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Abstract _

Recently there has been considerable interest in efficient formulations of manipulator dynamics, mostly
due to the desirability of real-time control or analvsis of physical devices using modest computers. The
incfficiency of the classical Lagrangian formulation is well known, and this has led researchers to seek al-
ternative methods. Several authors have developed a highly efficient formulation of manipulator dvnamics
based on the Mewton Fuler equations, and there may be some confusion as (o the source of this efficiency.
This paper shows that there is in fact no fundamental difference in computational efliciency between
Lagrangian and Newton-Euler formulations. The efliciency of the above-mentioned Newton-Luler for-
mulation is duc to two factors: the recursive structure of the computation and the representation chosen
for the rotational dynamics. Both of these factors can be achieved in the Lagrangian formulation, resulting
in an algorithun identical to the Newton-Fuler formulation. Recursive Lagrangian dynamics has been dis-
cussed previously by Hollerback. This paper takes the final step by comparing in detail the representations
that have been used for rotational dynamics and showing that with a proper choice of representation the
Lagrangian formulation is indeed equivalent to the Newton-Euler formulation,
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1. Background

Manipulator dynamics concerns the relationship between the motion of a mechanical kinematic chain of
linkages and the forces applied by its actuators. For some problems, such as simulation, the forces are
known and it is desired to compute the resulting motion. In other cases, such as the important area of
real-time control, the desired motion is known and the forces necessary to achicve that motion must be
computed. In cither case, for a given model of a kinematic chain an exact solution can be found, within
the framework of Newtonian mechanics. The former case reduces to a system of non-linear second order
differential equations, which can be solved numerically. The latter case is casier—the required forces can

be expressed directly in terms of the known position, velocity and acceleration of the chain.

[n this paper we restrict the discussion to open-loop kinematic chains, composed of rigid links con-
nected by joints that allow relative motion of the links. We assume that cach joint has only one degree
of freedom, either rotational or translational. Multiple rotational degrees of freedom can be modelled by

links of zero mass and length.

1.1 Lagrangian Generalized Coordinates

In Newton’s original formulation of mechanics, the relationship between forces acting on bodies and
the resulting accelerations is described using cartesian coordinate systems. There are other, equi.valent
ways to describe the dynamics of a system of bodies. One such method was invented by Lagrange, using
what are known as generalized coordinates. Generalized coordinates are any convenient set of variables

that completely define the position of a system of bodics. The Lagrange equation
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describes the relationship between the corresponding generalized forces acting on the bodies and the
kinetic and potential energy of the system. Here g; is a generalized coordinate, 7; is the corresponding
generalized force, and the dot indicates differentiation with respect to time. L is the Lagrangian—the

difference between the total kinetic energy and the total potential cnergy of the system: L = K — P,

While the Lagrange cquation must yield the same numerical results as direct application of Newton’s
laws, cither approach may be more convenient than the other in a given situation, or may provide greater

insight into the physics of the problem.

1.2 The Uicker/KaHn Formulation

A kinematic chain has a natural set of coordinates that completely specify its position—the joint
variables g; (angles for rotational joints and distances for sliding joints). The g; satisfy the requirements
for generalized coordinates. Furthermore, they can be measured directly by the manipulator and the
corresponding generalized forces (torques for rotational joints and ordinary force for sliding joints) are
just what can be controlled. It is not surbrising, then, that the pioncering work of Uicker [1] and Kahn [2]

on the dynamics of mechanical linkages made use of the Lagrangian method.

From the standpoipt of the present discussion, the important feature of the work of Uicker and
Kahn is their use of 4 X 4 rétation/translation matriéics W, to represent the position and motion of the
kinematic chain. A coordinate system is attached to and moves with each link. The matrix W; transforms
the components of a vector with respect to link ¢ coordinates to its components with respect to a fixed
(incrtial) coordinate system. The position and motion of the chain is described by the W;’s and their time

derivatives, which are in turn functions of the g;’s and their time derivatives.

Once the kinetic and potential encrgy of the chain is expressed in terms of the W,’s and their deriva-

tives, it is a straightforward matter to apply the Lagrange equation and find the generalized forces. The

+
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result looks like

n W, ...
T = Zt')(_a_(;zl.fj"vjr), (12)

j=i

where 7; is the generalized force applied to the ith joint, Jj is the 4 X 4 incrtia matrix of the jth link in
that link’s coordinates, and ¢r is the trace operation. The gravity term is omitted here because it is not

important for this paper, although in general it must of course be included.

It has been observed by many authors that cvaluating (1.2) directly as written requires time propor-
tional to the fourth power of the number of links. Hollerbach [3] has determined that for 6 links well over
100,000 adds and multiplics would bc needed to compute all of the 7;’s, and Luh ct al. [4] report that
a Fortran program running on a PDP-11/45 took ncarly 8 seconds to compute them. Since a real-time
control system would have to repeat this calculation at a rate on the order of 60 Hz, until recently it had
been believed that a manipulator could not be controlled by direct real-time calculation of the actuator

forces, without introducing approximations or using lookup tables.

The inefficiency of the original Uicker/Kahn formulation, as well as other reasons, have led research-
ers to look for alternative formulations of manipulator dynamics. The most successful of these has been

the Newton-Euler approach.

1.3 The Newton-Euler Approach

In order to apply Newton’s laws to dbjccts which are not point masses, we consider such objects to
be composed of a large number of point masses bound together by effectively infinite internal forces. The
laws governing these so-called “rigid bodies” may be derived from Newtonian mechanics [5]. The key
feature is that the description of motion is broken up into two independent components-—linear motion
of the center of mass (or other suitable point) and rotation of the body about that point. The total vector
force acting on the body is related to the acceleration of the center of mass by Newton’s sccond law:

F = my. The total vector moment (torque) about the center of mass is related to the angular velocity and
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angular acceleration of the body by Euler’s equation

N=1a+wx( w (1.3)

(™~

i

The Euler equation follows directly from the laws of rotating reference frames and the following

definitions: : .
angular velocity

&

I incrtia tensor

L=1w angular momentum
dL
N = —; moment (torquc).

These definitions are analogous to those found in the case of linear motion, except that inertia is a second
rank tensor instead of a scalar, since angular momentum is not in general parallel to angular velocity. If we

use d*/dt to indicate differentiation with respect to the rotating reference frame, we then have:

dt L TEOE

To apply the Newton-Euler equations to a kinematic chain, the following procedure may be used.

1. The basc of the chain is cither fixed or its motion is known. Starting from the base and working
outwards, and using the known geometry of the chain, 9, w;, and w; of link 7 may be found in

terms of the ¢;, ¢;, and §; of the preceeding joints.

2. The total veetor force F'; and the total vector moment N acting on each link may now be
determined using the Newton/Euler cquations.

3. The total force computed in step 2 is the vector sum of tﬁc forces exerted on the link by its

neighbors at the joints, and the force of gravity. The total moment is the vector sum of the pure

moments excrted on the link by its neighbors, and the moments generated by the forces exerted
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by its neighbors. Thus if the force and moment acting at one end of a link are known, we can
use the totals from step 2 and the known force of gravity to solve for the force and moment
acting at the other end. These arc cqual and opposite to the force and moment exerted by the
given link on its neighbor, by Newton’s third law. Thus, if the force and moment exerted by the
environment on the terminal link (e.g. the hand) are known, we can proceed down the chain to

the base and determine the force and moment acting at cach joint.

4. For rotational joints, the vector moment determined in step 3 is projected along the axis of
rotation to yield the joint torque. For sliding joints, the vector force from step 3 is projected
along the sliding axis to yield the joint force. The other components of the force and moment

are generated by the structure and bearings of the device.

Lt is clear that many details must be filled in before the above procedure can actually be applied to a
kinematic chain. We must have conventions for defining the geometry of the chain and specifying how the
joint variables arc to be measured, and coordinate systems that allow the vector and tensor quantities to
be specified. The transformation required by step 1 must be worked out, and the operations specified by
the other steps must be written down in detail. The efficiency of the resulting computation will depend on

how these issues are resolved.

Recently a number of authors have been interested in the Newton-Euler approach, partly due to
perceived problems with the Lagrangian formulation, as mentioned above. Stepanenko and Vukobratovic
[6] worked out the details in éonncction with work on undcerstanding the dyﬁamics of human limbs. One
of their main goals was to develop a computer program that could perform the tedious mathematical
manipulations necessary to sct up the cquations of motion from a description of the kinematic chain.
They rejected the Tagrange equation because of the differentiations it requires—there are severe problems
associated with numerical differentiation, as they pointed out. These problems can be avoided, however,
by deriving the differential equation of motion for an arbitrary kinematic chain, as is done in. section 3

for the open-loop class. Numerical values for a specific device are then substituted, but at this point all of
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the necessary differentiations have been done symbolically. The general solution can readily be found by

hand, and only needs to be done once.

Stepanenko and Vukobratovic were not concerned with the cfficiency of the computation. Their
formulation was revised by Orin ef al. [7] in conncction with the control of robot legs. They improved
upon the efficiency of Stepancenko and Vukobratovic by referring the forces and moments to coordinate
systems attached to the links instcad of fixed coordinates. They also noticed that thc”scqubntial nature
of the computation (itcrating from the base to the tip to determine the motion of the chain, and then
from the tip to the basc to determine the forces, as described above) scemed to reduce the computation
time and storage requirements. They speculated that such a recursive procedure might be more cfficient
in general, but did not draw any conclusions. Armstrong [8] and Luh et al. [4] paid close attention to com-
putational efficiency and confirmed these suspicions. They pointed out that the Newton-Fuler formulation
leads to an algorithm where the computation time grows lincarly with the number of links, as opposed
to the quartic behaviour of the originél Lagrangian formulation. They further improved the efficiency by
referring the lincar and angular velocities and accelerations, as well as the forces and moments, to link
coordinates. In addition, the nced for cfﬁcicnéy produced a formulation which is simpler in many ways.
For example, the three coordinate systems attached to each link by Stepanenko and Vukobratovic were

replaced by one.

1.4 Recursive Lagrangian Dynamics

Hollerbach [3] realized that the recursive nature of the Newton-Euler formulation that made it so
efficient could be achieved with the Lagrangian formulation as well, Starting with the original results of
Uicker and Kahn, he developed forward and backward recurrence relations for the terms in (1.2) that al-
low the generalized forces to be computed in linear time. The result for a 6-link manipulator still required
about 5 times the number of adds and multiplies as the Luh formulation, but this is about 15 times better

than direct evaluation of (1.2).
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Hollerbach also realized that the use of 4 X 4 rotation/translation matricies to represent the position
and motion of the chain led to inefliciencies in the calculation. He reformulated the Lagrangian dynamics
in terms of pure rotation matricics to specify the orientation of the links, and displacement vectors to
specify their position. This reformulation resulted in an additional factor of 2 savings in adds and mul-
tiplies, bringing the [Lagrangian formulation to within réugh]y a factor of 24 of Luh’s Newton-Fuler

formulation.

1.5 The Importance of the Representation of Angular Velocity

Tollerbach used a rotation matrix W; to specify the orientation of link 7 of the kinematic chain. W;
transforms the components of a vector with respect to a coordinate system fixed in link 7 to its components
with respect to a fixed (inertial) coordinate system. The angular motion of link ¢ is represented by the time
derivatives of W;: W; and W,.

Although W,, Wi, and W,- cach have nine components, oricntation has only three degrees of
freedom and thus only three of the components are independent. An equivalent representation for the
angular motion of a link is the angular velocity vector w; and the angular acceleration vector w;, which
have been used in all of the Newton-Euler formulations reported here, and which contain no redundant
information. Unfortunately, there in no “orientation vector” corresponding to Wj; the Euler angles or

cquivalent may be used instcad, although we will not need to do so here.

In the next section we explore in detail the relationship between w and W, and the resu]ting descrip-
tions of rotational dynamics. In the foﬂbwing scction we show that a Lagrangian formulation based on
w instead of W leads to exactly the same computation as the Newton-Euler formulation. This result is
hardly surprising, since both methods must give the same numerical solution, and we are now starting
with exactly the same quantities. The significance of this result is not just that it doesn’t matter which

formulation one uscs. Rather, it shows what the real issucs are if onc is interested in efficiency: structure of
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the computation and choice of representation.




2. Comparison of Rotational Dynamics with w and W

[t was pointed out above that the angular motion of a rigid body could be described equally well by cither
the angular velocity vector w or the derivative of a rotation matrix, W. Obviously, scalar quantities such as
kinetic energy must be independent of the representation chosen, but higher rank tensor quantitics need
not be, and expressions for any quantity will be different in form. FFurthermore, neither representation is
clearly better in all cases. Use of w may yicld a more efficient computation, but it has the disadvantage that
there is no “angular position vector” that it is the derivative of. Therefore, it is interesting and useful to
compare the description of rotational dynamics that results from different choices of representation, and
to develop formulas that allow one to switch between representations. That is the main purpose of this
section, although in making this comparison we will also get expressions for rotational inertia and kinetic

energy which are necded in the next section.

21w

We start by defining W more formally and introducing some conventions that arc needed below.
We assume that the reader is familiar with the propertics of the angular velocity vector w and rotating
reference frames, which have been discussed in many texts (see, for example, [5]).

Let {91, €, @3} be any fixed (inertial) orthonormal basis, and let {@/u /éfz, @’3} be any orthonormal basis
attached to a rotating rigid body. We will always use primes to indicate rotating basis vectors or the

components of a vector with respect to such a basis. Thus, if v is any vector we have:

A A
Y = E Ve = E vle,.
i i

11
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From now on we will drop the summation sign and usc the Einstein summation convention, that is,

indices that appear twice in any term imply a summation of that term over all values of the indices (i.e.
{1,2,3}).

Using the above conventions we can write:

D

v = vie;

A A Ay
V€ =€ €U

/ AN

v = Wi, Wi =z¢; ¢ (2.1)
W dWw;;

Y dt

Note also that since the inverse of W is its transpose, we have:
WiW [ = WitWie = 635, (2.2)

where §;; are the components of the identity tensor §.

2.2 The Cross Product Operation

We must now briefly discuss the cross-product operation, which is indispensible when dealing with
rotation in three dimensions, and which must be used unambiguously with second rank tensors as well as
vectors. We assume that the standard geometric definition of the cross product of two vectors is known to

the reader.

The cross product may be viewed as a function of two vectors that produces a third vector:

a X b=c=P(ab).

Alternatively, we may view the cross product as a function of three vectors that produces a scalar, the so-

called scalar triple product:
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The function P is:

e Lincarina, b, and c.

e Independent of the choice of basis vectors (since it is defined geometrically).
Therefore, P is a rank three tensor?.

To find the components of P according to some right-handed basis {’e\l, @2, @3}, we simply apply the

function to the basis vectors:

1, if 75k is an cven permutation of 123,

if 15k is an odd permutation of 123,

o 0, otherwise.

I
I
=

From this it can be scen that P is totally anti-symmetric—swapping any two indices changes the sign (but
rotating the indices has no effect). To illustrate how P is used, here are the formulas for the cross-product

of two vectors, and the scalar triple product, in coordinates:
la X bl; = Pijuajbs a-b X ¢ =P;jabjc.
There arc two very useful identitics associated with the components of P:
PijkPiji == 26y, | (2.3)

and

PijkPitm = 8j1km — 8jmbii. ' (29

chchnically, a pseudorensor, since it requires consistent use of right- or left-handed coordinate systems, but not both.
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2.3 The Relationship Between w and W

We can now find the explicit relationship between w and W. That relationship will be seen to be

position (i.e. oricntation) dependent, and the position will always be represented by the rotation matrix

Ww.

Let v be any vector rotating with angular velocity w. We can derive the components of ¥ in the

following two ways:
1) 9=wXuy 2) vi= W)

0= Pjjwryy bi= W,;;v;
Equating the two gives:

l.
7

X /
Wiv) = Piywpv = PyawWijv
Since this must hold for any v, it is clear that

W, = Wi ' (2.5)

(or in vector notation, W = w X W). The inverse relation may be found from this and equations (2.2)

and (2.3) as follows:
Wi; = PiwpWi;
WiniWij = Piawibin, = Pigmws
Pianij W; = ikainmwk = 25lcnwk = 2wn-

Making an appropriate change of dummy indices, we get
w; = {PijsWpWa, (2.6)

to which there is no corresponding vector notation known to the author.

2.4 Rotational Inertia and Kinetic Energy

This scction has three purposcs: it gives onc example of how a dynamic quantity (rotational kinetic

energy) can be expressed in terms of cither w or W, it provides one way of defining the inertia tensor (the
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definition will depend on whether w or W is used), and it provides the expression for rotational kinetic

encrgy that is nceded for the Lagrangian formulation of the next section.

Let r be a vector from the center of mass of a rigid body to a small volume clement of mass dm. The

velocity and kinetic energy of the volume element (due to rotation of the body) can be written as:

I3
Il
=

Q.
x
Il

DO

IS

-ydm.

We will express dK in terms of both W and w and integrate over the body to get the total rotational
kinetic encrgy. The definitions of the inertia tensor will fall out of the derivation. Components of vectors
are with respect to any right-handed orthonormal basis, primed for rotating and unprimed for fixed, as

above. First, using W

r; = "Vu?’g
U = W,;j?’lj
di = L (Wi )(Wir})dm

K = W Wy /V v a\dm

let ’jk=/vr;~r;cdm (2.7
K == %W,lejkwlk

D= L (WIWT). (2.8)

The last expression is in matrix form for the benifit of readers who are more familiar with that notation.

Now we repeat the derivation, using w instead:
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~
v=w Xr
A = f(w X 1) (w X r)dm
= §llw - w)(z 1) — (@ )@ r)ldm
= Hww;r? — wrwrldm
= %[w,-wj&jr? —_ wiwjrirj]dm
= %wiwj(ﬂéij — -rirj)dm
K= %wiwj/(r%ij——rirj)dm
1%
let -[ij == /(7‘2(51']'.—1’1‘7'1‘)(17’7& (29)
v
K = bwwily= w1 w. o (2.10)
From cquations (2.7) and (2.9) the relationship between the two inertia tensors can be seen:
£ L= tr(é)g—— J, J = %tr(g)g—é. (2.11)
Note that since [ and J have been defined above by their components, they have not actually been shown
to be tensors. The proof is simple and can be supplied by the reader.

From cquations (2.8) and (2.10), and a definition of a gencralized coordinate g, the rotational con-
tribution to the corresponding generalized force can be found from the Lagrange equation. This was
done by Hollerbach [3] for W, and is donc in the next section for w. We summarize the results here for
comparison; _

angul'ar w W
velocity ~
kinetic ) | i T
b L w Lr(WIWT)
energy ~
gencralized . R [OW
force - Ltwx(@-el-5 |t 5TV
While these expressions have been derived independently, their equality can be verified by direct substitu-

tion using equations (2.4), (2.5), (2.6), and (2.11).




3. Lagrangian Dynamics Using Q Instead of W

In this section we give the details of the Tagrangian formulation based on the angular velocity vector w.
The generalized forces are derived for any open-loop kinematic chain, and the results are interpreted and

compared to the Newton-Euler formulation of Luh [4].

One feature that distinghishcs the present formulation from previous oncs is that expressions for the
generalized forces are derived without defining a single coordinate system. All quantities are expressed in
terms of gcometric objects (tensors) a~nd gecometric operations (vector addition, dot and cross prdduct). It
is only at the end, when a computatibn must be derived from these expressions, that coordinate systems
must be defined, so that the various quantitics can be mcasured and represented in a computer program.
At this point, expressions may be cvaluated in any convenicent right-handed orthonormal coordinate sys-
tem, provided that this is done so in a consistent manner. In practice, the method presented by Luh [4] is

probably most efficient.

3.1 The Derivation of the Generalized Forces

In this section we write down the total kinetic cnergy of a kinematic chain and apply the Lagrange
cquation to derive the generalized forces. The potential energy term duc to gravity is omitted here as

mentioned in section 1.2, although this and other minor details arc taken care of below.

The total kinctic energy of a rigid body is the sum of the cnergy due to the motion of the center of

mass and the energy due to rotation about the center of mass [5]:

K= i{m(v)’ + ju-

I~

.%_

~

17
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To get the total energy of a chain, sum over all of the links:

K= Z [2 mz %‘i} ii ' ‘;Ez:l (31)
g=1
We may now compute thc derivatives required by the Lagrange equation (1.1).
oK av Sw;
: o i LS 3.2
= D b G o

The first term of (3.2) follows directly from the chain rule. For the second term, note that while the
inertia tensor £; is a function of position, it is independent of any joint velocity @;. Furthermore, since [ is

symmetric,

1Swi
o’?

U~
E
I
DN
.;7%

wi- ;-

DI
Q

’Ij'

Straightforward application of the rules for differentiating products gives:

_d_ in ._Zm'bwavz " - d 51’
dt\dq; | - 8, At g4

(3.3)
+ wi - L &u, —Q—w1 I g:;; +wi L ;t(g‘;;)}
Itis shown in Appendix A that: _
w; L?{Z =w; X (L w,)- %;‘—; (3.5)
%(g—%) = % + w; X ‘g‘;”f | (3.6)
Wi L5 (%’ X g%) = —w; X ([; wi)- % (3.7
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Substituting (3.4)-(3.7) into (3.3) gives:

d [ 9K : . (9'01' (91),‘ . 6w,; &oi
— == m; s -+ miv o we L o we L o 3.8
dt(dqj) Z[ 94 = 9q; ~9q4 ~ q; (38)
Now for the final term in the [agrange equation:
K v, Sw; oL
= Vi 2w L W T w 3.9
aq; — “ [ g, ~og T gy } 39

This is very similar to (3.2), except for the appearence of a term duc to the position dependence of the

incrtia tensor. It is shown in Appendix A that:

al; Ow: '
bwi - = wp = —w; X (L wg) = 3.10
boi- 52 @0 X L) (3.10)
Putting it all together:
ro= GOK) 9K
T dt\dg; | O
A, Bw:
= miv; - 2=+ Wi L+ wi X (Lwd)] - 2 3.11

3.2 Comparison with the Newton-[_uler Formulation

We have derived the géncralizcd forces in a véry general way, without unnccessary details like
coordinate systems, link and joint numbecring conventions, and other conventions needed to specify the
geometry of the manipulator. In order to interpret the result and compare it to the Newton-Euler formula-
tion, however, it is finally necessary to make some of these definitions. Such details are not the point of

this paper, and will be kept to a minimum,

The links of the manipulator arc numbered consccutively from the base to the tip, as are the joints

that connect them. The base is considered to be link 0, while the terminal link is numbered link n. The
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Figure 3.1. Link and joint numbering, and other conventions for open-loop kinematic chains.

joints are numbered 1 thru n, joint 1 connecting link 1 to the base. Thus joint ¢ connects links 1 — 1 and

i; link ¢ is bounded by joints 7 and 7 + 1, as shown in figure 3.1.

If joint 7 is rotational, the joint variable ¢; measures the angle of rotation from éomc (arbitrary for the
present discussion) reference point; if it is translational, g; measures the sliding distance. The unit vector
Qi is attached to joint 7 and poihts along the axis of rotation for rotary joints or along the sliding axis for
sliding joints. Note that for rotary joints, ¢; must be measured in a right-hand sense about Z;. Finally, let
pjibea position vector that points from anywhere along the axis of joint 7 to the center of mass of link
1. (Note: These definitions of Qi and p; ; arc non-standard, and arc clearly too ambiguous to be used in

practice. They are, however, all that is needed to understand equation (3.11)).

One of the first things one notices when looking at equation (3.11) is that it contains the Newton-
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Euler expressions for the total vector force and moment acting on a rigid body. In fact we can rewrite

(3.11) as:

;i  Owi
T,_E(Igi.gg} N aqj)' (3.12)

i
‘Thus we are very interested in the vectors dv; /dq; and dw; /g, that the force F; and moment N; are
projected onto. These vectors specify the dependence of the lincar and angular velocity of link ¢ on the

joint velocity of joint . For 7 > 4 there is no such dependence, and so these vectors are 0. This means

that the summation in cquation (3.12) can be taken from ¢ = 7 to ¢ = n, instead of over all ¢.

For 7 < 7, we note that the lincar and angular motion of link ¢ may be written as the vector sum of

contributions due to the relative motion of the previous links at the joints:

i ((]JQJ.) X Dy if joint § is rotational;
=) N ~ (3.13)
i=1 | 4;2;, if joint 7 is translational,
L | gz, ifjoint is rotational;
wi= Yy (3.14)
j=110, if joint 7 is translational.
Differentiating gives:
A, Qj X Pj i if joint 7 is rotational; ( |
Yi_ ~ 3.15
94; %, if joint 7 is translational.
4 Z; if joint 7 is x'dt"ational'
W ; J» < )
5’7-3 = (3.16)
% 90, if joint j is translational.

If joint 7 is translational, the joint force can now be written:

n
A
Tj :=Zj- E F,,

i=j
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Ifjoint j is rotary, the tdrque is:

ki3 N
A ~
m=12;y (pji X Ei+NJ)
i=j
Thus, to compute the generalized forces we first iterate from the base to the tip to compute 95, w;, and w;,
and then iterate from the tip to the base using the above relations to compute the forees. Referring to [4], it
can be scen that this is exactly the computation specified by Luh that was derived from the Newton-Euler

approach.

A few minor points still need to be cleared up, however. First, we are still free to choose a coordinate
system or systems in which to cvaluate these expressions. The method presented in [4] is probably best,
where quantities associated with a given link (such as the inertia tensor) are expressed in a coordinate
system attached to that link, and then are transformed to the coordinates of the previous link as the

itcration proceeds.

Second, we must say something about the gravity term which we have thus far ignored. We could
include it in the Lagrange equation in the standard way, as a position dcpcndcnt potential cnergy term.
This is equivalent to its inclusion in tl'lc.Ncwton-EuIcr formulation as described in step 3 of section 1.3.
Perhaps a better way was also discussed by Lub-—instead of considering the base as fixed, give it a vector
acceleration equal to that due to gravity. Both methods will give the same numerical result, but Luh’s is

probably more cfficient since the cffect of gravity is cmﬁputcd only once.

Third is the sliding friction forces produced in the joints that Luh includes in his equations. These,
however, are simply computed based on the joint velocity and are added directly to the joint generalized

force. This clearly can be done no matter how the dynamics are formulated.

Finally, the Newton-Euler dynamics includes the solution to the problem of the statics of the
manipulator, that is the effect of the external force and moment acting on the terminal link. This can

be included in the Lagrangian formuiation by supposing an additional link attached to the terminal link,
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whose motion is defined so as to produce the required external forces. This is very much like including

gravity by specifying the acceleration of the base rather than the equivalent forces.




A. Details for the Lagrangian Formulation

In this Appendix we supply the details that were omitted from the derivation of the generalized forces

presented in section 2.1.

For cquation (3.4),A1et r; be a position vector from any fixed origin to the center of mass of link ¢, so

that v; = #,. Then we have:
; c9rl e} Ir; . Ir;
" — == — _.'_"__q A A.l
84 G4 94; 44 dg " g “1

d [ Sv; didr;\ 57’,, 37',_
di (c?qj) dt ((9(;(]) Z@qﬂqk (9q 2(9@1g

g, Av;
~ g T oy
Equation (3.5):
Wi L-g?; =w; (wi X L — L sz)'%
= w; - (w; X%z)'%i% wi (L X wy) %%f-
= wi X Wi ii%%—(u L) Xwi'%
=w; X ([ Nz)'g‘%
Equation (3.7):
wi - L (w X g?;) = (wi- L) X wr%
SRR
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For equation (3.10): Following a procedure similar to that used in (A.1) above, it can be shown that:

oL _ ol
Jq; G5
Thus we have:
al; 8 ( P )
— = —(w; X L;—1; X w;
dyq; aq; ~ &
Sw; Aw;
ai; Limlix 94;
Therefore,
w %w—lw Or@i)(]' W — sw Xa%" w
2% @J ) W aq] ) 7 A=A AL aqj A ]
Sw; ) Sw;
= L. = [ N — 1 i1 =t
Wi qu(z w) 2(w N)Xaf.lj ws
Aw; 6]
="—%E)L>< ]z Qi)'—%—'—%%ix (,iz 9)1)5%)‘1
q;

The final (and trickicst) proof is equation (3.6):

d(é&ef)_@zﬂix%

dt\ 8q; | — g aq;’
We will need equations (3.14) and (3.16), and the conventions of section 3.2 (sce figure 3.1), except that for
convenience we will take 2y, to be 0 if joint & is translational.
First note that if joini J is translational, or if j > %, w, is independent of both ¢; and g5, so that both
sides of the equation arc identically zero. Now for § << 1, since Qj is attached to joint 7 and therefore link

7, we may write:
d 0w\ dz | |
a(a‘%ﬁ ) =1 =W X% (4-2)

By considering the rotation of a vector by some angle about a given axis, it can be scen that:

~ - ‘@g=3j><gk (G < k). . (A.3)
, Aq;
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Now we have everything we need for the proof. Starting with (A.2),

i) _ s
dit 5q] B J
i

=(wi— D @) X%
b1

i

. A A

=w; X 2+ Z Qzj X 2
k= -1

» v,
=w; X 2+ chy
k=1 U

9
=<£i><2j+a—2(1k2’k

5 r=1
Ow; | Gw;

P X =2 ==,
: an' 8q]-

&
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