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1 ' _ . Introduction

1. Introduction

An important goal df research on programming languages for computer-controlied manipulators
is a languagé in which aéscmbly ()jjcrations can be concisely described. ‘Two major approaches to
maﬁipulator programming have been identified [34]: . | |

1. E’x‘plicit programming — in which the yser specifics all the manipulator motions needed to

~accomplish a task.

2. Model-based programming — in which the uscrsp’cciﬁés gcomcn'ik: models of parts and a
~description of the task in terms of these models. The detailed manipulator motions are derived

by the assembly system from these specifications.

This paper presents algorithms for some of the central geometric problems that arisc in the model-
based approach to manipulator programming. In parliculér; this paper deals with the class of
problems that involve finding where to place or how to move a solid object in the presence of
obstacles. The solution to this class of problems is essential to the automatic plunnihg of manipulator
transfer movements, i.c. the motions to grasp a part and place it at some destination. For example,
planning transfer movements requires the ubility to plan paths for the manipulator that avoid colli-
sions with objects in the workspace and the ability to choose safc grasp points on objects. The ap-
proach to these problems described here is based on a method of computing an explicit representation
of the manipulator configurations that would bring about a collision [27].

Several model-based manipulator systems have been déscribcd in the recent literature: AL [10]
[46], Autopass [24] [28] [50]. . AMA [25] [26] and RAPT [38] [3_9] [40]. Thesc are experimental systenis,
currently under development! . Work on the modcl-based aspects of AL has focused on techniques
for making coding decisions in manipulator programs. The decisions arc made among a fixed sct of
strategics so as to minimize estimated cxecution times and so as to bring cstimates on the accuracy
of part positions within specified bounds. A central technical .issuc in this approach is deriving the
accuracy estimates from geometric relationships and loca] accuracy information. RAPT has focused
on the specification of manipulator programs by’spccifying the desired symbolic spatial rclation-
ships among objects. These relations are then translated into algebraic constraints on tlic position

The AL language, as originally described, includes exphcn as well as model-based programming mpabllmcs The former
are currently available, while the latter are still in the cxpenmcntal stage.
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parameters of ‘the objects, which can be solved by symbolic manipulation. These algebraic solution
techniques are also used to complete the specification of partially specified actions so as to achieve
the désircd relationships. Tmplementation work on LAMA and Autopass has focused on techniques
for planhing collision-free motions, e.g. grasping and parts transfcr motions, using po]'yhcdral object
models. The techniques reported in this paper are extensions of the Autopass obstacle avoidance
aklgorithm'und LLAMA’s grasping stratcgies. |

A number of important problems relevant to mudcl-baséd manipulator programming have been
addressed independently of any manipulator system, for cxample the problem of spccifyihg com-
pliant motion sirategics based on geometric and kinematic models of a task [30], the sclection of
grasping positions [5] [31] [35151]), and the problem of collision detection and collision avoidance
among obstacles [3] [7] [12}{33] [47].

The algurithms discussed in this paper are based on previous work on obstacle avoidance algo-
rithms. In pzll'ticulér, [48] [49] first ﬁn‘mulakd the obstacle avoidance problem in terms of an obstacle
transformation which allows treating the moving object as a point. A similar transformation was also
used in {1] [2] [4] [45] for the template layout problem; rciatcd applications arc aiso discussed in [11]
[16]. Generalizations of these obstacle transformation techniques and a review of related work can be

- found in [27] and [28). Other approaches to automatic obstacle avoidance arc reviewed in [23] [48].

2. The "Pick and Place” Synthesis Problem

The most common transfer movements are of the "pick and place” type, consisting of (1) hﬁoving
the manipulator from its current (:onﬁgurati(.)n2 to a grasp configuration on some object, P, (2) grasp-
ing P, and (3) moving P to some specified configuration. The "pick and place” synthesis problem is
that of deriving the manipulator motions that will carry out a "pick and place” transfer movement, _

given as input the following data:

1. agcometric description of the manipulator and the objects in the workspace,
2. the current configurations of the manipulator and the objects in the workspace,

2Configuration will be used here to refer to the combined position and oricntation of an object as well as to the set
of joint parameters specifying the arrangement of manipulator links.
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3. the desired final configuration of P, and

4. (Optional) the grasp configuration on P.

This paper focuses on the geometric aspects of the "pick and place” s'ynthésis problem. For
example, when the grasp configuration is known, the "pick and place" synthesis problem is cquivalent
to finding collision-free paths for the manipulator and P between the conﬁgural'ionsi in items 2, 3
and 4 above; when the grasp configuration is unknown, there is the additional task of choosing a

configuration such that:

1. the manipulator’s fingers are in contact with P,
2. the manipulator does not collide with ncarby objects, -
3. the configuration is reachable, and

4. the object is stablc in the manipulator’s hand.

The first three conditions reflect geometric constraints on the manipulator conﬁgﬁration, relative to P
and to other objects in the workspace. The stabiﬁly condition reflects aspects of grasping beyond the
purcly geometric, but when P is small relative to thé manipulator hand and when parts mating cffects
are ignored, then stability considerations can typically be reduced to geometric heuristics (sce Scction
196). |

The geometric aspects of "pick and place” can be formulated in terms of two ﬁmdamcntal’spatial '
planning problems [27], Findspace and Findpath, which occur in many applications. The definition of

these basic problems are presented below for the case of polyhedral objects.

Let R be a convex polyhedron that bounds the wdrképace and which contains kg other, possibly
overlapping, convex polyhedra B; designated as obstacles. Let A, the object being moved, be the
- union of k4 convex polyhedra4;,ic. A = Uf; 1 As

1. Findspace — Find a configuration for A, inside R, such that ViVj:A; N B; = @. This is

called a safe conﬁgurﬁtion.

2. Findpath — Find a path ﬁir A from configuration s to conﬁguration g such that A is always

“in R and A never oﬁcr’laps any of the B;. This is called a safe path.



4 The CUspace Approach to Spatial Planning: Overview

Clearly, "pick and place” with known grasp configuration can be viewed as a sequence of two
Findpath problems. In addition, the configurations which are legal candidates for grasping can be
derived from solutions to the Findspace problem.

The reduction of the "pick and place” problcm'to these more fundamental gecometric problems
assumes thaf the lécations of all objects are known to high accuracy and that the path of the
manipulator can be controlled to the same precision. In a realistic environment, there is always uncer-
tainty in the positions of ubjccfs and crror in the control of the manipulator. Section 10 discusses the

cffects of uncertainty.

3. 'The Cspace Approach to Spatial Planning: Overview

In this scction, an overview of the Configuration Space approach to spatial plaﬁning will be
presented; further details can be found in [27).

The position and orientation of a rigid solid can be specified by a single 6-dimensional vector,
called its configuration. The 6-dimensional space of configurations for a solid, A, is called its
Configuration Space and dcnotcd Cspacea. For example, a configuration may have one coordinate
value for cach of the z, y, z coordinates of a sclected point on the object and one coordinate value for
cach of the object’s }Eulcr angles [21]. In general, an n-dimensional configuration space can be used
to model any system for which the pbsition of every point on the object(s) can be specified with n
parameters. An cxample is the configuration of an industrial robot with n joints, where n is typically 5
or 6. In Cspacea, the sct of configurations of A where A overlaps B, i.e. AN B ;é @, will be denoted
COx(B), the C’spacéA Obstacle duc to B. Similarly, those configurations of A where A is complctciy
inside B, lC A C B, will be denoted CI4(B), the Cspace, Interior of B. Together, these two
Cspace, constructs embody all the information needed to solve Findspace and Findpath problems.

Note that CI4(B) = —COA(——B), where — X denotes the set complement of X in R.

3.1. Fixed Orientation of A

In two dimensions, if the oricntation of a convex polygon A is fixed, Cspace, is simply the (z, y)

planc. This is so because the (z, y) position of some reference vertex rv, is sufficient to specify the
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X

Figure 1. The Cspace obstacle due to 13, for fixed oricntation of A.

polygon’s configuration. In this case, the presence of another comex bolygon B constrains ru4 to
be outside of CO(B), a larger convex polygon, shown as the shaded region in Figure 1. Since
CO4(B), in this case, is a sct of (z, y) valucs, it is denoted CO?Y(B). Similarly, if A and B are three-
dimensional polyhedrav in fixed orientations, then the C'space obstacles are denoted CO%Y?(B). Thus,
the Findspace problem for polygons, with fixed érientation, can be transformed to the equivalent
problem of placing rv, outside of CO%Z¥(B), but inside CIZ¥(R). Similarly, for multiple obstacles B;,
a location for A is safe if and only if rv, is not inside any of the CO”Y(B;), but is inside CIi"(R).

If the orientation of A is fixed, then the Findpath problem for the polygon A among the Bj. is
equivalent to the Findpath problem for the point rv4 among the CO%Y(B;). When the COf‘”(Bj)

are polygons, the shortest® safe paths for rv, are piccewise lincar paths connecting the start and the

goal via the vertices of the CO%Y(B) polygons, Figure 2. Therefore, Findpath can be formulated asa -

graph scarch problém. The graph is formed by connecting all pairs of vertices of C'spaces obstacles
(and the start and goal) that can "see” cach other,.i.e. can be connccted by a straight line that does

not intersect any of the obstacles. The shortest path from the start to the goal in this visibility graph

[22].

3This assumes Euclidean distance as a metric. For the optimality conditions using a rectilinear (Manhatian) metric, see
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Figure 2. This figure illustrates the Findpath problem and its formulation using Cspace obstacles. Note
that the shortest collision-free paths connect the origin and the destination via the vertices of the C'spaces
obstacles. '

(Vgraph) is the shortest safc path for A among the B; [28]. This algorithm solves Findpath problems
when the orientation of A is fixed. But, because they require moving A along obstacle boundaries,

shortest paths are very susceptible to inaccuracics in the object models.

The approach to Findspace and Findpath described above generalizes to problems involving
three dimensional polyhedra with fixed orientation. The gencralization requires the use of a three-
dimensional Cspacey, representing the space of (z,y, 2) positions of rvs. In this Cspace, the
obstacles are also polyhedra, denoted CO;”Z(B). However, the Vgraph algorithm has several addi-
tional drawbacks when the obstacles are three-dimensional: 7

1. Shortest paths do not typically traverse the vertices of the CO%Y#(B;).

2. There may be no paths via vertices, within the enclosing polyhedral region R, although

other types of safe paths within R may exist.

These drawbacks may be alleviated by introducing additional nodes in the Vgraph which do not
correspond to vertices [28].  An alternative strategy for finding safe paths among two- or three-

dimensional C'space, obstacles is discussed in Scction 7.
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3.2. Algorithms for CO%Y*(B)

The ccmru] operation in the Cspace approach to Findspace and Findpath in two and three
dimensions is computing CO3¥(B) and CO%"(B) lcspccuvcly IfA and B are convex polyhedra, it is
simple to show [27] that '

- CO%*(B) = B O (A)y = conv(vert(B) © vert((A)o))

where conv(X) is the convex hull of X [14], vert(X) is the sct of vertices of the polyhedron X,
XY ={z—y |z €& Xandy € Y} and (X)o means the ‘polyhedron X in its initial
- configurations, where rvx is at the origin. This result and the existence of O(n log n) convex hull
-algorithms for finite sets of points in R3 [41], Iead dircctly to an O(v? log v) algor |thm for COZ¥*(B),
where v = |vert(A)| + |vert(B)]. The result also holds when A and 3 are convex polygons, but more
cfficient algorithms exist for this case. In particular, an O(v) algorithm for CO;”"”(B) is described in
[27].

3.3. Variable Orientation of A

When A is a three-dimensional solid which is allowed to rotate, CO4(B) is a complicated curved
object in a six-dimensional C'space4. Rather than compute these objects directly, the approach taken
here is to use a sequence of two- and threc-dimensional objects to approximate the high-dimensional
C'spaces obstacles. In particular, a six-dimensional C'spaces obstacle for a rigid solid can be ap-

proximated by projections of its (z, y, z)-slices. A j-slice of an object C' € R™ is defined to be:

{(ﬂlr"'wﬂn)ecl“fj SﬂJS%}

Where v; and '7’J arc the lower and upper bounds of the slice, respectively. Then, if K is a set of
indices between 1 and n, a K -slice is the intersection of all the 7-slices for j € K. Notice that
a I¢-slice of C' is an object of the same dimension as C. Slices can then be projected onto those
coordinates not in K to obtain objects of lower dimension.

Figure 3 shows a two-dimensional cxample of slice projection. The objects shown shaded repre-

sent the (z, y) projection of three 0-slices of CO4(B) when A and B arc convex polygons. These slices
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Figure 3. Slice projections of (Cspacc4 obstacles computed using the (r, y)-arca swept out by A over a
range of @ values. Tach of the shaded obstacles is the (w, y)-projection of a O-stice of (*O4(13). 'The figure
also shows a polygonal approximation to the slice projection and the polygonal approximation to the swept
volume from which it derives. - ‘

represent configurations where A overlaps B for some orientation of A in the specified range of 6.
In [27] is a proof that these slice projections are equivalent to the CO™ of the arca (volume) swept
out by A over the range of oricntations of the slice. Note that approximating the swept volume as a
polyhedron leads to a polyhedral approximation for the projected slices of the Cspace, obstacles, as

shown in Figure 3.

Slice projection has two important properties:
1. A solution to a Findspace problem in any of the slices is a solution to the original problem,
but since the slices are an approximation to the Cspacey obstacle, the converse is not neces-

sarily true.
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Figure 4. An illustration of the Findpath algorithm using slice projection described by Iozano-Perez and
Wesley in [28]. A number of slice projections of the ("space obstacles are constructed for different ranges
of orientations of A. The problem of planning safe paths in the high-dimensional C'spacey is decomposed
into (1) planning safe paths via CO vertices within cach slice projection and (2) moving between slices, at
configurations that arc safc in both slices. A represents A in its initial configuration, A3 represents A in its
final configuration and A, is a simple polyhedral approximation (o the swept volume of A betwecen its initial
and final orientation.

2. The slice projection of a C'space, obstacle can be computed, by using the swept volume

operation, without having to compute the high-dimensional C'space, obstacle, see Section S.

When rotations of A are allowed, the slice projection operation can be used to extend the Vgraph -
algorithm described earlier to find safe (but sub-optimal) paths [28]. A number of slicc projections
of the C'space, obstacles are constructed for different ranges of orientations of A. The problem of

planning safe paths in the high-dimensional C'space,y is decomposed into:

1. planning safe paths via the vertices of C'space, obstacles within each slice projection, and

T 2. moving between slices, at configurations th‘?t arc safe in both slices.
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Figure 5. Models of objects are structured as trees of convex polyhedra: internal nodes represent the union
of their sub-trees.. Linked polyhedra are used to represent manipulators; internal nodes represent joints and
the lcaves represent links. ‘The nesting of sub-trees in the models of linked polyhedra reflect the cascading

cffect of joint motions.

Both of these types of motions can be modelled as links in the Vgraph, therefore the complete algo-
rithm can be formulated as a graph search problem. This approach is illustrated in Figurc 4. However,

since the obstacles are three-dimensional, the Vgraph algorithm is subject to the drawbacks described

carlier.

4. Findpath for Cartesian Manipulators

This section overviews an implementation? of the Findpath algorithm, for cartesian manipulators

(sce definition below). Sections 5 through 8 present a more detailed description of the implementation.,

The system inputs are:

4The current implementation is written in LISP for the MIT LISP Machines.
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Figure 6. A schemalic representation of the link arrangement in two types of existing cartesian manipulators.

1. - A polyhedral model of the workspace — wherc each object is represented by a tree of

convex polyhedra, see Figure 5(a).

2. A polyhedral model of the manipulator — represented as a set of link bodics connected by

rotary or prismatic joints, scc Figure 5(b).

3. A kincmatic modcl of the manipulator — currently, partly embedded in procedures which

apply to the polyhedral model and partly in the model structure.

4. A start and a goal configuration for the manipulator.
The system output is a safe path from the start to the goal configurations of the manipulator. The
paths are composed of a sequence of linear segments in the C'space of the manipulator.

The implementation described here is limited to cartesian manipulators, i.c. those having three
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perpendicular translational degrees of freedom corresponding to the z, y and z axes and up to three
rotary degrees of freedom, usually centered at the wrist. Figure 6 illustrates two different types of
cartesian manipulators. The restriction to cartesian manipulators allows the use of the CO%Y*(B)
algorithm described in Section 3.2 as the main tool for capturing path constraints.

"The FFindpath algorithm carrics out the following steps in turn: _

1. Constructing the Cspace, obstacles — The slice projections of the Cspacey obstacles

approximate the constraints on the configurations of the manipulator due to the presence of

objects in the manipulator’s workspace, sce Section S.

2. | Representing free space — Once the C'spaceq obstacles are known, the system computes
a decomposition of the space outside thesc obstacles into convex polyhedral éélls; these
polyhedra are then linked into a graph structure called the Free .Sj)ace Graph. Each node of the
graph represents a free space cell and a link between cells indicates that they touch or overlap,

see Section 6.

3. Secarching for a safe path — The Free Space Graph is scarched to locate a cell path, a
connected set of free space cells that join the origin and the destination. From the cell path, the

system derives a /ine path, a piccewise lincar path in the manipulator’s Cspace, see Scction 7.

5. Computing the Cspace,, Obstacles

The first and most important step in the Findpath algorithm is that of computing the C’spaceA'
obstacles arising from the presence of objects in the workspace. The Cspace, currently used by the
system is the seven dimensional joint space of the manipulator, i.e. z, y, and z displacements, the
three wrist rotations and the finger opening. The Cspaces obstacles are complicated objects in this
high-dimension space. To avoid haVing to deal directly With these objects, the system makes use of
slice projection to approximate the CspdceA obstacles by a sct of three-dimensional obstacles.

The CO%’"(B) algorithm of Scction 3.2 computes an (z, y,2) cross-scction of COA(B) for a
spcciﬁcd orientation of A. But, this algorithm can be adapted to compute the (z, y, z)-slice p'rojcctions
of CO,\.(B.). The construct that 1clates élicc projections to the cross-scctions is the swept volume of

an object. The swept volume of A is the union of (A)g, i.c. A in configuration a, for a within the
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configuration range denoted by [c, ¢] ¢, where ¢ and ¢ arc configurations of A and K is a subset of
the configuration parameters. A configuration a is in the range [c, ¢] ) if, for cach 1 in K, the ith

parameter of a is between the ith

parameters of ¢ and ¢. For example, if ¢ and ¢ are of the form
(81, B2, Bs) and K = {3}, then the swept volume of A over the range [¢, ] refers to the union of
A over a set of configurations differing only on B3, The swcpi volhmé of A over this configuration
range is denoted Ale, ¢/]yc. It can be shown [27] that the (z, y, é)-slicc projection of CO,(B) over the
oricntation range contained in [c, ¢,y is the same as COZY. ), (B).

In summary, the computational requirements of the slice projection technique are:

1. Choosing a decomposition of the orientation ranges of the cartesian manipulator into sub-

ranges, [c, ¢/] ¢, to be used for slice projection.
2. Computing polyhedral approximations to Alc, ¢/]x for cach orientation range.

3. Computing CO%Y? ,, (B;) for each obstacle B; and cach oricntation range.
Ale, |\ J

This section addresses these issucs. First we assumc that the orientation ranges defining the slices are

given; the discussion of choosing slice parameters will be taken up at the end of the scction.

5.1. Computing the Swept Volume for Linked Polyhedra

The swept volume of a polyhedron A over a range of translations is another polyhedron. Let
T C I be the sct of configuration parameters corresponding to the translations of A. If A is a convex
polyhedron and the range of positions of the r_cfcrcnce vertex of A over the range of translations
[, ¢l can be represented as a convex polyhedron V, then Ale,c]lr = A@ V where X P Y =
{z+ylz € Xandy €Y} Since A @V = conv(vert(A) @ vert(V)), this leads to a direct
algorithm for con}buting the swept voluhac for translation. If ﬂic range of configurations includes
rotations then the swept volume is not a polyhedron. In the rest of the paper it is assumed that
a polyhedral approximation to the swept volume is always available. The Appendix describes an
algorithm to compute a simple approximation to the swept volume of a convex polyhedron under
pure rotation. '

The swept volume of A, a rigid object, resembles anothcr rigid object With the same number

of degrees of freedom. But for manipulators, modelled as linkcd'polyhcdra, the situation is more
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Figure 7. Changes in the second joint angle from 0, to 0 causcs changes in the conﬁgurétions of both link
Ay and link As. ‘ .

complex. Linked polyhedra are kinematic chains with polyhedral links and prismatic or rotary joints.
The relative position and orientation of adjacent links, A; and A; ), is determined by the it joint
parameter (angle) [36]. The sct of joint parameters of a linked polyhedron completely specifics the

position and orientation of all the links.

Note that for a linked polyhedron, the position of link § typically depends on the positions of
links k <C 7, which are closer to the base than link j. Let K = { i} c = (6,). ¢ = (0), and [c, ]
define a range of cdnﬁgurations diffcring on the j** Cspace parameter. Since joint j varies over a
range of values, links § > 7 will move over a range of positions which depend on the values of ¢ and
¢, as shown in Figure 7. The union of cach of the link volumes over its specified range of positions is
the swept volume of the linked polyhedron. The swept volume of links j through n can be taken as
defining a new 5% link. The first j — 1 links and the new 5% link dcfine a new manipulator whose
configuration can be described by the first 5 — 1 joint parameters. On the other hand, the shape of the
new link 7 depends not ()hly on the K-parameters of ¢ and ¢/, i.e. 8; and 0/, but also on 6 forl > j.
This ‘implicit dependence on parameters of ¢ and ¢’ that are not in K is undesirable, since it means
that the shape of the new 7t link will vary. Letting K = {j,...,n}, then the shape of the swept
volume depends only on the K-parameters of ¢ and ¢/, while its conﬁgu_rzition is determined by the

(I — K)-parameters. A swept volume that satisfics this property is called displaceable.
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Ao ) A3

A= Agle.c]

A'=(AuAy)[c.cl

Figure 8. Computing the swept volume for linked polyhedra. If [c, ¢/}, involves ranges of configurations of
the second and third link, first compute the swept volume for the third link and then the swept volume for
the union of the second link and the swept volume of the third link.

Given an opcration for computing (a polyhedral approximation to) the swept volume of a
polyhedron, see Appendix, then this opcration is applicd to computing the swept volume of linked

polyhedra. The swept volume Ale, ¢/ is computed by the following process, illustrated in Figure 8:
1. Leti = n, where n > 0 is the number of links in the linked polyhedra, |I| = n; let
A' =¢;
2. Place A in configuration c;
3. LetA'=A"UA;
4. Ifi € K thenlet A® = A[c, ]y, i.e. updaic A” to be the swept volume of A* over the
range of §'* joint;

5. lLeti =1 — 1.1f¢ = 0 then stop, clse go to step 3.
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The swept volume obtained in this fashion can then be used to compute the COZY? o (B;).

5.2. Computing slice projections for C'space,y obstacles

If Alc, ] overlaps some obstacle B then, for some conﬁgﬁration a in the range [c, i, (A)a
overlaps B. 'The converse is also true. If Afe, ¢]y¢ is displaccable, then CO4c,e, (B) is the sct of
I — K projections of those configurations of A within [¢, ] for which A overlaps B. Equivalently,
CO (¢, (B) is the I — K projection of the [¢, i slice of CO4(B). If A is a cartesian manipulator
and K is the index set for the wrist rotations of the manipulator, then the configurations of the swept
volume are the (z, y, 2) positions of some point on the manipulator. The algorithm of section 3.2 can
be used to compute COf\-'fj’c,}K(B) and thereby compute the required slice projections of COA(B).

Given the swept volume of the manipulator model for a particular range of paramcteré e, Ik,
the next step is to compute the slices of all the C'space obstacles for the manipulator over that range
- of configurations; this sct is denoted COS|e, ¢/]. In previous discussions of the CO%Y*(B) algorithm
we have assumed that A and B were single polyhedra; we saw in the previous sections that both
the object and manipulator models are structured as part trees, whose leaves are convex polyhedra.
"The actual model of a manipulator or a part is the union of the fringe, i.c. the sct of leaves, of the
corresponding part tree. Thus if A = U'f; L Ai and B = U;‘.”; B, the following result can be used
in computing CO%¥*(B): ‘

ka ks
coxB) = |J U coa®)),

i=1 j=1

This result means that ka >< k3 applications of the C’O_f\-’f(Bj) algorithm must be carried out to
cumputé CO3V*(B) cxactly. [_ﬁ the "pick and place™ application, an exact model of all the C'space
obstacles is not usual‘ly needed since the manipulator will not move close enough to all the obstacles.

The amount of time needed to compute the COS can be reduced ‘by simplifying the geometric
models of both the A; and the B; when appropriate. The current implementation uses a simple family
of suéccsivcly finer approximations for objects based on the part tree. Consider the part trec for
an object B;, where cach of the lcaves of the tree is a cbnvcx polyhedron. Decfine a covering node

sel rccursivcly_ to be either (1) the sct containing just' ihc root of the part tree or (2) obtained from
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another covering node set by replacing some node, internal to the part tree, with all its descendants. If
cach internal node represents the union of all its descendants, then every covering node set is a com-
plete model of thé object. In practice, internal nodes of the part tree store the bounding rectangular
solid® of the union of all its descendants instead of the union itself. Thus, the family of covering
node scts represents progressively more detailed models of the part [29]. Using these approximations
reducces the numbér ofvapplications of COf\i’s(Bj) needed to C(')mputc the COS, since the number
of polyhedra in a covering node set is less than or cqual to that in the full fringe. In addition, it
can be used to simplify many of the individual computations, because when A and B are buunding
rectangular solids, computing COﬁ‘/z(B) is trivial. In particular, if the bounding solids arc rcprycscntcdv -
by the endpoints of their main diagonal, e.g. A = (a1, a2) and B = (b, b2), then COj’/z(B) =
(b — (ap — a1), by). , | - a
For simplicity, the current implementation uscs a three level part tree for the swept volume of
the manipulator and for the objects in the workspacé. Each tree has a root node which models the
complete object by one bounding rectangular solid. The descendants of the root aré bounding rectan-
gular solids for each of the convex components of the model and the leaves of the tree arc the convex
polyhedra whose union is the complete object model. Therefore if the object is modelled as the union
of k convex pblyhcdra, the part trec has 2k 4 1 nodes. Using this representation, CO¥*(B) can be
modelled as a tree of similar structure with i2(kA X ki3) + 1 nodes. Any covcring node sct of this
tree is an approximation to the CspaceA obstacle corresponding to B. In practice, the complete tfce is
not'computcd at once, rather the simplest approximation, the bounding rcctdngu]ar solid of the whole
object, is combuted and successive covering node sets are computed as nceded. This is discussed

further in section 6.

5.3. Choosing the Slice Parameters

So far we have assumcd that the configuration ranges defining the C'space, slices were given as
input; in this section, the choice of ranges is discussed. ‘The primary choice is how large to make the
ranges, since it is this that affects the system’s capability to use changes in the orientation of the hand

5A bounding rectangular solid for a polyhedron is a rectangular solid whose cdges arc parallel‘to the coordinate axes
and (hat completely includes the polyhedron. )
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to avoid obstacles. In particular:

1. The larger the orientation range of a slice, the larger the manipulator’s swept volume, the
larger (and less accurate) tthépaceA obstacles and the fewer the legal configurations and legal

motions of the manipulator.

2. The smaller the orientation range of slices, the larger the number of slices needed to cover

the Cspace and the more time needed to compute the COS and to scarch them for a path.

These conflicting effects can be balanced by taking advantage of the fact that, for “pick and place”
motions, the accuracy requirements are higher near the start and the goal of the path, where the
manipulator is moving near obstacles, than along the rest of the path [28] [48] [49]. This suggests
defining slices with small rotation ranges centered around the orientations of the start and the goal;
slices with larger ranges may be used for the remaining orientations. This approach is used in the
current implementation. In particular, a COS is defined for the orientation of the manipulator in
the start configuration and one for the orientation manipulator in the goal configuration; these COS
correspond (o slices with singularAoricntzllion ranges, i.c. where the upper bound of the range equals
the ldwcr bound® In addition, the total range of p.aramctcrs in Cspace, is divided among some
| number of other slices’ cach with non-singular ranges. Furthermore, slices with singular ranges are
defined for configurations at the intcrscc;ion of the slice parameters of the "larger" slices. This last
type of slicc allows moving between safe configurations in the "larger"” slices.

Note that the computational burden of adding an extra slice is very low if bounding recténgles
are uscd for objects. This sacrifices some of the potential maneuvering space, but gains a very large
increase in speed. This is the compromise taken in the current implementation.

Motions within a slice with a singular orientation range are limited to translations, while rotation
is legal within a slice with non-singular ranges. 'l‘hcrcvforc, the classes of motions allowed by the
system are those composcd of translations interspersed with rotations, but where the _mtations happen
in increments defined by the slices parameters. This means that this approach may fail to find a safe

path in situations where:
BA slice with a singular range is the same as a. cross-section.

TCurrently varying between 8 and 64.

o
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1. all safe paths require rotations combined with translations at a finer resolution than that

~ allowed by the slice ranges, and/or

2, the orientation ranges choscn, although adequate in size, do no match those required in the

problem.

These problems can be reduced, at the expense of more computation, by using more slices with

“sinaller ranges. But, there exists problems which require continuous rotation along a path. In practice,

most robotics applications do not use the very crowded environments that require very high rotation
resolution for the "pick and place” motions. The reason for this is that safe paths in such environ-
ments arc very hard for humans to specify, are subject to positioning errors of the parts and are

difficult for most industrial robots to excecute reliably at medium or high speeds.

6. Path Scarching and Free Space

Having computed the Cspace obstacles, it still remains for the system to find a path among these
obstacles. This scction bricfly touches on alternative strategics for finding safe paths.

One approach to finding paths among obstacles is to scarch for the shortest path between the start
and the goal, without considering other constraints. For example, the Vgraph algorithm described in
Scction 3 follows this approach. But, the approach has some important drawbacks. Shortest paths in
C'spacea mdvé along the boundaries of the C'space obstacles and are, therefore, very suscéptible
to mode! inaccuracy and position error. This problem can be allevialgd by adding a unifprm "safety
margin" around the obstacles, but doing so might disqualify some feasible paths. Furthermore,
no cfficient algoriﬁ1ms currently exist for finding optifnal paths among Lhrcc-dimensionél obstacles.
Unlike the situation in two dimcnsions, there is no finite set of points through which shortest paths
are guaranteed to pass. Thus, algorithms would have to be based on iterative numerical methods. For
these reasons, only heuristic algorithms for finding safc paths will be considered here. These heuristic
algorithms require less exccution time and can be extended io consider criteria such as safety margins,
but they will not find the shortest path. :

Another issue is whether the path search is conducted using primarily a rcprcscntatibh of the

Cspace, obstacles themselves, as does the Vgraph algorithm, or of the free space outside the
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obstacles, as in [48] [49]. Although thSC representations arc equivalent, they lead to different heuristic
algorithms. 'The current implementation uscs the free space style of algorithm because it simplifies
the formulation o_f different scarch heuristics, c.g. the use of variable resolution space representations
described below. '

The remainder of the section deals with the free space representation technique employed in the

Findpath implementation. Scction 7 discusses the path scarch algorithm uscd on this representation.

6.1. A I'ree Space Representation

The basic goals for a space representation are accuracy, speed and compactness. In addition,
it should facilitate heuristics for the task at hand. The most important heuristic for a space repre-
sentation is to avoid excess detail (and therefore time spent) on parts of the space which do not affect
the operation. Therefore, the space representation should not have to maintain a perfectly detailed
model everywhere. Instead, it should have the capability of maintaining a rough model and be able to
sclectively refine [48] [49] subscctions to be as detailed as necessary.

A number of proposals exist for representations of space and objects in space [9] [25] [42]; most
of these divide the space into a set of cells. 'The proposals can be partially characterized along the

following dimensions:

1. Shapc uniformity — are all cclls cqually shaped?

2. Size uniformity — are all cells the same size?

3. Oricntation uniformity — arc all cells oricntéd uniformly?

4, Ordering prihciplé —— are the cells ordered into an array, multi-list, tree, or graph.

We will not consider rcprgscntzitions which use cells of uniform shape and/or size, since they typically
require large riumbers of cells to achicve sufficient accuracy® . Instead, we use a hybrid écvﬁ repre-
sentation employing two types of cells: (1) rectangular solids aligned with thc axcs and (2) arbitrary
convex polyhedra. The idea is to use the simpIé rectangular cclls away from obstacles where repre-
sentation economy is important and polyhedral cells where high accuracy, e.g. near an obstacle, is

8Udupa [48] [49) employed a free space representation which used rectangular cells of variable size. This approach is
adcquate for motions that do not closely approach the obstacles.
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Figure 9. 'This figure illustrates, in two dimensions, the space representation employed in the implementation
of the Findpath algorithm. (a) A sample Cspaces obstacle with its part representation. (b) The resulting
space representation. Rectangular nodes indicate mixed celis, round nodes indicate full cells, and triangular
nodes indicate empty cells. '

needed.

The space representation described below is analogous to the part representation described
carlier, except that a new type of nodc is introduced. The part tree representation uscs rectangular
bounding cclls as internal nodes and polyhedral cells as Icaves. The leaves represent space that is

FULL, i.c. completely occupicd by an object. The internal cells represent MIXED space, i.e. cells

~which arc part FULL, part EMPTY. But, note that the part tree does not have an cxplicit repre-

sentation of the EMPTY space. The space representation simply adds cxplicit EMPTY cells to the
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parts tree rc‘prcscntation. Then each internal MIXED node becomes the union of its descendants.
In addition, the space representation introduces a hcw MIXED root node from which all the part
representations descend. .
The space representation is built up starting with a bounding rectangular solid representing the
“workspace, this is the first MIXED cell. 1_‘lic dcsccn'dz.mts of th.is node are the MIXED cells cor-
responding to the roots of the trees representing cach of the CO%¥*(B;), as described in Section 5.2
and a set of EMPTY bounding rectangular solids representing the free space outside the MIXED
cells. The representation of cach MIXED cell can be further expanded into other EMPTY, MIXED
and IFULL cells, culminating in a representation involving only EMPTY and FULL. convex polyhedral
cells as leaves of the tree and MIXED cells as internal nodes, Figure 9. The polyhedral réprcscntation
of cach EMPTY cell must be computed so that it does not overlap any MIXED or FULL cells. As
with the part representation, any covering node sct of this tree represents a complete model of the
spacc, at some non-uniform resolution. This hybrid cell representation is based on a gcncrafization
of the guad tree representation used for images [8] [17] [18] [20] [43] and the oct-tree representation of
objects [3]. ' ‘

"The operations on the space representation described above are very efficient when dealing with
bounding rectangular solids. The most cxpensive operation is when the volume difference of a
MIXED rectangular cell and a FULL polyhedral cells must be computed? ; this operation results in
a description of the EMPTY cells. However, this need only be done when high accuracy is required,
usually near the start and the goal of the path. Thercfore, the representation meets the criteria stated

at the beginning of the section.

6.2. Building a Free Space Graph

The process described in Section 5 produces a slice for each Cspace, obstacle over cach of the
orientation ranges, [c;, ¢i]k, of the manipulator’s wrist. The set of slices for all obstacles over one
oricntation range is denoted COS|c;, ¢} c. For cach of these COS;, a space representation is com-
puted, SR;, as described above. For cach of these SR;, a Free Space Graph is built, F'SG;, this is
a graph where each node is an EMPTY cell in the SR; and a link indicates that the cells touch or

9The current implementation of this operation uses repeated applications of a cutting and capping operation [6].

AT
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overlap'® . In addition, it is nccessary to add links to cach FSG; that conucct'to nodes of vothcr FSG;j
whose rotation range overlaps that of F'SG;. That is.' for EMPTY cells C; € SR; and C; € SR, if
there is some configuration ¢ contained in both cells, then links must be placed between C; and C;.
This is so because the existence of ¢ guarantees that it is possible to pass from any configuration in C;
to any in Cj and viceversa while remaining outside all the obstacles in COS; and COS;. The resulting
composite F'SG is then scarched for a path, since cach path through the graph corresponds to a class

of safc paths in C'space, and vice-versa.

7. Path Searching

The Findpath problem is to find a path between two points, the start and the goal, whilc staying in
the free space. In the current implementation, this is carried out by the fOIlowing stebs:
1. Choose Vthc largest EMPTY cell in any of the SR; cnclosing the start configuration.
Otherwise, choose some MIXED cell containing the start and cxpand the representation of
this MIXED cell into its constituent EMPTY, MIXED and/or FULL cells. If an EMPTY cell
contains the start configuration, stop, clse repeat. Note that this computes successively finer
models, i.e. successive covering node sets, of the specific arca around the start without having
to expand the complete model or even any complete part tree. 1f no EMPTY cell is ever found,

~ the task is impossible since the start configuration causces a collision.
2. Perform step 1 for the goal configuration.

3. Construct a Free Space Graph as described in Scction 6.2. At this point, the Free Space
Graph is in its final form; the current implementation does not refine the space rcpféscntation

further,

BN ———s ;
‘ 10The current representation allows EMPTY cells 1o overlap cach other but not MIXED or FULL cells.
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4. Scarch for the shortest path in the I<ree Space Graph from the cell including the start to
that including the goal. The graph scarch obcmtion can be carried out by any of the standard
shortest path algorithms [13]: the current implementation uscs the A* algorithm [15). These
shor;cst path algorithins fequirc' that a wcnght bc assigned to cach ‘of‘ the links of the Free Space
Grabh eg. indicati.ng the time rcquircd: to traverse ﬂlC’Célls‘. How this may be dbne is discussed
below. If nopéth exists, this may be due to the aﬁ’proximationé and quantizﬁitions used in the

solution, see Section 7.3.

5. Choose a line path contained in the cell path. This problem is discusscd in Section 7.2.

7.1 Assigning 1.ink Weights for the I'SG

Thc definition of an "optimal” path, or cven a "good" path, assumes some choice of performance
index. The current implementation uses estimated time of travel along the path as the index. If
Cspace, is the manipulator’s joint spaéc, then the time to travel between two configurations can be
estimated as the maximum time for any of the joints to travel, at the maximum rated joint velocity,
between the joint settings at cach configuration. The weights assigncd to the links in the FSG should

~ therefore reflect the time needed to travel between two overlapping cells along the optimal path, Of
course, no weight assignment can actually do this since it requires knowing the cofnplete optimal path.

A simple alternative is to assign to a link the estimated time of travel between the centroids of the
cells that it connects. 'I‘hié weighting function has the advantage of being very easy to compute. For
small cells it provides a good approximation of the actual time to traverse the cells, but for larger cells
it might overestimate or underestimate the actual time, sce Figure 10. 'The current implementation
uscs the centroid weighting fuhction, but does not divide the large EMPTY rectangular cells into
smchr cells; this will be implemented in the near future.

A tiofe cothplex weighting function; which would typically produce faster paths, is the following:
'l‘hvé Wcight on the link between cell C and C” is aésigncd the time to traverse C' from p, the point
of entry to C, to p/, the point of entry into C'. The point p/ is the one on C N ¢’ that minimizes

the distance!! to the line between p and the goal. The initial C is the cell that contains the start

1 Actually, the difference in time between the straight line path and one going through this point.

o
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Figure 10. ‘Two dimensional illustration of fmlm s of the centroid wclghlmg “function. (a) Ovcrcmmuun%
when one ccll is large, (b) underestimating bcmusc of limited connectivily, and (c) overestimating because of
large overlap. The solid linc is the optimal path between cells, the dashed lines is the path that the function
would usc to cvalua\c the distance between cells.

configuration and the initial p is the_stért configuration. Clearly, this technique requirces mu_c'h more
computation that the centroid weighting described above. For most applications, the simpler centroid

function, together with cell splitting should suffice.

7.2, Choosinga Line Path

The scarch of the FSG produces a hst of EMPTY Cspace, cells that touch or overlap. it is still
necessary to choose a specific path, i.c. some curve, within thesc cclls. The simplest type of path - |
to choosc is a plccewm lmear one, although the cells simply place conﬁgurauon constraints on the
mampulator along the path and any path satisfying thosc constram(s wnll be safe. '

If the ccntro:d weighting has been used for the links, it i natural to choose a pmccwnsc linear
path that traverses the centroids of the cells. Of course, the straight line path between two centroids is
not guarantccd to remain within the cells and might thcrefore not be safe. Therefore an intermediate
configuration in the interscction bctwecn adjacent cells should be chosen. The centroid of thc inter-

scction of adjacent cells on the path can be used for this purpose this is the technique uscd in the
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current implementation. Alternatively, this point could be chosen so as to minimize the deviation
from a straight linc path between the ceﬁtroids. If the cell size is small enough, such paths are
adcqhatc for most tasks.

The more E’omblcx‘weigﬁiiﬁg scliémc Adcsgr'it.)éd':;‘.vai"l’icr ‘brod'uccs a scqucncc of entry points into
the cells which may be conncctcd directly to 6btain a path. Since the points are contained in the

intersection of the cells, a straight linc connecting them is guaranted to be in the cell.

7.3. Dealing with Path Search Failure

If the path scarch algorithm fails to find a safc path, the reason for failure could be one of the

following:

1. No safe paths exist.

)

2. No sife paths exist at the quantization of _oric‘ntations chosen.

N

3. The approximations of objects by bounding rectangular solids has removed necessary

manecuvering space.

The last two causes of failurc may be overcome by decreasing the orientation quantization and/or
increasing the representation detail in the space representation, both at the expense of extra computa-
tion. "This suggests the possibility of increasing the accvuracy of the space representation when a path

scarch failure ocurrs. The current implementation does not cxploit‘this possibility.

8. Examples

This scction presents output from the implementation running on a simple example. The results

are collected in Figure 11.

a. The initiai and final cbnﬁguration of the model, including the manipulator model. Note

* that the manipulator must rotate to exccute this motion.
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Figure 11d

ThepCspaée obstacles for the swept volume of the manipulator
over a range of configurations of the wrist.
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b.  The COS for the start configuration. Each convex solid in the figure is a representation of ’
COZY*(B;). Note that most of these Cspace,, obstacles are rectangular solids, except for those
arising from the interaction of the hand, A, with block By and the fingers, A; and Ajy, with
the table. In these cases, the manipulator is so close to these obstacles that its configuration is
inside the bounding rectangular solid for the configuration obstacles (In practice, the sides of
the bounding rectangular solid arc displaced outward by some small €). 'I‘h.is condition causcs a

detailed expansion to be carried out.

¢. The COS for the goal configuration. In the goal configuration none of the obstacles nceds

to be expanded in detail.

d.  The COS for one of the intermediate configuration ranges. This COS is defined for the
manipulator’s swept volume over a range of orientations of the wrist and hand. One bounding
rectangular solid, A‘,', approximates the swept volume of the hand and fingers, A} U Ay U A3.

The solids A4 and A5 remain unchanged.

e. The cell path and the linc path. This shows the cells from the various space representations
that compose the cell path. One group of cells correspond to free space for the initial
configuration, one large cell comes from the intermediate configuration (where the hand rota-
tion takes place), and the last group of cells correspond to the final configuration. T he line
path shown gocs through the centroid of cach of the cells and also through the centrdids of
the interscction of adjacent cells on the path. Notice that because the cells are large, this path
strategy produces paths that move too far from the obstacles. This could be overcome by sub-

dividing the cells before finding the line path.

f. The cell path superimposed on the start COS. This shows the relative placing of the free

cells relative to the obstacles.

9. Choosing Grasp Configurations

The preceding sections have discussed the problem of finding safe paths for the manipulator; this

is only part of the "pick and place” synthesis problem. The major remaining problem is choosing
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a grasp configuration on the part, P. For simple parts and non-cluttered environments, grasping is
amenable to simple ad-hoc solutions. As a step in the solution of this problem, we deal here with
choosing grasping configurations for relatively s'implc parts in cluttered environments. In this scctioﬁ,
a C'space approach to this problem is described, although no implcmcntatibn of this approach to

grasping currently exists.

The grasping problem is related to the Findspace problem introduced in Scction 3, insofar as it
involves choosing a safe configuration among a sct of obstacles. But, there arc additional constraints
on the choice, for example:

1. the manipulator’s fingers must be in contact with P,
2. the configuration must be reachable, and

3. P must be stable in the manipulator’s hand, i.e. it will not slip in the hand during a motion.

"The first two conditions, contact and reachability, reflect additional gcometric constraints on the solu-
tion to the Findspace problem. ‘The third condition, stability, reflects aspects of grasping beyond the

purely geometric. Stability will be briefly discussed later in the section.

The approach to grasping described here is based on the onc described in [25] and [26]. The
basic idea is to build an explicit description of the set of conﬁgurations of the manipulator A for
which the inside of the manipulator’s fingers arc in contact with specified surfaces of P. This set
of configurations is some subset of COL4(P), call it G. Feasible grasp configurations are those in
G, that do nbi causc any collisions with other objects in the workspace, i.c. that are outside all of
the CO}\(BJ). In this section, the details of this approach are discussed. We maké the following
simplifying assumptions:

1. The manipulator is cartesian and its hand is a parallcl jaw, i.c. two parallel fingers that move

along their common normal.
2. Only parallel planar surfaces, whose distance from-each other is less than the maximum

_ finger opening, arc candidates for grasping. These are known as grasp surfaces.

These assumptions simplify the method for identifying feasible grasp configurations, while suggesting

its usefulness and providing the foundation for a more gencral approach.

PN
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Figure 12, The definitions of P;, Pj, Iy, Iy, and H used in choosing grasping configurations.

9.1. Feasible Grasp Configurations

Let P; and P; be the parallel faces!? of P to be grasped, and Fy and F; be the inside faces of
the manipulator’s fingers, Figure 12. Under the two assumptions stated above, when A grasps P, Fy
and F; are coplanar with P; and P; respectively. Under these conditions, the legal (z, y, 2) positions
of rvu are restricted to some plane H that is parallel to P; and P;. Let Ga(P;, P;) be the set of
conﬁgurations of A for which rv4 is in H and for which P;, P;, Fy, and F;, arc mutually parallel. Note
that Ga(P;, P;) represents those positions and oricntations where A could be when grasping P; and
P;, without specifying the distance between the fingers. Ga(P;, Py) is called the grasp set for P; and
Py, . ' . -
Note that not all the configurations in Ga(P;, P;) are feasible grasp configurations, cither because

12Note that objects in the current implementation are modelled as unions of convex polyhedra. Convex polyhedra are
defined as the intersection of a finite number of half-spaces, where each half-space is bounded by a plane. The portion
of cach bounding planc on the boundary of the polyhedron is a convex polygon, known as a face of the object.
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the fingers are not in contact with the grasp surfaces or because the manipulator configuration causes a

collision with some other object. Therefore, we must imposc two additional restrictions:

1. The internal faces of the fingers must overlap the grasp surfaces.

2. The manipulator must not collide with any other object in the workspace, i.c. the B;. '

With these restrictions on the conﬁguratioﬁs in the grasp set, we obtain the set of feasible grasp
configurations, called a feasible grasp set and denoted FG,\(Pi, P;).

Define the configurations of Fy and F; to correspond to those of the manipulator, i.e. each
position and orientation of these faces is characterized by the manipulator configuration which would
place them there. From these definitions it follows that COy,(P;) is the set of those configurations of
A for which the Fy is in contact with P;. Furthermore, COp,(P;) NGa(P;, P;) are thosc configurations

for which the finger is in surface-surface contact with P;. Therefore, it follows that

FGA(P;, Pj) = (COp»(P;) N COR(P}) N Ga(P,, P})) — | COA(B;)
o F]

In this definition, we must let P be onc of the Bj, say Bp, so as to avoid collisions with P while
approaching a grasp configuration, but we must also allow A to contact P on the grasp surfaces. The
answer is to add a slight diSpIaccmcnt inward to P; and P;, when computing COx(B,), while using
the original definition in the computation of COp,(P;) and COy(P;).

The feasible grasp set, as defined abbvc, is a volume in a six-dimensional C'spaceq. We do not
have algorithms for computing this volume exactly. The algorithms of Section 3 serve only to com-
pute slice projections of thb C'space, obstacles. It is clear that the same must be done for the feasible
grasp set, namely computing its slice projection for some range of oricntations. Such a slice would be
the set of (z, y, z) positions of A that, for some range of orientatipns of A, are in contact with P, but
outside all of the B;. Presumably, this requires using the slice projections of COp,(P;), COp,(P;), and
the COA(B;). A problem arises when trying to do this, because slice projections were defined over
simple oricntation ranges of the cartesian manipulator’s wrist defined in Section 5. These ranges are
not, in gencral compatible with the ranges of orientations that define Ga(P;, P;). For a position of
ruq on H, oﬁly a small range of orientations will result in configurations that are in GA(P;, Pj), yet for

that position to be in a slice of FG4(P;, Pj) it must be the casc that no orientation within the slice’s
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~ defining range causcs a collision. Thcrcforc,Afcw, if any, configurations in the grasp set will be feasible
grasp conﬁgurétions. |

The solution to this probl_cm is simply to define a new sct of slices whose orientation ranges are
subséts of the orientation ranges in Ga(P;, P;). Note that a configuration in such a slice alrcady
satisﬁcé the orientation constraints of the grasp sct. ‘Therefore, only the position constraints, i.c. that
the (z, y, 2) position be in H, need to be enforced to obtain the intersection of d Cspace obstacle in
‘that slice with the grasp set. This removes the need of computing the complete representation of the
obstaclés, while simultancously avoiding the problems introduced by irrclevant orientations.

Computing the obstacle slices for orientations in the grasp set requires being able to compute the
sWept volume of the manipulator over oricntation ranges that are not the simple rangcé of joint angles
defined in Section S. l.ct R be the set of orientations in the grasp set that define a slice and denote
the swept volume of A over R as A[R]. Algorithms for approximating the swept volume over these
ranges can be based on the simple approach described in the Appéndix. The important constraint on
the approximation to A[R] is that it does not intersect the grasp surfaces for positions of ruy on H.

In addition to the manipulator displacing and rotating, the manipulator’s fingers may move per-
pc’ndicular to the grasp surfaces. This additional degree of freedom has not been discussed above. In
fact, it poses no additional problems; the motion of the fingers can be treated, via slice projection,
uniformly with rotation. This simply rcquirbs including the §paée swcpt out by the fingers during

closing, in the swept volume used to define slices of the CO,(B;).

9.2. Overlap of Finger and Surface

The approach described above deéls adequately with the CO4(B;) in the definition of feasible
grasp sct, but is less succesful in dealing with COp,(P;) and COg,(P;). The reason for this is that
a position in the slice projection of COp,(P;) simply indicates that for some oricntation of A in the
slice, the finger is in contact with P;. What is requircd instead is the set of positions which for all
oricntations of A in the slice, there is contact. In fact, we would like to guarantce that the area of
contact between the fingers and the grasp faces always exceeds some fixed arca. How this may be

accomplished is discussed below.
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Figure 13. Defining the configurations of A for which " overlaps P. (a) Illustration of the definition of T}
and S. (b) Illustration of € 71,7.2’(1’4) €3 S, with two positions of /%'s reference vertex (indicated by the small

circles) showing the area of overlap includes an area of the form T, P s, for some s € S.

Let F, and P, be, respectively, a finger surface and the corresponding grasp surface. We define
Titobeca small strip at the tip of Fy, such that Fi; = T €D S, where S is the sct of points along a
linc segment, as shown in Figure 13. Again, we assume that the configurations of T} correspond to
those of £} (and therefore A). Assume A is in some configuration ¢ € GA(P;, P;), so that F} and P,
arc coplanar, then CT F¥2(P,) is the set of (z, vy, 2) configurations of Ty, and thercforc of F; and A,
for which Fx N Py 2 Ti. But, we do not want to restrict the overlap between Fi and P to be at the
fingertip; instcad, we want the area of overlap to include some area T’ , obtainable by translating T

along S, i.e. T}, = T € {s}, withs € S. It is casy to show that
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CIF(P)©S={c|3€5: AN (F)e 2 (Tk)- B {s}}

“Therefore, this is the desired sct of configurations, scé Figure 13. This result can be applied to com-
pute the slices nceded for tﬁe feasible grasp set. If R is the oricmaiion range defining the slice, then
CI %f[z,{l(Pl) © S|R] represents the sct of (z, y, 2) configurations that, for orientations in R, guarantee
~ that the contact between Fy, and P, includes Ty. Note that this approach can be gencralized to any S |

and Ty such that Fy, = T, @ S; as T}, becomes smallcri and approaches a point, then S approaches Fy.

9.3. Safety at the Destination

So far, the definition of FGA(P;, P;) only ecmbodics constraints relating to safety at P’s initial
configuration, however a grasp configuration must also be safc at P’s final configuration. Clearly,
another feasible grasp set can be computed at P’s final configuration, say FGa(P;, P);) where the

primed faces indicate the faces at their final configuration. But, these two feasible grasp scts cannot
| be intersected to obtain those graSp configurations that are safe for both configurations of P, be-
causc a grasp configuration corresponds to different manipulator configurations at cach different
configuration of P. What is nccdcd' is a way of defining those grasp configurations in P’s initial
configuration that would lcad to a colliéion when P is in its final conﬁguratioﬁ, Figure 14.

A grasp configuration establishes a fixed relationship bctwcén the ‘ﬁngcrs and the graspcd part,
P. Let the final configuration of P be obtaincd by a dis_placcmnct consisting of a translation ¢ and a
rotation r, indicated by D, ,(P). Clearly, any sct of bosiiions X bears the same relationship to Dy (P)
as D},!(X) bears to P. Therefore, if CO3*(B) is a st of positions of A which causc collisions at P’s
final configuration, then D,‘,‘,l (CO=¥*(B;)) represent infeasible grasp configurations, Figure 14. This
result also holds for swept Qolumes of A, thercfore it may be used to ensure safety at the destination in

the definition of feasible grasp sets.

9.4, Computing the Feasible Grasp Set

The discussion in the preceding subscctions is summarized in the following definition of feasible
grasp sct, for some range of oricntation in the grasp sct. We denote this orientation range as R, and

let I denote the same oricntation range as IR relative to P, but at P's destination. We also let (¢, 7) be
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Figure 14. (a) A side view of a manipulator hand, composed of a finger and a "palm”, hold-
ing P at the initial and final configuration. (b) In the initial configuration, the shaded area
represents CORY*(P;) — |J,; CO4¥*(B;), i.c. the feasible grasp configurations for A, considering
only safety at the origin and letting T be a point. (c) The CO%¥*(B,) for the final configuration
~of A and P. (d) The shaded arca represents COfY*(P;) — U, COZ¥(B)) U D, (COZ¥*(B))), —
which is the feasible grasp sct that takes into account safety at the destination.
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the displacement between the initial and final configurations of P. Then, the feasible grasp set, for the

orientation rahge R and displacement (t,r),is:
FG3(Pi, Py) = ((CIF4(P) 0 CI5%,(Py) © SIR]) — | CO%iy(B;) U D (COTin(B))

All of the cicménts in this definition can be computed using the CO*V* algorithm of Scction 3;2 énd_ a

swept volume algorithm,

9.5. Approach and Deparlure

Configurations in the feasible grasp set, as defined above are guaranteed to be safc both at P’s
mltlal and final configuration. While these conditions are sufficient in most situations, thcy do not
guarantee that the fcasnblc grasp configurations can be used during a "pick and place” opcranon For'
a feasible grasp configuration to be a Jegal grasp configuration, it must allow the mampulator to reach
and depart P's initial and final configurations. Summzu izing, the followmg condmons must hold for a

legal grasp configuration:

1. [Itmustbe possibic to fcach it from the initial conﬁguration of the manipulator.
2. It must be possible to remove P from its initial configuration safely.

3. It must be possible to rcach the P’s final configuration with P held in the hand. :
4. 1t must be possible to withdraw the manipulator from P’s ﬁnai configuration.

The Findpath algorithm described in the preceeding s'ecti‘ons’ can be extended to deal with
the problem of choosing a grasping conﬁgufatiop that is reachable from the manipuiatorfs initial
- conﬁ@rétion. As we saw above, the feasible grasp configurations, oyci‘ sonﬁe ‘rangc of oricntatioﬁs, are
those within some speciﬁcd ;/oiumc of C'space,, but outsidc Ihe slice projccti_bns of suitably defined
Cspace, obstacles. Hence, they are equivalent to the sliccé, COS(c, c] of Scction 6.2, Therefore,
a free space representation for the feasible grasp configurations can be constructed and the resulting
free cells linked in the Free Space Graph. The feasible grasp configurations for altcmatlve grasp
~surfaces can .nlso be linked into the graph. In the resulting FSG, any path f'mm Lhc cell cuntaming

i thc origin to a cell containing a feasible grasp configuration shows that this grasp conﬁguratlon may
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be reached from the ?)r'igin. The path scarching process must be modificd to scarch for any ccll
which contains a suitable grasp configuration, rather than searching for a particular cell containing the
destination.

Similarly, dcparturc _from the origin and approach to the destination could be handled by testing
whether the destination is reachable, using the FSG constructed as above. The difference is that now
the hand is holding P, thercfore the polyhcdral description of P must be treated as if it were part of
~the manipulator. This requires adding a new set of C'space, obstacles, arising from the interaction of
P and the objects in the workspace, to the ones already computed for the manipulator. This is entirely
analogous to modifying the description of the manipulator, which is all:cady modelled as a union of
convex solids. But, the geometric relationships between P and the A; are determined by the grasp
configuration, which has several dcgrcés of frecdom. 'I‘hé problem can be approached by treating
these additional degrees of freedom, via slice projection, just as the wrist rotations were treated. This
approach imposes a great cost in additional computation. A simpler, though less general, technique is
to use heuristics in choosing a feasible grasp configuration and then test, via the path search process,
whether that grasp configuration Vpermits departure. If it does not, a new configuration might be
chosen and the procéss repeated. This approach would be not be adequate for very cluttered environ-
ments or situations involving parts mating at the destination. In such environments an approach based

on slice projection would also be susceptible to failure. Further research is nceded in this area.

9.6, Stability in Grasping

We have thus far not considered the issue of stabiiity of the fcasiblcb grasp pdint. An adcqua;e
treatment of .swb,ility in‘ grasping is not yet available, although some p_romising approaches exist [S].
The techniques described in this section can be used to implement two simple grasping heuristics,
which work adequately when (1) the manipulator hand is made up of rigid fingers, (2) the object to be
grasped, P, is small relative to the manipulator hand and (3) parts mating effects arc igndrcd. The two
heuristics are: | | ‘ , ‘

1. Ensure at least a minimum contact arezi of the fingers with the grasp surfaces. 'ic amduht '

of overlap should depend on object propértics such as weight and surface smoothness.
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2. The perpendicular projection of P’s center of mass should be near to F; N P; and F, N P;.

The implementation of the contact area heuristic was discussed above, Section 9.2. The center
of mass heuristic can be implemented by giving preference to grasp surfaces for which the center of
mass, projcctcd onto the plane coniaining P;, falls within P; and similarly for P;. Furthermore, for
spccified grasp surfaces, the choice among legal grasp configurations should minimize the distance of
thé pricction of the center of mass to the area of overlap between finger aﬁd grasp surface, 4

These heuristics, though adcquate for many tasks, are not a substitute for a general theory of |

stability in grasping. This remains onc of the most interesting open problems in robotics.

10, The Effect of Uncertainty

In the preceeding sections we have assumed that:

1. the configuration of all the objects is known exactly, and
2. the configuration of the manipulator can be controlled exactly.

Both of these assumptions are only approximations to reality. In practice, configurations can only
be known to within some uncertainty. Both of these sources of uncertainty affect what manipulator

motions are safe.

10.1. Modelling Worst-Case Uncertainty in Cspaces

In C'space,, the two sources of uncertainty have similar effects, i.e. modifying the shape of the |
‘C'spaceA obstacles. This section deals with techniques for taking into account these effects. 'I'h'e.
following notation is uscful in the discussion. Lete = (8;) = (By,...,B,) € R" and similarly, let
configurations be (y;) = (m, - .'.,'yn) € R™. The index set {1, ..., n} will be referred to as I; let
K C I. The set Ux(e) denotes the sct of conﬁgurations‘ in Cspace4 whosc K -parameters are less than

the absolute value of the corresponding parameter of e.

-G <vnu<B ifiteK

v =0, otherwise

(1) € Uk(e) = {
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Uncertainty in the configuration of A in Cspace, can be represented as a region around its
nominal configuration, c; within this region arc all the conﬁgurations that A may be in. Simple regions
can be characterized by {c} @ Uk(ea). Assume that (A), N B 5% @, i.c that a € CO4(B). Any
nominal configuration a’ such that o’ + z = a, for z € Uy(ea), should also belong to CO4(B). This
means that under uncertainty of A, CO4(B) should be replaced with CO4(B) © Ui(ea). In practice,
v we do not ever compute CO,(B); rather, we compute slice projcctiohs of it using the swept volume
of A over ranges of orientation parameters, R. ‘Therefore, the orientation and translation uncertainty
must be treated separately. Orientation uncertainty affects the definition of the manipulator’s swept
volume. For cxample, to compute a slice with parameters [c, ¢/] ., the swept volume A[c—eq, ¢-+ealr
is used in place of Ale, ]ir. The cffect of the uncertainty in the translation paramecters, T, can be
computed as indicated in Scction 5.1, using the CO%¥*(B) algorithm.

The worst-case effect on CO4(B;) of uncertainty in the configuration of the Bj, can be modelled
by replacing B with the swept volume of B over the uncertainty range. Alternatively, if the uncer-
tainty in the configuration of B can be approximated by an uncertainty in translation!3 Ur(ep,) then
the uncertainty of A and B can be combined into a single uncertainty'? and treatcd as the uncertainty

of A. If T is the set of indices for translation parameters, then the combined uncertainty is:

Ur(€,) = Ur(es,) © Ur(ea)

10.2. The Effect of Uncertainty on "Pick and Place” Synthesis

The presence of uncertainty significantly affects manipulator programming in general and the
synthesis of "pick and place” motions in particular. One approach to planning motions in the'
presence of uncertainty is to plan paths that arc safc under the worst case uncertainty, i.e. paths
outside the expanded Cspaceq obstacles defined above. 'This approach rules out mbst operations
that involve moving near objects, e.g. grasping. Another approach is to assume that uncertainty

does not significantly affect the outcome of most operations and to plan motions assuming nominal

13This can be done by defining a new translation uncertainty such that the swept volume over this range of positions
will contain the swept volume over the original uncertainty range.

W his assumes that the translation space of the manipulator is the same as that of the objects in the workspace, which
is truc for cartesian manipulators. i
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configurations. A compromisc position is to redefine the "pick and place” synthesis problem so as to

isolate those opcrations that are most susceptible to uncertainty from those others where uncertainty

‘plays a relatively minor role. The latter can be addressed by the techniques outlined in this paper, the

former require a different approach. One possible re-definition of the "pick and place™ problem is the
following: |
1. Find a nominal grasp configuration assuming that there is no uncertainty. |

2. Identify a grasp approach configuration, a configuration that can be shown to be safe under

worst-case uncertainty estimates for object and manipulator configuration.

3. ldentify a grasp deproach configuration, a configuration which is safe for the manipulator
grasping the part, given the uncertainty in the part’s configuration after grasping and the uncer-

lainty in configurations of ncarby objects.

4, Compute a path, from the manipulator’s initial éonﬁguration to the grasp approach

configuration, assuming worst-casc uncertainty.

5. Identify a destination approach configuration, a configuration which is safe for the manipulator
holding the object, given the uncertainty in the grasp configuration and the uncertainty of

nearby objects.

6. Compute a safe path from the grasp deproach configuration to the destination approach

configuration for the manipulator and the grasped part, also assuming wort-case uncertainty.

7. Identify a destination depproach configuration, a configuration which is safe for the

manipulator, given the uncertainty of ncarby objects.

This formulation of the synthesis problem factors out the problems of approaching and dcproach4
ing both the nominal grasp configuration and the destination. For bbth of thesce problcrrié, the use
of sensory information to identify the actual state of the task and to accomodate to it is important
[25] [30] [44]. When the uncertainty is.small, the problem can be dealt with by ad hoc methods,
c.g. ppdnihg the fingers very wide and relying on U1c grasping action to place 'thc object and/or
the manipulator in' approximatcly the correct orientation [19]. ‘The general problem of planning

manipulator operations that are robust in the face of uncertainty is an important problem [30], but
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beyond the scope of this paper.

11. Summary

"This paper has presented an ab*broach‘m il.ic' éentﬂni gé()n1ctric problems underlying thc synthesis
of "pick and place” motions for cartesian manipulators. ‘The key technique in the approach is the use
of explicit polyhedral representations (}f the configuration constraints on the manipulator. This repre-
sentation permits the use of simple and powerful geometric operations to solve problems involving
safe motions of the manipulator. In particﬁ]ar, the problems of finding grasp configurations and safe
paths in the absence of uncertainty.

'l;hc concepts of Configuration Space and Configuration Space Obstacle have played a central role
in the approach to gross motion synthesis developed here. Similar concepts play an important role in
the approach to compliant motion synthesis described in [30]. ’l‘hbsc concepts have also proven useful

in other gecometric applications [1]|2] [4] [45].
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Vigure 15. The WEDGE is a convex polyhedron used to approximate the volume swept out by a cuboid
aligned with the coordinale axes, as it rotates around the z axis, assuming the z axis does not penetrate the
cuboid. :

Appendix 1. A Polyhedral Approximation for Swept Volume

The swept volume is the volume occupied by a polyhedron over a set of configurations, c.g. along
some path. The swept volume over a range of translations can be computed using the CO™Y* algo-
rithm. In thié. appendix, we will limit our attention to computing a simple polyhedral approximation
to the swept volume for rotations of a polyhedron around an arbitrary axis. This method is included

here for completeness, it is not the best polyhedral approximation to the swept volume.

The swept volume approximation described here returns a list of convex polyhedra of two types:

1. CYLJNI)ER — a polyhedral approximaiion to a right circular cylinder.
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Figure 16. Computing a polyhedral approximation to the swept volume under pure rota- —
tion.
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2. WEDGE — a polyhedral approximation to the volume swept out by a cuboid, aligned with
the coordinate axes, as it rotates around the 2z axis, Figure 15. It assumes that the z axis does

not penctrate the cuboid and that the rotation is less than 7.

The input is a polyhedron, B, an axis of rotation which is the z axis of a reference frame and 6,
the angle of rotation. The first step is to rotate the frame around z so that the z axis goés through
the centroid of the projection of B on the (z, y)-plane of the frame. Compute an aligned bounding
rectangular solid for B, RB(B), whose dimensions arc (Az, Ay, Az). If the z axis does not pass
through the object, then if 8 << 6,ax < 7 then simply return a WEDGE enclosing the swept volume.
If the z axis penetrates RB(B), then if Az > Ay, cut B using the planes z = %’1 andz = :291,
and rcturn a cylinder of radius v/2Ay whose height is Az and return the swept volumes of the pieces
of B beyond the central area. The procedure is similar if Ay > Az. Figurcv 16 illustrates this
process. Here 6,5 is some user specified parameter, although it could be chosen to guarantee some
kind of crror bound. If @ > 6,,.x, then divide the rotation into a set of successive rotations cach

returning a wedge.






