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1. Introduction _

Sensory data are routinely interpreted as external events by biological systems. This achievement
is the classical problem of perception: given a pattern of sensory activity, what are the external
events that caused this activity? In order for an organism to survive, such assignments of cause, or
interpretations, must be reliable and appropriate. Yet the sensory data by themselves are ambiguous
(as illustrated by the projection of the three-dimensional world onto our two-dimensional retina). The
appropriate interpretation of a pattern of activity is thus just one of many possibilitics. The objective
of this paper is to outline the power and pitfalls of an equation-counting procedure, and how this
procedure can lend insight into the interpretation process.

The ambiguity of the sensory activity becomes very clear when formal relations are developed
between these sense data (the givens or “knowns”) and the external events (or “unknowns”) that
generate the data (Marr, 1976, 1982; Ullman, 1979). When such relations are expressed in the form
of equations relating the “knowns” to the “unknowns”, then the number of unknowns will almost
always exceed the number of equations. The incompleteness of the sct of equations is a consequence

- of the fact that the mapping of a world event into the sensor entails a loss of information and hence is
usually many-to-one. But if the system of equations is incomplete, with the number of equations less
than the number of unknowns, then the system cannot be solved uniquely and constructing a unique
description of the external event becomes impossible.

Fortunately. events in the real world are not arbitrary, but are constrained by natural laws. The
sense data reflect these constraints (Huffman, 1971; Clowes, 1971; Waltz, 1975). Once discovered,
these additional relationships can yield the remaining equations nceded to make the number of cqua-
tions equal to the number of unknowns. A unique solution to the set of equations may then be sought,
permitting an interpretation of the data. (The correctness or validity of the interpretation will be
-discussed later.)

The paper begins with a rather simple example of “equation-counting,” namely, the detection
of a narrow-band signal in noise. This problem involves only linear equations, but still illustrates
the general features of the approach and raises three issues: 1) independence of the equations; 2)
constraints necded to yield a unique solution, and 3) whether this unique solution is indeed “correct”.
We then introduce a theorem by Bezout which is needed to place bounds on the number of possible
solutions to polynomial cquations, as well as a Jacobian test for the independence of these equations.
Finally, two other problem examples are given to illustrate further details. One example concerns
recovering structure from visual motion; the other shows why three spectral samples are needed to
distinguish shadows from reflectance changes.
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Figure 1. An illustration of a narrow band signal against a a background of noise. The noise is broadband
with a constant time averaged spectrum. )

2. A Classic Problem

A problem faced by many animals is the need to isolate a narrow-band, species-specific signal
from the background noise. Although examples may be found in cvery sensc modality, the clearest
probably occur in audition. Consider the bird listening to the call of its mate in the forest of other
sounds; the dog perking his cars at his master’s whistle; or the moth’s task of i’s‘olat‘mg the cry of the
bat as it homes in for its next meal. In cach case, the signal is confined to a relatively narrow band, as
illustrated in Figure 1, whereas the competing noise is much broader. Given that the frequency band
of the signal is known (as it would be for the bird or the moth), how many intensity samples must be

-~ taken to isolate the signal from the noise?

Clearly, by referring to Figure 1, we sce that sampling in the signal-band at frequency 1 will not
allow us to isolate the signal. More formally, the car will receive intensity 7, at frequency fi equal to
the sum of the power produced by each source:

1) = S(A) + N(#) | M)

where S corresponds to the power of the narrow-band signal at £ and N is the background noise at
the same frequency. Since only [ is available to the listener, S and N cannot be separated, for we




WAR, JMR & DDH 4 ‘ EQUATION COUNTING

have only one equation in two unknowns, S and N. More generally, if we allow additional samples at
time intervals ¢;, then equation (1) can be gencratized to:

I(fi, 1) = (i 1) + N, 1) ‘ )

Thus, for T time samples we will obtain T" equations in 2T unknowns, which will not permit a unique
solution for S.

Let us now make the obvious next step and consider frequency samples outside the signal band.
The frequency f; in equation (2) then becomes indexed to f;. However, since the signal is zero ontside
the band at f}, then S(f;, ¢;) = 0 for ¢ 5% 1. These conditions may be expressed as two equations:

St =0,  (#1) (3)

Letting F and T' be the number of frequency and time samples, respectively, there will be a total of
F - T equations of form (3a) and (F — 1) - T equations of form (3b). The total number of equations
is thus 2 - FT — T. Similarly, the total number of unknowns willbe F' - T for Sand F' - T for N or
9. F . T. In otder to solve uniquely for S, the minimum condition is that the number of equations £
equal (or exceed) the number of unknowns U ‘

E>U 4
For solution, equa.tivons (3a,b) thus must pass the following inequality test: |
2QFT —T > 2FT ()
or
0>T

which fails since T 2> 1. Thus a narrow-band signal cannot be extracted from the broad-band noise
without specifying further constraints upon either the signal or the noise.

2.1 Flat Noise Condition

Very often noise is refatively constant over frequency (or time), for example, the hum of an air
conditioner. a steady wind flow passing the body, or even body noisc. This condition can be expressed
by the following relation:

P
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N(fi,t)) = N(£;, t;) (6)

where ¢ 5% 1 and f; serves as the reference frequency. We now sec that for a total of F' frequency ‘
samples, equation (6) adds (F" — 1) - T' equations but no more unknowns. Applying the Inequality
Test (4), we now find: :

(2FT — T) 4 T(F — 1) > 2FT )
or
F.T>2T
-
F>2 ®)

Thus, the minimum condition for a unique solution occurs for two frequency samples at any
temporal interval. Ignoring the time variable, equations (3a, b), and (6) then become

I(h) = S(A)+ N(h) &)
1) = S(f) + N(f)
S(h) =0

N(fi) = N(f)

We now have four equations in four unknowns, which allows us to solve for S(£;), given that the
noise spectrum is flat.

2.2 Independence and Uniqueness

Although two frequency samples plus the constraint of “flat noise” yicld the same number of
equations as unknowns, these cquations must be shown to be independent. Certainly we can reduce
equations (9) to obtain an explicit solution for S(f;), thereby demonstrating independence. However
in the more complex cases normally encountered. such a reduction is often difficult or may be impos-
sible (for example if fifth degree polynomials are involved). We thercfore seck a more general test for
independence.
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In the above example, the obvious test is to recast equations (9) so all the unknowns are on the right
hand side (R.H.S.) of the equality, and all the knewns are in the L.H.S. Then the determinant of the
cocfficients of the R.H.S. can be calculated. By “Cramer’s Rule”, we know that if this determinant
is not zero, then the equations have a unique solution (Thomas, 1951). To proceed, equations (9)
are rearranged so the unknowns are ordered in the sequence S(fi), N(f1), S(f2). N(f.) and are cach
aligned in their separate columns on the R.H.S. of the equality. Since there are four unknowns and
four equations, the matrix of the coefficients of the unknowns will be as follows:

1 1 00
6 0 11
1
0 0 10 (10)
0 —1 0 1

The determinant of this matrix is easily found to be 1 (i.e., it has maximum rank), and hence the set
of equations (9) must have a unique solution.

We now can proceed with confidence to find the following solution for S(f;):

S() = I() — 1(5) | W

2.3 Corroboration and Constraint

Unfortunately, any pair of sensory intensitics 1(f;) and I(f;) will provide a value for S(f;). How do
we know, therefore, that the obtained value for S(f;) is indeed correct? Clearly if the noise stimulus
is not flat over frequency, but varies as shown in Fig. 1, then the solution for S(;) will be wrong
becausc the assumed condition docs not apply. Without some evidence supporting the “flat noise”
assumption, a meaningful interpretation of the intensity values I{ £1). I{f>) cannot be made.

Idcally, any assumed condition, such as the flat noise condition, that is introduced to match the
number of equations to the unknowns should be a regularity in the world or a “law” that is never (or
rarely) broken by nature. Such conditions are difficult to discover, but when found and introduced
into the system of equations provide powerful constraints on the solutions. Often the contraint may be
a statistical regularity (Witkin, 1980; Pentland, 1980). Poor choices for constraints are those conditions
that arc very narrow and restrictive and which do not capture a very gencral property of the world.

In the case of detecting a narrow-band signal in “flat-noise”, the imposed condition is very restric-
tive. However, some attempt can be made to verify the validity of invoking this condition. For
example, one possibility might be to examine other frequencies to see if the relation N(f)) = N(f))
holds for a range of frequencies outside the signal band. (Note that the solution for S(f;) should
also hold.) If so, then the chance that the “flat-noise” condition is invalid is reduced, although the
uncertainty is never eliminated. Sampling at additional frequencies thus provides some (weak) cor-
roboration for the interpretation, increasing its likelihood. (In fact, the condition assumed here has
merely been replaced by another, less restrictive assumiption about the smoothness of \m\gﬁnms)
Stronger forms of corroboration will be discussed in later sections.
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Finally, it should be noted that in cascs where the imposed conditions are not verifiable, the ap-
propriateness of the condition can often be rejected quite easily. For example, if S(/,) is found to be
negative, then since negative signals are not physically realizable, the assumption must not be valid.
This strategy of rejecting certain conditions or possible states of the environment has been found
useful elsewhere (Rubin and Richards, 1981).

3. Non-Lincar (Polynomial) Equations
3.1 Bezout’s Theorem

In the above example, all of the equations were linear, and simplc techniques of linear algebra
could be used. What if one or more of the equations were quadratic or a still higher degree polyno-
mial? In such cases, which are quite common, cach nth order polynomial will at most have n distinct
roots. How many possible solutions will there be if there are M polynomial equations of degree N?
Can we even guarantee that there will in fact be a finite set of solutions? If this cannot be guaranteed,
then the test that states the number of equations E' should at least equal the number of unknowns U
is not useful, and the simple equation-counting procedure collapscs at the onset. Fortunately, Bezout’s
Theorem tells us under what conditions a finite set of solutions can be found to N equations in N
~~ unknowns, and just what the maximum number of solutions will be (Van der Waerden, 1940).

Theorem (Bezout): A sct of N independent polynomial equations in N variables will have a
maximum number of gencric solutions equal to the product of the degrees of the equations.l

The above theorem is critical for our procedure because it states that if the relations among the N
variables can be cast as N independent polynomial equations (perhaps by a changg in the form of the -
varables), then there will be a finite sct of isolated solution points. Furthermore, this set will include
all the possible solutions. (Sec Appendix 11 for a brief discussion of a gencralization of Bezout's
Theorem by Sard to include any sct of smooth functions on manifolds.) For lincar equations, it is
clear that the product of the degrees of the equations will always be one, and only one solution set will
be found. For third order cquations, which may include terms suchasz - y - 2, or y? - z, the number
of possible N-tuples of variables that satisfy the N cquations can be quite high. Among these is the
physically meaningful solution that we seck, provided our hypotheses are correct.

3.2 The Jacobian Test

Bezout's Theorem states that in principle, N polynomial equations of any degree can provide a
solution to N unknowns, if the cquations are independent. In our simple first example, the deter-

£ 'By a gencric solution, we mean that a dight perturbation in the values of the variables will not alter the solution
appreciably (as would be the case i the solution were the special case of two cireles just grazing euch other rather han
intersecting, for example).
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minant of the matrix of cocfficients of the unknowns was used to check for independence. More
generally, the Jacobian of the set of equations should be evaluated (Kendig, 1977; Guillemin and
Pollack, 1974). The Jacobian is formed by taking all N partial derivatives of each of the N equations
Of /821, 8% /0y, .. Bf,/Oz,), and placing these partial derivatives in an N X' N matrix, where
the columns represent each unknown and the rows correspond to the equations. Clearly, for linear
equations, the Jacobian is simply the matrix of the cocfficients of the unknowns of each equation.

Jacobian Test (for Independence): If the determinant of the Jacobian of the system of N equations
in N unknowns is non-zcro, then a countable set of isolated solution points can be found.

This test isvsimply an application of the Inverse Function Theorem, which gives a condition for a
one-to-one and onto mapping between real variables. Note that if the determinant of the Jacobian
collapses to zero (by a loss of rank), then this is not a proof that solution points cannot be found. The
Jacobian test is therefore a test for sufficiency, not necessity.

33 Summﬁry of Procedure

To apply the “equation counting” method to the recovery of event descriptions from hmxted sen-
sory data, we therefore proceed as follows:

1. Sect up polynomial equations describing the mapping of the external (unknown) variables into
the (known) sense data.

2. Embody as many constraints as necessary in the form of additional polynomial equations relating
the vatiables in order that the total number of equations equals the number of unknowns that are to
be recovered. Whenever possible, choose “constraints” that can be verificd from the data. Those that
capture a regular or consistent property of the world are the best choice.

3. Apply the Jacobian test to demonstrate that the equations arc independent. Bezout’s Theorem
then guarantees that there will be a finite number of solution points. If the Jacobian test fails, try to
discover new constraints. (Sce also Scction 5.6.)

4. Proceed to solve for the variables of interest. (We know of no simple heuristics for this step.)

S. Demonstrate that all constraints and conditions are valid. Usually this will involve taking an
extra, independent measurement and verifying that the same solution is obtained. Some care must be
taken with this step, however, as will be seen in the examples to follow.

6. I'hc scnse data may now be given a preliminary interpretation. However, a final interpretation
should await two further tests to be described subsequently. One is the exclusion of competing inter-
pretations, the other is corroboration, using an independent system of equations. (See Sections 6.0 and
6.1.) :
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4. Two Examples

-

4.1 Example 1: Recovering Structure from Motion

The difference in visual impressions between a static scene and a dynamic movie is often quite
striking. Somehow the motion created by viewing a rapid sequence of frames will transform an am-
biguous 2-D shape into a vivid 3-D structure. Perhaps the most common example of this phenomenon
occurs when we walk, run, or drive and immediately know the spatial configuration of the objects

. about us, regardless whether we use two eyes or onc. Although Ullman (1979) has shown how the
spatial relations may be recovered using motion information in the gencral case, we wish to consider
a simpler version of the same probiem that has a more compact solution: namely, given a person in
locomotion, how can he recover the orientation of the surface on which he walks?

Let the surface be covered with markings, or for convenience, let a short “stick” lie on the surface
patch of particular interest. Then if the observer looks at the center of the “stick” as he moves ahead,
the image of the “stick” as seen on his retina will rotate and change length as shown in frames F'1, F'2,
and F'3 of Fig. 2. Because the stick lics in a plane of fixed orientation relative to the moving observer,
the orientation of the surface patch can be specified by the axis of rotation of the “stick”. The problem
then is equivalent to recovering the axis of rotation of a rotating rod scen by a stationary observer.

Figure 2 illustrates the gencral form of this common problem. The “stick” or rod is rotating in
3-space and is projected onto a single 2-D retina. Let cach of these retinal images be discrete time
samples or frames as in a TV. Given only the three (or more) ambiguous 2-D image frames F1, F'2,
F3, how can the axis of rotation of the rod be recovered? This is a task that is solved easily by the
human observer, although no information other than the 2-D motion of the end points of the rod is
available (Johansson, 1975).

The inset to Figure 2 shows the actual three-dimensional relation between the viewer, the rotating
rod, and the axis about which the rod is spinning. Notc that the axis of rotation (which defines the
surface plane) can be any stationary vector and need not be vertical nor parallel to the zy image
plane. The problem is to recover the correct axis of rotation (as well as the length of the rod).

4.2 Rigid Rod and Rotation in a Plane (P)

Let the coordinate system be centered at the projection of the midpoint of the rod. Then since the
distance OA = OA’, we nced consider the motion of OA only. Let the three-dimensional coordinates
of end A be (z;, yy, 2;) for frame 1 and (z;, ¥, 2;) for frame <. Then since the “stick” is a rigid rod, we
have the constraint that the rod length remains constant for any frame:

i +d =+l +2 13

“For N frames, the relation (13) will yield (N — 1) equations, cach in two unknowns, 2; and z
(since ;, y; arc obscrvables in the image plane). So far we thus have (N — 1) cquations in N
unknowns, )
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-AXIS OF ROTATION
(x,y,z)

/A
A "IMAGE” PLANE
/ A
A |
Y
Al—e—p

Figure 2. A simple rod rotating in three space about its midpoint.

To embody the condition of rotation about a fixed axis; we note that the angle 0 between OA and
its aals must remain constant. This can be expressed by forming the dot product between the rod
scgment OA with the presumed axis of rotation, N:

OA; - N = cos¥ (14a)

where the subscripted OA; indicates, th,c'2_-l,). projection of the 3-D lcngih OA onto the i-th frame.
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Letting the end position of the unit axial vector N have the coordinates Zo, %o, 2o, equation (14a)
reduces to -

z;-To+yi W+ 22 =kcosd , (14b)

where k = (22 4 y2 + 22)'/2.

But rotation in a plane requires that the angle 8 between the axis N and OA be 7 /2. Hence, cos
@ = 0 and the value of k is irrelevant. For N frames, relation (14b) thus gives us N equations in
three more unknowns: Zo, Yo, 2. However, because the length of the rotation axis is irrelevant also, N
can be taken as the unit vector and we obtain the additional equation

B4y tz=1 (14c)

Altogether, we thus have (N — 1) 4+ N + 1 equations (E) in N + 3 unknowns (U): 2, zo, w0,
2. (Note that all of these equations are polynomials.) The minimum number of equations can then be
determined from the relation E > U:

IN>N+3 (15)

or

4.3 The Jacohian Test

The next step is to demonstrate that the cquations (13) and (14) form a set of indcpendent equa-
tions. We thus examine the Jacobian for N == 3 to sec if its rank is maintaincd. Recalling that z;, ¥
for ¢ £ 0 are given in the image plane, the partial derivatives of z; in equation (13) for ¢ = 2, 3 yield
the first two rows of the following matrix, while the remaining rows come from from cquations (14b)

" and (14c) respectively:
| 2, —2, 0 0 0 0
221 0 '-—223 0 0 0

2 0 0 I, Y1 2
0 2 0 n t 2
0 0 2 I3 Y B
0 0 0 2ry 2w 22

Fvaluation of the determinant by MACSYMA shows that it is gencrally non-zero. However, certain
relations between the variables may cause the Jacobian to drop rank. Some of these failure conditions
can be noted by factoring the determinant. (Note that such failure conditions provide instances where
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any perceptual system that interprets data in accord with the system of equations should also fail. The
factors thus provide example experiments for “instant psychophysics™.) ‘

4.4 Bezout’s Theorem and Uniqueness

Although the set of equations (13) and (14) are shown to be “independent™ by the Jacobian test,
Bezout's Theorem tells us that we may have up to 28 = 64 possible solutions. (This is the product of
the degrees of the six equations). Which of these solutions do we pick?

Fortunately, it can be shown by algebraic reduction of the six equations that of these 64 possible
solutions, only two have real values-and one of these is simply a “reflection” of the other about the
image plane (Hoffman and Flinchbaugh, 1981).2 Thus, three snapshots or “frames” showing the z, y
positions of the end points of a rotating rod are sufficient to solve for the rod length and its axis. (The
reflection causes an ambiguity only in the direction of motion and orientation of the rod.) But since
any triplet of z, y positions will yield a solution, how do we know that the measurements were taken
from a rotating rod and not from a random sct of points? Clearly additional tests must be performed
before any meaningful interpretation can be given to the data.

4.5 Corroboration

In addition to the problem of isolating a unique solution point, it is also necessary to show that the
“unique” solution is indeed plausible. (If the unique solution is not physically realizable, it can be
rejected immediately.) In the case of the rod rotating in a plane about a fixed axis, three frames (or
snapshots) were sufficient to solve the six polynomial cquations and to obtain a unique solution for
the rod’s lengh and its axis of rotation. However, are we guaranteed that no other sct of conditions
could generate the data? Clearly not, for if the simple rod rotation is simulated in the laboratory on
a TV monitor, then onc obvious interpretation is that there are two points moving on the face of the
TV. (In fact, if reflections appear on the screen so that strong 3-D cues are present, then the illusion of
a rod rotating in 3-D is lost.)

Before a final interpretation should be made, it is therefore prudent to corroborate the solution
to increase the probability for a correct interpretation. This can be accomplished by analyzing an
independent set of data or hypotheses that are based on entirely distinct physical constraints. (In
the case of structure from motion, stereopsis may be used.) Without such corroboration, the human
observer seems to accept the interpretation that is most favored by the real-world statistics.

2In the event that algebraic reduction is not possible, then the uniqueness of a solution can be tested by generating
data from scveral known, but arbitrary configurations, and by numerical evaluation determine if the correct solution is
-obtained (Ullman, personal communication). Numerical evaluation is recommended in any case as a further check for
the isolation of solution points.

i the rotating tod case where the sereen oy refleetions are not s isible, then because there is no contrary 31> information,
the 3-1) interpretation will be accepted as most likely.
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5. Hidden Dependencies

Quite often when the equation-counting method is used, the constraint equations contain hidden
dependencies that cause the Jacobian to drop rank and its detcrminant to equal zero. There are two
general procedures for handling this situation so that an interpretation of the data can be made. The
first is simply to introduce another independent constraint, the second is to identify the dependency
and to reduce the number of physical variables accordingly. The disambiguation of shadows and

- highlights illustrates these two methods.

5.1 Example 2: Interpreting Shadows and Highlights

Consider the very common situation in vision when two patches of surface A and B appear
superficially different. Do A and B differ because they have different reflectances, or is one of the
regions a highlight or a shadow on a surface of uniform reflectance? These two interpretations are
different, since when B is a shadowed region, the implication is that there is an object occluding the
direct light of the source, whereas in the highlight case, the difference between A and B is due to
the specular propertics of the surface and there is no cast shadow.? (If the darker region around the
highlight were to be regarded as shadowed, then 99 per cent of the world would be interpreted as
lying in shade!)

As shown in Figure 3, lct the observer view the surface from above, and let the surface be il-
luminated with at least two sources of illumination-one producing direct light, as from a sun, while
the other source is diffuse, such as that characteristic of the sky and clouds.

We proceed by noting that the only information available to the viewer is the image intensities
1,4, Ig from the two regions A and B. For simple Lambertian conditions, these image intensities will
‘be the product of the strength of illumination ‘times the reflectances of the surface material. Let the
reflectance common to A and B be R, where the subscript N indicates R is a function of wavelength,
and let S\ be the incident flux from the dircct light of the sun and Dy, the flux arising from the diffuse
light from the sky, both of which arc also functions of wavelength as indicated by the subscript.’ If a
region is ncither highlighted nor shadowed, then the image intensity I will be given by

I = (S\ + D\)R» (17a)

Equation (17a) thus describes the image intensity resulting from an unshadowed, matte surface.

5.2 The Highlight Case

4Note that for this analysis we are ignoring other distinclive features of a highlight: 1) the textural aspect of specularity,
2) its dircctional component which produces a disparity between the two eyes, and 3) that highlight edges are convex
whereas shadow edges tend to be straight or concave.

5A planar surface is assumed; the cffeet of surface orientation on the source illumination can be considered incorporated
into Sy and Dy.
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VIEWER SURFACE

--‘.-"--’.—-‘-‘.'-

REGION A REGION B

!
3
WAVELENGTH

Figure 3. Direct and diffuse light illuminate the surface. Is region A a highlight or is region B in shadow?

Possible image intensities over wavelength are illustrated in the lower pair of graphs.

If region A is the same flat surface as region B, except that it has a highlight, then B remains
matte and 73 is defined by cquation (17a). On the other hand, equation (17a) will not apply to
the higlﬂightcd‘ region A, which acts like a partial mirror reflecting some fraction of the illuminated
scene lying away from the viewer. The reflectance Ry will thus depend in part upon what the viewer
sces in the reflection off A. In the case of the normal highlight, the arrangement between the direct
source illumination Sy, the surface, and the viewer is such that only the source light is reflected off
the viewed surface and hence Ry =1 and Dy =0 (for the highlight only). This contribution from the
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reflected light to the image intensity I is at the expense of the matte component of surface reflectance
(Evans,1948; Horn,1977). Thus, if the highlight contribution to the image intensity is the fraction f,
then the matte contribution will be (1 — f;). To characterize the image intensity J4 corresponding to
a partial highlight on region A, we may thus reduce the matte cquation (17a) by the factor (1 — f)
and add to it the complementary fraction fy of specular light:

Loy = fuSy + (1 — fu)(S\ + D\)Ra (17b)

where the first term on the R.H.S. is the specular component and the second term is the matte com-
ponent of the highlight. Note that only the illuminant S appears in the specular term becasue of the
directional properties of the reflections off a highlighted region 8

5.3 The Shadow Case

If region B is the same surface as A, but B is in shadow, then region B will be illuminated only

by the diffuse light Dy. The cffect of shadowing is thus to reduce the illumination from (Sy + Dy)

~ to Dy. Recognizing that shadows often have penumbrac, we may let fs be the fraction of the total

‘ illumination that contributes to the shaded region. For shadow, therefore, equation (17a) may be
modified as follows:

Ien = fs(S\n 4+ D\)Ry + (1 — fs)DhRy (18a)

which further simplifies to
I\ = (fiS\ + D\)Ra - (18b)

For complete shade, fs = 0 and the image intensity I arising from region B is described only by
thcvproduét of the diffuse light times the reflectance. For no shade, fs = 1; and for the penumbrae,
fs lies between 0 and 1.

5.4 Preliminary Fquation Counting

Equations (17b) and (18a) may be combined to obtain a single equation that describes the image
intensity for both the highlight and shadow conditions. This can be accomplished quite casily by
replacing the matte component in the highlight equation (17b) by the shadow relation of (17¢). After
simplification, the resulting single cquation will be

h= fuS 4 (I — fi){(£<Sx + DR (19)

6Note that the equation describing the highlight condition is similar 10 that used for transparency.
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where the \ subscript indicates a wavelength dependency, and fy and fs are respectively the highlight
and shadow fractions. -

If K, fu, fs are now indexed to mdncate the spatial region, we can apply the standard equauon-
counting procedure to determine the minimum number of wavelcength and spatial samples needed to
solve for the physical variables Sy, Ra, Di, finr and fis in terms of the known I;x, and then attempt to
determine whether the solution for thesc physical variables implies a shadow or highlight.

Unfortunatcly, the cquation-counting procedure is unsatisfactory in this case for two reasons. First,
the minimum number of spatial and spcctral samples is biologically unfeasible (5 and 5 or 6 and 4,
respectively); second, and more important, the Jacobian collapses. The collapse is due to hidden
dependencies in the set of equations of the form (19).

5.5 Eliminating Dependencies

The most obvious strategy for eliminating dependencies among equations is to search for other
independent relations or constraints. Often, this may be difficult, and a more desirable course is to try
to reduce the number of unknowns by combining some of the physical variables whose solution is not
critical to the interpretation. For example, if the pairs S\R) and DR, occur together everywhere,
then we might consider replacing each pair by a single variable. Such a reduction would not affect the
ability to distinguish a shadow from a highlight. Each of these two procedures will now be illustrated.

5.6 Solving for the Highlights by Adding Constraints

To introduce additional indcpendent constraining relations, we will consider the two- dlmenslonal
casc as shown in Figure 4 where a highlight (or shadow) runs across a change in reflectance Ry, Ry.
The highlight boundary is parallel to the Y axis; the reflectance change is paralicl to the X axis. For
this two-dimensional casc, equation (19) will assume the following form: ‘

Ixyn = fxLyx + (1 — fx)Myx - (20)

where Iyy is the image intensity corresponding to onc of the regions Ay, By, Cy or Ay, By, C». Note
that since only two wavelength variables Ly and My are involved along the X axis, these variables
need to be indexed by Y only.

By simple cquation-counting, it can be verified that the minimum number of samples along X or Y
and for \ will be respectively either 3,1,3 or 3,3,1. (Note that Y and N appcar together and hence can
be symmetrically indexed). A further reduction can be obtained by noting that region Cy or Gy, etc. is
always matte, and hence £+ (or fr.=3) is zero. Thus feyn = My-x. The minimum for X, Y, N is then
3.1 2 or 3, 2. 1, which correspond to a sct of six equations in six unknowns. 'The determinant of the
Jacobian of cither system of equations is still zero, however.
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Figure 4. View of a surface with a shadow or highlight boundary parallel to the Y axis and crossing a
region of two different reflectances, R; and R,. .

To solve the equations, we nced to introduce one more constraint or reduce the number of vari-
ables. For highlights, an additional constraint can be added by noting that the spectral composition
of the purely specular component is independent of the underlying reflectance Ry, Ry. Thus along Y,
Lix = Ljx. The minimum X, Y, X samples are now X = 2, A = 1, Y = 2 (the symmetry between
Y and \ has b_eeri removed by the specularity constraint), leading to the following equations:

Iny = foLi + (1 — /)M,
I = fola + (1 — /)My
Ior = folo + (1 — f)M, (21)
Ior = fola + (1 — fo)My

fe=0  Li=L




WAR, JMR & DDH 18 EQUATION COUNTING

where the indexing is for Y only, since there is only a single wavelength sample.

The Jacobian of the reduced set of the above equations obtained by substituting L; = L, and
fi=0is: _

Li—M fz (1—fs) 0
Li—M;, fB 0 (1 — )| _ 1
! 0 2 0 1 o = fo(My — M)
0 0 0 1

which is non-singular proVided M 5% My and fg # 0.

Thus solutions can be obtained for fa, My, M and particularly L;, the specular component of the
light reflected off the surface.

, Ipolcy — Isilce
Ls ecular = i i 22a
pecul (Ic1 — Ic2) — (Ipy — I2) (222)
__Ipi—1Ip;
== Icy — I (220)

5.7 Solving for Shadows by Combining Variables

Returning to Figure 4, we may now reinterpret the regions Ay, Ay, By, B, in terms of a shadow
cdge parallel to the Y-axis. (A penumbra will be needed for this constraint implying that the mini-
mutii spatial sartiples along X is three although only two will be used as in the highlight case.)

For shadows, the equation (19) then has the same form as the first four equations (21), with L; =
(S;4+D;)R; and M; = D;R;, where S and D are respectively the source and diffuse light and R is the
reflectance. Since for shadows Ly 52 Ly (i.c., there is no spectral component superimposed on Ay, A,
or By, B,), an additional constraining cquation must replace this specular constraint. For illustration,
we will introduce a “gray world” condition, namely that the average of all surfaces reflecting the
source light is spectrally flat. Hence the diffuse light D; is simply some fraction =y of the source light:

D; = ~5; (23a)

and

M; = yS;R; (23b)

Li=(1+%)SR, ' T (23¢)
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Because S and R appear together in two of the above equations, they cannot be solved for
separately, and the Jacobian test will fail when applied to equations (23). To eliminate this depend-
ency, define a new variable S* = S - R. The shadow equations then become:

Iy =l +NS*+0— S = b+ 7)S*

I = fe(l +NS2+ (10— fonSs = (fa + )52
Ie1=15*(= M)

Icr = 152*(= M2) 29

with the four unknowns being fa, 1. St*, S2*.

Unfortunately, the determinant of the Jacobian of this set of equations is still zero, suggesting that
dependencies are still present:

T N
0 s+ S2 Sl
5 0 0 S'l

0 v 0 8

Rather than introducing a new constraint, we will proceed to determine whcthe_r any of the physical
variables can be combined to reduce further the number of unknowns. The most obvious choices are
ratios or products of the entrics in the Jacobian array. These terms are the coefficients of the variables
in the original st of equations, and consequently are the factors that would be used to multiply two
of the equations to climinate one variable. (In esscnse, we are cxploring various triangular forms of
the matrix of rank onc less than the original.) The appropriate ratios are thus those between the rows
in the same columns, because it is these factors that will be cross multiplied to climinate the variable
that is identificd with that column of the Jacobian matrix. Thus the appropriate ratios of the above
Jacobian that should be explored first are (fs + N/ which appear in columns 1and 2, and S}/ S5,
which appear in columns 3 and 4. Inspcction of equations (24) shows that the solution for these
reduced variables is quite simple

n
—
)

1 SiR;

B1 -
loBl=r= 26a
Sy Im 2 SRy (262)
fs+q _ Im Im
— Bl - =2 26b
o Ien 2 (260)

'I'he extra solution for cach paired variable now reveals the dependency between the image inten-
sitics that caused the rank reduction of the Jacobian of (24), namely the rclation
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Ipilcy=Ici1ip (26c)

which is common to both (26a) and (26b). If the grey world condition applies and if C(Y) is a shadow
on B(X), then the shadow relation (26¢) will be true.

Unfortunately, there are an unlimitcd number of image intensity values that will satisfy the
“shadow” relation (26c). How are we to be sure that they all correspond to the shadow condition and
not to a reflectance change or even a highlight? To answer this question, we proceed in two stages, first
to show that the shadow solution (26) never will correspond to a highlight, and hence shadows and
highlights are at least disambiguated because their solutions arc distinct. Then, we will illustratc how
the probability of other confounding spectral relations such as different materials can be set arbitrarily
low by independent corroboration of the original solution.

6. Distinctness of S and H Solutions
(Exclusion of Competing Interpretations)

Our basic procedure to prove distinctness of the shadow S and highlight H solutions will be to
show that there is at least one relation between the four available image intensities (Is1, Ig2, Ic 1, Ic2)
that has different values for the shadow and highlight conditions. Thesc values will always be different
(if the constraints are valid) because the relation corresponds to two different physical variables (one
for shadow, the other for highlights) that have non-overlapping values.

To proceed, we ask first what highlight conditions satisfy the shadow solution (26). (Subscquently,
we will examine the opposite case—asking what shadow conditions will “look like” highlights.)’ We
thus assume relation (26) holds and solve for one of the highlight conditions. Consider cquation
(22a) that specifics the magnitude of the specular components of the highlight. Note the numerator
is identical to the shadow equation (26) if the left hand side (L.H.S.) of (26) is subtracted from the
R.H.S. In this case, however, the numerator (22a) will be zero. Hence the shadow condition requires

- that Lypecuter = 0 and consequently there can be no highlight interpretation. Thus, given that the
shadow condition (26) holds, there will be no highlight interpretation.

To check for the reverse case, namely under what conditions the image intensity relations for the
highlight condition will also yield a shadow interpretation, we may examine the second highlight
equation (22b). In particular, we wish to solve for the physical interpretation of the intensity relations
of (22b) given a shadow condition. This can be accomplished simply by substituting cquations (24)
into the R.H.S. of (22b). We find that, given the shadow conditions, then

Ipm—1Ip _ foty _
Ici — I v

I 4 @)
’7 .

Figure 5 now plots the possible values of the image intensity ratio given by the LHS of (27) for
shadows and the RHS of (22b) for highlights. '

"I'or another example treatment, sec Ullman's (1979) analysis of false-targets for his structure-from-motion thcorems.
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Figure 5. Solution space for shadow S and highlight H conditions.

We note that both f (the fraction of specularity or shadow) and v (the fraction of direct light),
range between 0 and 1. Hence for highlights, 1 — f must lie betwecen 0 and 1, whereas for shadows
1 + f/~ will be greater than or equal to 1. The only common condition is when f = 0, which
corresponds to a homogeneous matte area. Thus, highlights and shadows will never be confused from
the image intensities (provided the gray world assumption applics), if the calculation given by the
P L.H.S. of (27) is made. It is of some intercst that this operation on image intensities is equivalent to
“examining the output of the double-opponent color cell found in most biological color vision systems
(see Rubin and Richards, 1981). '

6.1 Corroboration

Although the highlight H and shadow S solutions are unique and distinct. it is still possible that
other properties of surfaces, such as pigment density changes or changes in reflectances could satisfy
equations (22) or (25) and be misinterpreted as either a highlight H, or shadow S. Thus a shadow
or highlight interpretation should not yet be given to the solutions H and S. To exclude all other pos-
sibilities is difficult (see Rubin and Richards, 1981, however). Nevertheless, the odds for an incorrect
H or S interpretation can be reduced by applying an independent test for the validity of the shadow or
highlight equations. We call such a procedure “corroboration”. '

One simple indcpcndcnt corroborative test is to note whether the equation counting procedure
suggested more than one minimal condition for solution. In particular, we noted in section 5.5 that
the equation (20) had a symmetry in wavelength (A) and space (Y). We chosc as a starting point one
spectral sample and two samples in the Y dimension. An independent test would therefore be to use
two spectral samples rather than onc, and only one sample in the Y dimension. This case corresponds
to cxamining the gradients of a highlight, or the pcnumbra of a shadow.

) A second and more common type of corroborating procedurc is to simply take another set of
mcasurements independent of the first, and determine whether the solutions for the physical constants
remain the same or not. If they do not, then the interpretation must be rejected. 1f they are confirmed,
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- then the odds on a misinterpretation are reduced. Ideally, the corroboration should be based upon
measurements taken from a physical dimension different from that used in the original solution. In
any case, since we are corroborating the value of a physical parameter, the corroborating measure-
ments must not be confounded with the dimensions of that physical parameter, In this respect, the
relation (27) that tests for the highlight or shadow condition is most satisfactory, for the valucs f and
~ are dimensionless and are not functions of wavelength, for example. For the shadow condition,
we thus can take a third spectral sample I3, Io3 and substitute these image intensities for Igy, Ioa.
Since the physical constant (fz + v)/~ of equation (25b) is not a function of wavelength, this value
should remain unchanged if the image intensity changes are indeed due to a shadow. In effect, we
are confirming that the S solution point remains fixed along the solution ray illustrated in Fig. 5. If it
docs, then the shadow (or highlight) interpretation is reaffirmed and the chance of misinterpretation
is unlikely provided that the competing interpretations are not processes that behave like shadows.
Consequently, at least threc wavelength samples are required before a reliable shadow interpretation
can be made.

In the case of recovering structure from motion-our carlier example—the corroboration of the axis
of rotation could entail adding additional frames or snapshots to see if the same axis and rod length
is recovered. Clearly, this procedure is not entirely independent because the strategy for solution
remains the same and some possible confounding intcrpretations may not be excluded (e.g., the
‘correct interpretation that the points are on a TV monitor in 2-D).

A miore independent corroborative test would be to use stereopsis, for this computation of the
depth relations between the feature points is quite different from the structure-from-motion analysis.
This ideal corroborative procedure should thus use an entirely different computational analysis, which
is based upon relations that have quite different failure conditions.®

7. Summary

Although the equation-counting prbcedure has been used in the past to give some insight into the
complexity required to solve problems in many non-linear variables (¢.g., Lcith er al, 1981), rescarch-

ers in perception have often neglected to recognize that certain other conditions must be fullfilled

before a meaningful solution can be guaranteed (Mciri, 1980). These conditions are summarized in
the flow diagram of Fig. 6. They include the Jacobian test for the independence of the system of equa-
tions, uniquencss of solution, exclusions of competing interpretions, and two kinds of corroboration,
If these conditions can be met, then the equation counting procedure provides a powerful theoretical
tool for understanding how, in principle, biological systems can make reliable interpretations md
asscrtions from the greatly 1mp0vcnshcd sense data available to them.

BFor biological systems, we probably should view “corroboration” as an carly step in the perceptual process (periaps
at the level of Marr's 2-1/72D) sketch) that acts on the owtput of modules analyzing information derived from mo ion,
dispanity. color, texture, etc., as vell as non-visual information, such as tuchie roughness. shape or even in some cises,
acoustic information,

o
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Fij;ure 6. Outline of Steps in ‘Equation-Counting’ Procedure.
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Appendix I: Redundancy

Unfortunately, due to measurement and sampling errors, real-world data are not precise. The
hardware performing the calculations may also be quite noisy, as is the case for many neural net-
works. Without exact data and calculations, solution vectors will not be complctelj isolated, but
rather are more properly represented as a probability distribution about the exact solution point. To
reduce the likelihood of misinterpretation, several overconstraining equations are often helpful. (By
“overconstraining” we here mean the inclusion of cquations in addition to those needed to obtain a
unique solution.) Their value will depend in part upon how many variables (unknowns) are included
in the solution point. Intuitively, the more the unknowns, the greater the potential noisc and the less
the contribution of any one overconstraining equation will be. To capture this property, we suggest
the following measure of the redundancy of a system containing overconstraining equations:

Redundancy = 1 — [1 — le-]c (A1)

where C is the number of independent combinations of the equations and U is the number of un-
knowns. As U increases, this measure decreases to zero. The effect of the additional overconstraining
equations, on the other hand, is to reduce the deleterious effect of increasing U in a manner analogous
to probability stimmation, yet the redundancy measure will never exceed 1 (the ideal). The redun-
dancy measure has the practical value of providing an estimate of how many extra equations (or data
samples) are needed to isolate a solution point to a certain probability, given known measurement
signal to noisc ratios.

Appendix 1I: Sard’s Theorem for non-Polynomial Functions

In many cases, the equations relating the unknown variables will not be polynomial and Bezout’s
Theorem will not apply. These exceptions include such common functions as cxponentials, logarith-
mic, or trigonometric. Sometimes, a change of variables can be made to recast the non-polynomial
relations in polynomial form. If this is done, then carc must be taken to restrict the range over which
the polynomial form applies. ’

More generally, if a function is smooth on a manifold, then Sard’s Theorem can be used (Guillemin
and Pollack,1974: Milnor,1978). Suppose that the following system of independent equations holds:

filz1, ..., @) =m

fulzn, - ) = Pa

T his system can then be represented more generally as a mapping from R to R™:
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F:R* — R"

or

F(zy,...z) = {flz1. . .2), . . -, falz1. . 2k)}

By Sard’s Theorem, we know that if F' is a smooth mapping and if F' is invertable for the values p,
then the dimension of F—!(p) is (k — n). Since when k = n the dimension of F—Y(p) is zero, there
can be at most a countable number of (isolated) solutions.

Some care must be taken in assuming that Sard’s Theorem applies to any differentiable function.
It does not. For example, consider the simple periodic function sin z. Such a function is uniquely
invertable only over a specified range. Polynomial functions are thus a "safer” class of functions to use
for equation counting, for their appropriatc range is usually more obvious. ‘
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