each such pair, displaced as above, but whose length is the sum of the two edges.

SWhen A4’s orientation is fixed, we assume without loss of generality that A is in its initial orientation, ie. A is simply
(A)o displaced by some 3-vector z.
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Figure 7. Hlustration of Sliding algorithm, cv are conlact vertices.

The Sliding algorithm nceds O(]edges(A)l X ledges(B)|) operations to compute CO%¥(B) for
convex A and B. This is not optimal; Section 8 describes an O(|edges(A)| - ledges(B)|) algorithm
for this task.

The Sliding algorithm derives the edges of COYY(B) ﬁbm the interaction of one of (a) an edge

of B and a vertex of A, (b) an edge of A and a vertex of B, or (c) an edge of A and an edge of

B. Similarly, cach face of COZY*(B), for A and B convex polyhedra, can be computed from the
interaction of one of

a. aface of A and a vertex of B or a face of B and a vertex of A,

b. aface of A and a coplanar edge of B or vice versa,
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Tigure 8, Mlustration of the Proof of Theorem 2. Any location of 7v4. in this case ¢, for which A and BB have a
point in common (cxpressible as b and a’), can be expressed as ¢ = b—a’. Therefore, COZY*(B) = BS (A)q.

¢. ancdge of A and a non-parallel edge of B,

d. aface of A and a coplanar face of B.

7. Vector Set Sums and Configuration Space Obstacles

The fundamental result of this section is the following:

Theorem 2: For A and B, sets in R, CO%¥*(B) = B & (A)o.

Proof: If ¢ is an (z, y, ) configuration of A then (A). = ¢ @ (A)y. Therefore, if a € (A), then
a = a’+c, where a’ € (A)y, see Figure 8. Ifb € BN(A),, then b = a’ 4 ¢ and therefore ¢ = b—a'.
Clearly, the converse is also true. '

|
If A and B are convex then A @ B and A © B are also convex [13 p.9], therefore CO%Y*(B) i

convex. Also, for B and A in their initial configurations,

COF((A)) = ((4)o © (B)o) = OCOZ¥((B)o).
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Fignre 9. Characterization of (”I*Y in terms of sct addition. The outermost polygon is I3, the innermest is
C'13Y(B). The dashed polygons are copics of (1)g placed at vertices of 13, therefore the convex hull of the
inner polygon and these dashed polygons is C'13Y(13) 5 ()¢ by Theorem 4. Note that C'I4Y(B)d5(A)o # B,
the shaded regions are I3 — (C'T5Y(13) 3 (A)o).

A related characterization of CITV¥(B) is also possible. For ¢ an (z,y,2) configuration, if ¢ €
CIZ¥*(B), then ¢ & (A)o C B. Since CT 4V%(BY) is the set of all such ¢, then CT3¥*(B) @ (A)o C B

and furthermore CI3V*(B) is the maximal such set, see (a) and (b) below. Clearly, if B = X @ (A)o
then X = CI4Y*(B), sce (c). Figure 8 illustrates these results.

Theorem 3: For A and B convex polyhedra,
(@) VX:XP(A)o CB =X C CI¥*(B)
() CI*B)@ (Ao B
(c) CI ;yz(cog/;(B)) = B
Note also that CI4(B) = —CO4(—B), i.c. for A to be inside B, it must be outside of B’s

complement,
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8. Algorithms for COY*(B) and CO%Y(B)

Theorem 4 provides a way of computing CO*(B) exaclly for convex A and B. In addition, it
provides an approximation technique for CO%Y*(B) when A and B are non-convex.

Theorem 4: For polyhedra A and B,

conv(A (B B) = conv(A) B conv(B) = conv(vert(A) @ vert(B))

where conv(X) denotes the convex hull 7 of set X and vert(X) is the set of vertices of X.

Proof: Iirst show that conv(A B B) == conv(A) @ conv(B).
2 |

The definition of convex hull states that any a € conv(A) can be expressed as an affine combina-
tion of points in A. This may also be done for any b € conv(B). If € conv(A) @ conv(B),
a € conv(A).b € conv(B),a; EAb; EB, Y. v =17 >0, }:jﬁj = land 8; > 0 then

s=a+b= (3 va)+b=> (a+b)
i i

7 g . r -
= Z7i Eﬁj(“i +b;) = EZ%Q;((M + b))
1 j . J

i
But, since ZiZj viB; = 1 and v,8; > 0, z is an affinc combination of points in A @ B and
therefore belongs to its convex hull. Therefore conv(A) @ conv(B) C conv(A @ B).
(<)
Ifz € conv(A @ B), then fora; € A and b; € B,

T = Z’n(az‘ +b;) = E via; + Z'Yibi-

Therefore, z € conv(A) @ conv(B).

This establishes that conv(A @ B) = conv(A) & conv(B). Replacing vert(A) for A and vert(B)
for B and using the fact that conv(A) = conv(vert(A)) [13], shows that conv(vert(A) @ vert(B)) =
conv(A) @ conv(B).

1

"The convex hull, conv(A), of a nonempty set A C R? is {Z:.—_x'7fzi | z; € A, v =0, 2:;1 = 1ln=
1,2,...} [13 p15] '
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Corollary: For convex polyhedra A and B,A B B = conv('vert(A) ) veri(B)) and therefore
CO¥(B) = conv(vert(B) & vert((A)o)).

Proof: The first part of the corollary follows dircctly from the fact that, for convex A, A =
conv(A). The second part follows from Theorem 2.
1

Many algorithms cxist for finding the convex hull of a finite sct of points on the plane, e.g. [9]
[12] [15] [29]. [29] also describe an efficient algorithm for points in R3. These algorithms are known
to run in worst-case time O(wv log v), where v is the size of the input sct. Therefore, Theorem 4 leads
immediately to an algorithm for CO™# and an upper bound on the computational complexity of the

problem.

Theorem 5: For convex A, B C ®?, CO%¥*(B) can be computed in time O(n?logn); where
n = |vert(A)| 4 |vert(B)].

Proof: The sct vert(B) © vert((A)o) is of size [vert(A)] X |vert(B)], i.c. O(n?). Applying an
O(v log v) convex hull algorithm to this set gives an O(n? log n) algorithm for computing CO%¥*(B).
This result holds only for convex polyhedra of dimension k << 3[7].

The algorithm of Theorem 5 is not optimal; an O(n) algorithm exists for CO*Y(B) when A and B

are convex polygons® :

Definition: 7(A, u) denotes the supporting plane (line) of A with outward normal u. (A, u)
contains at least one boundary point of A, call it a, and for any o’ € A then {a/, u) < {a, u). Thus, all

of A is in one of the closed half spaces bounded by 7(A, «) and u points away from the interior of A.

Lemma 1: If A and B are convex sets then

(A D B,u) N (A B B) = (n(4, u) N 4) & (n(B, u) N B) 1)

8The development in this section is based on that in Section 14 of [4]
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Figure 10. Tlustration for Lemma 1.

Lemma 2:

(a) et s(ay, az) be a line segment and b a point, then s(ay, ay) @ b = s(a; + b, as + b) is a line
segment parallel to s(a;, a,) and of equal Iength. Sce Figure Il(é).

() Let s(ar, ag) and s(by, b,) be parallel line segments such that (a; — a;) = k(by — by) for
k > 0. Then s(ay, az) @ s(by, by) = s(a; + by, ay + by) and the length of the sum is the sum of the

lengths of the summands. See Figure 11(b).

Theorem 6: For convex polygons A and B, COYY(B) can be computed in worst case time

O(|vert(A)| 4+ |vert(B)]).

Proof: For fixed u, cach term on the right hand side of (1) is either a line scgment (edge) or a

single point (vertex), it follows from Lemma 2 that the term on the left is one of:

2. anew vertex, when two vertices are combined;

b. adisplaced edge, when an edge and a vertex are combined (Lemma 2a);




19 Algorithms for CORYZ(B) and CO%Y(B)

a:-+b

a, ’ a
ath,

a+bh

‘ob

a

Figure 11. Mlustration for Temma 2.

¢ apairof displaced end-to-end edges, when two cdges are combined (I.emma 2b).

As u rotates counterclockwise, the boundary of A @ B is formed by joining a succession of these line
segments. Note that, because of the convexity of A and B, cach cdge is encountered exactly once [22 |
p.13].

A polygon is stored as a list of vertices in the same order as they are encountered by the coun-
terclockwise sweep of u. This is cquivalent to a total order on the edges, bascd on the angle that the
cdge makes with the z axis. For a polygon P, assume the j* edge in this order, ej == 8(vj, vjt1),

makes the angle 0;, then
vy, if 9]'__.1 < G(u) < 9j
7(P,u)NP = (¢, if (u) = 6;
vkt 10 <O(uw) < i

The time for constructing the new vertices is bounded by a constant, since it involves at most two

vector additions. Thus A €0 B can be computed in linear time during a scan of the vertices of A and
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Figure 12. The edges of B3 (A)o, when A and B are convex polygons, are found by merging the edge
lists of I3 and <(A)g, ordered on the angle their normals make with the positive = axis.

B, Figure 12. An implementation of this operation is shown in Appendix 1. Similarly B & (A)p can be

computed in linear time by first converting each vertex a; to rvq — a,, Figure 12.

When A and/or B are non-convex polygons, COZ¥(B) can be computed by an extension of
the algorithm above. The mcthod rclies on decomposing the boundaries of the polygons into a
sequence of polygonal arcs whose internal angles, i.c. the angle facing the inside of the polygon,
are cach less than m. The algorithm of Theorem 6 can then be applied to pairs of arcs; the result
is a polygon whose boundary, in general, intersects itself. The algorithm requires, in the worst case,

£ O(ledges(A)| X |edges(B)]) steps [20].
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9. Dealing with Rotations of A

If A and B are polygons, then CO4(B) is an object in R”, denoted COWY(B). The shape of
C’Of\yo(B), when A and B are convex, will be investigated below by examining changes in the cross-
sections® of COZY? as  changes.

Assume a fixed value for 0. If A and B have no parallel edges, the proof of Theorem 6 shows that

cach edge of CO%Y(B) can be expressed as one of:

ef = b D s(a:(6), ai1(0)) (2a)
¢} = ai(0) @ s(bj, bj41) (20)

In these expressions, b; is the position vector of the 5" member of vert(B) and a,(0) is the position
of the 7" member of vert(©(A)g). which depends on 6. The order in which the a; and b; are
encountered in the counterclockwise scan described in Theorem 6 determines the (2, 5) pairings of
vertices and edges.

Equation (2) shows that, for small changes in 0, the e rotate around b;, while the eg. are simply

Tyl

displaced, Figure 13. In addition to these changes in the zy-cross-section of COTY, there are discon-

tinuous changes at valucs of 8, denoted 0:, where an edge from A becomes parallel to one from B. For
valucs of @ just greater than these 0:. this pair of edges has a different order in the scan of Theorem
6 from what they had when @ was just less than 0:. Therefore, the (¢, 7) pairings between edges and
vertices changes. There arc O(ledges(A)| X |edges(B)|) such 0] in COZYY,

Between discontinuities, the lines defined by eg cdges have a simple dependence on 8. The edge
s(bj, bjt1) is on a linc whose vector equation is: (z,u;) = (bj, u;) where u; is the constant unit
normal to s(bj, bt 1). L.ct a;(0) make the angle 6 -+ n; with the z axis, with n; constant, and u; make

the angle ¢; with the z axis. Then, the equation for the line including eg- is

(uj, 7) = (u;, a;(0) + bj)

= llaill cos(0 -+ 1 — ;) -+ (b5, us) 3)

The terms are illustrated in Figure 14. This equation holds only for§ € [¢; — n;, ;4.1 — ;] between
discontinuitics; but within that interval it defines a plane in the space (z,y, cos@). This space is

analogous to that defined by semi-log graph paper. As long as the #-interval is known and cos™1! is

9The cross-section of CijB(B), for constant 8, is COZY(B).
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Figure 13. CO%Y(B) is the convex hull of the union of ev(rt(@(,»1)bi) for each b; € vert(B3). When A

(and (1)) rotates by 0, the €7 rotate around b; and the (:g- are displaced. When an ef is aligned with

an eg for some 0, any extra rotation wiil interchange the order in which they are encountered during the
counterclockwise scan of Theorem 6.

single valued over the interval then the mapping from (z, y, cos0) to the (z, y, 8) space is unique. The
@-ranges can always be chosen so that this is the case.

The €f cannot be treated in a similar fashion because the orientation of the edge changes with 8,
Le. the cquation of the surface involve products of the form z cos@ and y cosf. Instead of trying
to represent them exactly by non-planar surfaces, this scction develops a simple approximation tech-
nique that avoids dealing directly with these cdges. The technique will be illustrated first for CO%¥
and later for CO?Y8,

For fixed 6, if the lines defined by the e'J’- are extended until they intersect, the resulting figure
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Figure 14. Illustration of terms in cquation (3). -

completely includes COZY(B). This approximation can be very poor when the angle defined by ad-
jacent c’; is very acute, sce Figure 15. The approximation can be improved by introducing additional
lines whose normals point between those of 6’5'-__ , and eg. These lines should be farther from b; than

any of the ef paired with b; in (2a).

This method can also be used to approximate the slice of CO%¥’(B) between discontinuitics. The
eg and the lines to bound the ef edges both define planes in (z, y, cos) space, see (3), for some range
of #-values. The boundarics of the f-intervals also define planes whose equations are of the form
0 = ¢; — m;. These plancs b(njnd half-spaces whosc intersection defines a convex polyhedron in
(z, y, cosf). This polyhedron contains all of C’ij” within the f-interval. Therefore, it can be used
to approximate Cij" over that interval. The union of the resulting convex polyhedra for cach 6-

interval is an approximation to CO%°,

The discussion above shows how to build a set of n = ledges(B)| + |vert(B)] half spaces

bounding CO;U"(B) within cach @-range. These half spaces can be intersected to construct a convex
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Figure 15.  Approximating C'O%Y(3) using only the e;’- works well at vertices with large interior angle, but

poorly for small interior angles. The lines shown dashed can be used to improve the approximation.

polyhedron in O(nlog n) time [7] [30]. There arc O(|edges(A)| X |edges(B)|) 8-ranges that need to
be considered; therefore, the complete approximation may be found in O(n?log n) time, although in
many applications, a complete approximation might not be necessary.

The same techniques can also be applied to computing C'I‘f\“"(B) and since the CT only has cdges
of the form (2b), the resulting polyhedra in (z, y, cos §) arc an exact representation of the Cspaces
entity [20].

This approximation is, in principle, applicable to polyhedra in 3-dimensions; the results would be
a sct of polyhedra in 6-dimensions. The extension is conceptually simple, but the difficultics of deriv-
ing and representing the three-dimensional orientation constraints make the approach unattractive.
The next scction examines an alternative to dealing with the high-dimensional polyhedra required by

this technique.

10. Approximating High Dimension Cspace Obstacles

Scction 3 introduced the use of projections of obstacle slices as a means of approximating high

dimensional C'space Obstacles. Figure 16 shows a decomposition of Cspace, C R3 into a family
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Figure 16. = slice projections. This example shows the slice projections decomposing C’spaceA
into four Cspacealv;, Yj+1].
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of slices Cspace[7), vj4-1]. Fach of these new Cspaces is a z slice projection of C'spacey. This
new family of spaces is a conservative fcp1‘050111ati()11 of the obstacles, i.c. it represents the worst case
constraints on configurations of A whose z coordinates are within the range [Yj» Y1)

The power of the slice projection approach is that the family of slices captures all the constraints
needed to plan safe paths in Cspacey. Having all the slices of the CO4(B;), there is no need to
refer to the CO4(B;) themselves. On the other hand, the algorithms in the Sections 6 through 9 are
for cross-sections of CO,(B), e.g. COZ¥ and CO%?, not for slice projection. The basic result of
this scction is that thesc algorithms can be used to compute polyhedral approximations to the slice
projections.

The construction that relates slice projcctiohs to cross-section projections is the swept volume of an
object. Intuitively, the swept volume of A is all the space that A covers when moving within a range of
configurations. In particular, given two configurations for A, called ¢ and ¢/, then the union of (A), for
alle < a < s the swept volume of A over the configuration range [c, ¢’]. Generally, ¢ and ¢’ differ
only on some subset, K, of the configuration coordinates. For example, if ¢ and ¢ are of the form
(81, B2, B3) and K = {3}, then the swept volume of A over the range [c, ¢/] refers to the union of A
over a set of configurations differing only on 8. The swept volume of A over a configuration range is
denoted Ale, dk.

The swept volume of A, a rigid object, is also a rigid object'® with the same number of degrees of
frecdom. For linked polyhedra, the situation is not so simple, because of the interdependence of the
C'space parameters.

Note that for a linked polyhedron, the position of link j typically depends on the positions of
links k& < j, which are closer to the base than link j. Let K’ = {j}, ¢ = (6,), ¢ = (6'), and [c, ¢]x
define a range of configurations differing on the j%* C'space, parameter. Since joint 7 varies over a
range of values, links{ 2> 7 will move over a range of positions which depend on the values of ¢ and
¢, as shown in Figure 17. The union of cach of the link volumes over its spccified range of positions
is the swept volume of the linked polyhedron. The swept volume of links j through n can be taken
as defining a new 7% link. The first j — 1 links and the new 5 link define a new manipulator whose

configuration can be described by the first j — 1 joint parameters. On the other hand, the shape of the

'0Note that, in general, the swept volume of a polyhedron is nor a polyhedron, although the development relies on
computing polyhedral approximations to it.
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Fiigure 17. Changes in the second joint angle from 0, to 0% causes changes in the configurations of both link
Ag and link As.

new li,nk’j depends not only on the K -parameters of ¢ and ¢, i.c. §; and 03 but also on 6, forl > 7.
‘This implicit dépcndcncc on parameters of ¢ and ¢ that are not in K is undesirable, since it means
that the shape of the new 5% link will vary. Letting K = {J,...,n}, then the shape of the swept
volume depends only on the K -parameters of ¢ and ¢/, while its configuration is determined by the

(I — K)-parameters. A swept volume that satisfics this property is called displaceable.

The fact that the swept volume of a linked polyhedron A does not have the same degrees of
freedom as does A forms the basis for the relationship betwceen slice projection and cross-section
projection. If the swept volume is displaceable, the I — K parameters may be changed, but changes
to the K parameters arc not legal. Therefore, the Cspace of the swept volume of A is of lower
dimension than the Cspace of A. In particular, configurations in C'space, that have equal I — K
parameters and whose K parameters are in the defining range of the swept volume, project into the

same configuration in Cspaceajc,c/yc-

If Ale, ¢']ic overlaps some obstacle B then, for some configuration a in that range, (A)q overlaps
B. The converse is also true. If Afc, /] is displaceable, then CO4[e,e1,(B) is the set of I -— K projec-
tions of those configurations of A within [¢, ] ;¢ for which A overlaps B. Equivalently, COxle,e1(B)
is the I — K projection of the [c, ¢'] ¢ slice of CO4(B). If the configurations of the swept volume are

onc of (z, y), (z, 9, 2), or (z, y, 0) then the algorithms of the previous sections can be used to compute
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CO ¢, (B) and thereby compute the required slice projections!!

A formal statement and proof of this result is included in Appendix 2 as Theorem 8. This theorem
is of practical importance since it provides the mechanism underlying the Findspace and Findpath
implementations described in [20} and [21]. In addition, the proof of the theorem demonstrates the

uscfulness of the C'space concept as a tool in theoretical analyses of spatial planning problems.

11. Related Work in Spatial Planning

The definition of the Findspace problem used here is based on that in [46]. Approaches to this
problem are described by [37] and [27]. The latter, which is the more relevant, is an application of the
Warnock algorithm for hidden line elimination. Tt involves recursively subdividing the workspace un-
til an arca "large enough” for the object is found. This approach has scveral drawbacks: (1) any non-
overlapping subdivision strategy will break up potentially useful areas, and (2) the implementation of
the predicate "largev enough" is not specified.

The Cspace approach to Findspace and Findpath described here is an extension of that reported
in [21]. In that paper, an approximate algorithm for CO%Y*(B) is described and the Vgraph algorithm
for high-dimensional Findpath is first presented.

The basic idea of representing position constraints as gcometric figures, e.g. COY(B), has been
uscd (independently) in [1}, [2] and [3], who employed an algorithm to compute CO™Y for non-convex
polygons in a technique for two dimensional layout. The template packing approach described in
[10] uses a related computation based on a chain-code description of figure boundarics. [36] reports
algorithms for packing of parallelopipeds in the presence of obstacles using a construct equivalent to
the CO*™, but defined as "the hodograph of the Close Positioning Function". The only use of this
construct in the paper is for computing CO® for aligned rectangular prisms.

The work by Udupa, reported in [40] [41], was the first to approach Findpath by explicitly using
transformed obstacles and a space where the moving object is a point. Udupa used only rough ap-
proximations to the actuai C'space obstacles and had no direct mcthod for representing constraints on
1Of course, this requires computing a convex polyhedral approximation to the swept volume of A. Simple approximations
are not difficult to compute [20]. but this is an arca where better algorithms are required. Nevertheless, the swept

volume computation is a 3-dimensional opcration which can be defined and exccuted without recourse to 6-dimensional
constructs. :
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more than three degrees of freedom. [41] also surveys previous heuristic approaches to the Findpath
problem for manipulators [17] [28] [44]. An carly paper on Shakey [25] describes a technique for
Findpath using a simple object transformation that defines safe points for a circular approximation
to the mobile robot and uses a graph search formulation of the problem. More recent papers on
navigation of mobile robots are also relevant to 2-dimensional Findpath [11][23][39]. [14] reports on a
program for planning the path of a 2-dimensional sofa through a corridor. This program does a brute-
force graph scarch through a quantized Cspace.

[31] proposes an extension of the approach in [21] to the gencral Findpath problem, but using
an exact representation of the high-dimensional C'space obstacles. The basic approach is to define
the general configuration constraints as a set of multinomials in the position parameters of A. But,
the proposal still requires elaboration. Tt defines the configuration space constraints in terms of the
relationships of vertices of one object to the faces of the other. This is adequate for polygons, but
the equations in the paper only express the constraints necessary for vertices of A to be outside of B,
i.c. they are of the form of (3) above. They do not account for the positions of A where vertices of
B arc in contact with A. Thus, the equations do not represent the correct constraints on the position
of A. The new cquations will have terms of the form z cos @ and y cos@. Furthermore, the approach
of defining the configuration constraints by examining the interaction of vertices and faces does not
generalize to 3-dimensional polyhedra. It is not enough to consider the interaction of vertices and

faces; the interaction of edges and faces must also be taken into account [6].
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Appendix 1. Algorithm for CO%Y(B)

This appendix shows an algorithm for A €@ B, SET-SUM(A, B). when A and B are convex

polygons. Scction 5 shows how this operation can be used to compute CO?Y.

Each polygon is described in terms of its vertices and the angles that the edges make with the

positive z axis. The edges and vertices are ordered in counterclockwise order, i.c. by increasing angle.

The polygon structure in the following program has the following components:

1. size — number of edges in polygon.

2.
ith edge, 1 =

vert[0]=vert[size].

~vert [0:size] — an array of vectors representing the coordinates of a vertex. The

1,...,size, has the endpoints vert[i~1] and vert[i]. Note that

3. angle [0:size] — the angle that the normal of an edge makes with the z axis,

monotonically increasing. For convenience angle[0]=angle[size].

The algorithm follows directly from Theorem 6, noting that in this representation of polygons,

cdges are represented by successive vertices.

SET-SUM (a, b)

/* create new polygon of max size */

{ ¢ = new-polygon (a.size + b.size);
ea = 1; eb = 1; vc = 0; ang = 0; offset = 0;
do { ea = ea + 1}

until (a.angle[ea] >= b.angle[1]

and a.angle[ea - 1] <= b.angle[1])

c.vert[0] = a.vert[ea] + b.vert[0];
do { vc = vc + 1;
ang = offset + a.angle[ea];
if (ang <= b.angle[eb])
then if (ea > a.size)
then { offset =
else ea = ea + 1;
if (ang >= b.angle[eb])
then eb = eb + 1;

/* handle wraparound */

2pi; ea = 1; }

c.vert[vc] = a.vert[ea] + b.vert[eb];

until (ea =
c.size = ve;

a.size and eb = b.size);
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Figure A18. Mlustration of the definition of ®(c,c’) and Ok(c,c’).

Appendix 2. Proof of Theorem 8

Assume that Cspacesa C R, let I = {1,2,...,d} and K C I. I, K and I — K shall denote
sets of indices for the coordinates of a € Cspacey. Define the following vectors, all in C'spacea:
b= (B;),c = (w)and ¢’ = (v,) fori € I. Then,

Oile,)={beR| A %<B <)
kEK
O i(c) = Pklc, c)
Ok(c,d) = Pi(c, )N Pr—k(c, c)
These definitions are illustrated in Figure A18. |
The projection operator, denoted Pyc[ - ]:R¢ +— RIX1is defined, for vectors and sets of vectors, by:

Px[b]=(B) k€K
Px|B] = { Px[b] |bE B}
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Superscripts on vectors indicate projection, e.g. b = Py[b]. In addition, the vector in RV com-
posed from one vector in RI*T and one in RI="Vis denoted (a! =7 : 6%, where Pj_ [ (/=€ : 5] =
o’ and Py[ ('K :6F)] = bK.

In this notation, precise definitions for the notions of cross-section projection and slice projection

can be provided. The cross-section projection of a C'space 4 obstacle is written as follows:
COA(B)clic = P1—i[COAB) N Px(c)].

The slice projection, is similar to the cross-section projection, but carried out for all configurations

between two cross-sections:
COA(B)[C, CI]K = P]—K[ CO\(B) N ‘I)K(C, Cl)]

The K-parameters of the two configurations, ¢ and ¢/, define the bounds of the slice. Similarly, the

swept volume can be defined in this notation:

Definition: The swept volume'? of A over the configuration range [c, ¢ ¢ is
] g

(Ale, k) = U (A)e

aEBk(e,c)

The requirement discussed in Section 10 that the swept volume of A be displaceable is embodied

in the following condition:

Va: U (A)(a.]"K B0 N (A [Cy CI]K)(a’_K:cK) (4)
TEBK(c,c)

Note that the I — K parameters may be changed, as in (4), but not those parameters in K. Therefore,

(Ale, ' ]i)q is defined only ifa € ®(c).

Lemma 3: If (4) holds, i.c. if the swept volume is displaceable, then
PI—-—K'[COA[c,c’]K(B) N (I)/((C)] = Pj__["{(COA(B) ) @1{(0, d— C)) N @K(C)].

£ 12The similarity in the notation between swept volume and slice projection does not imply any direct relationship.
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Proof of Lemma:
(2)
Ifa € Pk [(COAB)E O, (0, ¢ —c)) N (c) ], then there exists an ('~ : 2/} € COA(B)

and an 2y € ©(0,¢’ — ¢) such that z{* — = = . This implics that z; € ®(c, ¢). Then, using
1 2

(4),
(A)(ar—w 2y & (Ale, C,]h‘)(al—-—}( L cK)-

But since (o'~ 21) € COA(B). then (A)(qi—x . 4ivy intersects B; therefore, its superscts also inter-

scct B. By the definition of CO
(0’71 c) € CONp,e) (B) N Die(e) = a € Pr_iy[COLpe ), (B) N Bre(c)).

()
Assumea € P ;[CO4c,r),(B) N @1¢(c) ]; then,

(A {C, C,]]\-')(GI—K s ek NB 775 )

Forallz € ©x(0,¢ —¢). ('~ :cK) 4+ z € ®sc(c,¢) and P_y[(a! K : ) + z] = oK.
Therefore, by (4)
(A)(aI—K ceRK) - _C_ (A [C, CI]K)(al—K 1 cK)-

Since these are all the sets that make up the swept volume, at least one of them must also overlap B

when the swept volume does; therefore there must be some z; € ©¢(0, ¢ — c¢) for which
(A)(a!—x : )2, NB 7% 0.
By the definition of CO,
(@'Y 4 2 € COAB) = (/K c’_‘ ) € (COA(B) — Ok(0, ¢ — ¢)) N re(c).

Clearly, then
a € Pr_x[(COA(B) — (0, ¢’ — c)) N Px(c)]

|
This L.emma leads to a proof of Theorem 8.
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Theorem 8: 1 (4) holds, then

Pi_i[COAB) N ®klc, )] = Pr—k|COue,e),(B) N Pre(c)]

Proof of Theorem:

The prodf below shows that
P [COAB) N @i, )] = P [(COAB) © 0x(0, ¢ — ¢)) N ®x(c)].

© The theorem follows directly from this result and [.emma 3.

(©)

ifa & P_k[COAB) NPy, c’)], then, for some z € ©,(0, ¢/ — ¢) there is an a; such that
a = (al =K. M + ) e COA(B) N ®x(c, )
Since 2/ =0, then a; — z € Py(c) and thcrefore
a1 —z € (CO4(B) © 0,(0,¢ — c)) N ®x(c).
Sincea = P;_kla; — 7]
a € P1_1[(COA(B) © Ox(0, ¢ — ) N ®k(c)].

2)
- Assumea € Pr_i[(COA(B) © 050, ¢ — ¢)) N Dx(c)], then,

(6! 1 i) € (COA(B) B Ox(0, ¢ — ¢)) N Bi(e).

Since the 7 — K parameters arc not changed by the set subtraction, there must be an a; =

(@’ :2]') € COA(B). 7 must be in ®c(c, ¢’), because P [z1 — z5] = c with z, € ©,(0, ¢ — c).

(@' :2f) € COABY N Pklc,d) = a € Pr_i[COAB) N ®ic(c, )]




