MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

AL Memo No. 611a Revised - September 1982

GPRINT
A LISP Pretty Printer Providing
Extensive User Format-Control Mechanisms
by

Richard C. Waters

ABSTRACT

A Lisp prewty privter is presented which makes it casy for a user to contrel tie format of the
output produced. The printer can be used as a general mechanisty for printing daw structures
as well as programs. Ttis divided into two parts: a set of formatting functions. and an output
routine, "I'he user specifies how a particular type of object should be forimatied by creating a
formatting function for the type. When passed an object of that tvpe, the formatting function
crcates a scquence of directions which specity how the object should be printed if it ¢im fit on
one line and how it should be printed i it miust be broken up acress mnltiple lines. A simple
template fanguage makes it casy to specifly these directions, Based on the line longth available,
the output routine decides what structures have to he broken vp across maltiple lines and
produces the actual output following the directions created by the formatting functions. The
paper concludes with a discussion of how the pretty prnting method presented could be
applicd to languages other than Lisp.

‘This report describes rescarch done at the Artificial Intetligence Laboratory of the Massachusetts Tnstitiic of
Technology., Support for the Inboratery's actificial intelligence rescarch has teen provided in part by the

Advanced Rescarch Projects Agency of the Depariment of Defense under Office of Nuval Rescarch contracts

]

NOOO14-75-C-0643 and NOOOT4-80-C-0505.

The views and conclustong contained i this paper are those of the author, and should not be interpreted as

nccessarily representing the officisl policies, cither expressed or implied, of the Dicpartent of Defose, or the
United Staies Goyernment

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1982

)

Waters «1- GPRINT

Introduction

Most pretty printers are used solely for formatting program text. They typically operate by reading in a
file of program text and producing a formatted text file as output. In general, they have built-in knowledge
specitying how cach syntactic structure in the programming language should be formatted and do not give the
user any significant control over the format of the output produced [1, 2, 4-9]. With such a pretty prioter, the
lack of user format control mechanisms is tolerable because in most cases the user cannot define any new
language constructs and therefore the implementors of the printers can predict in advance all of the structures
which the printer can encounter (and though there is no firm consensus on how these structures should be
formatted it is possible to sclect reasonably acceptable formats).

Some pretty printers (such as the Lisp printer presented here) are used as part of the programming
environment to display information to the user rather than as text file processors. (Note that an inherent
limitation of such printers is that they cannot operate on parts of a program (such as comments) which appear
only in text files.) These pretty printers do not have to be relegated solely to printing programs. 'They can be
just as uscful for printing data structures. If a pretty printer’s use is extended to user defined data structures,
user format control mechanisms become essential because it is no longer possible to predict what structures
will be encountered,

Extending pretty printers to deal with data is important because user defined data structures are central to
almost any program. When debugging a program, a programumer needs (o be able to look at various data
items, Every interactive programming environment supports the display of the simple atomic data values
supported by the language (such as numbers and strings). However, most environments are not prepared to
print out the contents of complex user data structures in any uscful way.

User defined data abstractions are typically implemented by combining together primitive data structures
(c.g. vectors, record structures, and pointers). A pretty printer can be extended to deal with arbitrary user
data abstractions by adding print formats for cach basic data structure. FFor examiple, record structures might
be printed as <field! field2 .. .> with cach field printed on a separate line if the structure cannot be printed on
a single line. Vectors could be printed analogously as [iteml item2 .. .]. Pointers could be printed as '@’
followed by what they point to. Suppose that a user has defined a data abstraction which is implemented as a
record structure with several ficlds, one of which is & vector of pointers to records. Using the above default
formats, an instance of this abstraction would be printed as follows (assuming that several lines had to be used
to print it).

Sield
Sield

re<field ...»
e<field ...>

S
ey

Unfortunately, this simple approach is not very satisfactory. The direct display of the underlying data
structure which implements a data abstraction is not liable to capture the user’s idea of what the data
abstraction mieans. For example, some components of the data structure may not be very important and
should not be displayed at all. Other kinds of data structure components (for example, circular pointers)
cannot be displayed literally and must be abbreviated in some way. Alternately, it may be useful to print out
some additional quantities which, though not actually in the structure, are uscful for understanding the
structure (for example, the names of the fields or derived values compuated from the ficld valucs).

A collaeral advantage of the rigid output format initially proposed is that it can be built into the reader as
well as the printer so that it is possible to reereate a data structure by reading in its printed representation. In

GPRINT -2- Waters

order to maintain this readability property when ficlds arc being omilted, abbreviated, and/or added in the
printed representations for data structures, the user must be careful to insure that no information is actually
being lost, and the reader must be modified to take these special printed representations into account. In Lisp
programming environments (for examiple [10]), this kind of reader modification is usually possible though not
necessarily casy. [t should be noted that in general it is much more important to print out a data structure in a
form which can be casily read and understood by the user than to print it out in a form which can be read by
the reader.

Another serious problem with the simple output scheme proposed above is that the kind of default
formaufng tules proposed almost never lead to output which is aesthetic. 'The visual appearance of a data
structure has a very important effect on its understandability, Perhaps different delimiters or indentation
would make the data structure more readable. Perhaps the first two fields are closely related and should
always be printed on the same line, Perhaps the structure as a whole has two quite scparate logical parts
which should always be printed on two lines. .

In order to deal with these problems, it is essential that the user be able to control how individual data
abstractions are to be printed. The pretty printer for Lisp presented in this paper allows the user to specify for
cach type of data structure both what components to print, and how these components should be formatted.
If the printer is used as the standard printer, then the user will be able to inspect his data structures and see
them printed out acsthetically at all times.

Pretty printers are typically conceived of as system utilities for displaying information to the user.

However, a pretty printer can be much more useful it it can also be used as an output facility which is called
directly from user programs. ‘The advantage of this is that it makes available a new paradigm for specifying
output format.

Most high level languages have facilitics for specifying how output is to be formatted on the page (e.g. the
IFortran FORMAT statement). In general, these facilities are oriented toward printing data structures whose
shape is known in advance on a page whose width is known in advance. There are usually no facilities which
deal with variability in cither the shape of the data or the width of the page. !f either of these has to be
paramcterized, then the programmer has to write code which computes how cach particular data structure
should be formatted.

Pretty printers are specifically designed 1o deal with variability in the data and in the space available.
When using a pretty printer, instead of specifying a format for the output as a whole, the programmer
specifics individual formats for cach of the intermediate structures which can occur in the object to be
priutcdf These formats do not have to be particularly concerned with cither the line width or how the
intermediate structures will be combined together. When printing a structure, the pretty printer
automatically combines the individual formats and decides where to insert line breaks and blank space in
order to make its output fit readably in the space available.

The sections below describe how a particular Lisp pretty printer (GPRINT) provides for user format control
and discuss some of the general issucs involved. GPRINT was originally implemented in 1975 as an attempt to
improve oo an carlier pretty printer implemented by Goldstein [3]. Goldstein's pretty printer is one of the
few pretty printers which does include mechanisms providing significant user control over the format
produced. Unfortunately, the mechanisms he provides are at the same time complex to use and not very
powerful. GPRINT has been rewritten four times most recently in 1981 in a continuing attempt to create a user
controllable pretty printer with very good human engineering,

GPRINT is written in Lisp, and was developed in the context of a Lisp programiming environment, ‘The
[isp language is used in this paper w display parts of the pretty printing algorithm and Lisp lists are used in
examples of how objects are printed. This is done because Tisp has several features which make the

L b

Waters -3- GPRINT

implementation and explication of a pretty printer particularly casy. However, it should be noted that the
ideas embodicd in GPRINT are not limited to the Lisp domain. In particular, these ideas grow principally out
of the requirements for a highly interactive programming environment, rather than out of the Lisp language.
The tast section of this paper discusses what would be required in order (o implement a similar pretry prinier
for a programming cnvironmient other than Lisp.

An Example

Before looking at GPRINT in detail, consider the following example. Suppose a user has defined a data
abstraction called NAMED~FORM with four parts: a FORM, which is some arbitrary Lisp expression; a ROOT,
which is an identifier associated with the FORM; a SUFFIX, which is used t disambiguate forms which have
the same ROOT: and a PARENT, which is a circular pointer pointing up to the NAMED-FORM data structure which
contains this one. "Together the ROOT and the SUFFIX arc a unique name for the FORM. The PARENT links
make it possible to go backwards from a NAMED-FORM to the NAMED -FORMs containing it.

The function definitions below implement access functions and a constructor function for this data
abstraction implemented as a list. Following common [Lisp programming practice, the symbol NAMED~FORM is
put in the CAR of this list so that instances of the data type can be recognized at run time.

(defun form (x) (cadr x))
(defun root (x) (caddr x))

(defun suffix (x) (cadddr x))
(defun parent (x) (car (cddddr x)))

(defun create-named-form (form root suffix parent)
(Vist 'named-form form root suffix parent))
IFnothing morce is said, then NAMED-FORMs will be printed out in the default format for lists as follows:
(NAMED-FORM (+ A B) ARG 1 ...)

There are several problems with this. First, there is no good way to print the circular parent pointer (it is
clided as ™. .. " above). Even if some mechanism is used to keep the print form finite, it will probably be too
large to be readable. Sccond, the CAR of the list is important for computational reasons but it is not a logical
part of the structure. One might well consider that seeing it printed out is a distraction. Third, the way the
remaining three parts of the structure are printed out docs nothing to indicate their Jogical roles in the
structure. As a result, it is hard to scc what is what.

GPRINT -4 - Walers

The following example shows one way in which NAMED - FORMs could be more acsthetically displayed.
ARG1: (+ A B)

‘The FORM is printed out preceded by a tag formed by printing the ROOT and SUFFIX as a single unit
followed by a colon. Note that you would not want to store the ROOT and the SUFFIX as a single unit because
it is computationally expensive to break them apart. However this is casy for your eye to do. 'T'he PARENT
pointer is not printed at all, '

The following format definition could be used to specify to GPRINT that NAMED-FORMs should be printed
out in the above way. The cxpression (DEFUN (symbol :GFORMAT) (arg) body) defines the body as a
formatting function which will be used to format lists with the indicated symbol as their CAR. When passed
such a list, the function creates a sequence of formatting instructions specifying what should be printed
corresponding to the list. Formatting functions can be quite complex. However, in this example, the
formatting function simply sclects three of the components of the data structure and calls the function GF
(short for GPRINT=-FORMAT) in order to create the formatting instructions.

(defun (named-form :Gformat) (x)
(GF "{2 » = ':' - }" (root x) (suffix x) (form x)))

The function (GF template argl arg2 . . ') creates a sequence of formatting instructions for its arguments
based on directions specified by the remplate. (Templates are discussed in detail below.) The template in this
cx:nnplé can be understood as follows: The { and } specify (hat the components between them should be
treated as a single logical unit when they are printed out. The 2 after the { specifics that an indentation of 2
snould be used inside this structure if it has to be broken up across mullipte lines, ‘The three xs show where
the three components of the data structure should be printed. The '@ specifies that a colon should be
printed after the SUFFIX. Finally, the - specifics a conditional line break. 1f the whole structure will not fit
on one line, then a line break will be inserted at that point. Otherwise a space will be printed.

It is important to realize that the format does not just specily how an individual NAMED-FORM should be
printed in isolation. 1t is used as part of the specification of how complex data structures containing
NAMED-FORMs should be printed. For example, a list of two NAMED-FORMs would be printed as follows:

(ARG1: (+ A B)
CALLER3: (- (+ A B) C))

The example assuimes that in order to fit the structure into the space available for printing, it had to be
broken up across two lines. The outermost set of parentheses and the fact that the two NAMED-FORMs are lined
up vertically is controlled by the standard format for lists of data. ‘The individual NAMED~FORMs are formatted
as specified above.

Waters -5- GPRINT

The Basic Algorithm

The central feature of the algorithm usced by GPRINT is that the pretty printing process is divided into two
parts as shown in Figure 1. The formatting routine takes in an object and creates a sequence of formatting
instructions specifving what to print. ‘Thesc instructions specify how cach part of the object is to be printed if
it will fit on onc line, and how it should be printed if it must be broken up across multiple lines. This
information is passed to the output routine as a sequence of entrics in a queue. The output routine operates
as a coroutine processing the queuc entries as they are created. It decides how to fit things into the actual
spacc available and then prints them,

FORMATTING ouTPUT
OBJECT -~-> -==> QUEUE ~--> -==> TEXT
ROUTINE . ROUTINE

Figure 1: Architecture of the basic pretty printing algorithm,

The importance of dividing the algorithm into two parts comes from the fact that it allows a complete
scparation between format specification and the output computation. ‘The output routine is complex and
computation intensive. Taken separately, it can be designed to be cfficient without compromising the need
for the formatting process to be as clear and simiple as possible, Similarly, when designing the formatting
routine and the user format control mechanisms it is possible to concentrate on providing a powerful and
convenient interface to the user.

The basic algorithm described above has been independently developed by several people [4, 7] in
addition to the author. However, the formatling routines in these other pretly printers are very primitive.
They include only a small sct of canned formats and do not allow for user format control. In[7], Oppen gives
a lucid description -of the way the output routine operates, His discussion centers on the fact that if the
lookahead wvsed by the output routine when processing queue entrics is appropriately limited, then the
computation time required by the output routine is lincar in the number of queue catries created by the
formatting routine. ‘The only difference between bis output routine and GPRINT’S output routine is that
GPRINT's queuc entrics are more general. 'This paper focuses on the unique aspect of GPRINT -- the way the
formatting process allows for user format control.

GPRINT | -6- Waters

The Structure of the Formatting Routine

‘The structure of the formatting routine is based on the idea that any object to be printed by GPRINT can be
viewed as a directed graph where cach terminal node is a primitive data object (such as a number or a symbol)
and cach non-terminal node is a composite data structure (such as a list or array). The formatting routine is
organized around a central dispatching function (6DISPATCH). At cach node, GDISPATCH selects and calls an
appropriate formatting function based on various features of the node (such as its data type). The formatting
function takes the node as its argument and pushes entrics onto the queue which specify what to print and
how it should be formatted. Typically, formatting functions call the dispatching function recursively in order
to format the composite components of the node.

Consider the following simplified version of GOISPATCH. 'This version of GDISPATCH assumes that the
item to be formatted must be cither a number. a symbol, a string or a list. 1t first tests the data type of the
item. If it is not a list then ATOM-FORMAT enters it directly into the queue as something to be printed out. If
the item is a list then GDISPATCH looks at the CAR of the list in order to pick a specific formatting function to
call. The association between list CARs and formatting functions is recorded by storing the function as the
:GFORMAT property of the CAR,

(defun Gdispatch (x)
(cond ((not (1istp x)) (atom-format x))
((not (symbolp (car x))) (funcall Gnon-symbol-car-Tormat x))
((get (car x) ':6format)) (funcall (get (car x) ':Gformat) x))
((fboundp (car x)) (funcall Gfn-format x)) :
(T (funcall Gsymbol-car-format x))))

If there is no special formatting function for a list then GDISPATCH uses cither a default format for
function applications or a formatter for data lists (these formatters are discussed further below). These default
formatters are stored in special variables so that they can be easily modified by the user, In a Lisp system
there is no definitive way to distinguish the representation of a function call from other kinds of list data. Asa
heuristic, GDISPATCH looks ti sce whether the CAR of the list is the name of a currently defined function.

The actual version of GDISPATCH used by GPRINT is much mere general than the one presented here.
First. it can dispatch on additional features of a list other than its CAR. Sccond. you can specify a specific
format to use when calling GPRINT which will override any dispatching. "Third. 6DISPATCH dispatches on
many other data types as well as lists (for example, arrays). The user format control mechanisms described
here are extended so that they arc applicabic to these other data types. 'This is discussed in more detail below.

An important thing to keep in mind about formatting functions is that they do not print anything -- rather
they specify aset of directions to be followed when GPRINT prints an object of the associated type. 1n order to
print something you call the function GPRINT. Jt calls GDISPATCH which calls formatting functions which
create gueue entries which are interpreted by the output routine in ordes to determine what to print, [t is the
output routine which actually does the printing.

How The Queue Entries Specify Formatting Options
Inorder to fully understand how formats are specified, it is important to understand the entries which are
pushed onto the queue, These entrics are designed to be a concise language for specifving fortatting options.
The entries encode two pieces of information: what should be printed if an object can be printed on a single
line. and what line breaks and indentation should be used if the object will not fit on one line. Thic following
table descritics the basic queue entries.

Waters -7 \ GPRINT

"literal' - Print the literal text between the apostrophes in the output.

1= (Underscore) Print n (default 1) spaces in the output. The argument can be negative in which case
the printing point moves left but only if there is sufficient blank space to back up over.

{n }-"These two cntrics mark the beginning and end of a group of quene entries which form a
substructure in the output. 'This substructure is treated as a single unit when decisions about where
to insert line breaks arc made. The number following the open bracket specifies how much the
indentation should be increased while printing items inside the substructure when they will not fit
onasingle line. Ttcan be omitted in which case it defaults to the sum of the lengths of the first three
things printed in the substructure.

+i1 - (Plus) This specifies a change in indentation. "I'he indentation level in the current substructure is
incremented by 2 (default 1) which can be negative.

~n - (minus) A conditional line break. Put a line break in the output if the structure immediately
containing this entry cannot be printed on a single line. Otherwise, print 1 (default 1) spaces in the
output.

! - Always put a linc break here.

As an example of how formatting information is encoded in queue entries consider the NAMED-FORM
example used above. When GPRINT is used to print the list (NAMED-FORM (+ A B) ARG 1 o.) the
formatting routine calls the specially defined formatting function (reproduced below).

(defun (named-form :Gformat) (x)
(GF "{2 » % ":* - »}" (root x) (suffix x) (form x)))

Based on the template, the call on 61 creates the following quete entries (assuming for simplicity in (his
example that (+ A B) is formatted as a single atom),

{2 VARGI Vll C:C - !(+AB)| }

The output routine processes these queue entries as they are created. 1t lets the entrics corresponding to a
structure collect in the queue until it can determine whether or not there is enough room to print the structure
on a single line. 1T the available space is long enough then the entire structure will be printed on a single line
as follows:

ARG1: (+ A B)

If there is not enough room then the structure will be broken up. The - queuc entry indicates that in this
casc a line break should be inserted before (+ A B). The indentation increment specifics that the indentation
should be increased by two alter the line break.

ARG1:
(+ A B)

If there is not enough room to print the two line form, then there is no way to print out the structure which
is consistent with the quene entrics. This is an example of the finite line length problem. Pretty printers in
general suffer from this problem and there is no simiple solution to it. However, the problem is usually not
severe as long as the line Jength available for printing is several times larger than the largest indivisible itein
which must be printed on a single line. GPRINT has a number of built-in features (discussed below) which try
to amcliorate this problem by keeping the indentation small in order to maximize the line length available.

GPRINT -8- Waters

Formatting Templates

Qucue entrics are created exclusively through the use of the function (GF template argl arg?...). GF
maiches its template against zero or more arguments and produces a series of queue entrics. Fach template is
astring built up out of formatting codes. ‘There are two sets of codes. The first set corresponds exactly to the
queuc entrics described in the last section (i.cl *fiteral', _n, {n }, +n, ~n, and 1). The sccond set of codes
specifics how the template is to be matched against the arguments to be printed. These are described in the
table below:

» - Call GDISPATCH to determine how to format this object, If it is an atom then this creates a literal
queug entry for it. Forexample, (GF "+" 'ARG) is the same as (GF " 'ARG'").

- Ignore the corresponding object.

[subtemplate] - The part of the object being formatted which corresponds to this part of the template
must be a list. 1t is decomposed into its elements. ‘The template between the square brackets
spuuﬁu how these are (o be formatted. For example, (6F "[»_[*_»]]" '(1 (2 3))) is the
same as (GF "w_s_s" 1 2 3). Processing of a subtemplate between [] terminates immediately as
soon as the corresponding list is exhausted. For example, (GF "[»':'%]" '(1)) is the same as
(6F "x" 1) and not (GF "s':'" 1). The [] codes have meaning only to GF and do not by
tl{cmsclvcs create any queue entrics.

- (Period) Valid only inside [3. It specifies that the nextitem is the whole sublist left to ploccss by []
rather than its CAR. Ior example, (GF "[ro.x]" (1 2)) is thesame as (GF "w_a" '(2)).

< >-This is used inside of [] to specify a template for a list of unknown length. 'The part of the
template between the angle brackets is taken as repeating indefinitely, creating a subpattern of
infinite length. Forexample, "[<x_>7" is the same as " [s_»_s_s__»_»_ ...]".

(1 subtemplate) - This is an abbreviation for {a ' (' [subtemplate]") '}, 'This combines together
three ideas. First, it specifies that the list should be treated as a single structure in the output,
Secend, it specifies that parentheses should be printed as delimiters around the list. Third, it
specifies that the list should be decomposed using the subtemplate to specify how its components
should be formatted. This format code is a uselul abbreviation because many list formats share
these ideas.

The number after the open parenthesis specifies the indentation increment to use in the
substructuse. It can be omitied in which case it defaults to the sum of the lengths of the first three
cntries in the substructure. In this case the first entry is always an open parenthesis. T'ypically the
second entry will be the first item in the list and the third one will be some amount of blank space
aficr the first item.

- This can be used in place of an argument to any formatting code (e.g. _, {}. (), + or-). lispccifies
that the value is to be taken from the next input 1o GF. FFor example, (GF " 'A'_#'B'" 6) spccifies
that 6 spaces should be printed out between the A and the 8.

blank - White space can be inscrled into a template to give it added readability. It has no meaning in
the temnplate.

Consider again the simple template ({2 * » ':* -~ »}") used in the cxaumples above. The three s
match against the three arguments to 65 causing GBISPATCH to be called on cach one in turn. The rest of the
format codes directly specify queuc entries.

Waters -9- ' GPRINT

Simple Formatting Functions

This scction continues the presentation of formatting templates by discussing several standard Lisp
program formats. In GPRINT the user format control mechanisms are used to specify all of the standard
program formats. This adds greatly to the clarity of the pretty printing algorithim by separating the format
specification from the rest of the algorithm. Tt also makes it possible for the user to modify the way programs
arc printed by changing the standard formats. 1t should be noted that in Lisp, programs are represented as
lists and are treated just like any other data object. All the mechanisims which allow the user to control the
format of program lists can be uscd to control the format of data structures implemented as lists.

Lisp function applications are traditionally formatted so that they are printed on a single line or, if there is
not enough room, so that the arguments are lined up vertically one to aline. 'T'he following function is used as
the default value of the variable GFN-FORMAT which controls how function applications are formatted, The
example printout shows how a function application looks when it has to be printed on more than one linc.

(defun :Gfn-format (x) (GF "(*_ <*=->)" x)})

(LIST Y
Z)

The template matches against the list as a whole, printing parentheses around it in the output. The
indentation increment is et unspecificd so that it will default to the length of the function name plus two
(one for the open parenthesis and onc for the space printed alter the function nane). This causes the
arguments to fine up once under the other. After the function namec is printed out followed by a space, the
repetitive portion of the template specifies a conditional line break after cach argument in the function
application. Note that GDISPATCH is called (via the » format code) in order to determine how to format cach
argument,

Lisp assignments are typically formatied so that cach successive variable/value pair appears on a scparate
line. "This can be specificd by using the | format code in atemplate as shown. The following DEFUN scts up a
formatting function which specifics that this format should be used for lists which begin with the atom SETQ.

(defun (setq :Gformat) (x) (GF "(»_ <s_*1>)" x))

(SETQ Y 1
72)

This template is very similar to the one for function applications. 'The only difference is that the repeating
portion of the template specifics that the arguments are to be formatted in pairs with a mandatory line break
after each pair. This forces cach pair to appear on a separate line even when the entire SETQ could fit on a
single line. Note that there is no line break before the close parenthesis after the last pair because processing
in a subtemplate for a list stops immediately as soon as the elements of the list arc exhausted.

GPRINT -10- Waters

The LET construct is used to bind a group of variables to initial values and then exccute a sequence of
statements in this environment. Typically, the variable binding pairs are printed one to a line and the
statements are printed one to a line. A small indentation is used for the statements in order {o visually
differentiate them from the bound variable pairs and in order to keep the total indentation small,

(defun (Tet :Gformat) (x) (GF "(2 »._ (1 <#1>) <=¥>)" x))

(LET ((Y 1)
(Z 2))

(CONS Y 2))

The template specifies an explicit indentation of 2 for the statements in the LET. After the atom LET itself
is printed out, a subtemplate specifies how the list of bound variable pairs should be formatted. Here an
explicit indentation of 1 is used so that they will ling up one under the other, A 1 format code is used to force
cach onc to appear on a separate linc. The final repetitive portion of the template as a whole specifics a
conditional line break before cach statement in the LET. Note that if there is only one bound variable pair
this allows the let as a whole to be printed on a single line if it will fit,

Conditional expressions arc formatted so that cach clause of the conditional appears on a separate line,
Fach clause is composed of a predicate followed by a sequence of statements. 1f a clause will not fit on a
single line, the predicate and statements are printed out one under the other,

(defun (cond :Gformat) (x) (GF "(»_ < (1 <#*=>) | >)" x))
(COND ((MINUSP Y)

In this template the repetitive portion of the template as a whole consists of a subtemplate for the clauses
and a 1 format code which forces each clause onto a separate line. The subtemplate specifies an explicit
indentation of 1 and a conditional line break afier cach expression in the clause.

The following formatting function for MULTIPLE~VALUE -B IND illustrates the use of the + format code. In
order to highlight the difference between them, the form which returns the multiple values is printed at an
indentation of 4 while the statements which use the bound vatues are printed at an indentation of 2. The
indentation is initially specified as 4. “T'he subtemplate then prints out the list of bound variables. After the
multiple value returning form is printed the indentation is decremented by 2. The repetitive portion of the
template then prints out the remaining forms one to a line at an indentation of 2.

(defun (multiple-value-bind :Gformat) (x) (GF "(4%_ (<*.>) ~» +-2 <(=5>)" x))

(MULTIPLE~VALUE-BIND (SYMBOL ALREADY-THERE-P)
(INTERN STRING)
(COND (ALREADY-THERE-P (ERROR "Symbol already there: " STRING)))
SYMBOL)

Waters -11- GPRINT

As a final example, consider the function QUOTE. A list which begins with the atom QUOTE is not printed
with parentheses around it. Rather, the argument to QUOTE is printed out following a "*". "The example
shows the way the list (QUOTE A) is formatted.,

(defun (quote :Gformat) (x) (GF "{''''[I *]}" x))
‘A

"y, on Wy

The template sets up a substructure and prints a™* " (inside of a literal in a template, stands for "'").
{t then prints out the argument to QUOTE. Note how it uses the format codes [and I in order to select out
this argument,

More Complex Formatting Functions

A wide varicty of formats can be specified using simple formatting functions like those above which
contain only a single call on the function GF. However, these formats are vestricted in several ways. In
particular, with these simple formatting functions it is not possible to vary the format based on the actual data
values in a structure. Move complex formats can be specified by taking advantage of the fact that a formatting
function can contain arbitrary computation,

For example. consider the following way in which the format for NAMED-FORMs could be cxtended.
Suppose that the suffix field in a NAMED-FORM is optional and that a value of NIL indicates that there is no
suffix. In this case we do not want to print the suffix at all. 'The éxznnplc shows how the list
(NAMED-FORM (+ A B) ARG NIL ...)should be printed.

(defun (named-form :Gformat) (x)
(GF {2 »" (root x))
(cond ((not (null (suffix x))) (GF "*" (suffix x))))
(GF "':'-#}" (form x)))

ARG: (+ A B)

In the above format definition the single template used in the format definition in the beginning of this
paper is broken into three picces. A conditional (est is inserted so that printing of the suffix only occurs when
it is non-null. The { and } indicating the beginning and cnd of the substructure of queue entrics being
created are specified in separate calls on GF. This is a common occurrcnce and is in contrast to []
{and therefore {)) which must be properly nested in a single call on GF.

Of all of the formats in this paper, this is perhaps the best example of the way GPRINT is typically used.
Some simple templates arc combined with some simple computation in order o define a flexible and
aesthetic format Jor a data object.

GPRINT , -12- Waters

Block Form and 'Tabular Form
In order to save space, long lists of data are often formatted in block form where as many items as possible
arc put on cach line. The language which is used to create formatting templates has two format codes which
arc useful for specifying this kind of format.

n - (Comma) A line break is inserted here if and only if the structure immediately following this code
will not fit on the end of the current line. Otherwise # (default 1) spaces are printed.

s 1= (Semicolon) This s the same as the comma format except that additional spacing is inscrted so that
the items printed out line up in a tabular fashion. The argument n specifics what spacing to use
between the columns in the table. I it is omitted a default value will be chosen by the output
routine based on the Iengths of the items to be printed out.

‘The following formatting function can be used to print out a list in block form.

(defun :Glblock (x) (GF "{1 <»,>)" x))

(ORANGE PEAR (RED APPLE) GRAPEFRUIT
(HAWATTAN PINEAPPLE) BANANA
CANTALOUPE POMEGRANATE TANGERINE)

‘Therc is a problem with printing lists of data in block format. If the clements of a list are themselves lists
with a depth of greater than one, then the output is not very acsthetic because it is 1ot casy to identify the
clements of the top level list. IFor example, consider the following list:

((ORANGE (SELL 3)) (PEAR (BUY 10)) ((RED APPLE) (BUY 5))
(GRAPEFRUIT (BUY 10)) ((HAWATTAN PINEAPPLE) (SELL 8))
(BANANA (SELL 5)) (CANTALOUPE (BUY 4)))

‘The following formatting function uses the semicolon format code in order to print out lists in a tabular
format. It is used as the default value of the special variables GSYMBOL-CAR-FORMAT and GNON-SYMBOL -
CAR-FORMAT which control how lists of data are printed. "This makes the output much easier to read witbout
taking up very much more space.

(defun :G1Tblock (x) (GF "{1 <#;>)" x))

((ORANGE (SELL 3)) (PEAR (BUY 10))
((RED APPLE) (BUY 5)) (GRAPEFRUIT (BUY 10))
((HAWAIIAN PINEAPPLE) (SELL 8))

(BANANA (SELL 5)) (CANTALOUPE (BUY 4)))

Duc to the fact that the output routine uses only limited look ahead, the tab size must usually be chosen
before all of the elements in the list have been entered in the queue. As a result, it is not guaranteed to be
large enough. In this example, the fourth clement in the list was not completely entered in the queue at the
time when it was determined that the Tist had (o be put on more than one line. As a result, only the first three
clements were used to determine the tab size which turned out to he too small to accommodate the fifth
clement,

“Waters -13- GPRINT

Functional Subtemplates

The following format codes increase the flexibility of the templates by making it possible to call functions
at different points in a template.

%f - This specifies that the function f should be called in order to format the corresponding item. ‘The
end of the function name is delimited by a space.

$/ - (Dollar sign) This command specifics that GDISPATCH should be called in order to format the
corresponding item, but that the function £ should be passed to GDISPATCH as a suggestion of how
to format the item. As above, the end of the function name is delimited by a space. The difference
between $f and %/ is that with $f GDISPATCH gets control. As a result, if the item is not a fist, then
the function f will not get used.

The use of the $ code is illustrated in the following format which block formats a tree at all levels, Tt is
capable of formatting trees of arbitrary depth because it explicitly calls itself recursively. GDISPATCH is called
at cach level of the recursion. As a result, as soon as an atom is encountered, the recursion is terminated and
the atom is printed normally.

(defun :Gblock (tree) (GF "(1<$:Gblock ,>)" tree))

(ONE (TWO THREE)
((FOUR FIVE) SIX
SEVEN)

ETGHT NINE)

The following formatting function for PROG bses % so that it can call a subformat (GPROG-FORMAT2)
without GDISPATCH being called. 'This is necessary so that the Tabels (which are atoms) in the PROG will be
processed by GPROG-FORMAT2. Labels are printed left shified by computing negative arguments for _.

{declare (special Gwas-label))

(defun (prog :Gformat) (1ist)
(1et (Gwas-~label) .
(GF "(*.$:Gblock <%Gprog-format2 >)" list)))

(defun Gprog-format2 (item)
(cond ((not Gwas-label) (GF "1"}))
(cond ((atom item) (setq Gwas-label T)
(GF "_#»_" (- (1+ (flatsize item))) item))
(V (GF "+" item) (setq Gwas-label nil))))

(PROG (RESULT)
L (COND ((NULL LIST) (GO THE-END)))
(SETQ RESULT (CONS (CAR LIST) RESULT))
(SETQ LIST (CDR LIST))
(60 L)
THE-END (SETQ RESULT (NREVERSE RESULT))
(RETURN RESULT))

An important aspect of the last cxample is the way it interacts with length abbreviation (described below)
and other standard facilities provided by GPRINT. Since length abbreviation is implemented by [, in order
to et length abbreviation to apply to the formats you write, you have to use [J. This is an impottant reason
for writing it in the form given above rather than as a single reutine containing a loop which decomposes the
list itself” and creates the conect format codes.

GPRINT -14- Waters

Miser Mode
GPRINT provides several facilities which help deal with the finite linc length problem. ‘The most
comprehensive of these is a modificd form of the miser mode supported by Goldstein's pretty printer [3]. "The
point at which miser mode is triggered is controlled by the variable MISER-WIDTH (which defaults to 40). 1f
the linc width available for printing is less than MISER-WIDTH, then miser mode s triggered, and formatting is
modified in two ways. First, all indentations inside (} formats are forced to be 1 no matter what is specified.
Second, all + formats are ignored so that the indentation remains 1 in cach substructure. In addition to this, a
formatting command (M) is provided so that the user can specify line breaks which should only happen when
miscr mode is triggered.
M- A line break is inserted here if and only if the containing structure cannot be printed on one line,
and the width available for printing is less than MISER-WIDTH,
~# = (lilde) Print 1 (default 1) spaces in the output. The argument can be negative in which case the
printing point moves leftif there is sufficient blank space to back up over.

1= (Underscore) This is actually an abbreviation for ~aM. It therefore specifics a miser mode line
break. '

In order to see how miser mode works, consider the format for MULTIPLE-VALUE-BIND reproduced
below. The example shows the format which this specifies in miser mode. The indentation increment is
mmxufmncmmmmlgmddwoumnmmw(ﬁ‘kmdanCMWmstnnﬂwﬂm;1hcmmCNRMBambe
scen in the COND.

(defun (multiple-value-bind :Gformat) (x) (GF "(4x_ (K#*.>) =% +-2 {~»>)" x))

(MULTIPLE-VALUE-BIND
(SYMBOL. ALREADY-THERE-P)
(INTERN STRING)

(COMD .
(ALREADY-THERE-P
(ERROR
"Symbol already there: "
STRING)))
SYMBOL.)

In order to maintain some of the indentation pattern of MULTIPLE-VALUE-BIND in miscr mode, the ~
format code could be used in place of _and + as shown below.

(defun (multiple-value-bind :Gformat) (x) (GF "(2#~ (<) - ~2% <=#>)" x))

(MULTIPLE-VALUE-BIND (SYMBOL
ALREADY-THERE-P)
(INTERN STRING)

(COND
(ALREADY-THERE-P
(ERROR
"Symbol already there: "
STRING)))
SYMBOL)

Throngh judicious choice of when to use ~ instcad of _ or +, the user can gain considerable control over
how a format will look in miser mode. However, as can be seen above, miser mode is not particularly
acsﬂlcﬁc.lu) matter what you do. It exists solely as an emergency measure to prevent printout from
overrunning the right margin. '

Waters -15- , GPRINT

Left Shifting of Major Units

Another way in which GPRINT deals with the finite line length problem is to take Togical units of program
text (such as LETS, PROGs, and DOs) and shift them Ieft in order 1o increase the amount of line width available.
This process is triggered when the line width available for printing is less than MAJOR-WIDTH (which defaults
to 40). I.cft shifting is illustrated in the example below. The radical reduction in indentation is very effective
at increasing the width available. Unfortunately, the nonstandard fonnat reduces readability. This problem is
amcliorated by the fact that an entire logical unit is being left shifted, not some arbitrary part of the program.

(defun (let :Gformat) (1ist)

(Gcheck-indentation 1ist
#'(lambda (x) (GF "(2 »_{1 <*1D)<=-#>)" x))))

(defun Geheck-indentation (1list format-fa)
(Tet ((ind (Gestimate-indent)))
(cond ((> (- Glinelen ind) major-width) (GF "%#" 1ist format-fn))

(T (GF "lpt!jmmmmmmmnes ALY (- dnd) (- oind 11.))
(GF "~#%#" (- 5 ind) 1ist format-fn)
(GF " lnff® jmmmmmmmmes A1 (= ind) (- ind 11.))))))

(DEFUN ROOTS-OF-QUADRATIC (A B C)
(COND ((NOT (ZEROP A))
(LET ((DISCRIMINANT (~ (* B B) (* 4 A C))))
(COND ((PLUSP DISCRIMINANT)

''''''''' I

(LET ((TERM1 (- B)) :
(TERM2 (SQRT DISCRIMINANT))
(TERM3 (* 2 A)))

(LIST (// (+ TERM1 TERM2) TERM3)
(// (- TERM1 TERM2) TERM3)))

I
1))

Left shifting is implemented by the formatting function GCHECK-INDENTATION. The use of this function
is illustrated by the formatting function for LET shown above, [t calls GCHECK-INDENTATION passing it the
simple formatting function for LET which was described in the beginning of this papet.
GCHECK-INDENTATION calls the function GESTIMATE-INDENTATION which looks at the queue of formatting
commands and determines what indentation will be used when printing out the LET. Note that this must be
computed from the queue because there may be many entries in the queuc which have not yet been printed.

[f the width available for printing is greatcr than MAJOR-WIDTH then GCRECK-INDENTATION just calls the
formatting function passed to it. (Note that if the & format code was used instead of %, GDISPATCH would
think that it was encountering a sccond (circular) reference to the list being printed and abbreviate it as
described in the next section). If the width available is less than MAJOR-WIDTH then GCHECK- INDENTATION
spaces back to column zero and prints a comment line which indicates that left shifting is occurring using a
" to show the indentation which otherwise would have been used. On the next line, the format spaces back
to column 5 and calls the formatting function passed to it in order to format the list being printed. Finally, it
prints another comment line, Note that the templates make heavy use of the # format code so that the
function can compute the appropriate negative spacing.

L

GPRINT -16- Waters

Abbreviation
GPRINT provides scveral different abbreviation mechanisms, First, there is abbreviation based on
PRINLEVEL and PRINLENGTH as in the standard printer. A ™w«" is printed for structures which are too deep,
and "..." is printed in place of the ends of lists which are too long. The following example shows how the
list (1 (2 (3 (4))) A B C) would appecar with PRINLEVEL and PRINLENGTH both sct to 3.

(1 (2 (3 *))A...) :

There is a scparate abbreviation facility based on the variables PRINSTARTLINE and PRINENDLINE. As
GPRINT prints, it counts the lines starting with zero for the line the printer is called on, While the line number
i$ less than PRINSTARTLINE no actual printing is done. [f the line number ever becomes greater than
PRINENDLINE, then the printer prints "---" to indicate that truncation has occurred and immediately stops
printing and returns normally. Experimentation has shown that sctting PRINENDLINE to a relatively small
number like 4 (while setting PRINLEVEL and PRINLENGTH to NIL) is very uscful particularly duc to the
availability of the continuation facilities described below. The example below shows how an example of
output using these scttings. ' '

(DEFUN ROOTS-OF-QUADRATIC (A B C)
(COND ((NOT (ZEROP A))
(LET ((DISCRIMINANT (- (% B B) (» 4 A C))))
(COND ((PLUSP DISCRIMINANT) ---

Truncation of the outpui can also be triggered by typing TERMINAL STOP-OUTPUT. 'This interrupts the
prinier immediately, causing it to terminate returning normally,

Whenever output is abbreviated duc to any of the methods described above, GPRINT remembers the state
of the printing so that it can be resumed. Only a single variable is maintained so that only the most recently
abbreviated thing is temembered. I printing was truncated by PRINENDLINE or user intervention, then it can
be continued from the point of truncation by typing TERMINAL RESUME,

As an additional feature, you can reprint the last abbreviated thing in full with PRINLEVEL, PRINLENGTH,
PRINSTARTLINE, and PRINENDLINE abbreviation disabled by typing TERMINAL 1 RESUME.

As a third kind of abbreviation, if the variable GCHECKRECURSTON is T then GPRINT checks for circularity
in the objects it is printing. When a circular reference to an object is encountered, it is replaced in the output
by Anor %a. % is only used in a list. [t is used when the CDR of a list is EQ to an carlicr CDR in the same list.
In this case # s the number of CDRs scparating the two positions. An is used in other situations. Here, »
indicates that » sclector operations (CAR, CXR, AREF; but not CDR) were performed between the first
occurrence of the object and this one. "This kind of abbreviation is illustrated below.

the result of (LET ((X '(Y (Z 1 2 3) 4)))
(RPLACD (CDR X) (CDR X))
(RPLACA (CDADR X) X)
(RPLACA (CDDADR X) (CADR X))

(RPLLACD (CDDADR X) (CDADR X))
X)

prints as (Y (Z Az AL L %2) . %1)

Itis possible (but not casy) to reconstruct the exact shape of the object from what was printed. However,
the main purpose is just te print something more seadable than what you would otherwisc see. An important
feature of the way this abbreviation is done is that it is completely orthogonal to the sest of the formatting
precess so that it works no matter what kinds of user formatting functions are written. and no matter what
kind of data objects are being printed.

@

Waters -17 - GPRINT

Data Types Other thun Lists

In addition to lists, GPRINT has built in formatters for all of the standard Lisp data types. Symbols,
numbers, strings, and things of random types not specifically discussed below are treated as indivisible atoms
and printed in the standard ways.

Named structures, entities, and instances arc printed in one of two ways depending on whether or not they
know how to format themsclves. If the object aceepts the message : GFORMAT-SELF then GPRINT sends a
*GFORMAT-SELF message with the object as argument to the object so that it can format itself,

If the named structure, entity, or instance docs not take a : GFORMAT ~SELF message, then GPRINT treats it
as an atomic object and lets the standard printer print it. 'This makes it possible to use GPRINT on these
objects without having to writc formatters for them. However it should be noted that since they are treated as
alomic objects, no formatting occurs inside them no matter how large their print form may be. For example,
aline break will never be inserted inside one.

If an object is an array (and not a named-structure) it is formatted as follows. GPRINT first checks to see if
there is a formatting function for the array. The association between formatting functions and arrays is
maintained through a list of functions stored in the variable GARRAY-FORMATTERS. 'These functions arc just
like the formatting functions described above except that in addition to creating queue entries in order to
format an object, they must also test to see whether they are applicable to the object. 'This makes it possible
for the user to use any kind of applicability test he desires. I the format function is applicable it should
format the object and return T, Otherwise it should take no action and return NIL. A function is set up as an
array fornatter by adding it to the list GARRAY-FORMATTERS. GPRINT calls cach of these functions in turn
passing it the object. As soon as onc of them returns T it stops. 1 they all return NIL then a default formatter
is used.

"The default array formatter first prints out the array object in the standard way (e.g. as an atoin containing
the type and the address). Next, if the variable GPRINT -ARRAY-CONTENTS is T and the array has only one or
two dimensions it prints out the contents of the array. "The contents are printed as a list (for one dimensional
arrays) or a list of lists (for two dimensional ones). Tabular blocking is used to format these lists.

‘The kind of arbitrary user specified dispatching supported for arrays is also supported for lists. Functions
put on the list GLIST~FORMATTERS can be used to associate formats with Tists when the association is based on
some feature other than the CAR of the list. Similarly, functions put on the list GSPECTAL-FORMATTERS can be
used to override all standard dispatching including the initial split based on data type.

Applicability to Languages Other Than Lisp

It is important to note that, though the discussion above was cast in the domain of the Lisp Tanguage, the
ideas are substantially programming language independent. It should be possible to usc these ideas to
construct a flexible pretty printer allowing significant user control of format in any programming language
environment.

GPRINT makes it possible for the user to control the format of both programs and data. Of these two
capabilities, the control over program format is the casicst to export to other janguage envirenments. ''wo
basic things arc requircd: a representation for progrant parsc trees, and a method whereby the user can
specify formats for non-terminal nodes in these trees, In langunages like Lisp where a data representation for
parse trecs is part of the definition of the language. this is the logical choice for the representation. In other
languages some such rcprcseni_ation has to be developed. [If ihe pretty printer is intended to accept program
text files as input, a parser for the language has to be implemented if one is not alrcady available.

There are two basic ways in which user format coutiol can be supplied. One way is to use the same

GPRINT - 18 - Waters

mechanisms which are supplied for specifving data formats by simply applying them to the data
rcprcscn!atiom for parse trees. ~'This is the approach taken by GPRINT. Another approach is to follow the
suggestion of Oppen [7] and allow the user to specify formats as annotations to the grammar for the
programming language. From the point of view of implementation, this approach is essentially identical,
However, for a language which (unlike Lisp) has extensive syntax (his approach would undoubtedly be
acsthetically superior since it uses standard grammatical notation in order to cémmunicate with the user
instead of some ad hoc internal representation.

Llsing GPRINT's approach to the printing of data in other programming environments is more difficult.
The key issue is being able to obtain data type information at print time. However, before looking at this
problem in detail consider some other issucs. ‘

The formatting templates described above could be used with any kind of data. 'The only thing which has
to be changed is that [] has to be extended so that it can decompose other composite data structures besides
lists. Logically there is no problem since, in general, any data structurce has a default lincar ordering for its
components. Irom an implementation standpoint, there is no problem with sclecting out components one at
a time as long as you can determine the data type of a given structure.

The basic dispatching scheme presented above can be straightforwardly extended as long as type
mfmnmtmn can be obtained. It is casy to implement an association between types and formatting routines so
that cach type could have its own format. Further dispatching on subfeatures of individual types ceuld be
xmplunmtcd if desired.

In a language environment such as Lisp where, in general, complele run time type information is available,
itis trivial to determine the type of something when it needs to be printed. Unfortunately, in most languages,
much of the data type information is used only by the compiler and is not available at run time. In a language
with pure strong typing that makes it possible for the compiler to determine the exact data type of every
variable, the compiler could be straightforwardly modified in order supply the type information needed by
the dispatcher. One way to do this would be to have the compiler create a table of type information which
could be referred t by the dispatcher at run time. Alternately, the dispatching needed for individual calls on
the pringer could be performed at compile time using the compile time type information. In order to make it
possible for the user to interactively request the printout of various data items at run time, the tabular
approach would be required. just as a dynamic debugger has to have aceess to the compiler’s symbol table in
order to usc the programmer’s variable names.

Unfortunately, few languages have pure strong typing. Most languages support data types such as union
types and variant records. Most of the time. this need not be a severe problem because such types are not
useful unless there is some way for programs to determine what the actual type of a data item is. For
example, the compiler could specify to the dispatcher that a given data item was of a particular union type.
The programmer would have to supply a decision procedure which could be used by the dispatcher to
determine the exict type of the data item at run time. ‘This would not be a difficult task as long as the union
type was straightforward and a single decision procedure for the union type could be implemented which
would work in all situations.

Ihere are language environments (for example assembler language) which have fittle run time type

information, little compile time type constraints. and where the user defined data structures are ofien of such
a chaotic nature that jt would be virtually impossible to write the kind of data type decision procedures
needed by the dispatcher. In such asituntion, the kind of pretty printer presented in this paper would not be
practical, It should be noted that such an ancontrolled environment presents a number of problems much
more serious than the inapplicability of this kind of pretty printing. Current trends have been toward more
regularized environments which should be able to support a pretty printer like GPRINT.

Waters -19- GPRINT

Conclusion

GPRINT includes a large number of standard formats and features (such as the oncs used as cxamples
above). As a result, a user does not have to write any of his own formats in order to get reasonable output in
ordinary situations. However, no amount of anticipation can satisfy every user. This is particularly truc when
a pretty printer is being used in an interactive programming environment to print data as well as programs,
and when it is called by user programs as well as by the system itsclf,

‘The principal goal of the design of GPRINT has been to producce a system with good human engineering
which gives the user powerful facilitics for controlling the format of output and which at the same time makes
the specification of simple formats simple. Two key ideas comprise GPRINT's approach to this problem: the
basic algorithm chosen, and the existence of multiple levels at which a user can specify formatting
information.

The key features of the algorithm underlic the basic simplicity of GPRINT's approach and, at the same
time, fundamentally limit its scope. The division of the algorithm into two picces communicating through a
qucuc makes it possible to separate the simple parts of the algorithm from the complex ones. The decision to
usc a lincar time algorithm in the output routine makes it possible for GPRINT to run with acceptable speed.
However, it fundamentally limits the kind of formatting decisions which can be made by the output routine.
In particular, when making its decisions, it can only look ahead a very limited distance. An example of this
was discussed in the section on tabular form output.

In line with the limited abilities of the output routine the queue entries are designed so that they encode
essentially only two formatting options for a given structure: how to print it on one line, and how to print it on
multiple lines. (A third miscr format is also specified for cach structure, however, this format is largely
implicit and the user does not have very much control over it.) This design is an important basis for the
understandability of the printer because it presents the user with a simple model of how formatting decisions
arc made. However, one could easily imagine wanting to specify more complex formatting information. For
example, one might want to specifv two completely ditferent multi-line formats: one to use when there is a lot
of room available and the other to use when there is only a little space.

The printer provides three basic levels at which a user can specify formatting information. First, he can
simply use the default formats supplied with the printer and does not have to do anything himself. Sccond,
he can use simple templates. These make it very casy for him to describe certain aspects of how a structure is
to be formatted. Third, he can write more complex formatting functions. This allows him to exercise much
more control over the format to be used, at the cost of greater complexity.

The use of multiple levels of interaction is a generally uscful technique for increasing the
understandability and availability of a system to a wide range of users, It makes it possible for users who have
simple needs to satisfy them without having to learn very much about the system. Users who take the time to
learn more can then do more.

GPRINT -20 - Waters

References

[1] Conrow, K., and Smith, R.G., "NEATER2: A PL/l Source Program Reformatter”, CACM V13 #11,
November 1970, 669-675.

[2] Donzeau-Gouge, V. et al, "A Structure-Oriented Program Editor; A First Step Towards Computer
Assisted Programming™, Proc. Inter. Computing Symp., Antibes, 1975.

[3] Goldstein, L, "Pretty Printing, Converting | dst to Linear Structure”, MIT/AI/MEMO-279, [*cbruary 1973.

[4] Hearn, A.C. and Norman, A.C., "A One-Pass Pretty Printer”, Report UUCS-79-112, Univ. of Utah, Salt
Lake City, Utah, 1979,

[5] Heuras, J., and Ledgard, H.. "An Automatic Formatting Program for Pascal”, SIGPLLAN Notices V12 #7,
July 1977, 82-84.

[6] McKeeman, W. "Algorithm 268, Algol-60 Reference Language Editor [R2]", CACM V8 # 11, November
1965, 667-669.

[71 Oppen, D., "Prettyprinting”, ACM Transactions on Programming Languages and Systems, V2 #4,
October 1980, 405-483.

[8] Scowen, R. ctal, "SOAP - A Program Which Documents and Edits Algol60 Programs”, Comput. J. V14
#2,1971, 133135, ‘

[9] Teitlebaum, T., "The Cornell Program Synthesizer”, Tech. Rep. 79-370, Dept. of Computer Science,
Cornell Univ,, 1979.

{10] Weinreb, D., and Moon, D., "Lisp Machine Manual”, MI'T Al Lab., March 1981.

Waters -21- GPRINT

Maclisp Compatibility

The discussion in the main body of this paper is couched in terms of Lisp Machine Lisp, however, GPRINT
is substantially Maclisp compatible. Almost everything above applics equally to both versions. This section
discusses the few differences between the two versions.

The 170 in Maclisp is quite different than on the Lisp Machine, The Maclisp version follows all of the
Maclisp conventions. In particular, you can call GPRINT with a list of files and default output is controlled by
the variables TYO, AR, AW, OUTFILES, ctc.

The compilation environment is somewhat different in Maclisp. GPRINT must be loaded in in order for
formatting functions to compile correctly because GF is a macro. On the 1.isp Machine you don't have to take
any special action in order for this to be the case when you are using GPRINT. In Maclisp you have to make
sure that it is loaded into the compiler by a DECLARE in any file which defines formats. Also note that in
Maclisp the functions which take optional control parameters (cg GPRINT, GPRINT1, GPRINC, GEXPLODE, and
GEXPLODEC) arc lexprs and nced »LEXPR declarations,

In Maclisp, the functions triggered by TERMINAL STOP-OUTPUT and TERMINAL RESUME arc triggered by
typing control characters. The printer can be stopped by typing AS. Printing can be resumed by typing AC
(*R in TOPS20 versions). Reprinting in full is triggered by AP, [n Maclisp these control characters are not sct
up by default. You have to call the function GSET~UP-PRINTER in order to get them defined. Note also that
in Maclisp, the defanlt symbol for depth abbreviation is "#" instead of "» ", '

The Maclisp version of GPRINT supports the formatting of hunks. T'wo basic mechanisms are supplied
analogous to the ones described for arrvays in the main body of the paper. If a hunk is a USRHUNK which takes
messages (note that EXTENDs and the like arc all USRHUNKs) then GPRINT checks the messages it accepts. If it
takes the message :GFORMAT-SELF then GPRINT sends a :GFORMAT-SELF moessage with the object as
argument to the object so that it can format itself. 1f a USRHUNK does not take a : GFORMAT-SELF message, but
it docs take a :PRINT-SELF or PRINT message then GPRINT treats the hunk as an atomic object and lets the
standard printer printit. 1'a USRHUNK does not accept any of these messages, then it is treated as an ordinary
hunk. ’

In order to format an ordinary bunk GPRINT first checks to see if there is a formatting function for the
hunk. 'The user sets up a hunk formatter by adding a function to the list in the variable GHUNK - FORMATTERS.
The purposc of this function js two fold: to test whether it is applicable to a hunk (in which case it returns 1)
and in this case to actually format the hunk. GPRINT calls cach of these functions in turn passing it the hunk.
As soon as one of them returns T it stops. If they all return NIL then the hunk is printed by default in the
normal way (c.g. in parentheses with the CXRs separated by periods) in block format.

GPRINT -22- . Waters

Functional Summary
This appendix describes all of the user functions supported by GPRINT.

GPRINT object Roptional stream format level length endline startline
This is cxactly analogous to PRINT cxcept that it does pretty printing. The first argument is the object
to be printed. The second argument specifics the stream to use for output. If it is missing then the
standard system default is used (c.g. STANDARD-QUTPUT).

"The third argument is a formatting function which defaults to NIL. If non-NIL it will be used by
GDISPATCH to format the object. For example, (GPRINT FOO STANDARD-OUTPUT *:GFN-FORMAT)
will usc functional format for the top level of FOO no matter what the CAR of foo is. The last four
arguments can be used to control abbreviation. They are used to set the values of PRINLEVEL,
PRINLENGTH, PRINENDLINE, and PRINSTARTLINE respectively. If they are omitted, then the current
bindings of these variables are used to control abbreviation,

GPRINT1 object &optional stream format level length endline startline
This is cxactly like GPRINT except that it corresponds to PRIN1 instcad of PRINT. (Unfortunately, the
standard Maclisp grind package has alrcady used up the name GPRIN1.)

GPRINC object &optional streant format level length endline stariline
[. . .
This is exactly like GPRINT cxcept that it corresponds to PRINC instcad of PRINT,

PL object &optional siream format
This is an abbreviation for (GPRINT object file format NIL NIL NIL NIL). 1t specifies that the object
should he printed without abbreviation. It is quite handy at top level.

GFORMAT sireaisi template &rest args
This is just like FORMAT except that GPRINT is called to do the printing and the femplate has the same
form as a template for GF. For example, (GFORMAT NIL "(s_<x=>)" X) creates a string containing X
printed in functional format at the top fevel,

GEXPLODE odject &optional formal level length
This is analogous to the function EXPLODE cxcept that it docs pretty printing.

GEXPLODEC object &optional format level length
This is analogous to the function EXPLODEC except that it does pretty printing.

PLP "e &rest args
This is very similar to GRINDEF but calls GPRINT. Each arg is cither a symbol or a CONS of a symbol
and a list of specific properties to print. Ifit is a symbol then any propertics it has which are in the list
PLP-PROPERTIES arc printed. Otherwise, the specified properties are printed. If no args are supplied
then PLP is reexecuted on the last set of args it was called on.

GSET-UP-PRINTER
Calling this sets up GPRINT as the top level printer. This consists basically of just setting the variable
PRIN1 to GPRINTI.

Waters -23- GPRINT

GF femplate &rest args
This is used to define formatting functions. "The structure of the femplate is summarized in a scparate
appendix. Note that unlike GFORMAT this does not actually print anything. Rather, it just makes queuc
entries when the formatting function it is in is called by GDISPATCH. The fact that GF is a macro saves
time by parsing the template at compile time, and producing efficient code to do the formatting. This
does waste space however. Itis to your advantage to make cach template as short as possible.

GFUNCTION template
This is an abbreviation for #' (LAMBDA (X) (GF template X)).

FORMAT stream format-string &rest args

A new format keyword ~N is defined so that you can call GPRINT1 from FORMAT. ~:N invokes GPRINC.
Numeric pre-arguments are taken to be PRINLEVEL, PRINLENGTH, ctc.

g

GPRINT -24 - Waters

Variable Summary
This appendix summarizes all of the control variables which can be set by the user in order to control the
actions of GPRINT,

PRINLENGTH system defined default
This specifies the maximum length list that will be printed without abbreviation. NIL means infinity.

PRINLEVEL system defined default
This specifics the maximum depth at which any object will be printed. NIL means infinity.

PRINSTARTLINE default NIL
Output is inhibited until the PRINSTARTLINEth linc is reached. NIL is the same as 0.

PRINENDLINE default 4
Output is aborted and the printer returns normally as soon as the PRINENDLINEh line is reached.

PRINMARGIN default NIL
This specifies the total line length available for printing. Ifit is NIL, then the printer asks the output
stream what the line length is.

MISER-WIDTH defoult 40
Miser mode printout is triggered if there is less than this amount of width available for printing.

MI\.]OR~'\(IIDTH default 40
Lelt shifting of logical units will occur if there is less than this amount of width available for printing.

GCHECKRECURSION default T
If this is T then GPRINT checks for circular pointers and abbreviates them appropriately.

GSHOW-ERRORS default NIL
Normally, GPRINT does an ERRSET so that no error which occurs during formatting can cause an error
in GPRINT. Ifthis is sct to T then you will enter the crror handler if any error occurs. 'This is useful for
debugging.

GFORCE~MORES default T
]f lhlS is T then things are set up so that you get MORE processing all of the time. Otherwise, MORE
p1 occssmg is suppressed if printing is initiated within 7 lines of the bottom of the screen.

GSPECIAL~FORMATTERS default NTL
This holds a list of formatting functions which are tested for applicability before any other dispatching
is done.

GOVERRIDING-LIST-FORMATTERS defauli NIL
This holds a list of formatting functions which are tested for applicability to any list which is being
printed before any other dispatching is done on it.

Watcers -25- GPRINT

GLIST-FORMATTERS default NIL
This bolds a list of formatting functions which are tested for applicability to any list which is being
printed before any other dispatching is done on it unfess dispatch was called with a specific suggesting
of how to format the list. (The difference between this and GOVERRIDING-LIST-FORMATTERS is that
these are applicd in fewer places. For example, they will not be tested against the list of bound
variables in a PROG because the format for PROG specifics exactly how this subpart of a PROG should be
formatted.)

:GFORMAT property
If the CAR of a list has a value for this property, then the value is called as a formatting function to
format the list. (If none of the above cases apply.)

GAPPLY-FORMAT default :GAPPLY - FORMAT
This is used as the format for litcral LAMBDA applications.

GFN-FORMAT defuult : GFN-FORMAT
This is used as the default format for function applications.

GSYMBOL-CAR-FORMAT default :G1TBLOCK -
This is used as the default format for lists whose CARs are symbols.

GNON-SYMBOL-CAR-FORMAT defuult : G1TBLOCK
This is used as the default format for lists whose CARS are not symbols.

:GFORMAT-SELF message
If an instance, entity, or named-structure is sct up so that it will process this message type, then it is sent
amessage in order to format itself. It gets onc argument (the object itself) in addition to any arguments
which are supplicd by the message sending mechanism.

GARRAY-FORMATTERS defanlt NIL
This holds a list of formatting functions which will be tested for applicability to any array being printed
which docsn’t take a : GFORMAT~SELF message.

GHUMK-FORMATTERS default NTL
This holds a list of formatting functions which will be tested for applicability to any hunk being printed
which docsn’t takc a : GFORMAT~SELF message.

GRIND-MACROEXPANDED default NTL
If this is T then MACROMEMOized macros will printed out as they appear after expansion. Otherwise they
will be printed out as they appear before expansion.

- PLP-PROPERTIES default (: FUNCTION :VALUE) .
"This holds the list of values which the function PLP will print out by default. The default specifies that
only the function value and value should be printed.

GPRINT -26- Waters

Summary of Formatting Codes

This appendix summarizes the formatting codes which are available for use in the template supplied to the
macro GF. The template is a string of single character commands, some of which can be followed by a
parameter. There are three kinds of paramcters:

n-Some commands take a number as a paramcter. This number should be an integer optionally

"won

beginning with a "-" and/or ending with a ".", Alternately, it can be omitted in which case a
default value is used.

S - Soinc commands take a function name as a parameter. This name is an arbitrary symbol possibly
containing ": ", Case does not matter. ‘The symbol must be terminated by a blank. Function name
parameters cannot be omitted. They have no default values.

- 'This can be used in place of any numeric parameter or any function name parameter. It indicates
that the next input to GF should be used as the parameter, instead of a literal value,

The commands which can be used in a template are divided into several categorics. The first set is used to
parse the structure of the arguments to GF so that their parts can be accessed.

[1-'Ihis is used to access the internal clements of an item which is a list. The template inside the
brackets refers to the elements of the list. If the item is not a list, then no formatting of it, or
anything inside it, is done. Processing begins by considering cach clement of this list in turn, As
soon as the list is exhausted, control skips out of the subtemplate and continues afier its end. This is
done cven if there is more stuff left in the subtemplate. Special code is included to deal with the
possibility of unexpectedly encountering a non-NIL atomic CDR. 1f this happens it is automatically
formatted to appear after a ".". [] also produces special code to deal with length abbreviation,
They only way to get it automatically is to use [1.

. = (Period) This is valid only inside []. 1t specifics that the next item is the whole sublist left to
process by [] rather than its CAR. For example, (GF "[x_.x]" (1 2)) is the same as
(GF "s_x" 1 '(2)).

Note that when a ™. " is used, normal checking for the end of the list in the [] is suppressed. For
example, (6F "[*_.»_]" ' (1)) iscquivalentto (GF "s_»_" 1 NIL). The NIL at the end of the
list is explicitly picked up by the ".", and a blank will be printed at the end. 'This happens even

though the [] template would normally have terminated right after the first «.

< > -"This can only be used dircctly inside [] (or ()). It specifics an indcfinite repeat block. This is
used to specify a template for a list of unknown length.,

Waters -27- GPRINT

The next sct of commands are used to specify how individual items arc printed out.
I - [gnore the corresponding item.

"literal" - Print the indicated literal using PRINC and do not count it as onc of the items printed from
the point of view of length abbreviation. Note that in the Jiteral "' * " stands for " ",

» - This specifics (hat GDISPATCH should be called in order to format the corresponding item.

%/ - This specifics that the function f* should be called in order to format the corresponding item.
(Note if /" is # then the argument which is used as the function follows the argument whic 1 is
formatted.) ‘

$/ - (Dollar sign) This command specifics that GDISPATCH should be called in order to format the
corresponding item, but that the function £ should be passed to GDISPATCH as a suggestion of how
to format the item. (Note if £ is # then the argument which is used as the function follows the
argument which is formatted.) The difference between $7 and %/ is that with $f GDISPATCH gets
control. ~ As a result, if the item is not a list, or if some function on GOVERRIDING-LIST-
FORMATTERS formats it, then the function /* will not get used.

$ /" subtemplutes - In addition to the name of a function, the paramelter to $ can be a literal template
which is converted into a function to use. (Note that the quotes have to be stashified in order to
read in inside a quoted string.) The formatting function produced is compiled out of line. As a
result, if there is a # format code in it, the argument to 6F that this refers to will be compiled out of
line. In order for this to work any variables this refers to must be declared special,

The next commands are used to specify the nested structure of the output (which need not be the same as that
of the input).

{n } - This indicates a substructural unit in the output. The parameter specifics what indentation to
use when printing out the items inside the substructure if the substructure cannot be printed on a
single line. (If the indentation is specified to be zero then the substructure is not counted as
increasing the depth from the point of view of depth abbreviation.) The default parameter value is
calculated as the sum of the lengths of the first thing printed in the substructure, and any literals
before it and any spaces after it.

+n - (Plus) This specifies a change in indentation. The indentation level in the current substructure is
incremented by # which can be negative. Note that this will not take effect until the next line. For
cxample, the template " (x-x-+2%~#)" docs not increase the indentation until the fourth item is
printed while " (x=x+2-x~%)" prints the third item at an increased indentation.

(n) - Thisis a uscful abbreviation in the situation where the nested structure of the output is the same
as the nested structure of the input, and when you want to print parentheses around the structure. 1t
is an abbreviation for {n' ('[]')'}. Additionally, if' the (#) is nested more directly inside []
than inside $ then it is treated as an abbreviation for $/"{n' ('[7')'}/". In other words, if the
item whose format is being specified by the (#) was not passed through GDISPATCH for
dispatching then the $ format code is used to force the list to dispatch through GDISPATCH. 'This
prevents the format from blowing up when the item is not a list. (Note the comment about # inside
$/" /" above.)

GPRINT ' -28- Waters

The next set of commands specifics spacing and where and when carriage returns should be printed. Note
that there is actually a complete separation between these two concepts. "T'he format codes used above which
combine the two ideas are abbreviations combining the underlying codes.
~n - (Tlilde) Print n (default 1) spaces. (Note that spaces are clided if they are the first or last thing on a
line).
~Tn-Tab over. Moves to a place where the character position relative to the current indentation is

congruent to zero modulo 7. (Does not move at all if it does not have to.) When necessary, a
default tab size is calculated based on the length of the other items in the substructure.

A - Do a linc break here always.

! - Same as A.

N-Do a line break here if required for normal mode printing. l.e. if and only if the structure
immediately containing this point cannot be printed on a single fine.

-1 - (Minus) Abbreviation for "~aN" which is what you usually want.

B - Do a line break here if required for block mode printing. "This is the samce as N except that even if
the immediately containing structure is being broken up a line break will not be put here as long as
the following structure can be printed on the end of the current line and the prior structure at this
level was printed on a single line.

H (Comma) Abbreviation for "~nB" which is what you usually want.
;11 - (Semicolon) Abbreviation for "~1T1B" which is what you often want,

M- Do a line break here if required for miser mode printing. Put a line break here if the containing
structure will not fit on a single line, and the remaining line width available for printing is less than
MISER-WIDTH.

~n-(Underscore) Abbreviation for "~nM" which is what you usually want.

The next two formatting codes were not discussed above. They are provided as extra hooks into the
GPRINTing process.

&f-The function fis called with no arguments at this point. Note that function is called during the
formatting process.

E - When the output routine gets to this point in printing, the arg to GF corresponding to the E is
EVALed (out of line). This is uscful for getting information about the state of the printing process. It
should NO'T be used to print anything out because the output routine will not realize that anything
was printed and its character position calculations will be wrong. Note that the difference between
& and E is the time at which the function evaluation occurs.

The characters SPACE, TAB, CR, and LF arc all ignored. Any other character is an error.

