MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.I. Memo No. 609 December, 1980

TOWARDS A BETTER DEFINITION OF TRANSACTIONS

Barbara S. Kerns

ABSTRACT: This paper builds on a technical report written by Carl Hewitt and
Henry Baker called "Actors and Continuous Functionals". What is called a
"goal-oriented activity" in that paper will be referred to in this paper as

a "transaction". The word "transaction" brings to mind an object closer in
function to what we wish to present than does the word "activity". This
memo, therefore, presents the definitions of a reply and a transaction as
given in Hewitt and Baker's paper and points out some discrepancies in their
definitions. That is, that the properties of transactions and replies as
they were defined did not correspond with our intuitions, and thus the
definitions should be changed. The issues of what should constitute a
transaction are discussed, and a new définition is presented which eliminates
the discrepancies caused by the original definitions. Some properties of

the newly defined transactions are discussed, and it is shown that the results
of Hewitt and Baker's paper still hold given the new definitions.

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Support for this research was
provided in part by the Office of Naval Research of the Department of Defense
under Contract N00014-75-C-0522.

PACE 2

I Introduction

A transaction corresponds o our usual notion of a subcomputation needed for
<ubroutines. 1Cincludes those events which oceur hecause a certain request is made, up to
aned including the resultant reply. The notion of a request, followed by steps leading to a
reply, appears over and over again in nany different kinds of programming applications.
Recur-ive function invocation, data bases, and interactive systems, for example, each
tHustrate the need for the concept of a transaction. In recursive function invocation a
request 15 nade for the value of some cxpression, and a reply is subsequently returned.
When working with data bases, one often wishes to retrieve a piece of information and
thus will subinit a request. Here again, the activity involved in replying to that request
constitutes a transaction. Interactive systems are really nothing more than a series of
requests and replies, Lisp, for example, uses the classic "read-eval-print" loop.

The concept of a tranzaction is therefore an important one, and is extremely

useful in reasoning about sequential propram semantics. We need to establish a robust

definition of a tranzaction that applies to distributed systems as well, where many
machines or processors interact through a network., Communication between processes 15
necestary for cohcurrent programming to be uscful; thus we wish to construct and
cxanine a definition of a transaction which can be used to reason about such inter-process
communication,

H. Backoround

Actors and events are the basic concepts of the actor theory. Actors
communicate with one another by scending messengers to cach other. Each messenge’
contiine information which the receiving or "target” actor then acts upon. An actor may
ereate another actor, in fact, most messengers (which are also actors) are created just
betore heing sent off to another actor. An event occurs when a messenger arrives at ils
target actor. Often we use the notation:

Fo T e~ M)

to mean that targetth) = T and messenger(E) = M.

PAGE 3

Actors which a given actor directly knows about are called its "acquaintances'.
For an event I, the "participints” of [are the target(E), the messenger(E), and the
acquaintances of tarpet(f) and of messenger(E). An actor maintains a veclor of
sequaintances, which may or may not chanpe over time. It may gain new acquaintances (or
forget old ones) through the acquaintances of a message sent to it. An example of an
sctor whose acquaintances change over time is a "cell”. It has one acquaintance, and can
recetve either a "contents?" request, in which case it replies with its acquaintance, or a
update request) in which case it forgets its old acquaintance and remembers the new one
piven to it by the update request, The bhehavior of other actors whose vectors of
acquiintances may change with time are given in [Hewitt and Attardi, 1978).

The <ignilicance of an event causing an actor to change its vector of
acquamntances is that such actors therefore are “order-dependent”. That is, the order in
which they receive messages can eflect the replies they send to these messages. Such
actars are "sernlized” <o that they can assign an “arrival ordering” to their messengers. If
the messape of event B arrives at a serialized actor S before the message of event E,,
then we write:

Ky -ang -> E,
Another type of ordering is the "aclivation ordering”. I as a result of
recoving a messenger Mon an event Fo, the target actor sends another messenger M, to
anactor A, then B, is said to activate Fy where by is the arrival of M, at A. We write:

L? "(}'L‘f“ > E3

The tanitive closure of these two kinds of orderings is called the "combined
ordering”, and according to the above (wo examples we could write:

Ey >

PAGE 4

il Transactions
{l. i. Request and Reply Fvents

In order to study transactions we must have a formal definition of a request and
A reply. A request is simply the messenger inany event of the form:

[.. <~~ [request: ..reply-to: c]]
where ¢ is a continuation. The definition of reply as given in [Hewitt and Baker, 1977] is:

If an event Fois of the form _

[.. <~~ [request: . reply-to:]]
then any event £’ of the form

(¢ <~ [reply: .l]
auch that B act->E will be said to be a reply to E.

(We will [vequently 1efer to an event whose messenger is a request or a reply as a
roquest or reply event, respectively. We use the notation "reply(RQ)" to mean the event
whone meaengor is the reply of the vequest event RQ. This paper assumes that at most
one reply exinte for cach request) But this definition of a reply is too strict. Consider
the cane in which a request is sent to a serialized actor X in event RQ. Suppose that
before sending a reply, N demands that it receive "permission” to do so. Permission is
cranted in the form of the receipt of a clock pulse, which may arrive hefore or alter the
teceipt of the request event. Calling the event in which the clock pulse arrives at X
event T we have Fr [N o~ pulsel The pulse allows the reply to the first message to be
cont, and it arrives at the continuation in event RP, such that RP: [C <~n [reply:] 1

RO: (X <~ [requost: M, reply-tor Cl]
i

arry,

x5 <~ pulse) ~act-> RP: (G <nvn [reply: o))

PAGE 5

We wee that RQ any »E-act »RP. There is no activation ordering between RQ and RP;
but RP <hould <till constitute 3 reply to RQ. We therefore propose that the definition of
reply he weskened to:

If an event £ is of the form
[.. <~~ [request: .,reply-to: cl]
then any event E’ of the form '
lc <~ [reply: W]
will be said to be a reply to E.

-y

such that bE--->E

By chanping the requirement of an activation ordering between the request and its
ascociated reply to a combined ordering, we allow events which are ordered by arrival
ordering to enter the path between request and reply.

I1. i1, Redefining Tran<actions

Hewitt and Baker’s definition of a transaction (given this paper’s assumption that
at most one reply exists for each request) is:

transaction(RQ) = RQ--2 N --2reply(RQ)
where RQ 15 an event whose messenger is a request,

Intuitively, a transaction is an attempt to characterize the notion of a process in
conventional propramming languages, since only those events which contribute towards the
request’s reply are included in the transaction.

For exanple, consider an cvent RQ, in which a message M arrives at a scrialized
actor X with continuation G, that is, RQ,: [X <~~ [request: M, reply-to: C] } Let X
then receive a sccond mossage M) such that RQp: [X <~~ [request: M, reply-to: C] 1
X replies to M first by sending R’ to the continuation C’. It then replies to M. The
following events and orderings are relevant,

PAGCE 6

RO : X <~~ [request: M, reply-to: GJ]
RQL: [N o~~ [request: M, reply-to: G]
RQy —arrg =» RQ,

RP: [C7 nm R

kP (6 <~ R]

RO, -act- > RP,

RQp ~act-> RP,

RQ,: [X <~ [request: M, reply-to: G]] -act-> RP: [C <~~ R]
|
arry
\’

RQ,: [X <~ [request: M, reply-to: G -act-> RP,: [C” <~~ R’]

Now, trancaction(RQ,) = {RQ,, RP,}, and transaction(RQ,) = {RQ,, RP,}. Although
RQ,~-->RQ,, RQ, is not an element of transaction(RQ,), because it is not true that
R(‘)? e :’RP!. .

However, as originally pointed out by Craig Schaffert, we note that a
discrepancy can arise with this definition. Consider the case in ILi. above in which a clock
pulie was used to activate the reply to a request. According to Hewitt and Baker’s
definition of a tranzaction, transaction(RQ) = {RQ, E, RP}. But if the clock pulse arrives at
X hefore RQ, we have the following situation:

E ~arry -» RQ ~act-> RP
Now transaction(RQ) = {RQ, RP}. This raises several questions concerning just what

chould be included in a transaction. Should F be included in the transaction in either case?
Should it not? Should the whole computation fail to be recognized as a transaction?

PAGE 1

In keeping with our intuitive discussion of transactions, it seems that we
<houldi’t throw out the whole computation, but we must now decide whether E should be
included or not, and in either case, its inclusion or exclusion should be consistent and not
dependent on the arrival ordering of L.

Carl Hewitt has proposed that those events which are not request events or
reply events (where a reply is extended to include complaints), should not be allowed to
be menwhers of any transaction. This constraint is in keeping with our concept of a
transaction as that "thing"” which models the classical notion of a process as a set of
nested request events and events which reply to those requests.

Adding thix constraint to our definition of a transaction, we see that in order to
determine whether I should be included in transaction(RQ), we must know whether it
con=titutes a roquest cvent or not (clearly it is not replying to X). Il E is not a request
event, then Iwill not be a member of transaction(RQ) repardless of where it comes in the
verival ordering of N with respeet to RQ. However, if Eis a request event, it necessarily
fhias an ascoctied reply event, We will assume then that there is an event R such that R =
rephy(D). We can now put some constraint on R in order to include or exclude E (and R)
from tran-actiontRQ). Following our intuitions (this is a definition, alter all), we add the
constraint (hat if F iz a request, in order for £ to be an element of transaction(RQ),
Re-=2reply(RQ). More formally, we now have:

For some request or reply event) E' ¢ transaction(RQ) iff
RQ =B 1= 2reply(RQ), and if B is a request event,
then reply(E)--->reply(RQ).

What this means is that il a request event is to be part of a transaction, its associated
reply event should be also. For the clock pulse example then, transaction(RQ) = {RQ, RP}
where I is not included at all, since E is neither a request nor a reply event. Note that
cince ve have added constraints to the definition of transaction but not eliminated any,
that no event which was not part of a given transaction will now be defined to be. We
have only climinated certain "ad hoe" events from some transactions. We will examine
ater how this effects some of the results presented in [Hewitt and Baker, 1975).

PACLE 8

I hi. Properly Nested Transactions

We would now like to prove some properties of these transactions. In
particular, it would be nice to he able to say that transactions are “"properly nested”. That
i<, that (wo trancactions are either disjoint, or that one is a subset of the other.
Halortunely, a counter-esample follows,

Convider the following event network and its associated orderings (Where the
RO are reguest events, the RP's are reply events, and the E’s are neither. RP’s
correspond to the RQ with the same subseript):

RO,y ~act-> RQ, RP, ~act=> Eg, Eq
ROy ~act-> RQy, RQq by -arrg -> kg
ROy ~act-> RP, by -act-> RP,
RP:; Gl El’ i‘_,z If:t} ~qcl-> sz
act-> .,

!

arr,

v

- pact RQg act-> RPy act=> Eg -act-> RP,
R(;), - RQ2 '
Nact-= RQy, -act-> RPy Nact=> E,

arr,

\

act-> B4 -act-> RP,

We wish (o determine which events are members of transaction(RQ) and which
are members of (ransaction(RQ,). Transaction(RQ) consists of RQ | (obviously), but not
KO, winee RP. = reply(RQ.) has no ordering with respect to RPy = reply(RQ,). RQg and
RO, are both elements, since they are ordered with respect to RQy and RP), and their
respoctive replies precede RPy. Then their replies RPy and RP4 are also members. E,

PACE 9

through 4 e not members of transaction(RQ,) since they are neither request events nor
veply event. Fundly, RP' is 3 member of transaction(RQ). Therefore, transaction(RQ,) =
TRQ,, RO, ROy, R, KDy, RP L Similarly, transaction(RQ5) = {RQ,, RQg, RQ4, RP5, RP4,

R 1.

The intersection of transaction(RQ,) with transaction(RQ,) consists of four
events, 1RQu, RQq, KPy, R4, and slthough this set is not a transaction itsell, it consists
of the wnion of two transactions. (t is possible to show that the intersection of two
trantactions io always cqual to the union of some number of other transactions.) However,
trancactiontRQ,) is clearly not contained in transaction(RQ,), nor is transaction(RQ3)
contiined in transaction(RQ).

Well, all is not lost, for we can prove at least a slightly weaker property,
thouph one which is still quite useful. Though we can not show that given any two
trancactions with at least one event in common, one transaction must be contained in the
other, wo can show that il a request event RQ is an element of transaction(RQ’), then
(ransaction(RQ) ¢ transactiontRQ'). This is called the Law of Containment for

Transactions,

Ascume that E ¢ transaction(RQ). To show that E ¢ transaction(RQ’), we must
<how

Coal 1t RQ--->E--->reply(RQ")
and it B s A request evg»m, that
Goal 21 reply(E)--->reply(RQ).
Since I« transaction{RQ) we have:
RQ ~->k--->reply(RQ)
and since RQ o transaction(RQ’):

RO’-=-»RQ--->reply(RQ)--->reply(RQ’).

PACL 10

Then .

RQ- - 2RQ--->E--->reply(RQ)--->reply(RQ’)

Thus RO Fea-oreplyRQT), which proves Goal 1.
Assume I is a request event in order to prove Goal 2:

reply(E)-—->reply(RQ).
Since I transaction(RQ) then
reply(E) —~->reply(RQ),

and sinee RQ o transaction(RQ’), and RQ is a request event,
we know

reply(RQ)-=->reply(RQ’).

Thus veplylE)—=oreply(RQ7). [Done]

HE Continuous Functionals
HE 1 Continntion Ovdering

Folore we go on, let’s briefly characterize those events which we have
eliminyted from trancactions. Tirst of all, we have eliminated from transactions all those
evente which are neither request nor reply events. Secondly, we have eliminated all those
request events whose associated reply events do not also participate in the transaction.

Hewitt and Faker have delined a third ordering on events called the
contimuation ordering. In this ordering, F, -cont-> E, if 1) there is some transaction o
such that £, and ¥y are both members of «, and 2) E; ===> E,. Our redefinition of
tranciction affects this ordering to the extent that now if E, -cont-> E,, we may
autonnatically conelude that [, and [, are cither request or reply events since no other

PACGE 11

type of event may be an element of some transaction, and furthermore, given the ordering
RQ, ~cont= ROy, we can conclude reply(RQ,) —cont=> reply(RQ). Tt is also the case that
some contimition orderings that once held between two events may no longer hold, since
come ovents have heen eliminated {rom transactions. But no additional continuation
orderings will hold due to the redeflinition of transaction.

UL i, Fork and Join Echavior

The fork and join behavior discussed in Section IX of [Hewitt and Baker, 1975)
holds up beautifully under the new definition of transaction, as long as no join occurs
without a previous fork first providing the components of the join. This prerequisite is
casy to fullill, however, since the classic notion of a process implies that that is always
the case.

HL dii. Procedures and Mathematical Functions

A The definition of a procedure as piven in [Hewitt and Baker, 1975] requires that
11 all events involved in the procedure are cither request or reply events, 2) there is at
most one reply event for each request event, and 3) the transactions are properly nested.
That is, for any two transactions in the procedure, either one is a proper subset of the
other, or they are disjoint.

We wizh to show that any transaction which was a procedure under the old
definition is ~tll a procedure under the new definition. That is, we wish to show that any
event which was eliminated from a transaction by the new definition of transaction would
not have pased as an event which could be part of a procedure anyway. Il we can do this,
then the result= given in [Hewitt and baker, 1975) for continuous functionals will still hold,
<ince they are bised on actors which behave like mathematical functions, and mathematical
functions depend on procedures for their definition.

PAGE 12

We have already characterized the events which were eliminated from
transactions. Those which are neither request nor reply events can not be part of a
procodure under the Tirst restriction. Those request events whose corresponding reply
events were not part of the transaction cannot he part of a procedure either, under the
folloving reasoning. Assume the existence of a request event RQ which is a member of
transactiont R, but whose roply RI'is not. Then RQ is also a member of transaction(RQ),
as isits reply, RP. Then transaction(R) and transaction(RQ) are not disjoint in that they
hoth contain RO, hut there is no containment since RP is not an element of transaction(R)
(therefore transaction(RQ) is not contained in transaction(R)), and since R--->RQ, R
cannot he an.element of transaction(RQ) (therefore transaction(R) is not contained in
transactiont RO, Thus, no such transaction would pass as a procedure anyway.

Thus, even with the new improved definition of transaction, we can still show
that i an actor hehaves like a mathematical Tunction, then it is the limit of a continuous
functional in the sense of Scott. It remains to be seen if analagous results can be shown
to hold (rue for order-dependent actors.

V. Conclusions

We have uncovered two “bugs” in the [Hewitt and Baker, 1975) paper, one with
the definition of "reply”, and one with the definition of a "transaction”. We proposed
Alternative definitions for both, and showed how these new definitions solved the
dizcrepancios raiced by the original definitions. Using the new definition of transaction,
the Low of Containment for Transactions was proved, and the deflinitions of a procedure
and a mathematical function were shown to hold true. Because these deflinitions held, we
were shle to maintain the result that if an actor behaves like a mathematical function, then
it i< the limit of a continuous functional in the sense of Scott.

PAGE 13

V. Future Work

We have not yel discussed the uniqueness of replies, or indeed how multiple
replies might alfect the definition of a transaction. Although normally a request has only
one reply, it is conceivable that an actor might have a behavior that causes multiple replies
to he sent in response Lo some request,

VI, Acknowledpemonts
I wish to thank Carl Hewitt for many valuable discussions on transactions and

actors. bill Kornfeld and Roger Duffey acted as helpful sounding boards for some of my
ideas, and encounged my quest for the "perfect transaction".

VIL Bibliography

Hewitt, C. and Faker, Il Actors and Continuous Functionals, MIT LCS TR-194,December
1971

Hevwitt, C. and Attardi, G. Proving Properties of Concurrent Programs Expressed as
tehavioral Specifications. In preparation,

Hewitt, C. and Faker, 1. Laws for Gommunicating Parallel Processes. MIT Artificial
Intelligence Working Paper 1314A. December 1976.Invited paper at IFIP-T7

Hewitt, C. "Viewing Control Structures as Patterns of Passing Messages”. Al Journal, V.8,
19777, ppid3-264, S

