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Chapter 1. Introduction

1.1 Problem Descriptrion

This thesis deals with the time-optimal control of a tendon arm system. The tendon arm system
consists of a rigid link attached to a basc plate through a three degree-of-freedom joint thus affording the
arm rotational freedom in three axes Movement of the arm is made possible ty four tendons: one end

of cach tendon is attached to the tog of the arm and the other end is wound on a motor shaft located

under the base plate. The design of the tendon attachments is such that through the interaction of the

four moters and tendons, and by controlling the current input (or torque output? of the motors, control of
the movémcm of the arm in three axcs is possible. Section 2.1 contains a more detailed description of the
tendon arm system, and figure 2-1 shows a schematic diagram of it. The tendon arm system is designed by
John Hollerbach and Danny Hillis of the M.LT. Artificial Intclligence Laboratory.
We are interested in designing a controller to move the arm from an initial position to any specified
final position. Time-optimal control is chosen because
1. it achicves the desired motion in minimum time — this is desirable because the faster it can move, the
more motion tasks per unit time could be completed this way, and
2. it requires few words of computer memory to represent the optimal solution — traditionally, time-
optimal solution is associgted with bang-bang control, hence the optimal solution is completely
specificd by the switching times.
These are the motivations for choosing timc-bptimal control,»namely, it yields a rapid-moving system
which is implementable.
The second point mentioned in the last paragraph is only valid if the problem is nonsingular. In
the presence of singularity, the time-optimal solution need not be bang-bang. Our problem is, in fact,

singular, but the form of the singular arcs is such that the control signals can be approximated very closely
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by straight line scgments, hence the storage requirements for such a control is quite low also (about 5
integer words per trajectory).

Since our system cquations arc highly nonlincur and complicated, it is not possible to express the
optimal solution in feedback form. Thus, in addition to this open-loop control, some sort of closed-loop
control law is required to correct for any disturbances. The overall control scheme will consist of two
phases : an initial phase during which open-loop time-optimal control is app'ied, and a second phase
which is feedback regulation at the final posifion.

Although time-optimal control has been applied to manipulators (Kahn[1]), it does not shed much
}ight on our problem because the tendon arm is different from conventional manipulator design. The only
reference that is available on tendon arm dynamics is Riemenschneider et al [2] but the paper deals with a

one degree-of-freedom arm which is much simpler than the three degree-of- freedom arm studied herein.

12 Thesis Qutline

This thesis is organized into seven Chapters:

Chapter 1 provides an introduction to the problem under study.

Chapter 2 describes the physical tendon arm system and develops a mathematical model describing the,
system. A simplified reduced-order model is also obtained, and the responses of the two arc com-
pared.

Chapter 3 first states the time-optimal control problem and presents necessary conditions for the optimal
solution from Pontryagin’s Minimum Principle. These are then applied to the reduced-order model
of the tendon arm system.

Chapter 4 presents the conjugate gradient method and describes an iterative procedure for solving our
time-optimai problem. Approximation for the time-optimal solution is also proposed.

Chapter 5 motivates the need for a closed-loop feedback control law at the final position, and presents the

lincar regulator approach for designing the feedback law.
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Chapter 6 describes the implementation of the overall control scheme.

Chapter 7 is a summary of the results of the thesis and describes areas of further work.
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Chapter 2. Modeling of the Tendon Arm System

In order to study and develop a ~ontrol strategy for the tendon arm system, we must have a mathe-
matical model of it. In this Chapter, the physical system is first described, equations describing the system
dynamics are then developed, and a reduced-order model is obtained by ignoring the third degree-of

frecedom of the arm.

2.1 A Description of the Tendon Arm System

The schematic diagram of the terdon arm system is shown in figure 2-1. Itis a cylindrical rod, known
as the arm, attached at onc end to a vasc plate via a three degree-of-freedom "joint”. Figure 2-2 shows
the "joint" in greater detail. The outer rectangular block, together with the inner member, can be rotated
about the Y — Y axis. Tﬁc inner member can be independently rotated about the X — X axis. The
cylindrical part of the inner member can be rotated about the Z — Z axis, 1.e. the longitudinal axis of the
cylinder. Potentiometers are mounted as shown in the diagram to measure the three angles of rotation.
This construction of the "joint" lends itself to a very natural way of defining the position of the arm
in terms of the three angles 8, ¢, and t, which arc measured directly by the potentiometers, as shown
in figure 2-3. This coordinate system will be used throughout this thesis to describe the arm. Another
coordinate system, deséribcd by the angles a, 3, and 1, is sometimes used. This is shown in figure 2-4, 1 ;

At the upper half of the cylindrical rod, there are points of “insertion” (attachment) for four tendons,
two at one height, and the other two at another. Each tendon is wrapped around the arm through a certain
angle before it breaks off from the surface of the arm (see figure 2-5). The other end of the tendon passes
through a pulley on the base plate and is wrapped round a threaded cylinder mounted on the shaft of a
motor under the base plate. As the motor rotates, the tendon will be wrapped or unwrapped from the
motor shaft thereby causing a shortening or lengthening of the tendon between the motor and the arm.

Through the interaction of the four motors and tendons, the arm can be moved from one position to
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Figure 2-1. Schematic diagram of the tendon arm system
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another.

2.2 Equations of Motion
221 Coordinate Systems and Coordinate Transformation

We choose as our fixed coordinate system onc that has its origin at the "joint" with the z-axis along
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Figure 2-2. A more detailed diagram of the three degree-of-freedom “joint"

P3, Py and the y-axis along Py, Py. Py, P, Ps, and Py arc the points on the base plate through which the
tendons pass (refer to figure 2-5).

In computing the dynamics of the arm, we refer all quantities to a moving coordinate system which
is fixed to the arm and with the three axcs coinciding with those of the fixed coordinate system when

0 == ¢ = 1 = 0. These three axes arc the principal axes of the arm.
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If P denotes the coordinates of a point in the fixed coordinate(system, to refer it to the moving
coordinate system, we need to perform the following transformations:
| 1. arotation through an angle ¢ about the y-axis, and
2. arotation through an angle 6 about the new z-axis, and

3. arotation through an angle % about the new z-axis.

i.e.

P’ = 5,(¢) 5:(0) S,(¢) P (2.1)

where P’ denotes the coordinates of the point referred to the moving (primed) coordinate system, and
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Figure 2-5. Schematic diagram of the arm showing the tendon wrdpping geometry.




. 1 0 0 cos¢g 0 —sing cosy siny 0
S:(0) =10 cosf sinf|, Sye)=| 0 1 0 |, S(¥)=|—siny cosvp 0
0 —sind cosf sing 0 cos¢ 0 0 1
(2.2)
or
P'=W(0,¢,¢)P (2.3)
where
cospcosty 4 sinf@singsiny  cosfsinyy —singcosy + sinfcosdsiny
W(0,¢,v) = |—cos¢siny +sinfsingdcosy cos@cosy  sinpsin -+ sinf cos ¢ cosy
cosfsin¢ —sinf cosf cos¢
(2.4)
2.2.2 Some Geometric Calculations
Referring to figure 2-6 which shows some parameters of the arm,
0 0 —8 s
Pi=|a|l, P=|—a|, P=|0]|, Py=|0]. (2.5)
0 0 0 0
Using equation (2.3),
acosO:sim,b —scos¢cosy — ssinlsin@siny
P, = —P)=lacosfcosyp|, Py=—P)=| scos¢sing) —ssinfdsingcosy |. (2.6)
—asinf —scosfsing

From now onwards, we will refer all quantities to the moving coordinate system.
Let @; be the point at which tendon ¢ is attached to the arm, and R; be the point at which tendon 7 leaves
the surface of the arm. Then in order to calculate the dircctions in which the tendons pull on the arm, we

necd the coordinates of the R;’s.
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Figure 2-6. Schematic diagram showing some parameters of the arm.

Coordinates of Ry and Ry
Let (z1, y1. 1) denote the coordinates of Ry with respect to the primed coordinate system.

From figure 2-7(a) and equation (2.6),
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Figure 2-7. (a) Schematic of the arm looking down the z’-axis showing only tendon 1. (b)
Unwrapping tendon 1 onto a plane.
. —yfacosfsiny\
w = tan (acosacoszp) =Y (27)
—1 p
= .8
N\ = cos (acosa) (2.8)
‘where p is the radius of the cylindrical arm.
) = +psin(r — N — w) = psin(w + N) (2.9)
Y1 = —pcos(r — N — w) = pcos(w + \) (2.10)

“ Referring to figure 2-7(b),
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MR, _ @M
RN NPy
implies
. b+ asinf
= — 0+ - 2.11
a = —asind + TN tan (2.11)
, 4
L =RP = [(zl + asinf)? + p? tan? x] (2.12)
3n }
I, =QP =[(b+asin0)2+p2(—4———w——?\—i—tan)\)z] (2.13)
Similarly, the coordinates of Ry arc given by,
zy = —psin(w +N) (2.14)
Yo = —pcos(w + N) (2.15)
% = asind + b—asinf (2.16)
1+ (3¢ —w—\)/tanA
4
Ly = RoP) = [(z2 — asind)? + p?tan? }\] (2.17)
37 }
ly = QP = [(b — asinf)? + p2(-4— —w— N+ tan >\)2] (2.18)
Coordinates of Rz and R4
Let (z3, y3, 23) be the coordinates of R3 in the primed coordinates.
From figure 2-8(a) and equation(2.6),
o — tan—! (— cos ¢ sin 1 -+ sin 0 sin ¢ cos P
o * ¢0s ¢ cos 1h - sinf sin P sin ¢
_ . —1f —tany 4 tangsind
= tan ( 1+ tan ¢ tan ¢ sin g (2.19)

Define

tany' = tan¢sind (2.20)
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Figure 2-8. (a) Schematic of the arm looking down
Unwrapping tendon 3 onto a plane.

Then from equations (2.19) and (2.20),

Referring to figure 2-8(b),

W =p—19

N = cos™! (
s(

3!

A
by Q3
Rs _
X' 33

Ps N3

0
(b

z3 = —pcos(w + N)

y3 = —psin(w’ 4 N)

cos? ¢ + sin® ¢ sin?9)? )

the 2z’-axis showing only tendon 3. (b)

(2.21)
(2.22)

(2.23)
(2.24)
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MsR; _ M3Qs
R3N3  N3P3
implies
. t -+ ssin ¢ cosd
23 = —ssin¢cosf + [T —w — N tan ¥ (2.25)
3
L3 = R3P; = [(23 -+ ssin ¢ cosf)? + p?tan® )\’] (2.26)
: 2 937 ' ’ n2 d -
ly = Q;P; = |(t + ssin¢cost) 4 p (—4— —w' — N+ tan N) (2.27)
Similarly, for R4,
14 = peos(w +N) (2.28)
ys = psin(w’ + N) (2.29)
. t — ssin¢gcosf
z4—__—ssm¢cos()—{—1+(3_4E_w/_)\,)/tan}\’ (2.30)
3
Ly = R4Py= [(24 — ssin ¢ cos0)? + p® tan? ?\'] (2.31)
. 2 9,37 ’ ’ n2 d
ly = Q4Py = |(t — ssin ¢ cosb) —{—p(T——w — N + tan ) (2.32)

Coordinates of the center of gravity

Let G be the center of gravity of the arm (see figure 2-6), and let GD be the unit vector along the
direction of the gravitation ficld which will be assumed to be vertically down.

Expressed in the primed coordinate system,

G=\o (2.33)

[ sin ¢ cosy — sinf cos sin ¢
GD = | —sin¢siny — sinfd cos ¢ cos 9 (2.34)
—cosfcos ¢

223 Resultant Torque exerted by the four Tendons about the point of rotation O
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LetFi,i =1,.., 4, be the tension in tendon ¢, the direction of F; will be in the direction of R;P;.

Resultant torque acting on the arm about O

= OR, X F} +ORy X Fy 4+ OR; X F; + OR4 X Fy + OG X nig

) F F
—1 _OR, xR P —2_ORy X RyP OR3 X R3P
= ®p o 1P+ TN 22+|RP| 3 X R3P;3
Fy
+ P |0R1 X RiP, 4+ mgOG x GD |
= iTy + jTy + kTs (2.35)

where

T = {l[—pa sin® cos(w + N\) — zja cos @ cos ] + %[——pa sind cos(w + \) + 2a cos@ cos )
l .

+ {3 [pssin ¢ cos O sin(w' 4 N') — 235(cos ¢ sin ) — sin 0 sin ¢ cos V)]
3

+ %—’- [pssin ¢ cos O sin(w’ + N') 4 2s5(cos ¢ sin ¢ — sinf sin ¢ cos 1,[))]
4
-+ mgd(sin ¢ sin ¢ + cos ¢ sin b cos ) (2.36)
Ty = g[pa sinfsin(w + N) 4 zja cosfsin ] + %[pa sinfsin(w + \) — za cosfsin 9]
1

+ {—3— [—ps sin ¢ cos B cos(w’ + N) — z5(cos ¢ cos Y + sin @ sin 0 sin )]
3

+ % [—ps sin ¢ cosd cos(w’ + N') + 25(cos ¢ cos Y + sing sinf sin )]
4

+ mgd(sin ¢ cos ¢ — cos ¢sinfsin ) (2.37)
T3 = (lg—l- + f )pa cosfsin N + ( s + ?)ps[sinq&sinecos(}\’ + u) — cos g sin(N + I/)] (2.38)
2 4

Note: The expressions in equations (2.36)«(2.38) are derived based on the geometry of the arm as
described in section 2.2.2, which assumes that all the tendons are wrapped properly on the arm. In the
course of moving from one position to another, one pair of the tendons might be completely unwrapped,
hence the expressions developed above will not be valid.

Referring to the notations used in section 2.2.2:

ifw 4 N > 37/4, then tendons 1 and 2 have completely unwrapped, and

Cifw R N > 3w /4, then tendons 3 and 4 have completely unwrapped.

TR SRR
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Appendix A develops the corresponding expressions for equations (2.36)~(2.38) in the event of either pair

of tendons is unwrapped. These expressions are only approximations as the tendon insertion is not ideal.

2.24 Arm and Motor Dynamics

Euler's dynamical equations for the rotation of a rigid body about a point O are given by,

o

ddy

Jy 9 (Ja— )03 =Ty
dQy

oy — (s — T =T, (2.39)
dQl

B = (= ) =T

where ‘the subscripts 1, 2, 3 refer to the three principal axes of the rigid body, Q;, J; are the angular
velocity and the moment of inertia, respectively, of the arm along the ¢-axis, and T; is the external
applied torque on the body.
By making the identification of the #-, y'-, 2/ -axes of the arm primed coordinate system with the
1-, 2-, 3-axes of the above, we can apply equation (2.39) to the tendon arm system, with the simplifying
_ assumption that |

Ji=Jh=J. (2.40)

%

This assumption is valid because the contribution of the moment of inertia of the lower rectanguiar block
about point O, which is asymmetrical about the 2-axis, is negligible compared to that of the cylindrical
rod, which is symmetrical.

Expressing the ;s in terms of the three angles 4, ¢ and v, we obtain,

197 fcosy + dcosfsiny
Q=|Qy| =|—Fsiny + ¢ cosfcos (241
o —¢sind + ¢

T\, Ty, T arc given by cquations (2.36)~2.38). The tensions F|, Fy, F3, Fy in the tendons are related
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to the input currents to the motors, I;, Ir, I, Iy, through the motor dynamics
I+ Buvi+ Fir =KL, i=1,...,4 (2.42)

where

~;  is the angular velocity of the motor shaft,
J,, is the moment of inertia of the motor shaft,
B,, is the velocity dependent friction coefficient,
T s the radius of the cylinder mounted on the motor shaft, and
K s the torque constant of the motor.
Because of the constraint that the tendons must be taut at all time, and the assumption that the
tendons are inelastic, the angular rotation of each motor is related to that of the arm.

Specifically,
ri = lo — (6, 6, %) (2.43)

where I;(0, 4, 1) is the length of tendon ¢ (from point @; to point P;) when the arm is at the position
defined by 8, ¢, 9, and lp = [;(0, 0, 0), which implics that y; = 0 when§ = ¢ = ¢ = 0.

By differentiating equation (2.43) with respect to time once, we obtain
;= + g+ 1,[)] 2.44

By differentiating once more,

i, = [‘9+8¢¢+6¢ ‘92"0?+§:f2

8 T
o69¢ O N

%+ ¢"2+§;—'§¢2

(2.45)

By substituting equations (2.44)~2.45) into cquation (2.42), we can obtain expressions for the Fi’s in

terms of the I’s and the three angles 0, ¢, and 1. By substituting these into cquations (2.36)—(2.39), a sct

of differential equations describing the dynamics of the tendon arm system is obtained.
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i}y defining,

z=10 ¢ v 6 ¢ 9| | (2.46)
u=[h L K I (2.47)

and rearranging terms, we obtain the equations of motion of the system in the form,
£(t) = Fo(a(t)) + Bo(a(®))u(®) (2.48)

where

Fo(z) isa6-vector, and

By(z) isab X 4 matrix.

The full detail of equation (2.48) is given in Appendix B.

2.3 Reduced-Order Model

The equations of motion obtained in the previous section is too complicated to be useful in the
design of a controller. Much of the complications arises from the geometry of the tendon arm system. |

A simplified fourth order model is obtaincd by ignoring the tendon wrapping about the arm, thereby
reducing the three degree-of-freedom arm to a two degree-of-freedom one. This is achieved by equating p
to zero (recall that p is the radius of the cylindrical arm).

i.e.,

p=10 (2.49)7

This, in effect, is to ignore the twisting movement, 9, of the arm.

Equations (2.39) become:

J(6 + #%sinf cos0) = (1;—12- — I{l)ab cosf — (!;3 — I—;é)st sinfsin ¢ + mgd sinf cos ¢ (2.50)
2 1 4 3
Fy, F

J(¢ cosd — 204sin ) = (74- —_ 73—)st cos ¢ + mgdsin ¢ (2.51)
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where

I, = [a? + b® + 2absinf]?
Iy = [a% + b2 — 2absind]}
ly = [s2 + t2 + 2st sin $ cos 0]
Iy = [ + 2 — 2st sin¢cos0]%

(2.52)

From equations (2.42)-(2.45),

.._.,!'_ a2£ 2 | Bm( 7 )
F, = T{KI+ ( 6+ ¢¢+ +a¢2¢ T el t ¢¢)+ Dig X 34 (2.53)

For ¢ = 1, 2, since l; is a function of  only,

1 I dliy | 4%\ | B dl,
F;= ;[KI, + T(E—JG—I- T )+ — 0 (2.54)

Substituting equations (2.53)~2.54) into (2.50)~2.51), and rearranging terms,

R
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ot (1210
.
{ls ) it ()
+¢st s;)ncﬁssxen()B (ltc‘l; . ig%)

. 1dl 1diy stsingsinf(19l3 19,
Bm 7T A T 1n — >\ 7T a7 a3
+9 [( Iy do by d0)+ abcosf L& 1,00

Yy ¢St sin ¢ sin @ 1 A3 1 6214
abcosd "\ I3 605(12 l4 593(#
| stsin@sinf 1% 182 r2sin
+9 [ abcosf J"'(lg 862 1,0 —J ab

O )| 25
frmtelig- i) rdis- i3
=K(§i——)+mg o i1 55+ 158) + 5o —15 + i)
R ) I - T ) I

Y 18%; | 1% .
+6 Jm( T L (2.56)

By defining,




Siion

21

S, ld_1dh
) FOTTde T 1 de
L, — 10 104
TR 1,00
p a1
19071407 ~ I, do?
L1 1o
WL 1,00 (257)
L, — 1o _ 10 |
2T Lo 1,04
L 1% 10,
2007 1862 T 1,042
1O 1
260 = 1,560 1,099
__stsingsind
abcos@
and
Jr2/abcost + JimLis — JmeLog —JmeLag
- (2.58)
JomLas Jr2cos /st cos ¢ + JuLog
Equations (2.55)—2.56) can be written as:
I
6 = N—! —Kr/li Krfly eKr[ly —eKr/li||] LN tan @ cos pdr?/ab m
é 0 0 —Kr/l3  Krjly || tan ¢dr?/st
I
[ eBuLay | . —BnLis + ﬁBmLzo} .
N1 N“‘{ 6
+ ."'BmL2¢~ ¢ + _'BmL29
1 [ eJmL29¢ ..
20
+N Jr?sin0/st cos ¢ — JnLopy ¢
4+ N eJmlLogs — Jr?sinf/ab 5+ N_x[—Jmeo + &mezoo]ga
i —JImLa2ge —JmLagg
0,60 ¢ 9,
== '-,:3.(-.’.(}3.’. :’.(é) + {):3(.--?.). U (2'59)
4(0; ¢) 01 ¢) b4(01 ¢)

where

u=[11 12 Ig I4}T.

et TR
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Define

=100 ¢ 0 ¢I"

the reduced-order model can be writfen as:

#(t) = F(z(0)) + Ba(t))u (2.60)

where

F(z(t)) = a 4-vector (2.61)

B(z(t) = |, o a4 X 4 matrix (2.62)

Note: It can be easily shown from equation (2.58) and several simple substitutions that the determinarét
of N is always greater than zero for all 8, ¢ between (but not including) —= /2 and +/2. Hence N —1

always exists.

24 Comparing the Responses of the Full and Reduced-order Models

To investigate the effect of representing a sixth-order system by a fourth-order model, a step of mag-
nitude four is applicd to both I and Iy of the full (sixth) and reduced (fourth) order models developed in
sections 2.2 énd 2.3 respectively.

The responses of the two models are shown in figure 2-9 and tabulated in Table 2-1. (The values of

the parameters uscd is given in Appendix G).
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It can be seen that the difference between the two is small except for the fact that the reduced order

~system cannot model the angle ¢.

Table 2-1(a) Response of the Full Order Model due to step inputs on I,and 1,.
(msec) | (radiam) | (radian) | (radian) | (rad[sec) | (fadfsec) | (radfsec)

0 | 00000 | 00000 | 00000 | 00000 | 00000 | 00000
0 | 00020 | 00017 |-0-0004 | 04075 | 0-3306 |-0087T7

20 0-008! 0-0060 | -0-0018 0-8l46 | OGeld |~0-1809

3 | 00183 | 0049 |-0004] 1-2226 | 0-9954 | -0-2656
40 | 0032 | 00265 |-00015 | 1-6328 | 1-3324 | -0-4080

50 | 00510 | 00416 |-0-0R3 | 20461 | 1-6768 | -0.554%

60 0-0735 0-060! | ~0-018) | 2-4631 ,2.030’ -0731@

0 | Olo0s | 0.0822 |-0.0271 | 2-0862 | 23970 | - 09467

80 01313 O-[0o8] -0-0378 3214 27928 | -|-2073

q0 | 0leee | 01380 | -0.0514 | 37474 | 31949 |-l521d | |
100 | 02063 | O-1721 |-00684 | 41857 | B-643I |-1-8453

o | 02503 | o210 |-00895 | 4-6215 | 4.1401 —2.2384

120 | 02988 | 02551 |-O-64 | 50103 | 47040 | ~2-8546

130 | 0257 | 03054 |-0.1469 | 55100 | 52593 |- 3.4496
4o | 04090 03c28 |-0I847 | 59395 | G.14o5 | -4-II5I

150 | 0-4704 | 0-4288 | -0-2294 | G.3a15 | 7-0964 | -4-8444
60 | 05258 | 05055 |-028i6 | 6752 | 8.2984 |-5-5854

No | o0-6o45 | 05459 | -0-3409| 7-0l3 | A-8479 | ~G 2504
80 | 0.6756| 07041 |-0-4057| T-1829 | 118885 | -6.6237
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Table 2-1 (b) Response of he Redused order hode!
dve Po stepf Inputs on Iz and J:r} ©

o

SRS -

Time 6 ¢ 6 $
~ |(msec) | (radian) | (radian) | (radfsec) | (rod/sec) §
O | 0-0000 | O:0000 | O-:0000 | 0:0000 E
10 0:0020 | 0:0017 | 0-4070 | 0-3393
" 20 | 0008 | 00068 | 0-8134 | 06191
30 | 0-0i183 00153 | 1-2203 | |-0208
40 | 00325 | 00272 | I-6288 | [-3659
350 | 0-0509 | 0-0426 | 2-0398 | |- 1ed
60 | 00134 | 0066 | 24540 |2-0764
% | O-loco | 0.0842 | 2.719 | 2-44%6
80 | 0308 | 0106 | 3-293c | 2-9388
90 | O0-lésq | o-l4il | 3.7i1gs | 3-2542
100 | 0-2052 | O1158 | 4-l1466 | 2-1042
llo | 02488 | 02183 | 4-515| | 4-2013
120 | 02967 | ©-260! | 5-0014 | 4-7627 |
130 | 03488 | 0-3lop | 4209 | T4l ;
140 | 0-40S| 0-368) | 58265 | 61794 L
50 | 0.4bs3 | 0-4349 | 62672 | 7-lo82
60 | 0-529! oSl | 6:5462 | 8-2616
Ifo | 0-59¢0 | 9:-Goiz | 6:8[7%> | 9-71243
180 | 0-Geso | ©:10715 | 6-9185 | [-6/29



Chapter 3. The Time-Optimal Control Problem

As mentioned in Chapter 1, we would like to devise a control scheme to bring the arm from its initial
position to any specified final position as fast as possible, 4.¢., given any desired position zy, we would like
to find thé control u(t) which drives z(t) — z; to zero in minimum time, where z(t) is the actual position
of the arm at time £.

In this Chapter, we will first formally state the time-opiima] control problem as applicable in our
case, and Pontryagin's Minimum Principle will then be used to derive necessary conditions for the time-
optimal solution. We will then examine the time-optimal control of the tendon arm system using the

reduced-order model.

31 Problem Statement

Given the dynamical system with state z(t) and control u(t),
£(t) = F(a(t)) + B(s(®))ult) | (3.1)

where

z(t) is a 4-dimensional vector
u(t) is a 4-dimensional vector
F(z(t)) isa 4-vector-valued function
B(z(t)) isa(4 x 4)-matrix-valued function
Find an admissible control u(¢) which takes the system from the initial state zo to the final state 2 in
minimum time, i.e. find u(-) to minimize the following cost function:
ty

J(u()) = f dt | (3.2)

to

where an admissible control u(-) is defined to be one such that every componcent satisfies the following

26
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magnitude constraint,

Umin S ui(t) _,<_. Umaz T = 1; o4 ) (33)

or written more compactly

u)eQ  forallt € [to, ¢/] (3.4)

t; in equation (3.2) is frec, and is part of the optimal solution.

In addition, F'(z(t)) and B(z(t)) are assumed to posssess the follosing properties:
1. fi(z) and b;4(z) are continuous in z, and
2. 98fi(z)/dz;i,Ob; j(z)/Ox arc continuous in ,

where f;(z), b; j(), 2. arc components of F(z), B(z), and z respectively.

32 Application of the Minimum Principle

Pontryagin’s Minimum Principle (Athans & Falb[3]) furnishes us with necessary conditions which
the time-optimal control u*(¢) must satisfy. Any control u,(t) that satisfics all the necessary conditions
is known as an extremal condition, and is a candidate for the optimal control. If a time-optimal control
exists, and if there arc more than one extremal control, then the one with the smallest cost given by
equation (3.2) is optimal. |

In order to apply the Minimum Principle, we will define the Hamiltonian: |
H(z(t), plt), u(®) = 1 + 5" O (=(0)) -+ B(a(t))u(t)] (35)

where p(t) is a 4-dimensional costate vector.

Let u*(t) be an admissible control which transfers the system from zg to z;, and let z*(t) be the
corresponding trajectory. In order for u’(t) to be optimal, it is necessary that there exist a function p'(t)
such that:

(@) p'(t) and z'(t) are asolution of the canonical system:

T

DRI
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£ = 0.0, () @)
50 =~ (0,8, w'0) (3.7
satisfying the boundary conditions
z'(to) = 20 -
z'(ty) =2 .
(b) Forallt € [to, t7],
H('(t),p'(t), «'(t)) <H("(8),p'(t)u)  forallu€ Q (3.9)
() Forallt € [to, /] .
H(z"(8),p"(8), u'(t)) =0 (3.10)
#

This is a consequence of free terminal time and time invariance of the system.

Athans & Falb[3] presents a heuristic proof of the Minimum Principle, whereas a formal proof can be

found in Pontryagin et al[4}. ‘ i

33  Bang-Bang Control

Substituting equation (3.5) into (3.9), necessary condition (b) reduces to
pTWBE' M) ) < p (BBE (O forallu€n (3.11)

or written in component form,

4 4 4 ;
S bo(e OpI0) < X (2 A0 (3.12)

i=l j=1 Ni=l

o

7=1
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for all u; satisfying equation (3.3).
If we define

4

i=l
Equation (3.12) then becomes

4 4 ‘ '
> uite(t) < D ugj(t) (3.14)
j=I i=1
The control u*(t) which satisfies the above incquality and subject to the cons'raint of equation (3.3) is

given by _
» u;'(t) = Umaz ifQ;(t) <0

u;(t) = Umin ifg;(1)>0 j=1,..,4 (3.15)
ui(t) indeterminate  ifg}(t) = 0
We sec that u*(t) is well-defined by equation (3.15) if there is only a countable set of times ¢;; € [to, t7]
such that

g;(ti;) =0

Under this condition, every component u;(t) of the optimal control »*(t) is a piecewise constant function

of time, u'(t) is then known as a bang-bang control, and we say that the problem is Normal.

If, on the other hand, there is one (or more) subinterval [t,,,, ¢,,] within [to, ¢/] such that
g,(t)=0  forsomejandallt € [t,, t,]

then u;-(t) is not defined by equation (3.15) for t € [t,n, t,], and we say that we have a singular time-
optimal problem; the time interval [t,,, ¢y]is called the singularity interval.
Hence we sce that if the problem is normal, the time-optimal control is bang-bang. For linear

time-invariant system, we can derive necessary and sufficient conditions for the time-optimal problem to

S
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be normal (sec e.g. Athans & Falb[3]) or singular, but for general nonlinear systems, there is no such

conditions, hence it is very difficult to rule out the cxistence of singularity intervals before solving the

problem.

34  Time-Optimal Control of the Tendon Arin System

For the tendon arm system, the equations corresponding to equation (3.1) are given by equations

(2.60)+2.62) whjch describes the reduced-order model.

Since the tendons can only pull but not push on the arm, there is a non-negativity constraint on the

control, and equation (3.3) will now be replaced by

i=1,..,4

The expression for B(z(t)) can be obtained from equations (2.62) and (2.59):

If we represent N ! in equation (2.59) by

Then

®,

by(=(t)

byi  bay

={hu hio
ha1  hoo

and from equation (2.62),

o~
<
!

][

0

N [hu hia

by(z(t)). =[531 bsz baz b3
) byy by

—Kr/li Krlh eKr/lg

0

har  hag

|

0 ——Kf/l;; K'r/l4
_ [—hu/ll hitfly —(hi2 — eh1)/l3 (hlz-fhu)/lz;]

fort =1, 2,

j=1,..,4

—eKr/ 14]

r —ho/li harfly —(ha2 — ehp))/lz (hoa — eha1)/ly

(3.16)

(3;17)

(3.18)

(3.19)
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Substituting equations (3.18) and (3.19) into (3.13), we obtain the following expressions for q;-(t):
. hi1p3(t) + haipy(t
~ : q,(t) = —Kr 3 I 120
. hi1p3(t) + harpy(t
ai(t) = ke e Rarpll) |
2, . (3.20) .
. L (h12 — ehi1)p;(t) + (haz — ehai)py(t) :
_ - . . 4
S , (bt — ehinP3(E) + (o — ehon)pi)
. q4(t) = Kr I
: 4
The g;(t)'s will be used in cquation (3.15) to determine the value of w"(t). Since the sign and not the
- , magnitude of q;(t) is important, and since K, r,l;,7 = 1, ..., 4 arc all positive, we will define a new set of
q;(t) that can also be used in equation (3.15):
8,(t) = = (hup3(t) 4 harp(t))

' a5(t) = —((h12 — eh11)p3(t) + (h22 — eha1)py(t))
73(t) = (R12 — eh11)p5(t) + (haz — ehar)py(t)

and the optimal control u*(t) is given by

ui(t) = Umaz ifg;(t) <0
ui(t) =0 ifg;(t) >0 j=1,...,4 (3.22)

u;(t) indeterminate  ifg;(t) =0

where q;(t) is given by equation (3.21).

¥ Note that in equations (3.21), -
- 4,(t) = —a,(t)
a3(t) = —q4(t)

If we define new variables g1,(t), g34(t) given by

- ' 12(t) = @1(t) = —(hn1p3(t) + haipy(t)) A 6.23)
m o q:;4(t) = ('];(t) = "‘((hl2 — eh) I)P;(t) + (h22 — Chz])p;(t)) '

,,,,,
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Then cquations (3.22) can be rewritten as

if 1) <O, Wj(t) = Umaz, uy(t) =0
F a0 >0,  wlt)=0,  ult) = tmas (3.24)
if g1,(t) =0, uy(t), ug(t) indeterminate

and '
if g34(t) <0, U(t) = Umaz, Uy(t) =0
if g34(t) >0, uy(t) =0, wyt) = Umez (3.25)
if g34(t) =0, uy(t), uy(t) indeterminate

From equations (3.24) and (3.25), we sce that there is a certain relation between u;(t) and uy(t), between
~ uj(t) and wit), exceptin the case when q1,(t) = 0 or g3,(t) = 0. The four control components seem to
woik in pairs, u}(£) and wj(t) forming one pair, u(t) and w(t) forming the other. This agrees with the
physical situation, in which tendons 1 and 2 form one pair, and tendons 3 and 4 form the other.

Necessaty conditions (a) and (c) apply directly to the tendon arm system with the appropriate

definition of the Hamiltonian function.
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Chapter 4. Iterative Solution of the Time-Optimal Control Problem

4.1 Introduction

In Chapter 3, we have scen that the Minimum Principle provides us with nccessary conditions that
the optimal solution must satisfy. In particular, manipulation of nccessary condition (b) yields equations
(3.24) and (3.25) which cxpress u*(t) in tcrmsvof:c'(t) and p’(t). If the problent is non-singular, u*(t) is
well-defined and theoretically we can solve the time-optimal control problem by climinating u*(t) from
the canonical system given by equations (3.6)~(3.8), and solving the resulting two-point boundary value
prablem to obtain z'(t) and p*(t). and hence u*(t). But two-point boundary value problems are very
difficult to solve analytically except for some simple cases. Hence for higher order lincar and nonlinear
systems, we must in general resort to iterative methods to obtain solutions. '

A solution obtained by any iterative method is characterized by:

L itis iny» applicable to a specified initialk and final position pair. To obtain solutions for other pairs, we
have ‘to repeat the cntire iterative solution procedure, and |

2. itis expressed as a function of time.

The first statement means that we have to érecompute and store the control trajectories of every
relevant initial-final position pair, the second means that the contro! is open-loop and hence cannot
correct for any departure from the intended trajectory due to, say, external disturbances. These are
disadvantages, but since the complexity of our system precludes any other solution approach, we have to
employ the iterative approach and take into account the aforementioned disadvantages in the design of
the overall control scheme which will be discussed in later Chapters.

Plant[5] and Mufti[6] provide a surveys of various computational methods in optimal control problems
and each contains a long list of supporiing references. The criteria for choosing an iterative method for

our problem are that,

KX]
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1. itis easy to code, and
2. it can handle singular problems.

The second point is essential because as mentioned in Chapter 3, the possibility of the presence
of singularity cannot be ruled out, and in fact, from some preliminary runs using the steepest descent
method, one pair of controls does not approach bang-bang, indicating that the problem might be singular.

There are some computational methods developed cxp‘rcssly for singular p: oblems (sce e.g. [7]-[10]).
But the Conjugate Gradient method is chosen because
i. it is basically a first order method, hence its implementation is simple, and
2. itconverges quadratically near t.hc'opt,imum solution, and

3. it can handle singular problems.

4.2 The Conjugate Gradient Method

~The first order gradient nﬁctho.d is easy to implement but suffers from slow convergence near the
optimal solution. In 1967, the Conjugate Gradient Mcthod was applied to optimal control pfoblems [11],
[12]. The convergence rate of this method is superior to the gradient method wiih very little additional
computation per iteration. Pagurek & Woodside[13] and later Quintana & Davison[14] extended the
method to problems having bounded control constraints. :
We will first describe ghé Conjugate Gradient method as applied to a free end point, fixed terminal

time, optimal control problem, and in the next section, we will show how it is adapted to solve our time-

optimal control problem.

Problem Statement

Given the system

i(t) = F(a(0) + Ba)ul),  =(to) =20 BCH)

Find u(t) over the interval [to, t7] to minimize the cost function given by




A
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ty
J(u(t)) = K(z/(t)) + /to L(=(t), u(t)) dt (4.2)

where ¢ is fixed, and u(t) is assumed o be unconstrained.

Deﬁﬁe the Hamiltonian
H(x(t), p(t), u(t) = L(z(t), u(t)) + pT(O[F(=(t)) + B(z(t))u(t)] (4.3)

Then thc necessary conditions as give 1 by the Minimum Principle are the same as equations (3.6)-(3.10)

except for the boundary conditions (3.8) which are replaced by:

z'(to) = 20 »
Pt = 5 (="(tr) |
Solution Procedure
Define
SH T
H,(z(2), p(t)) = ga(x(t), p(t), u(t)) = BT(z(t))e(t) (4.5)

Let superscript ¢ represent the iteration number, and assume that we start with an initial estimate of the

optimal control trajectory u!(t).

At the 7th iteration,

1. Using u'(t), intcgrate the state equation forward from time ¢ to ¢, with z(tg) = o, to obtain zi(t).

Then, substituting z(t) and u*(¢) into the costate equation, integrate it backward from ¢ to to with
i) = S (= lt)

to obtain p*(t).

fign GMW
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Compute
g'(t) = H(p'(t), (1)) (4.6)
2. Determine conjugate-gradient direction using:
s'(t) = g'(t) + 81" (1) (4.7)
where .
PLr ST N gy
im1 g 9T wear fis1
g L:,fg““‘T(t)y“‘(t)dt = (4.8)
gi—t=0 ifi=1
3. Compute next control by,
wi(t) = u' — a'si(t) (4.9)
where a' is chosen using a one-dimensional search to minimize J(u'1!(¢)).
4. Repeat the whole procedure with ¢ = i 4 1 until J(-) does not improve significantly.
Control Constraints

#
To take into account constraints on the magnitude of the control as given in equation (3.16), the
above proceduré is modificd as follows (due to Pagurek & Woodside[13]):
1. Assume that Wj- is the saturation region of ug(t); define the scale function

wi)=0  fort € Wi, and

(4.10)
=1 elsewhere

 Note: subscript 7 refers to individual components of the corresponding vector. |
3. When computing 81, wi” (£)g(t) is used in place of g¥(t).
3. After computing uit! according to cquation (4.9), uit!(t) is truncated at the upper and lower

bounds before it is used in the computation of J(uf+1(¢)).
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43 Algorithm for the Time-Optimal Problem

In order to apply the conjugate gradient method as presented in the last section, the time-optimal
problem as stated in section 3.1 is modified as follows: |
1. A sequence of fixed terminal time, free end point problems are solved instead of the original free
~ terminal time problem.
2 Tyhvc fixed end point constraint is handled by means of a quadratic penalty function, that is, we solve
the following problem:
~ Given the dynamical equation described by equation (3.1), find a control u(t) € Q so as to minimize

the following cost function:
1 T,
J = 5(z(t) — =) Qalty) — =) (4.11)

subject to z(ty) = =, with to, t; and z; given.
If ts is too small, i.e., £y << Tonin, Where Tinip is the minimum time solution, the system cannot reach z¢
with the control in €2, hence J will not be close to zero. As t; increases and approaches T'y,in, however,
the optimum J value will decrease, and the smallest ¢, such that J is zero (within a certain tolerance) is

the solution to the original time-optimal problem.

Choice of ¢y

We can always start with a very small ¢, and gradually increase the value of ¢, but Lhﬁs will take too
long as each round (i.e. solving the modified problem with a given ts) by itself takes a long time (when
run on a PDP 11/34 mini-computer). Hence we will make use of the special structure of the optimal
control to brovidc an estimate of Ty,in.

It was found from some preliminary runs that in an optimal solution, one pair of controls, either
u; and up or uz and uy, always approaches bang-bang with only onc switching, and the form of the

other pair will depend on the relative magnitudes of 6 and ¢, which define the final position of the

RS
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arm (herceforth we will assume that 7o = 0, i.e., we arc interested in moving the arm from an upright
position to any specified final position). Although the two pairs of controls are coupled through the system
equation, the coupling is not very strong, and one can clearly identify the pair u; and uy as affcéting the
angle 8 much more strongly than u; and uy, and similarly, the pair uz, u, affects ¢ much more strongly.
Hence the time taken for the arm to move from @ = 0 to § = 6y is determined mainly by u; and uy, and

is only slightly affected by uz and u., the same applics to ¢ with uj, uy exchanging roles with uy, ua.

Hence to find the time taken for ihe arm to move from 6 = ¢ = 0tof = b, ¢ = 0, we will keep
ug and 14 to be zero (thereby ensuring ¢ to stay 0 throughout) and find a bang-bang control that will take
0 to 6y, this is a much easier problem to solve because we need only to scarch over the switching time,
which is only one-dimensional and can be easily done manually. Similarly we can find the time taken to
move from § = ¢ = 01t06 = 0, ¢ = ¢. The larger of the two values found above will be taken as an
estimate of Tynin. This value was found, in gencral, to be greater than T,in by about one to three time
steps (each time step is 5 msec). Hence the initial choice of ¢/ is taken to be three time steps smaller than
the estimated Tnin, and we neced to solve at most three rounds of the modified problem to obtain our

solutior.

Choice of @

Q s chosen to be diagonal and serves to weight the different components of z individually. We chose

the g;; that corresponds to the angle that is mainly affected by the bang bang pair of controls to be twice

the value of the rest. This is because as the iterations proceed, it becomes more and more difficult to

reduce that error term, as we are trying to reduce the transition time of the bang-bang control, making g;;

larger helps.

Choice of Initial Guess of u(t) in the Conjugate Gradient Method

The initial guess is chosen to be

P
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uw(t)~0 fori=1,...,4and forallt € [to, ] (4.12)

and we started with several iterations of stecpest descent before switching over to the conjugate gradient

method.

Method of finding a®

As mentioned in the procedure for the conjugate gradient method, a' is chosen using a one-
dimensional search technique. The method we used is to fit a parabola to threc points of a’s, chosen so
that the minimum of the parabola falls within the two extreme values of the a’s, a’ is chosen to be the

value of a that minimizes the parabola.

44 Approximation of the Optimal Solution

The results obtained using the conjugate gradient method for a particular final position is given in
figure 4-1. From this figure, we can see that the pair uz and u4 approaches bang-bang with one switching,
but not the pair u; and ug.

The optimal solution can be approximated by straight line segments as shown in figure 4-2, the stae
trajectorics for the optimal and the approximated control are shown in figure 4-3, and we see that the
response due to the approximated control compares favorably with the optimal solution. Any deviations
from the desired state at the terminal time will be handled by another closed-loop control law which will
be switched in after the open-loop control is terminated.

The general form of the optimal control and its approximation will be elaborated in Chapter 6.
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il i

Figure 4-2. Straight line segments approximation of the control given in figure 4-1.
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Figure 4-3.




Chapter 5. Regulation at the Final Position

51  Introduction

Since the arm is attached to the base plate by a three degree-of-frecdom "joint”, positive steady-state
tensions in the tendons are required to maintain the arm at any specified finai position. The required

control currents can be calculated by satting
zp = f(zp, uy) =0 (5.1)

“where z; is the specified final state of the system.
A uy that satisfies the above equation will be called a steady-state control for the set-point ;.

If the arm is initially at the required final state 2y, then u; will keep the arm at z; as long as there
is no external disturbance. However, any slight disturbance will cause the arm to move away from this
cquilibrium position because the equilibrium achieved by applying constant open-loop controls uy is an
unstable ote. |

Moreover, the transient phase open-loop control that brings the system from initial to final state
is based on a reduced-order model of the system, and also in order to implement it, it is necessary to
approximate the form of control by straight line segments. The open-loop control can only be stored at a
few points and the control law at other points is derived by interpolation. Hence at the end of the transient
phase during which open-loop control is applied, the final state reached by the system is not zy, but rather

somewhere in the vicinity of it.

In view of the above, closed-loop feedback control is required to
1. bring the system to the desired final state zy,

2. maintain the system at z; for any amount of time.

5.2 Lincarized Model
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Figure 5-1. Block diagram for the closed-loop feedback control scheme.

Let z; denote the desired final state, and uy denote the stcady-state control that satisfies equation
¢.D.
Define

1. State perturbation vector §z(t):

§z(t) = z(t) — z;

2. Control correction vector u(t):

Su(t) = u(t) — us

Then the control objective can be stated as follows:

DEHGRE SR

Given éz(t), find §u(7), 7 = t such that future state perturbation vector§ §z(r) are as small as
possible for all 7 € [, 00), or find a controller, as depicted in figure 5-1 that will acéoxx1pli$h this.

We will employ the linear-quadratic approach to designing the controller. Since we are trying to kecp
the system at a fixed set-point, this is also known as the lincar regulator problem.

First we must derive the relationship between §z(t) and du(t):
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z(t) and u(t) are related by the system equation:
£(t) = f(=(t), u(t)) (5.2)
Expanding f(z(t), u(t)) about 27, uy in a Taylor serics expansion,
of of
f(=(t), u(t)) = flzy, us) + 5;:(:5], up)oz(t) + 5—d(xf, us)bu(t) + h.o.t. (5.3)

where h.o.t. denotes the higher order terms in the Taylor scries expansion.

Since
6z(t) = £(t) — 2y
and
jf = f(xf: 'U.f) = 0’
we have,
. a e
5:(t) = % (), up)balt) + 2L (zy, u)ou(t) + hot (5.4)
Iz du )
Define of
A= ”de'(xf» uy)
. (5.5)
B= Q‘f‘(“’f uy)
Sut ,
and assuming that the higher order terms are negligible, we obtain to first approximation that
6z(t) = Abz(t) + Béu(t) . (5.8)

For the remainder of the Chapicf, the §-notation will be dropped for simplicity, and the linearized

model will be represented as

§(t) = Az(t) + Bu(t) )
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5.3  The Linecar Regulator Problem

Given the lincar time-invariant system
z(t) = Az(t) + Bu(t) (5.8)
and its initial condition zo, find u(t) such that the following quadratic cost functional is minimized
(e o)
J = / (zT(1)Qz(t) + u” (t)Ru(t))dt (5.9)
0

whereQ =QT >0, R=RT>0.
Derivation of the solution to the above problem can be found in Kwakernaak & Sivan[15]. Tt is

shown that the optimal control u*(t) is given by
u'(t) = —Gz(t) (5.10)

where

G =R™'BTP (5.11)
and P is the solution of the following Algebraic Riccati Equation (ARE):
0=—PA—ATP—Q+ PBR™'BTP (5.12)

If the original system is completely -controllable, then the solution to the above ARE exists. In
addition, since we are ass@ming that we are observing all the states, the system is completely observable, it
can be shown that the fecdback system is asymptotically stable (scc e.g. Kwakernaak & Sivan([15]).

We will now consider the choice of the weighting matrices @ and R in thc cost function given by

cquation (5.9):

st
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In general, the selection of @ and R is not a simple matter; they arc usually chosen on the basis
of engineering experience coupled with simulation runs of the resultant system using different weighting
values. In most practical applications, R and @ are chosen to be diagonal because in this way we can in-
dividually penalize specific components of z(¢) and u(t). We will likewise choose R and @ to be diagonal.
Since there is no reason to penalize any one component of u(t) more than the others, R is chosen to be
of the form pI, where p is a positive scalar. Once Q is chosen, by adjusting p, we can vary the relative
weighting between the state perturbation and control perturbation vectors.

Speciﬁéally, the effects of p are:

1. the smaller p is, the faster is the state perturbation vector z(t) reduced to zero, this corresponds to the
poles of the system being pushed to the left of the s-plane.

2. the smaller p is, the larger will be the feedback gain matrix, i.e. G in equation (5.10), this corresponds

to large control magnitude.

Hence there will be a tradeoff between the speed of response and the amount of control to be put into the

system.

When we consider the maximum allowable magnitude of control perturbation, we must bear in mind

the control constraint which is givén’by
0 S u;(t) S Umaz fOri = 1, . ey 4 ) (5-13)

where u;(t) here is the total control input to the system.
In our case, since we are interested in reducing the position error to zero as fast as possible, we

choose not to penalize the velocity terms. Hence @ is of the form,

L 03
Q=
03 03
and p is chosen so that the slowest pair of poles is only slightly underdamped so that there will not be

much overshoot.
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Taking all these into consideration, and after some trial and errors and looking at the closed-loop
eigenvalues and resultant runs, p is chosen to be 0.2. The values chosen are not optimal, but they repre-
sent a reasonable choice and yield an acceptable response. The response can of course be improved upon

by further fine-tuning, but we are not putting any emphasis on it at this stage.

54  Determination of Steady-State Control Input

The steady-state control u(t) required to hold the arm at any position, say 8y, @7, 1y, can be ob-
tained from equation (5.1), where z; = (6; é; ¥y b, é; 7)7. Since z(t) is a 6-vector, we will
obtain six algebraic equations from equation (5.1), but the first three do not involve u(t) and only give us
24 = 5 = 7 = 0 which corresponds to f; = ¢; = iy = 0.

Therefore from equation (5.1) and by substituting the valuesof z; = (6; ¢y %y 0 0 0)7 into
| it, we can obtain three algebraic equations involving the four scalar controls uy;, ¢ = 1,...,4; by solving
these three equations, we can obtain uy. However, note that we have one degree-of-freedom in choosing
uy subject to the three equations and the control constraint given by equation (5.13). By specifying any
one of the uy;s, we can uniquely specify the other three.

There are two ways of taking advantage of this one degree-of-freedom:

1. we could, for each position, find the minimum values of control that will satisfy the three equations as
well as the non-negativity contraint. Effectively we are setting one of the uy;’s to be zero and solving
the three equations for the other three uy;’s. The one to be set to zero is chosen such that all uz;’s are
non-negative.

2. we could introduce another algebraic equation involving the uy,’s, and by solving these four simul-
tancous equations we can get unique values for the uy’s. Specifically, the equation introduced
is

4
Eu[,' =k » (5'14)

=1

TR .
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Since all the uy,’s are non-negative, the larger the value of k, the larger are the uy;’s. In this context,

this degree-of-freedom is thought of as providing us with the freedom of choosing the overall control

level.

The first method is attractive in that it provides us with a way of specifying minimum control to ke;p
the arm at any desired posmon since we do not want to expend unnecessary ¢nergy holdmg the arm at a
fixed position. However, since one of the components will be zero, or very near zero, the non-negativity
control constraint is easily violated when we apply the feedback control law as g iven by cquation (5.10).

On the other hand, the second method provides us with a way of specifying u; at any position such
that y_ uy; at all positions within the working space is the same. This is attractive because it was found
that if this is so, then the "main" components of the feedback gain G as given in equation (5.11) do not
vary significantly for all the positions. This point will be elaborated further in Chapter 6.

Hence the second approach is used. k is chosen such that for any position within the working space,
the uy;'s obtained by solving the four simultaneous equations- arc all non-negative.

The value of k found and used is 7, and the most critical position (with one of the uy;’s nearest to

zero) occurs approximately ata = 45°, 8 = 10°, ¢ = 45°.
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Chapter 6. Implementation and Simulation of the Overall Control Structure

6.1 Introduction

As stated in Chapter 1, we are interested in moving the arm from an upright position to any specified

_final position. The overall control scheme for this movement is divided into two phases. In the first phase,

open-loop time-optimal control approximation is applicd to bring the arm to th2 vicinity Qf the specified
final position. In the second phase, a closed-loop lincar feedback control law will be switched in to bring
the system to the desired final position and to maintain it there.

In order to implement this control scheme, we must have available the open-loop control and the
feedback gain for every final position that can be spbciﬁed. Since the computation time of the former is
too long and the memory requircment for the latter is too large for them to be calculated on-line using
the PDP 11/45 which is used for the control of the tendon arm, they must somchow be precalculated
and stored. Since it is impossible to store the values for every possible final position, which arc infinite
in number, we need to partitioﬁ the entire state space into regions and precompute the open-loop control
trajectory and the feedback gain of a represcntative point of each region and store them in tables of some
sort. As for the other points in the region, we can either interpolate or use the same value throughout a
region. The latter approach is employed due to:

1. the feedback gain does not change significantly within a region, and

2. there. is no satisfactory way of interpolating the open-loop control, and since feedback control is
employcd in the second phase, we rely on it to bring thé system to the desired state, and

3. itissimple.

The next two sections describe means of represcnting and storing the open-loop control trajectories
and the feedback gains. The last scction describes briefly the program written for the implementation of

the overall control scheme.

51
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6.2 Representation and Storing of Open-Loop Time-Optimal Trajectories

Symmetry of the Control Trajectories

The design and construction of the tendon arm is such that it restricts the range of movement of the
arm. In this thesis, this range will be te ken as
0<a< ’Z‘
0 <0< 2n (6.1)
Tep<®
4—"— 14
where a, 8, ¥ arc as defined by figure 2-4.

We will divide this space into four quadrants with the following correspondence:

0<p<} 1st quadrant
rp< 2nd quadrant
T<pf<H 3rd quadrant
<p<2n 4th quadrant * @

For the time-optimal trajectories, there is a symmetry among the four quadrants such that oﬁly those
of the first quadrant nced to be stored and those of the other three quadrants can bé obtained from tl.le
corresponding trajectory in the first quadrant.

Let w;(t), i = 1,..., 4 be the control trajectory that will bringi the system from the initial position
to a final position defined by § = 0y, ¢ = ¢y, where (0y, ¢y) is in the first quadrant (recall that the time-
optimal control is obtained using the reduced-order model and hence % is not relevant).

Then, to obtain the control trajectory for , )

1. 0=—bp0= —¢y; exchange uy (t) and ug(t), exchange ug(t) and u4(t). :
2. 0= —0,;, ¢ = ¢y exchange u(t) and uy(¢), do not exchange u3(t) and uy(t)
3. 0 =8¢ = —d¢s; donot exchange uy(t) and uy(t), exchange u3(t) and uy(t).

Hence in all the discussion that follows, we will take the final position to be in the first quadrant.
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Uz.Ug
(U| V)

Figure 6-2. Form of the bang-bang pair of controls

Form of time-optimal control

As stated in section 4.3, it was found that, in general, one pair of controls is bang-bang and the other

pair is not (both pair of controls could be bang-bang for certain values of  and ¢,). Which pair it is that

is bang-bang depcnds on the relative magnitude of 6 and ¢y.

In general, the pair that is not bang-bang can be well-approximated by straight line segments, and
they can be of any form as shown in ﬁguré 6-1. The pair that is bang-bang is of the form that is shown in
figure 6-2. Hence any pair of controls can be represented by the numbers hy, hy, Uy, &, t3, ¢y as shown in
figure 6-3.

There are two ways of representing the open-loop control trajectory for any final position:

1. Represent both pairs by the general form shown in figure 6-3. By choosing appropriate values for by,
hai, ili, tai, tai, ty, 1 = 1,2, we can represent any of the forms given by figurc 6-1 and the bang-
‘bang control of figure 6-2. (i = 1 represents u; and up, ¢ = 2 represents u3 and u4). Since in
implementing the control scheme with a digital computer, the time axis is discrete, hence the ¢;;8 are

integer numbers. Using this scheme, we need a total of 4 rcal numbers and 7 integer numbers to

EE
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U Uz
(vs ug)

Uy V2
(U; ,U4)

Figiite 6-1. Various forms of the non-bang-bang pair of controls

represent the control trajectory of each final position.

2. Represent the non-bang-bang pair by the gencral form, and represent the bang-bang pair by one
number, that of the switching time. Hence in this scheme, we need 2 rcal numbers, 5 integers and 1

bit to indicate which pair is bang-bang.

The first method is chosen because it is straightforward to code and at this stage we are only trying out
the overall control scheme using simulation and hence the partitioning into regions is very coarse and is as

shown in figure 6-4. We arc not too concerned yet with conserving storage.
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Figure 6-3. General representation of any pair of controls

In practical implementation, we need of course to partition the state-space into a finer grid, hence
reducing the storage requirement per point will be one of the prime concerns. We can then consider the
fol]ow'ing two ways of saving storage:

1. With the sampling rate (5 msec) used, the maximum time step corresponding to ¢y is less than 100,
hence we can pack two time values (e.g. t; and t;) into one word.

2. In actual system implementation, the control will be applied to the motors via digital-to-analog con-
verters which takes integer value as input, hence the control values can be stored as scaled integers
instead of real numbers.

If these two modiﬁcations are implemented, only 8 words for the first method and § words for the second

method are required per point.

63  Representation and Storing of Feedback Gains

The feedback gain G of the lincar regulator design is a 4 X 6 matrix. If gij, ¢ = 1,...,4,j =

1,...,6, represents the component of G, then g;; is the contribution of z; to u,, t.€.,

DR

R



Figure 6-4. Partitioning used in the simulation run

o
u; = U; — 2 9i;Zj ‘ (6.2)
j=1
where @; is the steady-state control.
‘Hence we can partition the matrix G into main componcnts and cross-coupled components:
For u; and uy, since they directly affect 6 anvd g, and only indirectly ¢ and é, we will treat 911, @21, 914, R4
as main components.
Similarly for u3 and uy, since they directly affect ¢ and ¢ we will group g3z, ¢4z, @35, g45 as main

components.
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Figure 6-5. Cross-hatched area showing the main elements of matrix G

Since all four controls directly affect 4 and ¥, we will tfcat gi3. gis, ¢ = 1, ..., 4, as main components.
Hence as indicated in figure 6-5, the cross-hatched elements are the main components.

Table 6-1 shows the feedback gains for the various positions indicated in figure 6-6 and for ¢ = 0.
From this table, we can see that the valucs of the main components do not Vary much for different
positions, and it is only the cross-coupled terms that change significantly, for cxample, compare g1, ¢22 of
points 5 and 6, there is as much as an order of magnitude of difference.

Table 6-2 shows the feedback gains for position 3 (@ = #/6, § = =/4) but with different values of
1. It can be seen that all components of G do not vary significantly for different 1, hence we will take
them as the same and cqual to those at ¢ = 0.

Table 6-3 shows the feedback gains for position 3 and its corresponding positions in the other three

quadrants. To a first approximation, we can obtain G of the third quadrant from the first quadrant, and of
the fourth from the second as follows:
exchange row 1 and 2, row 3 and 4, and

change the signs of all the clements except those of columns 3 and 6.

O B
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o150 s 30" o £ 45°

5

Figure 6-6. Figure showing various final positions used in Table 6-1

For implementation purposes, we will treat the main components of G to be the same for all posi-
tions in the four quadrants, using those of the upright position, and store the non-main components for
position 1, 3, 5 and 6 and their corresponding positions in quadrant 2. i.e., the partitioning into regions is

the same as for the open-loop control.

6.4 Structure of Overall Control Program and its Implementation

Thé working space of the arm is defined by equation (6.1) and is partitioned into regions as shown in
figure 6-4. The open-loop control and feedback gain of the representative point, called the center, of each
region are stored as described in the last two sections.

When a set-point command is issucd, the program will first detcrmine which region the final position
is in, after which the entirc open-loop c?11trol trajectory and the feedback gain G for its center are deter-
mined, these will be used for the final position specified. At the same time, the steady-state current at the

final position is calculated.

The open-loop control is then applied to the system: at each time step, generated by an interrupt
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from the real-time clock, a control vector is output to the system. At the end of the first phase, determined
by the final time of the open-loop control, the closed-loop lincar feedback law will be used: at the occur-
rence of each interrupt, the state of the system is read via the A to D, from which the state perturbation

vector 8 is calculated, and the control correction vector is calculated by
u = u; — Géz (6.3)

where 1, is the steady-state control vector.
This u is then output to the system.

Because the physical tendon arm system is not ready, the overall control scheme will be simulated on
the PDP 11745 computer. But the program is written as if it is a real time system except that a software
subroutjne is being suﬁstituted for the arm, and the time scale is expanded duc to 'Lhe length of time

required for the subroutine. The block diagram for the program is given in figure 6-7.

Figure 6-8 shows the state trajectories for three different final positions.
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read in desired final position

) 4
calculate steady state current

<

determine which region xf
is in and caolcvlate open-loop
control and feedback gain

1
set up clock interrupt for
open-loop control
- | ' JL
git I 18 Jor RRSEPE R L ST it
OCt;Ur h

using current state Xc
ond control, integrote

' L—{ system equation forward
end of phase one 1 time step to get new
state. storein Xc.

wait in loop for interrupt to L‘ interrupt occurs
I
|
|

set up clock interrupt for
closed - loop control

v |
wait in loop for interrupt to interrupt occurs
oawr I M

.
!
[ using Xc. calculote stote
) | | perturbation vector and
, | using G and steady stote
! control vector, caiculate
L _| control vector o be
opplied to system. Then
using this vector, integrate
system equation forward
- one time step. Store new
state in Xc .

Figure 6-7. Block diagram for the overall control program
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Table 6-1 Feedback gains for the various positions showr in

Figure 6-6

(] [}
i ®x=0°,p:0°, ¥P:0°
-4.0294D+00 -2.1103D0-01 1 .5044D+00

4.02340+00 2.11030-01 1.5044D+00

-2.8960C-01 -4.83190+00v-1.53630+00

2.83960D-01 4.6319D+00 -1 .53630+00

2 < =15, p=45°

-3.45300+00 3.6891D-C1 1.0416D+0C
3.5B890+C0O 7.4437D-01 1.0492D+00
1.50865-01 -4.3907D+0C —1.03960+00

5.5215D-01 4.36738D+00 -1.09710+00

3 oc:30°. p =45

-3.6866D+00 1.0323D+CO 1.03310+4C0
3.7028D+G0 1.1766D+00 1.04B0D+00
9.2702D-C1 —4.4483D+00 -1.0131D+00

5.6905D-01 4.4091D+00 -1.11800+00

4 “.: ‘5. ' p = 4.5.
-4.2914D+00 1.6954D+00 1.0417D+00
3.8881D+00 1.6345D+00 1.0402D+00

2.0307D+00 -4.5805D+00 =9 .9308D-01

-6.0678D-01 -2.2333D0-02 8.3086D-02
6.0678D-01 2.2333D-02 8.3086D-02
-1.80810-02 =7.5378D-01 -8.48500-02
1.8081D-02 7.53780-01 -8.48500-02

-5.3920D0-01 4.26700-02 6.90650-02
5.9555D-01 8.72050-02 6.91740-02
2.6577D-02 -6.8781D-01 ~6.9136D-02

4.17200-02 7.3414D-01 -7.2071D-02

-5.2884D-01 1.10980-01 6.9476D-02
6.30000-01 1.41530-01 6.9113D-02
9.9182D0-02 '6.52230-01 -6.8077D-02
3.3458D-02 7.4456D0-01 -7.32970-02

-5.4604D-01 1.7014D-01 7.0824D-02
6.7243D-01 2.0166D-01 6.8619D-02

1.96370-01 =6.1743D-01 -6.7677D-02

3.8914D-01 4.6025D+00 =1.1267D+00 ~5.8456D-03 7.61070-01 =7.39710-02




5 «=30", p:=0°

' -3.341SD+00 1.35723D+C0 1.0603D+00
3.6233D+00 1.8534D+00 1.0963D+00
-2.5584D-C1 -4.9148D+C0 ~9.0654D0-01

3.9565D-01 4.74320+00 -1 .13620+0C

6 ®:30°, p:90°

~3.7638D+00 -1.3065D0-02 9.7825D-01
4.0262D+00 3.54340-01 1.0033D+00
B.2385D-01 -3.8834D+00 —-1.1523D+00

1.3934D+00 4.16610+00 =1.09090+00

7 o :45°, p:225°

-3.9004D+00 2.867390+00 1.1103D+00
3.45750+00 2.5295D+00 1.09450+00
1.0434D+00 ~5.0584D+00 -8.3655D-01

1.2178D0~-01 5.2718D+00 =1.1241D+00

o) k= 45°  p=675°
~4.16080+00 7.1318D-01 9.25940-01

©'4.5281D+00 9.1009D-01 9.937390-01
2.3693D+00 -3.8769D+C0 =1.1557D+00

1.2249D0+00 4.0157D+00 =1.1283D+00
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~5.5295D0-01
5.72160-01
~7.6211D-03
3.6699D0-02

~5.1258D0~-C1
6.7718D-01
8.1149D-02
1.1188D0-01

-5.54180-01
6.0214D-01
1.0865D-01
=1.2945D0-02

=5.0827D0-01
7.45590-01
2.2660D0-01
7.1972D-02

1.6731D-01 7.08480-02
2.12130-01 7.33490-02
=-7.14830-01 ~6.21650-02

8.0938D-01 -7.30830-02

-9.66560-04 6.55430-02
3.68480-02 6.5561D-02
-6.0983D0-01 -7.5613D0-02
6.6908D-01 -7.34580-02

2.86820-01 7.55400-02
2.9411D-01 7.3503D-02
-6.7251D0-01 -5.81130-02
8.7344D-01 =-7.2237D-02

6.62690-02 6.29460-02
1.12040-01 6.4784D-02
-5.37390-01 =7.7228D0-02
§.44530-01 ~-7.5914D-02

i

i

g

AT
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Feedback gain for positions with o = 30°, p= 45°

and different valves of ¥

Table 6-2
o
l w =.~3o
~-3.7123D+00 1.0024D+00
©3.7314D+00 1.1506D+L0
9.2553D-01 -4.3568D+00
5.7194D-01 4.2893D+00
2 ¢=-0°
~-3.6866D+00 1.0323D+00
3.7028D+400 1.1766D0+00
9.27020-01 =4.4483D+C0
5.6905D-01 4.4091D+00
(]
3 9-=+30
~3.6557D+00 1.0644D+00
3.6706D+00 1.2022D+CC
9.2745D-01 -4.5415D+00

5.

6379D-01 4.5372D0+00

4.05720+00 -5.301D-01 1.05280-01 7.08570-02
1.06100+00 6.3314D-01 1.37280-01 6.99600-02
-9.8331D-01 1.00100-01_—6.41030401 —5.61960-02
-1.10160+00 3.4235D0-02 7.27660-01 =7.2309D-02

1.0381D+00 -5.2884D-01 1.10980-01 6.9478D-02
1.0480D+00 6.30000-01 1.4153D-01 6.9113D-02
-1.0131D+00 9.9182p-02 -6.52230-01 -6.80770-02

-1.1180D+00 3.3458D-02 7 .44560-01 -7»32970‘@2

1.01930+00 -5.2694D-01 1.16920-01 6.81260-02
1 03500400 6.2642D-01 1.45770-01 6.82660-02
-1.04110+00 9.8231D-02 -6.63710-01 -6.98760-02

-1.13220400 3.2531D0-02 7.6248D-01 =7.41580-02




Y

Table 6-3

1

-3.6866D+00
3.7028D+00
9.27020-01
5.69050-01

I

-3.8%08D+C0
3.6138D+400
~1.2574C-21

1.4618D+00

I

-3.7028D+C0
3.€366D0+00
-5.69080~C1

-9.2701D-01

I

-3.6238D+00
3.8721D400
-1 .4344D+00

1.3926D0-C1
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Feedback gains for o= 30°, p=45°

and its Corfe
the other 3 quadrants

1.0323D+00
1.17660+00

~4.4483D+00

4.40910+00 -1.1180D0+00 3.3458D-02

-1.1524D+00
-4.728¢0-C1
-4.1834D+00

4.658ED+00

-1.1766D+C0
=1.0325D+lC
=4.4021D+30

4.4483D+00

4.7528D0-01
1.1504D+00
-4.6586D+00

4.1838D+00

1.0381D+00 -5.28840-01
1.04800+00 6.3000D0-01
-1.0131D0+00 9.9182D-02 -6.52230-01

1.0507D+00
1 1.0091D+00
-1.1682D+20

-9.9154D-01

1.0480D+00
1.038iD+00
-1.118CD+C0

-1.01310+00

1.0084D+00
1.05120+00

-9.91580-01

-1.16830+00 2.20270-02

1.1871D-01

nding positions in

7 .4456D-01

-5.4407D-01 -1.25120-01
6.2405D0-01 -7.08780-02

-2.1993D-02 -7.0808D-01

7.08320~-C1

-6.3000D-C1 =-1.,4153D9-01
5.2884D-01 -=1,1098D-01

=3.3453D-C2 -7.4455D-01

-9.9182D-02 6.5223D-01
~6.2393D0-01 7.1127D-C2
5.4358D0-01 1.2490D-01

-1.1830D0-01 ~=7,08420-01

7.0814D-01

I )U'A
I I
1.1098D0-01 6.9478D0-02
1.41530-01 6.9113D-02

-6 .8077D-02
-7.32970-02

7.0484D0-02
6.66320-02
-7.5408D-02
-6.79170-02

6.91i30-02
6.9478D0-02
=7.32970-02
-6.8077D-02

6.66530-02
7.0466D-02
-6.7914D-02
-7.54070-02



Chapter 7. Conclusions

7.1 Sunnma’ry

In this thesis, a mathematical model describing the dynamics of the tendon arm system has been
developed. From this, we obtained a reduced-order model of the system and applied the Minimum
Principle and the conjugate gradient method to obtain the time-optimal solution. It was found that the
optimal solution is not bang-bang but that it contains singular arcs. But it was also found that these
singular arcs can be approximated very well by straight linc segments, this approximated control is then
utilized to form part of the overall control scheme.

The open-loop tendon arm system was found to be unstable, and hence to maintain the system
at any state, closed-loop feedback control is required. The feedback law was designed using the linear
regulator design procedure, linearizing the nonlincar dynamics about the final state and the nominal
control required to keep the system there.

The two control schemes are combined with the first phase being open-loop time-optimal control,
bringing the system from its initial state to a waypoint in the vicinity of the final state, the second phase
then employs the closed-loop control law to bring the system to the final statc and to maintain it there. |

It was intended initially to implement the overall control scheme on the actual physical system, but
due to unforescen circumstances, this was not possible, instead, digital simulations of the systettt with the

control scheme implemented were done.

72 Areas for further work

There are a few dircctions that we can go from here:

1. Implément the control scheme on the actual physical system — this is the most natural extension to

the present work. However, before this can be done, there are a few problems to be taken care of:
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2.

3.

4,
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a. Thg conqt_rol‘ vector of our prqb]cm is formulated in terms of input currents to the motors. The
drivers fdr the tendon arm motors,' however, are voltage amplificrs, hence we have to reformu-
late and solve our problem in terms of voltage inputs. This can be casily done however, and the
way to do it is shown in Appendix F.

b. The lincar regulator design assumcs full state feedback. For the tendon arm , we have only angle
measurements but not velocity measurements, we need to find some means of constructing
the full state (the simplest way, of course, is to use backward differencing of the angles to
approximate the velocity terms).

¢. In the simulation of the control scheme, a very coarse grid is utilized to partition the state space.
In actual implementation, a finer grid has to be used, and the problems of how many grid
points to use and where to place them have to be considered.

Investigate other means of simplifying the model — the biggest disadvantage of the present control
scheme is that the third degrec-of-freedom , namely, ¥, is not being controlled during the first phase
of movement, this is due to the approach employed in simplifying the system equation. It was found
that the coupling between @ and ¢ is not very strong, thus it may be possible to simplify the system
equations while retaining the full order dynamics.

The motivation of using time-optimal control initially is because of its bang-bang solution nature (z.e.
in the absence of singularity). It would be interesting to formulate the time-optimal control problem

as one having a discrete control set constraint, t.e.,
ui(t) € {0; uma:c}

and find out what the form of the optimal solution is. It should also be interesting to formulate the
Lime-op‘timal problem based on the full order model and solve it, if possible, to sce whether it is
bang- bang.

In our control scheme, we have utilized the measurements of the angles 8, ¢, and ¢ but not the four




motor shaft angles. Investigate other ¢

all seven angles.
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ontrol strategies that will take advantage of the availability of
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Appendix A. Deriving the equations of motion of the system when either pair of

tendons is completely unwrapped from the arm

Due to the way the four tendons are wrapped around the arm, at any one ‘ime it is possible for only
one pair to be completely unwrapped. Hence there are three different sets ol cquations describing the
motion of the system depending on the values of w + N and ' 4 N (refer (o figures 2-7(a) and 2-8(a) for
the definitions of w, N, ’, N, where R; is now the point at which a tangent frem P; touches the arm, all
projected onto the £ — o' plane).

The three cases correspond to:
l. w4\ < 3n/dandw’ + N < 3n/4, both pair of tendons are properly wrapped on the arm, this is

the normal mode of operation.

2. w- N> 3n/4andw 4 N < 37/4, the first pair, corresponding to tendons 1 and 2, is completely

unwrapped, whercas the second pair remains wrapped.

3 w4 N < 37/4 and W’ + N > 3n/4, the first pair remains wrapped, whereas the second pair is

completely unwrapped.

The equations of motion corresponding to case 1. have been developed in Chapter 2; those of the last two

cases will be developed in this Appendix.

Al Tendons 1 and 2 are completely unwrapped

When w + N > 3n/4, where w and N are still being defined by equations (2.7) and (2.8), tendons 1

and 2 arc completely unwrapped, the situation is shown in figure A-1.

The directions of Fy and F (the tensions in tendons 1 & 2) arc now given by QfPl and Q{Pz

respectively, and equations (2.12)~2.13), (2.17)~(2.18) arc modified to
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Figure A-1. Schematic diagram showing the arm and tendons 1 & 2(projected onto the  — ¥/
plane) when w -+ N > 37/4.

i 3
Li=1=QP = |(acosfsinyp — —épf + (acosfcosy + ép)2 + (b+ asin0)2]

L

r 4
= |2absind + a + b% + p2 + v'2pa cos B(cos ¢ — sin 11))] (A1)
L

) . )
1 1
Ly=1l=QP, = (—acososin¢+—-p)2+(—acqsacos¢———p)2+(asino—b)2]
’ ’ | V2 V2

- ‘ : 3
= |—2absinf + a® + b2 + p* + V'2pacosf(cosy — sin ¢)] (A.2)

Equation (2.35) now becomes:

Resultant torque acting on the arm about point O

_o‘lei“,+0292 xﬁ‘2+0R3><F3+0R4><F4+demg

|Q1P |OQ1 X QP+ IQ 2 |0Q2 X QP + |R 2 IORa X R3P;3
Fy

+ ‘R4P4|0R4 X R4Py+ mgOG x GD
= 1T+ T2 + kT3 ' (A.3)

where

T
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7= | L sasing — abcosfcosth| + 2| ——pasin® -+ abcosf cos
+ ILi [ps sin ¢ cos B sin(w’ + N) — 238(cos ¢ sin Y — sinf sin ¢ cos ¥)]
3
+ % [ps sin ¢ cos @ sin(w’ + ) + 25(cos ¢ sin ¢ — sin @ sin ¢ cos )]
4
+ mgd(sin ¢ sin 9 + cos @ sind cos ¥) (A.4)

Ty = g[—l—pasinﬂ + abcosésin 1/)] + Ez[-—\;—ipasinﬂ — abcosfsin 1/)]

1 \/_2_ L2
+ %[fps sin ¢ cosé cos(w' + N) — égs(cos ¢ cos ¥ + sin @ sin ¢ sin )]
3
+ {—4 [—pssin ¢ cosf cos(w' + N) + 245(cos ¢ cos 1 -+ sin fsin @ sin )]
!
+ mgd(sin ¢ cos ¢ — cos #sindsin ) (A.5)
(A, R)L .
Ts = (Lx + Lz) ﬂpa cosf(cos ¥ -+ sin 9)
+ (% + %)ps[sinq&sin()cos(}\' + @) — cos gpsin(N + )] (A.8)
3 4

In equations (A.4)—(A.6), Ly and L, are as defined in equations (A.1) (A.2), the others are defined as in

equations (2.19)+2.32).

A2 Tendons 2 and 4 are complctely unwrapped

Following the same procedure as in section A.1, when w’ 4 N > 37/4, the directions of F3 and Fy

will be given by Q;;Pg and Q4’P4 respectively, and

——
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Li=l=Q;P;= [(—scos¢pcostp — ssingsinbsinyp — —l——p)2
V2

1
+ (scos¢siny — ssin@sinfcosyp + —p)? -
V2

+ (—ssin¢ cosd — t)2

C=[s24 t2+pé+ \/§p$c0s¢(cos¢+siﬁ¢) :
+ ~/2pssin ¢ sin 8(sin ¢ — cos ¥) + 2st sin ¢ cos 0]5 (A7)

Ly=1l;=Q4Py = [(scospcost) 4 ssin psinfsiny + ——l—-—,z;)2
V2

1
+ (—scos ¢sintp + ssin@sinf cos ) — — p)?
V2

+ (ssin ¢ cos 8 — )]}
= [ 4 t2+p? + V/2ps cos #(cos ¢ + siny)
+ v/2pssin ¢ sin 0(sin  — cos 1) — 2st sin ¢ cos 6]} (A.8)

T\ = g[—pa sin0 cos(w + \) — zja cosf cos ¢] + -EZ[—pa sinf cos(w + N) + za cosf cos 9]
1 2 .

+ %[—%ps sin ¢ cos@ — ts(cos ¢ sin ¢ — sin ¢ sin b cos )]

+ %[—\;—ips sin ¢ cos @ -+ ts(cos ¢ sin Y — sin ¢ sind cos )] |

+ mgd(sin ¢ sin ¢ + cos @ sin 8 cos ) (A.9)
T, = ?—[pa sin@sin(w + \) 4+ zja cosfsin ¢] + %[pa sinf@sin(w + \) — 2a cosfsin 9]

1

+ %[%ps sin ¢ cosQ — ts(cos ¢ cos i + sin ¢ sinf sin )]

+ %[%ps sin ¢ cos@ - ts(cos ¢ cos 1 + sin @ sinf sin )]

-+ mgd(sin ¢ cos ¢ — cos ¢sin Bsin ¥) (A.10)

Y N N
T3 = (Ll -+ Lz)pacos{)sm)\

-} ({—3; + %)—\-/%ps[cos #(sin ¢p — cos 9p) — sin $sinf(cos + sin ¥)] (A.11)
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Note: In equations (A.9-(A.11), L3 and L, arc as defined in cquations (A.7) and (A.8), the others are as

defined in equations (2.7)~(2.18).

A3 Equations of Motion

The equations of motion for the two cases of unwrapped tendons can be derived following the proce-
dure in subsection 2.2.4, and instead of using equations (2.36)~2.38) for the cxpressions for Ty, Ty, and
T, equations (A.4)~(A.6) or cquations (A.9)~(A.11) are used depending on which pair of tendons are

unwrapped. The full detail of the equations corresponding to equation (2.48) is given in Appendix B.




w RPN

Appendix B. Equations of motion for the full order model

By substituting expressions for Ty, Ty, T3 and equations (2.40)-(2.45) into equations (2.39), the three

equations become,

Iy 4l al Il al
0[Jcos1,b— ;—l( T +Cl2 2 4- Cl3gy J bepa 4)]

+ ¢[Jcos€sm¢ —_ -T—n( “6: + 1262 + Clgal; + 6143—2 ]

m, Ol Ay 8l3
+¢[ (110¢+012¢+0136¢+14(%]

;B
= -[61111 + ciohh + ci3B + craly) + 15 + 0=+ [Cu + 612 2 + 613 3 b erqm ]

Al Sy
9 <9¢

+ Y= m{u +Cx2 +613613+ 14&4]

+ ¢ m[u + 2z +as ¢+ 1457 ¢]

o) e oy oY
+ 6% m[ 11?920[21 + 12(;!22 + 1332;; +cx4zol:]

+ &2[(-—4 + J3)sinf cosf cos ¢ + i (c ,1322 + 126;2 + 136‘;3 + HZZ;)]

+¢2J’”[ o g+ el +c14f;2—¢%]

+ 20‘4;[(.1 - %Jg) sinfsin + {%(c, i 2:;; +ci2 ;:;; + a3 a%;; TP l‘;)]
+2¢¢[-§c0§¢cose+f (s + lza%jﬁcmaﬁjﬁcmaﬁ;)]

+2¢0[ Jysins -+ T en 0+ el e S + 142/239)] (B.) *

15
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I dl A, A al
9[ Jsmzﬁ————( C21 59 l +622 2 o 3+624—1]

+¢[Jcos€cos¢ "‘(c215¢—|—c22 ¢—|—c236¢+ 21695)]

+ ¢[ m( 2132) +c 2282 +¢c 2322 + Cz4a¢ ]

= —[62111 + cooky + ezl + cosly] + 25 + 9 ' [62160 + 622 2 | 62369 + 0245[4
Il Gy
5 + 25

+ Y= m[zlailb-i-m ¢+ma¢+ 24&/)]

B Gy egl! & X!
+02;3[C21 — + s 22+ 23603 + Qa5 4]

+ 62[(.] — J3)sinf cosfsiny) + — (621(89;2 + C22g¢f§ +c2aaz; S 2482;;)]

+é— m[m + 23 ¢+ 2477 ¢]

o dm| Pl 8% o oa!
+ > [21&/)2-{-622&/;4- 23&!;4—624&#;]

+ 29¢[(J — —J3) sind cos ¢ + = (Cﬂ;&p +o 2230;2(# + 6235:;; T 24;2;;)]

‘ +2¢¢[§Jscos€sim'p+—'§( 2164)61/) 4+ 220:;2 iy 23;;;2+ 24@%]

+2¢0[ Jycost + (216w+022;¢§9+023613 +a 24‘9;’;0] (B
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— éi’; [ ol + 32812 + saé)l3 + 034614]
+$[—l;sin9 J2 (c;na¢ +Ca2 3 +033 5 +6346¢)]
+ @[Ja — !m(caxgg + Cazafz + 3362 + 63“6_«2 ]

= —[03111 + e30lr + c33ls + c3ald) + 9—[031 -+ 632 2 4 633 O e ]

+¢ m[?l + 32 ¢+ 336¢+ 34&;&]

+ 92 [ Corge + gl + g Mjgg]
Jm[ 3!29 tz, N mg:zg N 332123 N 034?3]
+ ¢2J’"[ 32 + 32a ’3 +63362l; +Cs4g¢l§}
+ 2&4;[5J3 cosf + -5((;3, ;Z; + 3 ;‘Z; + ¢33 2:;; +c 34;;;)]
+ 2‘5'/31 [ 3‘5?3; + c”aizfp + b”aﬁ:p + 3“6(?:613/)}
_+z¢o'!3[ a‘i‘;e +e 32;1{36 +e 33(;‘:39 +c34§Z;6} | e

In the above three equations, the values of ¢;;, Lj, I;, £ = 1,2,3, j = 1,...,4, will depend on the

values of w 4 N\ and w’ + N as defined by equations (2.7)-(2.8) and (2.19)+2.22).

Forw -+ \ < 37/4,

e = [—pasinf cos(w + N) — zja cos @ cos Y]/ L,
c12 = [—pasinfcos(w + N\) + z2a cos 0 cos ]/ Le
c21 = [pasin@sin(w + N) 4 za cosOsin ¥]/L,
ca2 = [pasindsin(w 4 \) — za cosOsin ¥]/L,
¢31 = pacosfsin\/L,
¢33 = pacoslsin\/Ly
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21, L1, i, 22, Lo, lp are as given by equations (2.11) (2.13) and (2.16)(2.18).

Forw + \ > 37/4,

oy = [—l—pasine—— abcos 8 cos ]/ Ly
V2

1 == [—l—pasinB + abcos@ cos ]/ L
V2

c1 = [—Lpasina + abcos @ sin )/ Ly
V2

Cyg = [—l—pasin0 — abcos@siny]/La
1 .

¢33 = —— pa cosO(cos ¢ + sin )/ Ly
V2

e = %pa cosf(cos ¢ + sin )/ Lo

Ly, 1y, Ly, I are as given by equations (A.1)and (A.2).

Forw + N < 3n/4,

¢13 = [pssin ¢ cos sin(w’ 4 N) — zss{cos sin ¢ — sin @ sin ¢ cos )]/ L3
c14 = [pssin ¢ cosOsin(w’ + N) + zss(cos gsintp — sinfsin ¢ cosp)]/La
¢g3 = [—pssin ¢ cosd cos(w’ + N) — 235(cos ¢ cos ¢ + sinfsin g sin ¥)l/Ls
co4 = |—pssin ¢ cosd cos(w’ + N) -+ z15(cos ¢ cos ¢ + sinfsin ¢ sin1)]/La
¢33 = ps|sin ¢sin 8 cos(N + p) — cos psin(N + w)/Ls

¢34 = ps[sin ¢sin 0 cos(N + ) — cos psin(N + #))/La4

23, L, I3, 24, Ly, 1 arc as defined in cquations (2.25)-(2.27) and (2.30)+2.32).

Forw + N > 37/4,
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c13 = [Lps sin ¢ cosf — st(cos ¢ sin ¢ — sin @ sin ¢ cos )]/ L3
V2
Clqy = [—l—ps sin ¢ cos# - st(cos ¢ siny) — sin @ sin @ cos ¥)]/Ly
V2 ‘
Co3 = {—i—ps sin ¢ cosf — st(cos @ cos ¢ + sin @ sin @ sin )]/ L3
V2
Co4 = [—l-ps sin @ cosf + st(cos ¢ cos ¢ + sin @ sin ¢sin )] /Ly
V2
€33 = —l—ps[cos #(siny) — cos 9p) — sin ¢sinf(cosy + sin)]/L3
V2
C34 = —l—ps[cos ¢(sin — cosp) — sinpsinf(cosp + sin )]/ L4
V2
L3, I3, Ly, 14 are as defined in equations (A.7) and (A.8).
For all cases,
15 = mgd(sin ¢ sin 3 + cos P sind cos )

25 = mgd(sin ¢ cos ¢ — cos @ sin @ sin ¢)

Equations (B.1)+(B.3) are of the form,

4
hitd + hiod + histh = 6:(0,6,9,6,6,9)+ D ai;  i=1,23

—1

where the h;;’s, and ¢;5’s are functions of 9, ¢, 1.

Written in component form,

FII-

hiy hia hys 0 g|(0,¢,¢,9',<£,1/3) a1 Q12 13 qi4
.. C L b
hay haa hysl|| | = |®(0,6,4,0,6, )|+ |B1 B2 B3 (R4 .
.o . I3 3 3
hsi hsz has]ly] |96, 9, 9.9, ¢, 9) %1%2%3%41
m

Define
hit hia hyis

H =|hy1 hyy hp3
h31 h3z h33

(B.4)

(B.5)
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Then from equation (B.5),

&

0 g1 @1 qi2 @3 Q4 Il
dl=H \e|+H o1 @2 & @1 I2
b % B B2 B3 Ba 13
5
fa b4
....... I
=|sl+| 5|, | (B.6)
RGN | § A
o L

Define .
z=0 ¢ v 0 ¢ ¥
u=[Il IQ I3 I4]T

N
5
s

Fo(z(t) = 4 a 6-vector

By(z(t)) = |- a6 X 4 matrix

Then equation (B.6) can be written as

& = Fy(z) + Bo(z)u

which is equation (2.48).




=\

Appendices C-E have been excluded from the Memo version of this thesis.
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Appendix F. Using voltage instead of current inputs

The clectrical equation of motor 7 is given by,
dl; . ’

Vi= Loy + RI; + Keni (F.1)
where L., R, K are the motor’s inductance, resistance and EMF constant respectively, and 7; is the
angular speed of the motor.

For the pancake type of motor that we are using,
L,~0

and since in S.I. units, the EMF constant and the torque constant are equal, we will use the symbol K for

both of them.

Hence equation (F.1) can be written as

V; = RI; + K"
or 1 K
I,' == RV, -_ —Ii’ﬁ (F2)

From equation (2.42), the dynamic equation of motor 1 is given by,
J; + Bmi + Fir = KT (F.3)
Substituting equation (F.2) into (F.3), we obtain,

.. K2, . K
Jm’Yi + (Bm + ‘E)’Yi +Fﬁ' = 'ﬁv (F4)

which is of the same structure as equation (F.3) except that (B + K%/R) is substituted for By, and K/R

is substituted for K. |
Hence all the equations and programs that have been developed for current inputs can be applied to

the case of voltage inputs by changing the values of the damping constant By, and torque constant K of

the motor.
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‘ Appendix G. Values of the parameters used in the simulation runs
G.1 Arm Parameters
¢ 0.4064m ~ refer to figure 2-6 | &
b 04064m refer to figure 2-6
d 0117m refer to figure 2-6
s 0.2032m refer to figure 2-6
t 02032m refer to figure 2-6
P 0.02223m radius of the cylindrical rod
m  1.581kg mass of arm
J 00906kgm?  momemt ofinertia of am about X — X and Y — Y axes
. J3  0.000407 kgm? moment of inertia of arm about Z — Z axis
G2  Motor Parameters (PMI motor type U12M4)
r 0.016m réﬁius of motor shaft
K 011Nm/A torque constant
Jm  0.00016 kgm? moment of inertia of motor shaft
R By 0.000135N m/rads—' damping constant
The rated current of the motor is 4.4 A.
"m
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