. MASSACHUSET 15 INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.L Memo No. 611 ~ October 1981

GPRINT

A LISP Pretty Printer Providing
Extensive User Format-Control Mechanisms

by

Richard C. Waters

ABSTRACT

A pretty printer is presented which makes it easy for a user to control the format of the
output produced. The printer can be used as a general mechanism for printing data
structures as well as programs. It is divided into two parts: a set of formatting functions, and
an output routine. Each formatting function creates a sequence of directions which specify
how an object is to be formatted if it can fit on one line and how it is to be formatted if it
must be broken up across multiple lines. Based on the line length available, the output
routine decides what structures have to be broken up across multiple lines and produces the
actual output following the directions created by the formatting functions. The directions
passed from the formatting functions to the output routine form a well defined interface: a
language for specifying formatting options.

Three levels of user format-control are provided. A simple template mechanism makes it
easy for a user to control certain aspects of the format produced. A user can exercise much
more complete control over how a particular type of object is formatted by writing a special
formatting function for it. He can make global changes in format by modifying the
formatting process as a whole.

This report describes rescarch done at the Artificial Intclligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratory’s artificial intelligence research has been provided in part by the
Advanced Research Projects Agency of the Department of Defense under Office of Naval Rescarch contracts
N00014-75-C-0643 and N00014-80-C-0505.

The views and conclusions contained in this paper are those of the author, and should not be interpreted as
necessarily representing the official policics, either expressed or implied, of the Department of Defense, or the
United States Government.

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1981.

Waters . -1- S GPRINT

Introduction

This paper shows how a pretty printer can be structured to provide mechanisms which allow (but do not
require) the user to exercise extensive control over the format of the output produced. There are three basic
reasons why user format-control mechanisms are useful: They make it possible for the user to adapt the

‘printer so that it can deal aesthetically with new structures created by the user which were not foreseen by the

implementors of the printer. They make it possible for the user to modify the way in which standard
structures are formatted so that he can get the kind of output he really wants to see. They can be used to
specify how the standard structures should be formatted. This leads to greater internal clarity in the pretty

- - printer itself by separating this formatting information from the rest of the algorithm.

Most pretty printers do not give the user any significant control over the format produced [1, 2, 4-9]. This
lack has been ameliorated by the fact that most of these printers are not intended to be able to deal with novel
structures; they are used solely as system facilities for printing program text written in a language which does
not allow the programmer to create new programming forms.

A pretty printer can be used much more advantageously if it is set up so that it can be used to print data
structures as well as programs and so that it can be called by user programs. If used this way the issue of
dealing with novel structures cannot be ignored, and user format-control mechanisms become essential.

A pretty printer can be viewed as a general mechanism for formatting and then printing hierarchical
structures of variable shape and size. Program parse trees are a prototypical example of such a structure.
However, they are by no means the only example. A pretty printer can be extended to deal with arbitrary
data structures by adding default formats for each basic data structure (e.g. for records, arrays, etc.). However,
due to the idiosyncratic nature of user defined data structures in general, user format-control is needed in
order for the output produced to be aesthetic. ’ '

Every language has facilities for specifying how output is to be formatted on the page. In general, these
facilities are oriented toward printing data structures whose shape is known in advance, on a page whose
width is known in advance. If either of these have to be parameterized, then the programmer has to write
special code to deal with it. Pretty printers are specifically designed to deal with these two kinds of variability.
User format-control mechanisms make it possible for the user to specify his aesthetic criteria in a way which is
independent of the exact shape of the data, and the size of the page.

The sections below describe how a particular pretty printer (GPRINT) provides for user format-control and
discusses some of the general issues involved. GPRINT was originally implemented in 1975 as an attempt to
improve on an earlier pretty printer implemented by Goldstein [3]. Goldstein’s pretty printer is one of the
few pretty printers which provides significant user format control mechanisms. However, these mechanisms
are at the same time too complex for easy use in simple situations and too weak in situations where the user
needs extensive control. GPRINT has been rewritten four times (most recently in 1981) in a continuing
attempt to create a user controllable pretty printer with very good human engineering. ,

This paper is not a complete description of GPRINT. In the interest of brevity and clarity, the discussion is
simpliﬁcd wherever possible by omitting details and capabilitics of GPRINT which do not directly relate to
user control of formatting. An appendix summarizes the full facilities provided by GPRINT.

GPRINT is written in Lisp, and was developed in the context of the Lisp programming environment. In
this paper, the Lisp language is used to display parts of the algorithm and Lisp data is used in examples of
how objects are printed. This is done because Lisp has several features which make the implementation and
explication of a pretty printer particularly casy. However, the ideas embodied in GPRINT are not limited to
the Lisp domain. In particular, these ideas grow principally out of the requirements for a highly interactive
programming environment, rather than out of the Lisp language.

GPRINT . -2- Waters

The Basic Algorithm

The central feature of the algorithm used by GPRINT is that the pretty printing process is divided into two
parts: a set of formatting functions and an output routine. The formatting functions specify how each part of
the input is to be printed if it will fit on one line, and how it should be printed if it must be broken up across
multiple lines. This information is passed to the output routine as a sequence of entries in a queue. The
output routine operates as a coroutine processing the queue entries as they are created. It decides how to fit
things into the actual space available and then prints them. An important feature of the algorithm used by the
output routine is that it is linear in the number of entries put in the queue. The key to this is that it uses a
strictly limited form of look ahead so that the length of the queue is bounded by the length of the line
available for printing and is independent of the actual number of entries created.

This basic algorithm has been independently developed by several people [4, 7] in addition to the author.
In[7], Oppen gives a lucid description of the algorithm, and how the output routine operates. The only
difference between his output routine and GPRINT’s output routine is that GPRINT’S queue entries are¢ more
general. This paper focuses on the unique aspect of GPRINT: the way the formatting process allows for user
format-control.

The following simplified example illustrates how formatting information is encoded in queue entries. In
order to format the list (ITEM1 (ITEM2 ITEM3 ITEM4) ITEMS5) the following queue entries could be used.

{, '(ITEM1 ', {, '(ITEM2 ', 'ITEM3 ', N, 'ITEM4)', 3}, ' ', N, 'ITEM5)', }
There are three basic kinds of queue entries:

{ ... }-These two entries mark the beginning and end of a group of queue entries which are to be
treated as a single substructure.

'...' - Theindicated string is to be printed in the output.

N - A conditional line break. A line break is to be inserted in the output if the structure immediately
containing this entry cannot be printed on a single line. When this is done, indentation is inserted so
that the next item to be printed will line up under the second item in the substructure.

The queue entries in the example above specify that the list should be printed in one of three ways
depending on how much horizontal space is available. If the available space is at least 33 characters than the
entire list will be printed on a single line as follows:

(ITEM1 (ITEM2 ITEM3 ITEM4) ITEMS)

If the width is less than 33, then the top level structure must be broken up across lines. The last N queue
entry indicates that in this case a line break should be inserted before ITEM5. As long as the width is at least
27 then the sublist does not have to be broken up and the output is as follows:

(ITEM1 (ITEM2 ITEM3 ITEM4)
ITEM5)
If the width is less than 27, then the sublist must also be broken up across lines. The first N queue entry
indicates that in this case a line break should be inscrted before ITEM4 yiclding the following:
(ITEM1 (ITEM2 ITEM3
ITEM4)
ITEMS)

If the available width is less than 21, then there is no way to print out the structure which is consistent with

the queuc entrics. This is an example of the finite line length problem. Pretty printers in genceral suffer from

. ters . -3- GPRINT

this problem and there is no simple soluticn to it. However, the problem is usually not severe as long as the
line length available is several times larger than the largest indivisible item which must be printed on a single
line. GPRINT has a number of built in features which try to ameliorate the problem by keeping the
indentation small in order to maximize the line length available.

The Dispatching Function

The structure of the set of formatting functions is based on the idea that any object to be printed by
GPRINT can be viewed as a directed graph where each leaf node is a primitive data object (such as a number
or a symbol) and each non-terminal node is a composite data structure (such as a record structure or a
non-terminal node in a program parse tree). The formatting functions are organized around a central
dispatching function (GDIéPATCH). At each node, GDISPATCH selects a particular formatting function based
on various features of the node (such as its data type). The selected formatting function creates queue entries
which specify what to print corresponding to the node and how it should be formatted. It calls the
dispatching function recursively in order to format the composite components of the node.

The discussion in this paper focuses on the familiar use of a pretty printer to format programs and
therefore on the Lisp data type list. This is a convenient microcosm in which the user format-control
mechanisms can be discussed. Formatting programs is particularly straightforward in the Lisp domain. Due

to the fact that program lists are data objects like any other, it is not necessary to implement either a program °

text parser or a special data structure representing program parse trees as part of the pretty printer.

Consider the following simplified version of GDISPATCH. It assumes that the item to be formatted must be
either an atom or a list. GDISPATCH first tests the data type of the item. If it is an atom then it is entered into
the queue as an item to be printed out. If it is a list then GDISPATCH looks at the CAR of the list in order to
pick a specific formatting function. A formatting function for a particular type of list can be specified by
defining it as the : GFORMAT property of the CAR of the list. If there is no such property then GDISPATCH uses
either a default format for function applications or for data structures. Unfortunately, in a Lisp system there
is no completely reliable way to distinguish the representation of a program from other kinds of data. As a
heuristic, GDISPATCH looks to see whether the CAR of the list is the name of a function. (The formatting
functions referred to here are discussed below.)

(defun Gdispatch (item)
(funca11 (cond ((atom item) ':Gatom-format)
((not (symbolp {car item))) ':Gdata-format)
((get (car item) ':Gformat))
((fboundp (car item)) ':Gfn-format)
(T ':Gdata-format))
item))

The actual version of GDISPATCH used by GPRINT dispatches on many other data types as well as lists (for -

example, arrays, MacLisp hunks, and Lisp Machine named structures). Standard formattmg functlons are
provided for cach of these data types (see the appendix).

It is important to note that the dispatching function depends on the availability of run time type
information. In Lisp, this information is rcadily available. In many othcr languages, most of the type
information is used only by the compiler and is not available at run time. In order for a pretty printer to be
usable on the data in user programs, the printer would have to have access to type information tables created
by the compiler, just as a dynamic debugger has to have access to the compiler’s symbol table in order to use
the programmer’s variable names.

GPRINT = ' -4- Waters

A Language For £pecifying Formatting Options

In the GPRINT system, queue entries are created through the use of formatting templates. A template for a

list serves two purposes. It matches against the list selecting out the items in the list to be printed. It also

specifies auxiliary queue entries such as those specifying substructures in the queue and conditional line
breaks.
The clarity of the formatting process depends on the perspicuity of the language used to build templates.

This language is a concise language for specifying formatting options. Each template is a string built up out of

the following formatting codes:

P - Print the corresponding part of the object in the output.
« - Call the dispatching function to determine how to format this part of the object.
_n - Print n (default 1) blanks in the output.

', .."' - Print the indicated literal in the output.

A - Always put a line break here.
N - (normal line break) - Put a line break here if the structure immediately containing this code cannot

be printed on one line.

(n...) - This delineates a unit of substructure, both in the object being formatted and in the queue

Consider the list (ITEM1 (ITEM2 ITEM3 ITEM4) ITEMS5), the template "(P_(P_P_NP)_NP)" could be
used in order to create queue entries like those given in the example above. Note the way the template
matches against the list as a whole, and the way the subtemplate matches against the second element in- the

list.

entries which specify how to print the object. The part of the object being formatted which
corresponds to this part of the template must be a list. It is decomposed into its elements. The
template between the parentheses specifies how these are to be formatted. The queue entries for the
individual elements (along with entries specifying that parentheses should be printed before and
after the list) are grouped together into a single structure in the queue. This structure is treated as a
unit when decisions about where to insert line breaks are made.

The number following the open parenthesis specifies how much the indentation should be
increased while printing items inside the list when they will not fit on a single line. The indentation
increment can be omitted in which case it will default to the sum of the lengths of: the open
parenthesis, the first item in the list and any blank space after it.

...> - Thisis used inside of (.. .) to specify a template for a list of unknown length. The part of the

template between the brackets is taken as repeating indefinitely, creating a subpattern of infinite
length. For example, " (<P_>)" is the same as " (P_P_P_P_P_P_P_ ...)".

It is important to note that when a subtemplate inside parentheses is used to format a list, the
part of the subtemplate extending beyond the P, x, or (.. .) corresponding to the last element of
the list is ignored. For cxample, if the template " (<P_>)" is used to format the list (X Y) then a
blank will not be printed between the Y and the close parenthesis of the list.

‘Vvaters _ -5- GPRINT

Defining a Template Corresponding to a Type of List

The macro (DEFGF atom template) can be used to specify a template which will be used to format lists
which begin with the indicated atom. For example, lists beginning with SETQ are typically formatted so that
each successive variable value pair appears on a separate line. This can be specified by using the A format
code in a template as shown. '

(SETQ X 1
Y 2)
(defGF setq "(P_<{s_*A>)")

Similarly, a COND expression is formatted with each clause on a separate line. In addition, the individual
expressions in each clause are lined up one under the other if they will not fit on a single line. This is
" specified by using a subtemplate with an explicit indentation increment of 1.

(COND ((MINUSP X)
- X))
(T X))
(defGF cond "(P_<(1<*_N>)A>)")

The template for LET specifies that the bound variable initial value pairs are printed one to a line, and that
the statements inside the LET are printed one to a line if the LET cannot be printed on one line. The
indentation is specified to be only 2 in order to keep the total indentation small.

(LET ((X 1)

(Y 2))
(CONS X Y))

(defGF let "(2P_(1<#_A>)<_N+>)")

Whenever the format for a particular type of list can be specified by using a single template, then the
macro DEFGF can be used. In more complex situations the user can define a complete formatting function.

Formatting Functions

As discussed above, a formatting function is a function which, when called by GDISPATCH, will create a
sequence of queue entries describing how to format an object. The formatting function for lists which begin
with a particular atom as their CAR can be specified by making the function be the : GFORMAT property of the
atom. The formatting function itscif can contain arbitrary computation. In order to actually create queue
entries, the formatting function calls the macro (GF femplate &rest args). GF matches the template against
zero or more arguments and produces a series of queue entries. ‘

As an example of a simple formatting function, consider : GFN-FORMAT, the default formatting function
used by GDISPATCH for formatting function applications. It specifics that if the application cannot be printed
on a single line, then the arguments should be printed one to a line.

(LIST X

Y
Z)

(defun :Gfn-format (item) (GF "(P_<»_N>)" item))

Each call on the macro DEFGF expands into the definition of a simple stercotyped formatting function as
illustrated below.

(defGF atom template) <==> (defun (atom :Gformat) (item) (GF femplate item))

GPRII] ' ‘ -6- Waters

An important thing to keep in mind about formatting functions in general, and about GF in particular is
that they do not print anything. Rather, they merely create queue entries. In order to print something you
call the function GPRINT. It calls GDISPATCH which calls formatting functions which create queue entries
which are interpreted by the output routine in order to determine what to print. It is the output routine which
actually does the printing. When you define a formatting function, you are not defining a function which will
print something, but rather defining a set of directions to be followed when GPRINT prints it.

Blocking and Tabbing

In order to save space, long lists of data are often formatted in block form where as many items as possible
are put on each line. The language which is used to create formatting templates has two format codes which
are useful for specifying this kind of format.

B - (block line break) - A line break is inserted here if and only if the structure immediately following
this code will not fit on the end of the current line.

Tn - Blank space is inserted until the position relative to the current indentation is congruent to zero
modulo the argument n. The argument can be omitted in which case a default tab size will be
calculated based on the lengths of the other items in the structure containing this code.

As shown below, the function :GDATA-FORMAT can be defined using the B format code so that block form
will be used as the default format when printing data.
(ORANGE PEAR (RED APPLE) GRAPEFRUIT

(HAWAIIAN PINEAPPLE) BANANA
CANTALOUPE POMEGRANATE TANGERINE)

(defun :Gdata-format (item) (GF "(1<B*_>)" item))

There is a problem with printing lists of data in block format. If the elements of a list are themselves lists
with a depth of greater than one, then the output is not very aesthetic because it is not easy to identify the
elements of the top level list. For example, consider the following list:

((ORANGE (SELL 3)) (PEAR (BUY 10)) ((RED APPLE) (BUY 5))
(GRAPEFRUIT (BUY 10)) ((HAWAIIAN PINEAPPLE) (SELL 8))
(BANANA (SELL 5)) (CANTALOUPE (BUY 4)))

The actual definition of : GDATA-FORMAT uses the T format code so that lists of data are printed out in a

tabular form. This makes the output much easier to read without taking up very much more space.

((ORANGE (SELL 3)) (PEAR (BUY 10))

((RED APPLE) (BUY 5)) (GRAPEFRUIT (BUY 10))
((HAWAIIAN PINEAPPLE) (SELL 8))

(BANANA (SELL 5)) (CANTALOUPE (BUY 4)))

(defun :Gdata-format (item) (GF "(1<TB+*_>)" item))

The template specifies that the printer should select a default tab size. Unfortunately, due to the fact that
the printer uses only limited look ahcad, the tab size must usually be chosen before all of the clements in the
list have been entered in the queue. As a result, it is not guaranteed to be large enough. In this example, the
fourth element in the list was not completely entercd in the queue at the time when it was determined that the .
list had to be put on more than one line. As a result, only the first three elements were used to determine the
tab size which turned out to be too small to accommodate the fifth clement.

Waters ' -7- o GPRINT

Nonstandard Substructures and Delimiters

)

A basic limitation of the format codes introduced so far is that the (...) format code conflates three
ideas: decomposing the input, defining a structure in the output, and printing parentheses as delimiters in the
output. Format codes are provided which separate these ideas:

[...]-This is used to decompose a list argument to GF into its components. For example,
(GF "[P_[P_P]]" '(1 (2 3))) is the same as (GF "P_P_P" 1 2 3). This format code has
meaning only to the macro GF and does not create any queue entries by itself. In conjunction with
<...>,[...]canbe used to decompose a list of arbitrary length.

{n...} - This delimits a substructure in the output. The number specifies the indentation increment
to use if the structure will not fit on one line. If it is omitted, a default value is computed as the sum
of the length of any literal open delimiter, the length of the first item in the substructure, and the
length of any space after this item.

(n...) - Thiscan now be defined as an abbreviation for {n' ('[...]')"'}.

As a simple example of a format requiring this separation of ideas, consider the function QUOTE. A list
which begins with the atom QUOTE is not printed with parentheses around it. Rather, the argument to QUOTE
is printed out following a "'". The formatting function for QUOTE specifies this format by setting up a
substructure (so that the output will be treated as a unit), printing a literal "' ", and then calling GDISPATCH
(via the « format code) to format the argument to QUOTE. (Note that inside of a literal in a template, *'* *"
stands for "' ".)

(GPRINT '(QUOTE (A (QUOTE B))))
5‘"\ prints: '(A 'B)
(defun (quote :Gformat) (item) (GF~"{""*}" (cadr item)))

Consider the formatting function below which implements a format for a user defined data structure. The
user data structure is implemented as an ordinary list. Instances of the structure can be recognized because
they begin with the atom NAMED-FORM. The second element in the data structure specifies a name. This name
is either a single symbol, or a list of a symbol and a suffix. The final element of the structure is an arbitrary
Lisp expression. :

The formatting function sets up a substructure with an indentation of 2 but without any delimiters around
it. It then formats the name part of the structure either as a single symbol, or as compound combination of
the symbol and the suffix. Finally, it specifies that a "-" should be printed and calls GDISPATCH (via the »
format code) to format the last element in the structure.

(GPRINT ' (NAMED-FORM EXPRESSION (+ X 2)))
prints: EXPRESSION - (+ X 2)

(GPRINT '(NAMED-FORM (CALLING FORM 3) (CONS X (+ X 2))))
prints: CALLING-FORM-3 -
(CONS X (+ X 2))

(defun (named-form :Gformat) (item)
(GF "{2")
(cond ((atom (cadr item)) (GF "P" (cadr item)))
(T (GF "[P'-'P]" (cadr item))))
(GF "_'-"_Nx}" (caddr item)))

N ' Note that this formatting function is not a single call on GF but rather looks at part of the structure being
formatted in order to decide how to format it. Also note that the queuc entries indicating the beginning and
end of the substructure of queue entries being created are specified in separate calls on GF. This is a common

~

GPRINT , -8- Waters

occurrence and is in marked contrast to [..:] (and therefore (...)) which must be properly nested in a

single call on GF,

Computed Indentations and Spacing

The following format code makes it possible to specify spacing and indentation as the result of a
computation rather than just as a literal number.

- This can be used in place of an argumentto _, T, (...), or {...}. It specifies that the value is to
be taken from the next input to GF. For example, (GF "P_#P" 'X 6 'Y) specifies that 6 spaces
should be printed out between the X and the Y.

The use of this format code is illustrated by the following formatting function for LET. This formatting
function extends the one given above so that it tests the current indentation level and prints out the LET at a
reduced indentation if the indentation is already greater than half of the total line length. The function
GESTIMATE-INDENT looks at the queue and determines what indentation will be used when printing out the
LET. Note that this must be computed from the queue because there may be many entries in the queue which
have not yet been printed.

If the indentation is not greater than one third of the line length then the LET is simply formatted as in the
example format definition above. If the indentation is greater than one third of the line length, then the
formatting function sets up a substructure with a negative indentation increment which reduces the total
indentation to zero and forces a line break. It then prints out a comment line which indicates that left shifting
is occurring, and uses a " | " to show the indentation which otherwise would have been used. On the next line,
the format spaces over five spaces and prints the LET itself. Finally, it prmts another comment line and
terminates the substructure. ’

(DEFUN ROOTS (A B C) ;computes the real roots of AXX + BX + C
(COND ((NOT (ZEROP A))
(LET ((DISCRIMINANT (-$ (+$ B B) (+$ 4.0 A C))))
(COND ((PLUSP DISCRIMINANT)
----------- |
(LET ((TERM1 (-$ B))
(TERM2 (SQRT DISCRIMINANT))
(TERM3 (*$ 2.0 A)))
(LIST (//$% (+$ TERM1-TERM2) TERM3)
(/7% (-$ TERM1 TERM2) TERM3)))

| -
M)
(defun (let :Gformat) (item)

(let ((ind (Gestimate-indent}))
(cond ((< ind (// Glinelen 3)) (GF "(2P_(1<*_A>)<_N*>)" item))

(T (GF "A{#A';=----===-=- "#' (- ind) (- ind 11,))
(GF gy '(Zp (1(* A))(N*))" 1tem)
(GF "A'j-mm--n- === A YAY (- ind 11.))))))

This formatting function for LET is an attempt to deal with the finite line length problem. It uses
nonstandard formatting in order to significantly reduce the indentation when it begins to get too large. This
indentation shift reduces readability. However, this is ameliorated by the fact that an entire logical unit is
being left shifted, not some arbitrary part of the program. GPRINT uses similar formatting functions for each
of the program constructs which correspond to internal code blocks (such as PROG, DO, and LAMBDA).

Waters ' -9- GPRINT

Modifying ihie Dispatching Function

Writing formatting functions makes it possible for the user to implement a wide variety of formats,
however, they are restricted in several ways. Most important, formatting functions are essentially local. A
~ user can implement global formatting decisions by modifying the standard dispatch function and formatting
functions. This section gives an example of this by showing how GDISPATCH can be modified in order to
implement an abbreviation mechanism based on the depth of a structure.

The global variable PRINLEVEL controls the abbreviation. If a list is at a depth equal to PRINLEVEL in the
object being printed, then "#" is printed in place of it as shown below:

PRINLEVEL > 4 (Z (A (B (C (D E)))) F G)
PRINLEVEL- = 3 (Z (A (B #)) F G)

In order to implement the abbreviation, a global variable LEVEL is used to keep track of the nesting level
of each substructure. LEVEL is initialized to 0. GDISPATCH is modified so that LEVEL is incremented each
time the function recurses into a sublist. In addition it is changed so that it prints a "#" whenever LEVEL
reaches PRINLEVEL.

(SETQ LEVEL 0)

(defun Gdispatch (item)
(LET ((LEVEL (+ LEVEL 1)))

(funcall (cond ((atom item) ':Gatom-format)
((> LEVEL PRINLEVEL) ':GLEVEL-ABBREV-FORMAT)
((not (symbolp (car item))) ':Gdata-format)
((get (car item) ':Gformat))
((fboundp (car item)) ':Gfn-format)
(T ':Gdata-format))

item)))

(DEFUN :GLEVEL-ABBREV-FORMAT (ITEM)
(GF "'#'"))

Potentially, any pretty printer can be modified by reimplementing parts of it. The point here is that
GPRINT is specifically designed so that this can be done easily. Both the formatting functions and GDISPATCH
are designed so that they are individually simple and so that their interaction is clearly defined. As a result, it
is easy to modify one or more of them. The really complex parts of the printing algorithm are relegated to the
output routine which is not intended to be modified.

Conclusion

GPRINT includes a large number of standard formats and features (such as the ones used as examples
above). As a result, a user does not have to write any of his own formats in order to get reasonable output in
ordinary situations. However, no amount of anticipation can ever satisfy every user. This is particularly true
when a pretty printer is being used in an interactive programming environment to print data as well as
'programs, and when it is called by user programs as well as by the system itself.

The principal goal of the design of GPRINT has been to produce a system with good human engineering
which gives the user powerful facilities for controlling the format of output and which at the same time makes
the specification of simple formats simple. Two key ideas comprise GPRINT’s approach to this problem; the
basic algorithm chosen, and the existence of multiple levels at which a user can specify formatting
information.

At the same time, the key features of the algorithm underlie the basic simplicity of GPRINT’s approach and
fundamentally limit its scope. The division of the algorithm into two picces communicating through a queue

GPRINT ' -10- Waters

makes it possible to separate the simple parts cf the algorithm from the complex ones. The decision to use a
linear time algorithm in the output routine makes it possible for GPRINT to run with acceptable speed.
However, it fundamentally limits the kind of formatting decisions which can be made by the output routine.
In particular, when making its decisions, it can only look ahead a very limited distance. An example of this
was discussed in the section on block form output.

In line with the limited abilities of the output routine the queue entries are designed so that they encode
only two formatting options for a given structure: how to print it on one line, and how to print it on multiple
lines. This design is an important basis for the understandability of the printer because it presents the user
with a simple model of how formatting decisions are made. However, one could easily imagine wanting to be
able to specify more complex formatting information. For example, one might specify two different
multi-line formats; one to use if there was a lot of room available and the other to use when there is only a
fittle space.

The printer provides three basic levels at which a user can specify formatting information. He can use a
simple template. This makes it very easy to describe certain aspects of how a structure is to be formatted. He
can write a formatting function. This allows him to exercise much more control over the format to be used, at
the cost of greater complexity. Finally, he can modify the dispatching function and the standard formatting
functions in order to make global changes in the format produced.

The use of multiple levels of interaction is a generally useful technique for increasing the
understandability and availability of a system to a wide range of users. It makes it possible for users who have
simple needs to satisfy them without having to learn very much about the system. Users who take the time to
learn more can then do more.

It is important to note that, though the discussion above was cast in the domain of the Lisp language, the
ideas are substantially programming language independent. It should be possible to use these ideas to
construct a flexible pretty printer allowing significant user format-control in any programming language
environment.

References

[1] Conrow, K., and Smith, R.G., "NEATER2: A PL/I Source Program Reformatter”, CACM V13 #11,
November 1970, 669-675. ‘

[2] Donzeau-Gouge, V. et al, "A Structure-Oriented Program Editor; A First Step Towards Computer
Assisted Programming"”, Proc. Inter. Computing Symp., Antibes, 1975.

[3] Goldstein, 1., "Pretty Printing, Converting List to Linear Structure”, MIT/AI/MEMO-279, February 1973.

[4] Hearn, A.C. and Norman, A.C., "A One-Pass Pretty Printer”, Report UUCS-79-112, Univ. of Utah, Salt
Lake City, Utah, 1979.

[5S] Heuras, J., and Ledgard, H., "An Automatic Formatting Program for Pascal”, SIGPLAN Notices V12 #7,
July 1977, 82-84.

[6] McKeeman, W. "Algorithm 268, Algol-60 Reference Language Editor [R2]", CACM V8 #11, November
1965, 667-669. ' ' o '

[7] Oppen, D., "Prettyprinting", ACM Transactions on Programming Languages and Systems, V2 #4,
October 1980, 465-483.

[8] Scowen, R. et al, "SOAP - A Program Which Documents and Edits Algol60 Programs”, Comput. J. V14
#2,1971, 133-135. -

[9] Teitlebaum, T., "The Cornell Program Synthesizer"”, Tech. Rep. 79-370, Dept. of Computer Science,
Cornell Univ., 1979.

Waters . -11- GPRINT

Appendix

This appendix describes all of the facilities available in GPRINT, and how to use them. In conjunction with
the main body of the paper, it is intended to be a manual for the system.

Using GPRINT
GPRINT is implemented in Lisp and is fully compatible with both MacLisp and the Lisp Machine. It is

~ integrated fully with both systems, following all of the standard input/output conventions. In order to use

GPRINT all you have to do is load a file. For MacLisp the file is "LIBLSP;GPRINT FASL". For the Lisp
Machine the file is "LMLIB;GPRINT QFASL". The program text is available for inspection on LIBDOC; and
LMLIB;. Bug reports should be sent to BUG-GPRINT@AL.

When the file loads in it initializes all of the variables it needs and sets up its environment. In order to

" install GPRINT as the standard top level Lisp printer you need only do:

(setq prinl 'Gprini)

In addition to the Lisp top level, many of the standard system facilities which do output check this variable to
see if there is a user specified output function. Note that you cannot redefine the function PRIN1 because
GPRINT calls PRIN1.

In order to install GPRINT totally, you can call the function of no arguments GSET-UP-PRINTER. This sets
PRIN1 and sets up some control keys (see the section on stopping and resuming printing).

The version of GPRINT described here obsoletes an older version which has been in use for several years.

(This old version still exists as "LIBLSP;0GPRIN FASL", however, it does not run on the Lisp Machine and is

no longer supported in any way.) If you just use the top level functions in the file then the new version is
closely compatible. However, if you used user created templates or formatting functions then the new system
is not compatible at all even though it is identical in conception.

Basic Top Level Functions
GPRINT/GPRINC/GPRINT1 object &optional file format level length endline startline

These are exactly analogous to PRINT, PRINC, and PRIN1 except that they do pretty printing.
(Unfortunately, the standard MacLisp grind package has alrcady used up the name GPRIN1.) The first
argument is the object to be printed. The second argument specifics the file (stream) to use for output. Ifit is
missing then the standard system defaults are used (e.g. TYO etc. on MacLisp and STANDARD-OUTPUT on the
Lisp Machine). ‘

The third argument is a formatting function which defaults to NIL. If non-NIL it will be used by
GDISPATCH to format the object. For example (GPRINT FOO STANDARD-OUTPUT ':GFN-FORMAT) will use
functional format for the top level of FOO no matter what the CAR of foo is. The last four arguments can be
used to control abbreviation. Their meaning is discussed in the'section on abbreviation below.

PL object &optional file format

Print in full - this is an abbreviation for (GPRINT OBJECT FILE FORMAT NIL NIL NIL NIL). It
specifies that the object should be printed without abbreviation. It is quite handy at top level,

GEXPLODE/GEXPLODEC object &optional format level length

These are analogous to the MaclLisp functions EXPLODE and EXPLODEC.

GPRI 7 | ' -1 Waters

PLP %quote &rest args

~ Plist print - this is very similar to GRINDEF. Since the definitions of GRINDEF are totally different in
MacLisp and on the Lisp Machine, there was no way to make a new function compatible with both, and so I
just made my own definition that is basically similar but follows my sense of aesthetics.

The Dispatcher Revisited

The description in the main body of this paper of the behavior of GDISPATCH on lists ignored two issues.
A more complete version of the code is shown below.

(defun Gdispatch (Gsuggested-format item)
(cond ((depth-abbreviation-necessaryp) (GF "C" Gprinlevel-abbrev))
((Gselect Gspecial-formatters item))
((or (symbolp item) (numberp item)) (GF "P" item))
((1istp item)
(cond ((Gselect Goverriding-list-formatters item))
(Gsuggested-format (funcall Gsuggested-format item))
((Gselect Glist-formatters item))
(T (funcall
(cond ((and (1istp (car item))
(memg (car item) '(lambda named-Tlambda)))
Gapply-format)
((hot (symbolp (car item))) Gnon-symbol- car- format)
((get (car ditem) ':Gformat))
((fboundp (car item)) Gfn-format)
(t Gsymbol-car-format))

item))))
(dispatchers-for-other-data-types)))

(defun Gselect (formatting-function-list item)
(do ((fns formatting-function-1ist (cdr fns)))
((nu11 fns) nil)
(cond ((funcall (car fns) item) (return T)))))

There are a number of things to notice about this function. The checking for depth abbreviation is done
first so that it is orthogonal to everything else. Note that the formatting of depth abbreviation and atoms is
specified directly in GDISPATCH and not through a function call. The variable GPRINLEVEL-ABBREV holds
the thing to print when depth abbreviation occurs The main body of the paper discussed the way in which
GDISPATCH looks at the : GFORMAT property of the CAR of a list in order to determine what format to use for it.
This dispatching is extended in that it also looks at the CAAR of the list in order to see if it is a literal LAMBDA
application. In this case the value of the special variable GAPPLY-FORMAT is used as the format. Instead of
using the constant : GFN-FORMAT to format function applications, GDISPATCH indirects through the variable
GFN-FORMAT which is bound to :GFN-FORMAT by default. Rather than using a single format (called

:GDATA-FORMAT above) to format all random lists, the dispatcher indirects through two special variables:
GSYMBOL-CAR-FORMAT and GNON-SYMBOL-CAR-FORMAT. By dcﬁnﬂtthem:arcsettothe value :G1TBLOCK
which does tabular blocking. You can sct them to anything you want.

There is also a completely different kind of dispatching going on which was not discussed above. There
are several special variables which can be used to specify formatting functions which will be used in place of
the normal ones. Fach variable holds a list of special formatting functions. Each of these functions has two
purposes. First, they are called with the list to format as their argument, and they must test it in order to
determine if they are applicable to it. If they are then they return T. Second, when they are applicable, they
do the actual formatting of the list, creating the appropriate queue entries. GDISPATCH processes each of
these special lists by calling the functions one at at time in order to determine if any of them is applicable (see

Waters ' -13- : GPRINT

the function GSELECT). As soon as one of them returns T then the dispatcher knows tnat formatting has been
completed. If none do, then the dispatcher continues on. '

Before doing any of its normal dispatching, GDISPATCH looks at the list GSPECIAL-FORMATTERS. The
purpose of this list is to make it possible for a user to take complete control of formatting for any #ype of
object he chooses. The variables GOVERRIDING-LIST-FORMATTERS and GLIST-FORMATTERS are used to
specify special formatting functions for lists. They are needed when you want to dispatch off of something
other than the CAR of a list. '

There is one more aspect to the dispatching for lists. GDISPATCH takes an additional argument
GSUGGESTED-FORMAT. This argument holds a formatter which will be used for a list no matter what its CAR is.
The purpose of this is to allow the format for a form like PROG to specify how its subparts should be
formatted. Without this, a PROG bound variable list would be formatted in functional application format if it
happened to start with an atom that was a function name. The difference between
GOVERRIDING-LIST-FORMATTERS and GLIST-FORMATTERS is that any format put in the former will override
any format in GSUGGESTED-FORMAT. GLIST-FORMATTERS is the variable which should be used for supplying
special formatters in all normal situations.

Another way to deal with the fact that the formatting functions for complex forms have to have a way to
specify how their sublists should be formatted would be to have these formatters format the sublists
themselves directly without calling GDISPATCH. This is the approach which was implicitly taken in the
examples above. Unfortunately, this approach is error prone. If a form has an atom where a list is normally
expected, then the formatter will blow up. In order to avoid this, the formatting for all sublists is channeled
through GDISPATCH (see the discussion of the $ format code in the next section).

The Function GF Revisited

The description in the main body of this paper of the options available for making templates left out
several features and simplified the descriptions of several others. In particular the format codes".", C, S, I, &,
%, and § are not described in the main paper. The discussion below gathers together in one place a complete
description of all of the options available including the ones which were not described above.

GF template &rest args

This is a macro that creates code which formats the args as specified by the template. The template is a
string of single character commands, some of which can be followed by a parameter. There are three kinds of
parameters:

n- Some commands take a number as a parameter. This number should be an integer optionally

beginning with a "-"
default value is used.

"on

and/or ending with a ".". Alternately, it can be omitted in which case a

/- Some commands take a function name as a parameter. This name is an arbitrary symbol possibly
containing ":". Case does not matter. The symbol must be terminated by a blank. Function name
parameters cannot be omitted. They have no default values.

- This can be uscd in place of any numeric parameter or any function name parameter. It indicates
that the next input to GF should be used as the parameter, instcad of a literal value.

The commands which can be used in a template are divided into several categories. The first set is used to
parse the structure of the arguments to GF so that their parts can be accessed.

GPRINT ‘ -14- Waters

.~] - This is used to access the internal elements of an item which is a list. The terplate inside the
brackets refers to the elements of the list. If the item is not a list, then no formatting of it, or
anything inside it, is done. Processing begins by considering each element of this list in turn. As
soon as the list is exhausted, control skips out of the subtemplate and continues after its end. This is
done even if there is more stuff left in the subtemplate. Special code is included to deal with the
possibility of unexpectedly encountering a non-NIL atomic CDR. If this happens it is automatically
formatted to appear aftera ".". [...] also produces special code to deal with length abbreviation.
They only way to get it automatlcally istouse[...].

. - This is valid only inside d [. . .]. It specifies that the next item is the whole sublist left to process by

[...] rather than its CAR. For example, (GF "[P_P_.P]" '(1 2 . 3)) is the same as
(GF "P_P_P" 1 2 3). Note that when a "." is used, normal checking for the end of the list in the

[...]issuppressed. For example, (GF "[P_.P_]" '(1)) is equivalent to (GF "P_P_" 1 NIL).
The NIL at the end of the list is explicitly picked up by the ".", and a blank will be printed at the
end. This happens even though the [...] template would normally have terminated right after the
first P,

<...>-Thiscan only be used directly inside [...] (or (...)). It specifies an indefinite repeat block.
This is used to specify a template for a list of unknown length.

The next set of commands are used to specify how individual items are printed out.

P - Print the corresponding item using the default pnnter (PRINC if GPRINC was called or PRIN1 if
GPRINT or GPRINT1 was called).

C - Print the corresponding item using PRINC.

7~ S - Print the corresponding item using PRINC hut do not count it as one of the items printed from the
point of view of length abbreviation.

I - Ignore the corresponding item.

'...' - Print the indicated literal using PRINC and do not count it as one of the items printed from the
point of view of length abbreviation. Note that in the literal "' *" stands for "' ",

« - This specifies that GDISPATCH should be called in order to format the corresponding item.
&f - Call the function f with no arguments at this point.

%f - This specifies that the function f should be called in order to format the corresponding item.
(Note if f is # then the argument which is used as the function follows the argument which is
formatted.)

$f - The dollar sign command specifies that GDISPATCH should be called in order to format the
corresponding item, but that the function f* should be passed to GDISPATCH as a suggestion of how
to format the item. (Note if f is # then the argument which is used as the function follows the
argument which is formatted.) The difference between $f and %/ is that with $f GDISPATCH gets
control. As a result, if the item is not a list, or if some function on GOVERRIDING-LIST-
FORMATTERS formats it, then the function f will not get used.

$/".../" - In addition to the name of a function, the parameter to $ can be a literal template which is
converted into a function to use. (Note that the quotes have to be slashified in order to read in
inside a quoted string.) The formatting function produced is compiled out of line. As a result, if
there is a # format code in it, the argument to GF that this refers to will be compiled out of line. In
order for this to work any variables this refers to must be declared special.

“Vaters ' -15- o GPRINT

_ The next commands are used to specify the aested structure of the output (which need not be the same as that

of the input).

{n..

(n..

.} - This indicates a substructural unit in the output. The parameter specifies what indentation to
use when printing out the items inside the substructure if the substructure cannot be printed on a
single line. (If the indentation is specified to be zero then the substructure is not counted as
increasing the depth from the point of view of depth abbreviation.) The default parameter value is
calculated as the sum of the lengths of the first thing prmted in the substructure, and any literals
before it and any spaces after it.

.) - This is a useful abbreviation in the situation where the nested structure of the output is the
same as the nested structure of the input, and when you want to print parentheses around the
structure. It is an abbreviation for {n'('[...]")'}. Additionally, if the (n...) is nested more
directly inside [. ..] than inside $ then it is treated as an abbreviation for $/"{n' ('[...7')'}/".
In other words, if the item whose format is being specified by the (n...) was passed through
GDISPATCH for dispatching then the $ format code is used to force the list to dispatch through
GDISPATCH. This prevents the format from blowing up when the 1tem is not a list. (Note the
comment about # inside $/" .. ./" above.)

The final set of commands specifies spacing and where and when carriage returns should be printed.

A - Do aline break here always.

N -

B

Do a line break here if required for normal mode printing. Le. if and only if the structure
immediately containing this point cannot be printed on a single line.

- Do a line break here if required for block mode printing. This is the same as N except that even if

the immediately containing structure is being broken up a line break will not be put here as long as
the following structure can be printed on the end of the current line and the prior structure at this
level was printed on a single line.

_n - Print n (default 1) spaces. (Note that spaces are elided if they are the first or last thing on a line).

Tn-Tab over. Moves to a place where the character position relative to the current indentation is

congruent to zero modulo 7. (Doesn’t move at all if it doesn’t have to.) When necessary, a default
tab size is calculated based on the length of the other items in the substructure.

The characters SPACE, TAB, CR, and LF are all ignored. Any other character is an error.

The fact that GF is a macro saves time by parsing the template at compile time, and producing efficient
code to do the formatting. This does waste space however. It is to your advantage to make each template as

short as possible.

GPRINT ' -16- Waters

Several of the codes shown above were rot discussed in the main body of the paper. The following
examples illustrate their use. The codes "." and C are used in the following redefinition of the format for the
NAMED-FORM data structure used as an examp]e above. The structure is changed so that the name field is a
CONS of a name and a suffix rather than a LIST, and so that the name is a lower case string which needs to be
PRINCed rather than PRIN1ed. The "." format is used to parse the name field, and the C format is used to
PRINC the name part. (Note that if you call GPRINC on a structure, all of the atoms will be PRINCed.)

(GPRINT '(NAMED-FORM ("calling-form" . 3) (CONS X‘(+ X 2))))
prints: calling-form-3 - (CONS X (+ X 2))

(defun (named-form :Gformat) (item)
(GF " 2")
(cond{((atom (cadr item)) (GF "C" (cadr item)))
(T (GF "[C'-'.P]" (cadr item))))
(GF "_'-"_N*}" (caddr item)))

The I format code is illustrated by the following alternative format for QUOTE. It is used to explicitly
ignore the first component of the QUOTE list as it is parsed by [...].
(GPRINT '(QUOTE (A (QUOTE B))))
prints: '(A 'B)
(defGF qUOtG n{v X '[I .]'}")

The use of the $ code is illustrated in the following format which block formats a tree at all levels, It is
capable of formatting trees of arbitrary depth because it explicitly calls itself recursively. GDISPATCH is called -
at each level of the recursion. As a result as soon as an atom is encountered, the recursion is terminated and
the atom is printed normally.

(defun :Gblock (tree) (GF "(1<$:Gblock _B>)" tree))

The following formatting function for PROG uses % so that it can call a sub-format (GPROG-FORMAT2)
without GDISPATCH being called. This is necessary so that the labels (which are atoms) in the PROG will be
processed by the GPROG-FORMAT2. This function prints labels shifted left and keeps track of their lengths so
that the form following them can be printed at the right place.

(PROG (A B)
(form)

L (form) ‘

BIG-LABEL (form)

A B (form))

(declare (special Gdefault-spaces Gspaces))

(defun (prog :Gformat) (1ist)
(let* ((Gdefault-spaces 5) (Gspaces 5))
(GF "(0%_$:Gblock <%Gprog-format2 >)" x)))

(defun Gprog-format2 (item)
(cond ((= Gspaces Gdefault-spaces) (GF "A' '")))
(cond ((atom item)
(setq Gspaces (- Gspaces 1 (flatsize item)))
(GF "P_" item))
(T (GF "_#x" (max Gspaces 0) item)
(setq Gspaces Gdefault-spaces))))

Waters ‘ -17- GPRINT

The formatting function below prints-out a special data structure as a list of items separated by a delimiter.
There are no parentheses around the list, and the delimiter to print is supplied as part of the structure. The &
format code is used in order to call a sub-format which prints the actual delimiters. This function uses the S
format code in order to PRINC the delimiter. It uses S, instead of C, so that the delimiters will not be counted
as part of the length of the object when length abbreviation is being performed.

(Gprint '(DELIMITED-LIST |,| APPLE BANANA PEAR))
prints: APPLE, BANANA, PEAR

(declare (special delimiter))

(defun (delimited-1ist :Gformat) (1ist)
(tet ((delimiter (cadr 1ist)))
(GF "{1[<* &delimited-1ist-format2 _B>]}" (cddr 1ist))))

(defun delimited-list-format2 () (GF "S" delimiter))

An important aspect of the last two examples is the way they interact with length abbreviation. Since
length abbreviation is implemented by [.. .], in order to get length abbreviation to apply to the formats you
write, you have to use [...]. This is an important reason for writing them in the form glven above rather
than as a single routine containing a loop which just prints the right things.

Data Types Recognized

In addition to lists, GPRINT has built in formatters for all of the standard Lisp data types. Symbols,
numbers, strings, and things of random types not specifically discussed below are treated as indivisible atoms
and printed in the standard ways. The way lists are handled is discussed fully above.

Hunks

In MacLisp a hunk is formatted in one of two ways depending on whether or not it is a USRHUNK. Ifitisa

USRHUNK (note that EXTENDS and the like are all USRHUNKs) then GPRINT checks the messages it accepts. Ifit-

takes the message :GFORMAT-SELF then GPRINT sends a :GFORMAT-SELF message with the object as
argument to the object so that it can format itself. Note that the receiver for this message is in essence a
formatting function for the object.

If a USRHUNK doesn’t take a : GFORMAT-SELF message, but it does take a : PRINT-SELF or PRINT message
then GPRINT treats the hunk as an atomic object and lets the standard printer print it. This makes it possible
to use GPRINT on these objects without having to write formatters for them. However it should be noted that

since they are treated as atomic objects, no formatting occurs inside them no matter how large their print form

may be. For example, a line break will never be inserted inside one.

If a USRHUNK doesn’t accept any of these messages, then it is treated as an ordinary hunk. In order to
format an ordinary hunk GPRINT first checks to see if there is a formatting function for the hunk. The user
sets up a hunk formatter by adding a function to the list in the variable GHUNK-FORMATTERS. The purpose of
this function is two fold: to test whether it is applicable to a hunk (in which casc it returns T) and in this case
to actually format the hunk. GPRINT calls cach of these functions in turn passing it the hunk. As soon as one
of them returns T it stops. If they all return NIL then the hunk is printed by default in the normal way (e.g. in
parentheses with the CXRs separated by periods) in block format.

P Y

GPRI; ' -18- Waters

Named Structures, Entities, and Instarnces

On the Lisp Machine, named structures, entities, and instances are printed in one of two ways depending
on whether or not they know how to format themselves. If the object accepts the message : GFORMAT-SELF
then GPRINT sends a : GFORMAT-SELF message with the object as argument to the object so that it can format
itself.

If the named structure, entity, or instance doesn’t take a : GFORMAT-SELF méssage, then GPRINT treats is as
an atomic object and lets the standard printer print it. This makes it possible to use GPRINT on these objects
without having to write formatters for them. However it should be noted that since they are treated as atomic
objects, no formatting occurs inside them no matter how large thelr print form may be. For example a line
break will never be inserted inside one.

Arrays

If an object is an array (and not a named-structure) it is formatted as follows. GPRINT first checks to see if
there is a formatting function for the array. The user sets up an array formatter by adding a function to the
list in the variable GARRAY-FORMATTERS. The purpose of this function is two fold: to test whether it is
applicable to the array (in which case it returns T) and in this case to actually format the array. GPRINT calls
each of these functions in turn péssing it the object. As soon as one of them returns T it stops. If they all
return NIL then a default formatter is used.

The default array formatter first prints out the array object in the standard way (e.g. as an atom containing
the type and the address). Next, if the variable GPRINT-ARRAY-CONTENTS is T and the array has only one or
two dimensions it prints out the contents of the array. The contents are printed as a list (for one dimensional
arrays) or a list of lists (for two dimensional ones). Tabular blocking is used to format these lists.

Formatting Functions

The operation and use of formatting functions is described in the main body of this paper, however,
several additional points should be made. First, formatting functions are supported by many of the parts of
GPRINT, not just those that handle lists (see the discussions of USRHUNKSs, hunks, named structures and arrays
above). Second, a number of standard formatting functions are provided including ones for LAMBDA,
NAMED-LAMBDA, LET, LET*, SETQ, COND, PROG, DO, DEFUN, QUOTE, FUNCTION, BACK-QUOTE, MACROEXPANDED,
and SI:DISPLACED.

Abbreviation

GPRINT provides several different abbreviation mechanisms. First, there is abbreviation based on
- PRINLEVEL and PRINLENGTH as in the standard printer. "#" (or "x«" on the Lisp Machine) is printed for
structures which are too deep, and . . ." in place of the ends of lists which are too long. (The level and length
optional arguments to GPRINT can be used to set the abbrev1at10n parameters at values other than the ones
established by the global variables.)

Second, there is a separate facility based on the variables PRINSTARTLINE and PRINENDLINE. As GPRINT
prints, it counts the lines starting with zero for the line the printer is called on. While the line number is less
than PRINSTARTLINE no actual printing is done. (PRINSTARTLINE defaults to NIL which is the same as zero.)
If the line number ever becomes greater than PRINENDLINE, then the printer prints '"---" to indicate that
- truncation has occurred and immediately stops printing and returns normally. (PRINENDLINE defaults to NIL
which is the same as infinity.) I have found sctting this to a relatively small number like 4 very useful
particularly due to the availability of the continuation facilitics described below. (The endline and startline

‘Waters ' -19- o GPRINT

optional arguments to GPRINT can be usr2d to set the abbreviation parameters at values other than the ones
established by the global variables.)

As a third kind of abbreviation, if the variable GCHECKRECURSION is T then GPRINT checks for circularity
in the objects it is printing. (This is rather expensive, but not prohibitively so.) When a circular reference to
an object is encountered, it is replaced in the output by An or %n. %nis only used in a list. It is used when the
CDR of a list is EQ to an earlier CDR in the same list. In this case n is the number of CDRs separating the two
positions. ~# is used in other situations. Here, n indicates that # selector operations (CAR CXR, AREF; but not
CDR) were performed between the first occurrence of the object and the second.

the result of (LET ((X '(Y (Z 1 2 3) 4)))
(RPLACD (CDR X) (CDR X))
. (RPLACA (CDADR X) X)
(RPLACA (CDDADR X) (CADR X))

(RPLACD (CDDADR X) (CDADR X))
X)

prints as (Y (Z A2 AL %2) . %1)

It is possible (but not easy) to reconstruct the exact shape of the object from what was printed. However,
the main purpose is just to print something more readable than what you would otherwise see. An important
feature of the way this abbreviation is done is that it is completely orthogonal to the rest of the formatting
process so that it works no matter what kinds of user formatting functions are written.

Stopping and Resuming Printing

If you execute the function GSET-UP-PRINTER several useful facilities are installed as interrupt characters.
GPRINT is set up so that it can be stopped in the middle of printing and caused to return normally without
doing any more work. This is triggered by typing CONTROL S in MacLisp and TERMINAL STOP-OUTPUT on the
Lisp Machine.,

Whenever output is truncated or abbreviated by forcefully aborting as above (or due to abbreviation based
on PRINLEVEL, PRINLENGTH, or PRINENDLINE) GPRINT remembers the state of the printing so that it can be
resumed. Only a single variable is maintained so that only the most recently abbreviated thing is
remembered. If printing was truncated by PRINENDLINE or user intervention, then it can be continued from
the point of truncation by typing CONTROL C in MacLisp, and TERMINAL RESUME on the Lisp Machine.

As an additional feature, you can reprint the last abbreviated thing in full with PRINLEVEL, PRINLENGTH,
PRINSTARTLINE, and PRINENDLINE set to NIL by typing CONTROL P in MaCLiSp and TERMINAL 1 RESUME on
the Lisp Machine.

Miscellaneous Features
A thing which has always irritated me is that if printing starts within about 7 lines of the bottom of the

screen "more" processing is inhibited. By default, this is disabled. If you actually like this feature, than you =

can continue to get it by setting GFORCE~-MORES to NIL.
~ There is a spccial formatting function set up for lists that start with the atom :GUNTERPRI. This function
forces the printer to go back up a line without printing anything. This is provided so that you can have a
function return (:GUNTERPRI) when you don’t want to see it print out any results at all (not even the TERPRI
that the Lisp top level prints out). On the Lisp Machine you can get this cffect better in most situations by
having your program return (VALUES).

On the Lisp Machine, GPRINT is set up so that ~N is a FORMAT keyword which invokes GPRINT1 (~G is
taken alrcady). ~:N invokes GPRINC. Numeric pre-arguments arc taken to be PRINLEVEL, PRINLENGTH, etc.

GPRINT ' ‘ - -20- Waters

(Notz tha* even when doing a {FORMAT NIL ...) line breaks may be introduced into ti-e output.)

. order to protect the user from errors, the printer is executed inside an ERRSET which catches any errors
that occur. If there is an error than the printer prints out an error message to that effect instead of printing the
object. This is useful in general, however, it can make debugging difficult. If you set GSHOW-ERRORS to T,
then an ERRSET is not used, and you get a break when the error occurs.

One of the strengths of the GPRINT system is that it is designed to be efficient in both time and space. The
basic algorithm is lincar in the size of the object being printed, and so it is relatively fast even on large objects.
There is however, a rather large constant overhead due to the large amount of dispatching which is done in
order to decide how to format each node in the object. An important fecature of the algorithm is that it does
no CONSing in normal operation and requires memory proportional only to the line length rather than to the
size of the object being printed. These savings are particularly important when running in MacLisp.

