MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 624 ' May 1981

NEGOTIATION AS A METAPHOR FOR DISTRIBUTED PROBLEM SOLVING

Randall Davis
MIT Artificial Intelligence Lab

- Reid G. Smith
Defence Research Establishment Atlantic
Dartmouth, Nova Scotia, Canada

- ABSTRACT
We describe the concept of distributed problem solving and define it as the cooperative
solution of problems by a decentralized and loosely coupled collection of problem solvers. This

‘approach to problem solving offers the promise of increased performance and provides a useful

medliurm for exploring and developing new probiem-solving technicjues.
We present a framework called the contract net that specifies communication and control in

‘a distributed problem solver. Task distribution is viewed as an interactive process, a discussion

carried on between a node with a task to be executed and a group of nodes that may be able to
exacute the task. We describe the kinds of informaticn that must be passed between nodes during
the discussion in order to obtain effective problem-solving behavior. This discussion is the origin of
the negotiotion metaphor: Task distribution is viewed as a form of contract negotiation.

We emphasize that protocols for distributed problem solving should help determine the
content of the information transmitted, rather than simply provide a means of sending bits from one
node to another.

The use of the contract net framework is demonstrated in the solution of a simulated problem
in area surveillance, of the sort encountered in ship or air traffic control. We discuss the mcde of
operation of a distributed sensing system, a network of nodes extending throughout a relatively large
geographic area, whose primary aim is the formation of a dynamic map of traffic in the area.

From the results of this preliminary study we abstract features of the framework applicable to
probiem solving in general, examining in particular transfer of control. Comparisons with PLANNER,
COMNIVER, HEARSAY-IL, and PUP6 are used to demonstrate that negotiaticn -- the two-way transfer of
information - is a natural extension to the transfer of control mechanisms used in earlier
problam-solving systems.

Acknowliedgements
This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
netitute of Technology and at the Defence Research Establishment Atlantic, Dartmouth, Canada.
Support for the Laboratory’s artificial intelligence research is provided in part by the Advanced
facearch Proiscts Agency cf the Department of Defense under Office of Naval Research contract
MOGO 14-00-C-0505.

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1981

NEGOTIATION AS A METAPHCR) -2- ' DAVIS AND SMITH
CONTENTS
1. INTRODUGCTION .ottt ss s srie st saeee e e s saa e s e aestassene s be s ebessbesabsesbesbesnbesseeneasnsensens 5
2. DISTRIBUTED PROBLEM SOLVING: OVERVIEWoooireiiiiieierrirsitre s s eseestessssasnnes 5
3. DISTRIBUTED PROBLEM SOLVING: MOTIVATIONccccviiveiiriins et areessesreessaressnees 7
4. THE FUNDAMENTAL ISSUESooiiciiiirrc e s e rese s ssas s es e s e b saa s s ssss e s st on 8
4.1 Global Coherence and Limited Knowledge ..., 8
4.2 The Need for a Problem Solving Protocol ..o 10
4.3 The Utility 0f Negotation ...t sre e e stbn e essas s 10
5. A COOPERATING EXPERTS METAPHOR ...c.ovtiiiirie v vie s snee e rsessrreses sanees 11
6. OBSERVATIONS AND IMPLICATIONS ...ooovvititsieeererrie s tssssess st ssasesssse s s sessesssassne s esnsnens 11
7. A FRAMEWORK FOR DISTRIBUTED PROBLEM SOLVINGcccoovv v sree e 14
7.1 A View of Distributed Problem Solving ..., 14
7.2 Task-Sharing, Negotation and the Connection Problemccccovvvivnveveneeinnnn, 14
7.3 Contract Net Protocol --- Message Contentcoccvcvviiiininnneennencriesnner s snesnen 18
7.4 Contract Net Protocol --- Message FOrmatc.cccccvieiniirenicne e neessssennn 19
7.5 Contract Net Protocol --- the Common Internode Languageccccvevvevievinnennnnnne 19
8. EXAMPLE: DISTRIBUTED SENSING ..ottt vsnesree s s snv s snae e s aes 21
T I o F= T 1T U RO OO E PO PRSP 21
8.2 Data and Task HIErarChy ...l .. censs i s s s s s s esesssens 22
8.3 Contract Net Implementationcceieiiinier e e snssnes 24
9. A PROGRESSION IN MECHANISMS FOR TRANSFER OF CONTROLccevvivvveneeciienninnenns 30
9.1 The Basic Questions and Fundamental DIifferencesc..ccccccvivveeviiicncnccccinneceninne 30
9.2 The COMPATISON w..eviiiiiireieieerie ittt e s sers s rsarssres s s rebre s s e e essseraessanesessasssanseass 31

10. SUITABLE APPLICATIONScocoiviiiiiiiiiiin i e snsss s s sssse e 34

NEGOTIATION AS A METAPHOR -3- DAVIS AND SMITH

11. LIMITATIOMNS, EXTENSIONS, OPEN PROBLEMS ..o, 35
11.1 The Other S1AGES .cvvivieieeeireiier e 35
11.2 Instantiating the Framework ... 35
11.3 Alternate Models of Cooperationc.ccociriiin e 35
11.4 Optimality of the Negotiation ProCessccciiiiiiiiniiiiin, 36
11.5 COherent BERAVIOT ..cviioiviviiee ittt sttt stan s ssne s s s e s s 37
12, SUMMARY oo eees e eeesese s sssss e e 8828 38
12.1 Contributions to Distributed Processingcccccoiiiiiiniiinee 38
12.2 Contributions to Distributed Problem Solving ..o, 38
12.3 Contributions to Artificial Intelligence ..o 40
12.4 Conclusion: the Major Themes Revisitedccoicnininnnin 40

NEGOTIATION AS A METAPHOR -4- DAVIS AND SMITH

Abstract

We describe the concept of distributed problem solving and define it as the cooperative
solution of problems by a decentralized and loosely coupled collection of problem solvers. This
approach to problem solving offers the promise of increased performance and provides a useful
medium for exploring and developing new problem-solving techniques.

We present a framework called the contract net that specifies communication and control in
a distributed problem solver. Task distribution is viewed as an interactive process, a discussion
carried on between a node with a task to be executed and a group of nodes that may be able to
execute the task. We describe the kinds of information that must be passed hetween nodes during
the discussion in order to obtain effective problem-solving behavior. This discussion is the origin of
the negotiation metaphor: Task distribution is viewed as a form of contract negotiation.

We emphasize that protocols for distributed problem solving should help determine the
content of the information transmitted, rather than simply provide a means of sending bits from one
node to another.

The use of the contract net framework is demonstrated in the solution of a simulated problem
in area surveillance, of the sort encountered in ship or air trafiic control. We discuss the mode of
operation of a distributed sensing system, a network of nodes extending throughout a relatively large
geographic area, whose primary aim is the formation of a dynamic map of traffic in the area.

From the results of this preliminary study we abstract features of the framework applicable to
problem solving in general, examining in particular transfer of control. Comparisons with PLANNER,
CONNIVER, HEARSAY-Il, and PUPE are used to demonstrate that negotiation -- the two-way transfer of
information --- is a natural extension to the transfer of control mechanisms used in earlier
problem-solving systems.

NEGOTIATION AS A METAPHOR -5- DAVIS AND SMITH

1. INTRODUCTION

Traditional work in problem solving has, for the most part, been set in the context of a single
processor. Recent advances in processor fabrication techniques, however, combined with
developments in communication technology, offer the chance to explore new ideas about problem
solving employing multiple processors.

In this paper we describe the concept of distributed problem solving, characterizing it as the
cooperative solution of problems by a decentralized and loosely coupled collection of problem
solvers. We find three issues central to the successful construction of frameworks for distributed
problem solving, labeling them (i) the fundamental conflict between the complete knowledge needed
to ensure coherence and the incomplete knowledge inherent in any distribution of problem solving
effort, (i) the need for a problem solving protocol, and (iii) the utility of negotiation as a organizing
principle. We illustrate our approach to those issues in a framework called the contract net.

Section 2 describes our concept of distributed problem solving in more detail, contrasting it
with the more widely known topic of distributed processing. Section 3 explores some of the
motivations for distributed problem solving, suggesting what we hope to gain from this work. In
Section 4 we consider the three issues listed above, describing in more detail what we mean by each
and documenting the importance of each to the problems at hand.

‘Section 5 describes how a group of human experts might cooperate in solving a problem and
illustrates how this metaphor has proved useful in guiding our work. Section 6 then considers several
observations about how a group of computers might cooperate to solve a problem and illustrates the
contributions these observations have made to our work.

In Section 7 we describe the contract net. We focus on its use as a framework for
orchestrating the efforts of a number of loosely coupled problem solvers. More detailed issues of its
implementation, as well the tradeoffs involved in its design, are covered elsewhere (see, e.g., [24],
[25], and [26]). Section 8 describes an application of the contract net. We consider a problem in
distributed sensing and show how our approach permits a useful degree of self-organization.

Section 9 then takes a step back to consider the issue of transfer of control. We show how
the perspective we have developed --- notably the issue of negotiation --- offers useful insights about
the concept of control transfer. We review invocation techniques from a number of programming
languages and illustrate that the whole range of them can be viewed as a progression from simple to
increasingly more sophisticated information exchange. In these terms the negotiation technique
used in the contract net becomes a natural next step.

Sections 10 and 11 consider the sorts of problems for which our approach is well suited and
describe the limitations and open problems in our work to date.

2. DISTRIBUTED PROBLEM SOLVING: OVERVIEW

In our view, three defining characteristics of distributed problem solving are that it is a
cooperative activity ot a group of decentralized and loosely coupled knowledge-sources (KSs), each
of which may reside in a distinct processor node. The KSs cooperate in the sense that no one of them
has sufficient information to solve the entire problem, so a mutual sharing of information is necessary
to allow the group as a whole to produce an answer. By decentralized we mean that both control and
data are logically and olten geographically distributed; there is neither global control nor global data
storage. Loosely coupled means that individual KSs spend most of their time in computation rather
than communication.

Interest in such problem solvers arises from the promise of increased speed, reliability, and
extensibility, as well as ability to handle applications with a natural spatial or tunctional distribution,

NIEGOTIATION AS A METAPHOR -6- DAVIS AND SMITH

and the potential for increased tolerance to uncertainty in data and knowledge.

Distributed problem solving differs in severai fundamental respects from the more widely
known topic of distributed processing. Perhaps the most important distinction arises from examining
the origin of the system and the motivations for interconnecting machines.

Distributed processing systems often have their origin in the attempt to synthesize a network
of machines capable of carrying out a number of widely disparate tasks. Typically, several distinct
applications are envisioned, with each application concentrated at a single node of the network (as
for example in a three-node system intended to do payroll, order entry, and process control). The aim
is to find a way to reconcile any conflicts and disadvantages arising from the desire to carry out
disparate tasks, in order to gain the benefits of using multiple machines (sharing of data bases,
graceful degradation, etc.).

Unfortunately, the conflicts that arise are often not simply technical (e.g., word sizes,
database formats, etc.) but include sociological and political problems as well (see, e.g., [6]). The
attempt to synthesize a number ot disparate tasks thus leads to a concern with issues such as access
control and protection, and resulls in viewing cooperation as a form of compromise between
potentially conflicting views and desires at the level of system design and configuration.

In distributed problem solving, on the other hand, there is a single task envisioned for the
system and the resources to be applied have no other predefined roles to carry out. We are building
up a system de novo and can as a result choose hardware, software, etc. with one aim in mind; what
selection will lead to the most effective environment for cooperative behavior. This also means that
we view coopesration in terms of benevolent problem solving behavior, i.e., how can systems that are
perfectly willing to accommodate one another act so as to be an effective team. Qur concerns are
thus with developing frameworks for cooperative behavior belween vwi/ling entities, rather than
frameworks for enforcing cooperation as a form of compromise between potentially incompatible
entities.

A second important distinction arises from our focus on traditional issues of problem solving.
We intend, for example, that the system itself should include as part of its basic task the partitioning
and decomposition of a problem. Work in distributed processing, by comparison, has not taken
problem solving as a primary focus. It has generally been assumed, for example, that a well-defined
and a priori partitioned problem exists. The major concerns lie in an optimal static distribution of
tasks, methods for interconnecting processor nodes, resource allocation, and prevention of
deadlock. Complete knowledge of the problem has also been assumed (i.e., explicit knowledge of
timing and precedence relations between tasks) and the major reason for distribution has been
assumed to be load-balancing (e.g., [1], [2]). Since we do not make these assumptions, we cannot
take advantage of this pre-planning of resources. As will become clear, this makes for significant
difterences in the issues which concern us and in the design of the system.

A final distinction results from the lack of substantial cooperation in most distributed
processing systems. Typically, for instance, most of the processing is done at a central site and
remote processors are limited to basic data collection (e.g., credit card verification). The word
distributed is usually taken to mean spatial distribution of data --- distribution of function or control is
not generally considered.

One way to view the various research efforts is in terms of the three levels indicated in Figure
1. At the lowest level the focus is the processor architecture. The main issues here are the design of
the individual nodes and the interconnection mechanism. The components of an individual node
must be sslected (e.q., processor(s) and memory), and appropriate low-level interconnection
methods must be chosen (e.g., a single broadcast channel, complete interconnection, a regular
lattice, etc.).

The middle level focuses on the systems aspects of the problem solver. Among the concerns
at this level are such issues as guaranteeing message delivery, guaranteeing database consistency,

Eaan

LT

NEGOTIATION AS A METAPHOR -7- DAVIS AND SMITH

and techniques for database recovery.

The focus at the top level is problem solving, where the concerns are internode control and
knowledge organization; in particular how to achieve effective problem-solving behavior from a
collection of asynchronous nodes. There is therefore a greater concern with the content of the
information to be communicated between nodes than with the form in which the communication is
effected.

Al of these levels are important foci of research and each successive level depends on the
ones below it for support. Our concern in this paper, however, lies primarily at the level of problem
solving.

[PROBLEM SOLVING j

[Il

SYSTEMS

ARCHITECTURE

Fig. 1: A layered approach to distributed problem solving.

For the remainder of this paper we will assume that the underlying hardware architecture isa
network of loosely coupled, asynchronous nodes. Each node has a local memory; no memory is
shared by all nodes. Each node may, and typically will, contain several distinct KSs. There is no
central controller; each node makes its own choices about tasks to work on. The nodes are
interconnected so that every node can communicate with every other by sending messages, perhaps
over a broadcast channel. We also assume the existence of a low-level communication protocol to
support efficient communication of hit streams between nodes.

3. DISTRIBUTED PROBLEM SOLVING: MOTIVATION

A major motivation for this work lies in the potential it offers for making available more
problem sclving power, by applying a collection of processors to the solution of a single problem. It
may, for example, prove much easier to coordinate the actions of twenty medium-sized machines
than it is to build a single machine twenty (or even ten) times as large.

A distributed approach may also be well suited to problems that have either a spatial
distribution or a large degree of functional cpecialization. Spatial distribution often occurs in
problems involving interpretation of signal data from multiple sensors (e.g., [19]). Functional
specialization may occur in problems like understanding continuous speech (e.g., [18]): information
from many different knowledge-sources (e.g., signal processors, parsers, etc.) must be combined to
solve the problem.

Distributed problem solving also offers a way to apply to problem solving the recent
acdvances in both processor tabrication and communication techniques. Low-cost, small-scale VLSI
Processors are Now commonplace, with larger scale processors expected in the near future [20]. The

NEGOTIATION AS A METAPHOR -8- DAVIS AND SMITH

synthesis of advanced computer and communication technology that has resulted in networks of
resource-sharing computers (e.g., [12], [14]) offers a foundation for work on distributed
architectures. With these two developments as foundations, work can begin focusing on techniques
for effective use of networks of machines. '

One reason for interest in distributed architectures in general is their capacity for reliable
computation. As a result of minimizing of shared, centralized resources, they offer the potential for
graceful degradation of performance in the face of individual component failures. By placing problem
solving in this environment, we have the chance to make it similarly reliable. The use of an approach
like the contract net, which distributes both control and data, also makes possible additional
responses to component failure. In addition to the standard response of continuing to function as
before (albeit more slowly), the option may exist of having the system reconfigure itself to take into
account the hardware available (see Section 11).

Finally, and somewhat more speculatively, there is the argument about "bounded
rationality”. Some tasks appear difficult because of their size. They are "too big" to contemplate all
at once and are not easily broken into modular sub-problems (e.g., the working of the national
economy, the operation of a large corporation).

In such cases it may be difficult, both conceptually and practically, for a single problem
solver to deal effectively with more than a small part of all of the data or knowledge required to solve
the problem. Trying to scale up the hardware of a single problem solver may ease the practical
problem but does not solve the conceptual difficulty.

It may instead prove more effective to use multiple problem solvers, each of which handles
some fraction of the total problem, and to provide techinques for dealing with the interaction between
the sub-problems.

Recent work has explored a number of ideas relevant to accomplishing this goal. There is,
for example, the original HEARSAY-Il model of cooperating KSs ([16]). in which each KS had a sharply
limited domain of expertise. It demonstrated the practicality of using a number of independent KSs to
encode large amounts of knowledge about a domain. The work in [17] reports on an experiment that
distributed both knowledge and data. In Section 7 we describe an approach to distributing problem
solving effort that dynamically distributes knowledge, data and control.

4. THE FUNDAMENTAL ISSUES

~ Our study of distributed problem solving to date has identified three issues that appear to be
central to the undertaking: (i) the fundamental difficulty of ensuring global coordination of behavior
when that behavior results from the aggregation of actions based on local incomplete knowledge, (i)
the necessity of a protocol dealing with problem solving rather than with communication, and (jii) the
utility of negotiation as a fundamental mechanism for interaction. In this section we describe each of
the issues briefly, Seclions 5 and 6 then demonstrate how these issues arise from basic
considerations of the task at hand.

4.1 Global Coherence and Limiled Knowledge

One obvious problem that arises in employing multiple problem solvers is "coherence". Any
time we have more than one active agunt in the system there is the possibility that their actions are in
some fashion mutually interfering rather than mutually supportive. There are numerous ways in which

this can happen. We may have conflict over resources, one aaent inay unknowingly undo the results
of another, the same actions may be carried out redundantly, etc. In general terms, the collection of

Gt

NEGOTIATION AS A METAPHOR -8 DAVIS AND SMITH

agents may somehow fail to act as a well-coordinated, purposeful team.

We believe that this problem is due to the fundamental difficulty of obtaining coordinated
behavior when each agent has only a limited, local view. We could, of course, guarantee
coordination if every agent "knew everything”, i.e., it had complete knowledge. If, for example, every
problem solver had complete knowledge of the actions of all the others, it would be possible to avoid
redundant or conflicting efforts.

Yet any reasonable model of distribution appears to require incomplete, local views of the
problem. Complete information is, for example, at least impractical. As we argue in Section 6,

bandwidth limitations make it unreasonable to consider having every node constantly informed of all

developments.

A limited local view also simplifies the problem conceptually. The problem becomes far more
difficult to think about (and to program) if every problem solver has to keep track of everything. Italso
seems contrary to the basic notion of distribution: Part of the motivation is to allow a problem solver
to focus on one part of the problem and ignore the rest.

For these reasons at least, then, any distribution of problem solving effort appears to imply
incomplete, local knowledge.

And when we say "incomplete knowledge", we include in "knowledge" the information
indicating "who needs to know what". That is, we do not assume the availability of a map of
subproblems and their interactions (As noted earlier, we consider decomposition and distribution to
be part of the system’s task.) Without such a map, there is the chance that necessary interactions are
overlooked and hence we lose a guarantee of coordinated behavior.

Note that once we get such a map, or even a good approximation to it, we can count on the
locality of action and information to make distributed problem solving practical. By locality of action
and information, we mean that the problems typically attacked in Al are generally decomposable into
a set of subproblems in which the effects of actions and the relevance of information is quite local.
The actions taken to solve one subproblem generally affect only a few other subproblems; the
information discovered in solving one subproblem is generally relevant to only a few other
subproblems.” As a result, each problem solver will have to interact with at most a few others, making
limited bandwidth a challenging but not fatal constraint.

To summarize: the conflict arises because distribution seems by its nature to require
supplying each problem solver with only a limited, local view of the problem, yet we wish to
accomplish a global effect --- the solution of the problem at hand. It is not obvious how we can
guarantee overall coordination from aggregations of actions based on local views with incomplete
information. Thus, while the locality of action and information means that distributed problem solving
is feasible, the necessity of incomplete knowledge means that guaranteeing coordinated activity is
difficult.

One very general answer is that we require some foundation for cooperation that extends
across the nelwork of nodes, something that can be used as a basis for cooperation and organization.
As will become clear, our approach to this issue includes the use of (i) the concept of negotiation as a
mechanism for interaction (Section 7-1), (i) the network of tasks that results from decomposing a

1, This difficulty is not limited to distributed problem solving, it is only more paintully obvious there. The standard notion of
problem decomposition in centralized systems results in limited, local knowledge, and the same difficulty manifests itself as the
well-known problem of interacting subgoals.
2. The first half of this observation --- the locality of the effects of actions --- is typically used to justify informal solutions to the
frame problem. We can, for instance, account for the effects of an action with a list of consequences, because that list tends to
be short and predictable.

Similarly, thie impact of information tends of be local. If | as one member of a team, am working on one part of a
problem, most of what is discovered about the rest of the problem is irrelevant to me. Keeping me up to date on every detail
will only prove to be a distraction.

NEGOTIATION AS A METAPHOR -10- DAVIS AND SMITH

problem (Section 8-2), and (iii) a common language shared by all nodes (Section 7-4).

Some elements of our protocol supply a more specific answer. Even though each problem
solver has only a limited view of the problem, the announcement - bid - award sequence of messages
described in Section 7 offers one way for a node to find out who else has relevant information.

Together these mechanisms provide an initial step toward a basis for achieving coordinated
behavior.

4.2 The Need for a Problem Solving Protocol

In most work on protocols for distributed computation the emphasis to date has been on
- establishing reliable and efficient communication. Some degree of success has been achieved, at
levels ranging from individual packets to atomic actions (see, e.g., [27]). But these protocols are only
a prerequisite for distributed problem solving. In the same sense that communication among a group
of entities needs a carefully constructed communication protocol, so problem solving by a group of
entities requires a problem solving protocol. Cooperation cannot be established between nodes
simply by indicating how they are to communicate; we must also indicate what they should say to
each other.

The issue can also be viewed in the terms suggested by Figure 1. At each level we need to
give careful consideration to the basic architecture and we need the appropriate protocols. In the
same sense that we pay attention to hardware and systems architecture, so we need to consider a
"problem solving architecture"; as we have protocols that organize the communication of bits and
files, so we need protocols to organize the problem solving activity.

As discussed in Section 7, the contract net takes a step in this direction by providing a set of
message types that indicate the kind of information that nodes should exchange in order to effect one
form of cooperation.

4.3 The Utility of Negotation

One foundation of our approach to a problem solving protocol is the concept of negotiation.
By negotiation, we mean a discussion in which the interested parties exchange information and come
to an agreement. For our purposes negotiation has three important components: (a) there is a
two-way exchange of information, (b) each party to the negotiation evaluates the information from its
own perspective, and (c¢) final agreement is achieved by mutual selection.

The concept of negotiation appears to have mulliple applications. In Section 7, for example,
we explore in detail the application of negotliation to the problem of matching idle problem solvers to
outstanding tasks. This matching is carried out by the system itself, since, as noted, we do not
assume that the problem has already been decomposed and distributed. As the metaphor in Section
5 suggests, negotiation provides an effective mechaniam. We we also see that each of the three
components listed above contributes to its utility as a basis for interaction.

In Section 9-2 we explore a second application of negetiation by considering its utility as a
basis for transfer of control and as a way of viewing invocation as the matching of KSs to tasks. This
view leads to a more powerful mechanism for control transfer, since it permits a more informed choice
from among the alternative KSs which might he invoked. The view also leads to a novel perspective
on the outcome of the interaction. In most previous systems, the notion of selecting what to do next
typically involves taking the best choice from among those currently available. As will become clear,
in the contract net either party has the option of deciding that none of the currently available options
is good enough, and can decidea instead to await further developments.

NEGOTIATION AS A METAPHOR -1 DAVIS AND SMITH

5. A COOPERATING EXPERTS METAPHOR

A familiar metaphor for a problem solver operating in a distributed environment is a group of
human experts experienced at working together, trying to complete a large task.® Of primary interest
to us in examining the operation of a group of human experts is the way in which they interact to solve
the overall problem, the manner in which the workload is distributed among them, and how results are
integrated for communication outside the group. For reasons discussed above, we assume that no
one expert is in total control of the others, although one expert may be ultimately responsible for
communicating the solution of the top-level problem to the customer outside the group.

One possible model for the interaction involves group members cooperating in the execution
of individual tasks, a mode we have called "task-sharing” [26]. In such a situation we might see each
expert spending most of his time working alone on various subtasks that have been partitioned from
the main task, pausing occasionally to interact with other members of the group. These interactions
generally involve requests tor assistance on subtasks or the exchange of results.

An expert (E1) may request assistance because he encounters either a task too large to
handle alone, or a task for which he has no expertise. If the task is too large, he will first partition it
into manageable subtasks, and then attempt to find other experts who have the appropriate skills to
handle the new tasks. If the original task is beyond his expertise, he attempts right away to find
another, more appropriate expert to handle it.

In either case, E1's problem is now to find experts whose skills match the tasks that he
wishes to distribute. If E1 knows which other experts have the necessary expertise, he can notify
them directly. If he does not know anyone in particular who may be able to assist him (or if the tasks
require no special expertise), then he can simply describe the tasks to the entire group.

If another, available expert (E2) believes he is capable of carrying out the task that E1
announced, he informs E1 of his availability and perhaps indicates as well any especially relevant
skills he may have. E1 may wind up with several such volunteers and can choaose from among them.
The chosen volunteer might then request additional details from E1 and the two will engage in further
direct communication for the duration of the task.

In order to distribute the workload in a group of experts, then, those with tasks to be
executed must find others capable of executing those tasks. At the same time, it is the job of idle
experts to find suitable tasks on which to work. Those with tasks to be executed and those capable of
executing the tasks thus engage in a form of negotiation to distribute the workioad. They become
linked together by agreements or informal contracts, forming subgroups of varying sizes that are
created and broken up dynamically during the course of work.!

6. OBSERVATIONS AND IMPLICATIONS

The metaphor of a group of human experts offered several suggestions about organizing
problem solving effort. Here we consider how a group of computers might cooperate and examine
what that can tell us about how to proceed. We approach this by comparing the use of multiple,
distributed processors with the more traditional model of operation on a uniprocessor. We list several

3. This metaphor has been used as a starting point by [10], [14] and [15], but has resulted in systems that differ from ours in
several ways. The dilterent systems are compared in Section 9. .

4. Subgroups of this type offer two advantages. First, communication among the members does not necdlessly distract the
entire qroup. This is impotlant, because communication itsclf can be a major source of distraction and difficulty in a large
group {(see for example [8]). Thus one of the major purpases of organization is to' reduce the amount of communication that is
needed. Second, the subgroup members may be able to communicate with each other in a language that is more efficient for
their purpose than the language inuse by the cative group (for more on this see [25]).

NEGOTIATION AS A METAPHOR -12- DAVIS AND SMITH _

basic observations characterizing the fundamental differences and consider the implications_that
follow. While the list is not exhaustive, it deals with the differences we find most important.

Communication is slower than computation

That is, bits can be created faster than they can be shipped over substantial distances.® With
current technology, communication over such distances is in fact much slower than computation.
Attempting to interconnect large numbers of high speed processors can easily lead to saturation of
available bandwidth. Present trends indicate [21] that this imbalance in speed will not only continue,
but that the disparity is likely to increase. It appears as weli that the relative costs of communication
and computation will follow a similar trend.

Several implications follow from this simple observation (Figure 2). It means for example
that we want problem decompositions that yield loosely coupled systems --- systems in which
processors spend the bulk of their time computing and only a small fraction of their time
communicating with one another. The desire for loose coupling means in turn that we need to pay
attention to the efficiency of the communication protocol: With a more efficient protocol, fewer bits
need to be transmitted and less time is spent in communicating. It also means that we need to pay
attention to both the modularity and grain size of the problems chosen. Problems should be
decomposed into tasks that are both independent and large enough to be worth the overhead
involved in task distribution. Non-independent tasks will require communication between processors,
while for very small tasks (e.g., simple arithmetic) the effort involved in distributing them and reporting
results would likely be greater than the work involved in solving the task itself.

Communication is slower than computation.
--> lToose-coupling
--> efficient protocol

--> modular problems

--> problems with large grainsize

Fig. 2: Observations and implications.

We have argued above for loose coupling and based the argument on technological
considerations. The point can be argued from two additional perspectives as well. First, the
comments earlier concerning the locality of action and informaiion suggest that, for the class of
problems we wish to consider, tight coupling is unnecessary. The activities and results of any one
problem solver are generally relevant to only a few others. More widespread dissemination of
information will mostly likely only prove to be distracting.

5. Over short distances, of course, permanent hardwired links can be very effective. Where distances are large or varying
(e.g., mobile rohots), bandwidth again becomes a limiting factor.

Note also that we mean comimunicating all the bits involved in a computation, not just the final answer. Otherwise
communicaling, say, one bit to indicate the: primality of a 100 digit number would surely be faster than doing the computation
to determine the answer.

NEGOTIATION AS A METAPHOR -13- DAVIS AND SMITH

A second argument, described in [16], takes a more emphatic position and argues for loose
coupling even where it is known to produce temporary inconsistencies. They note that standard
approaches to parallelism are typically designed to ensure that all processors always have mutually
consistent views of the problem. Such complete consistency, and the tight coupling it requires, is,
they claim not necessary. They suggest instead that distributed systems can be designed to be
“functionally accurate", i.e., the system will produce the correct answer eventually even though in an
intermediate state some processors may have inconsistent views of the problem.

Thus we have arguments against tight coupling based on technological considerations (the
communication/computation imbalance), pragmatic issues (the locality of action and information),
and empirical results which suggest that it may be unnecessary.

Any unique node is a potential bottleneck.

Any node with unique characteristics is potentially a bottleneck that can slow down the
system (Figure 3). If those characteristics make the distinguished node usetful to enough other nodes
in the system, then eventually those nodes may be forced stand idle while they wait for service. This
is equally true for a resource like data (for which the issue has been extensively studied) and a
"resource" like control (for which considerably less work has been done). If one node were in charge
of directing the activities of all other nodes, then requests for decisions about what to do next would
in time accumulate faster than they could be processed.® From this it follows that control should be
decentralized. By this we mean that each node should have some degree of autonomy in generating
new tasks and in deciding which task to do next.

Any unique node is apotential bottleneck
--> distribute data
--» distribute contbo]
--> organized behavior is hard to guarantee

Fig. 3: Further observations and implications.

Organized behavior is difficult to guarantee if control is decentralized.

In a system with completely centralized control, one processor is responsible for directing
the activities of all the others. It knows what all the other processors are doing at any given time, and,
armed with this global view of the problem, can assign processors to tasks in a manner that assures
organized behavior of the system as a whole. By "organized", we mean that (among other things) all
tasks will eventually be attended to, they will be dealt with in an order that reduces or eliminates the
need for one processor to wait for results from another, processor power will be well matched to the
tasks generated, etc. In more general terms, the set of processors will behave like a well-coordinated,
purposcful team.

in the absence of a global overview, coordination and organization becomes much more

6. Such a node would also be an Achilles’ heel in the system, cince its failure would resultin total failure of the system.

NEGOTIATION AS A METAPHOR -14- DAVIS AND SMITH

difficult. When control is decentralized, no one node has a global view of all activities in the system;
each node has a local view that includes information about only a subset of the tasks. The
appropriate organization of a number of such subsets does not necessarily result in appropriate
organization and behavior of the system as a whole.

In Section 4 we described the general problem of ensuring well-coordinated behavior; this is
a specific instantiation of that problem with respect to control. We are trying to achieve a global
effect (coherent behavior) from a collection of local decisions (nodes organizing subsets of tasks).
We cannot centralize control for reasons noted above, yet it is not clear how to ensure coherent
behavior when control is distributed.

7. A FRAMEWORK FOR DISTRIBUTED PROBLEM SOLVING
7.1 A View of Distributed Problem Solving

We view distributed problem solving as involving four central activities: problem
decomposition, sub-problem distribution, solution of sub-problems, and synthesis of the overall
solution. By decomposition we mean the standard notion of breaking a large problem into smaller,
more managable pieces; distribution involves the matching of sub-problems with problem solvers
capable of handling them; the sub-problems are then solved; and finally those individual solutions
may need to be synthesized into a single, overall solution.

These four activites may occur individually and in the sequence noted, or may be combined
or carried out in parallel. The point is simply that all of them can make important contributions to the
problem solving process, so we need some mechanism for dealing with each.’

7.2 Task-Sharing, Negotation and the Connection Problem

We have emphasized above the importance of having a protocol for organizing problem
solving activity and proposed negotiation as a plausible basis for that protocol. But what shall we
negotiate? Our work to date has followed the lead suggested by the cooperating experts metaphor
and explored the distribution of tasks as an appropriate subject. Thus, in this paper we focus on
application of the contract net to the distribution phase of distributed problem solving and show how
negotiation appears to be an effective tool for accomplishing the matching of problem solvers and
tasks. v

To illustrate this, recall that the group of experts distributed a problem by decomposing it into
ever smaller subtasks and distributing the subtasks among the group. We term this mode of
operation "task-sharing", because cooperation is based on the dynamic decomposition and
distribution of subproblems.® But to enable distribution of the subproblems, there must be a way for
experts with tasks to be executed to find idle experts capable of executing those tasks. We call this
the "connection problem".

The contract net protocol supplies a mechanism to solve the connection problem: As we will
see, nodes with tasks to be executed negotiate with idle nodes over the appropriate matching of tasks

7. For some problems the first or last activity may be trivial or unnecessary. Where a problem is geographically distributed, for
example, the decompasition may be ohvious (but see the discussion of the sensor netin Section 8). In problems of distributed
control {e.g.. traffic hght contral), there may be no need to synthesize an "overall”" answer.

8. Task-sharing in its simplest form can be viewed as the distributed version of the traditional notion of problem
decomposition. For a different approach to distribution, see [17].

NEGOTIATION AS A METAPHOR -15- DAVIS AND SMITH

and nodes.
— This approach is especially appropriate for a distributed problem solver because it requires
' neither global control nor global data storage. Concurrency is also enhanced because both
managers and contractors simultaneously seek each other out.

A few words of terminology will be useful. The collection of nodes is referred to as a contract
net. Each node in the net takes on one of two roles: manager or contractor. A manager is
responsible for monitoring the execution of a task and processing the results of its execution. A
contractor is responsible for the actual execution of the task.®

Individual nodes are not designated a priori as managers or contractors; these are only roles,
and any node can take on either role dynamically during the course of problem solving. Typically a
node will take on both roles, often simultaneously for different contracts. This has the advantage that
individual nodes are not statically tied to a control hierarchy.

For the sake of exposition, we describe the protocol in successive layers of detail, describing
first the content of the messages exchanged (Section 7-3), then their format (Section 7-4), and finally
the details of the language in which they are written (Section 7-5).

7.3 Contract Net Protocol --- Message Content

Message content is the heart of the issue, since it indicates what kinds of things nodes
should say to one another and provides the basis for cooperation.

Negotiation is initiated by the generation of a new task. As suggested in the experts
metaphor, this may occur when one problem solver decomposes a task into sub-tasks, or when it
decides that it does not have the knowledge or data required to carry out the task. When this occurs,

P the node that generates the task advertises existence of the task with a task announcement
’ message (Figure 4). It then acts as the manager of that task for its duration. Many such
announcements are made over the course of time as new tasks are generated.

Meanwhile, nodes in the net are listening to the task announcements (Figure 5). They
evaluate their own level of interest in each task with respect to their specialized resources (hardware
and software), using task evaluation procedures specific to the problem at hand.”

When a task is found to be of sufficient interest, a node submits a bid (Figure 6). A bid
message indicates the capabilities of the bidder that are relevant to execution of the announced task.

A manager may receive several bids in response to a single lask announcement (Figure 7).
Based on the information in the bids, it selects one or more nodes for execution of the task, using a
task-specifichid evaluation procedure.

The selection is communicated to the successful bidders through an award message (Figure
8). The selected nodes assume responsibility for execution of the task, and each is called a
contractor for that task.

A contractor will typically partition a task and enter into (sub)contracts with other nodes. It is
then the manager for those contracts. This leads to the hierarchical control structure that is typical of
task-sharing.

A report is used by a contractor to inform its manager that a task has been partially executed

9. The basic idea of contracting is not new. For example, a tudimentary bidding scheme was used for resource allocation in
the DISTRIBUTED COMPUTING SYSTEM (DCS) [7]. There, however, information exchanged during negotiation was relatively
- simple The contiact net takes a wider perspective and allows a broader range of deszriplions to be used during negotiation.
For a detailed discussion ses {25].
f""\ 10. WWis in general up to the user to supply this and other task-specific procedures, but useful defaults are available in the
system.

NEGOTIATION AS A METAPHOR -16- ‘DAVIS AND SMITH

(an interim report) or completed (a final report).The report contains a result description
that specifies the results of the execution.

The manager may terminate contracts with a termination message. The contractor
receiving such a message terminates execution of the contract and all related outstanding
subcontracts.

A contract is thus an explicit agreement between a node that generates a task (the manager)
and a node that executes the task (the contractor, Figure 9). Note that establishing a contract is a
process of mutual selection. Available contractors evaluate task announcements until they find one
of interest; the managers then evaluate the bids received from potential contractors and select the
ones they determine to be most appropriate. Both parties to the agreement have evaluated the
information supplied by the other and a mutual selection has been made.

We have dealt here with a simple example in order to focus on the issue of cooperation.
Additional complications which arise in implementing the protocol are discussed in detail in [24]; we
note them briefly here for reference. Focussed addressing is a more direct communication scheme
used where the generality of broadcast is not required. Directed contracts are used when a manager
knows which node is appropriate for a task. A request-response mechanism allows simple transfers
of information without the overhead of contracting. And finally, a node-available message allows
reversal of the normal negotiation process: When the computation load on the net is high, most task
announcements will not be answered with bids because all nodes will already be busy. The
node-available message allows an idle node to indicate that it is searching for a task to execute. The
protocol is thus load sensitive in response to changing demands of the task: When the load is low, the
spawning of a task is the important event; when the load is high, the availability of a node is important.

11. Interim reports are useful when generator-style control is desired. A node can be sot to work on a task and instructed to
issue interim reports whenever the next result is ready. 1t would then pause, awaiting a message that instructs it to continue
and produce another result.

e
;
N

NEGOTIATION AS A METAPHOR -7 -

—_—=
g\,\ TASK ANNOUNCEMENT
MANAGER g g

:

Fig. 4: Node issuing a task announcement.

g \‘\ TASK ANNOUNCEMENTS

MANAGER

POTENTIAL
CONTRACTOR
MANAGER

MANAGER

Fig. 5: Idle node listening to task announcements.

Ny

5
2y

POTENTIAL
CONTRACTOR

Fig. 6: Node submitting a bid.

5

5

E

DAVIS AND SMITH

NEGOTIATION AS A METAPHOR - 18-

MANAGER

. T

POTENTIAL

POTENTIAL CONTRACTOR
CONTRACTOR

:]

Fig. 7: Manager listening to hids con’iing in.

g N a0

- MANAGER g g

POTENTIAL
CONTRACTOR

Fig. 8: Manager making an award.

CONTRACTOR g

Fig. 9: A contract established.

DAVIS AND SMITH

NEGOTIATION AS A METAPHOR -19- DAVIS AND SMITH

7.4 Contract Net Protocol --- Message Format

Each message is composed of a number of slots that specify the kind of information needed
to make up that type of message. A task announcement message, for example, has four main slots™
(Figure 10). The eligibility specification is a list of criteria that a node must meet to be
eligible to submit a bid. The task abstraction is a brief description of the task to be executed. It
enables a node to rank the announced task relative to other announced tasks. The bid
specification isadescription of the expected form of a bid. It gives a manager a chance to say, in
effect, "Here’s what | consider important about a node that wants to bid on this task."” This provides a
common basis for comparison of bids, and enables a node to include in a bid only the information
about its capabilities that are relevant to the announced task. Finally, the expiration time is a
deadline for receiving bids.

For any given application, the information that makes up the eligibility specification, etc.,
must be supplied by the user. Hence while the contract net protocol offers a framework specifying
the types of information that are necessary, it remains the task of the user to supply the actual
information appropriate to the domain at hand.

Main Task Announcement Slots

Eligibility specification
Task abstraction
Bid specification
Expiration time

Fig. 10: Task announcement format.

7.5 Contract Net Protocal --- the Common Internode Language

Finally, we need a language in which to specify the information in the slots of a message. For
a number of reasons, it is useful to specify a single, relatively high level language in which all such
information is expressed. We call this the common internode language. This language forms a
common basis for communication among all the nodes.

As an example, consider a task announcement message that might be used in a system
working on a signal processing task. Assume that one node attempting to analyze a signal
determines that it would be useful to have a Fourier transform of that signal. Unwilling or unable to do
the task itself (perhaps because of hardware limitations), it decides to announce the task in order to
solicit assistance. It might issue a task announcement of the sort shown in Figure 11.

12. There are also slots that contain bookkeeping information.

NEGOTIATION AS A METAPHOR -20- DAVIS AND SMITH

To: *

From: 25

Type: TASK ANNOUNCEMENT
Contract: 43-6

Task abstraction
TASK TYPE FOURTIER-TRANSFORM
NUMBER POINTS 1024
NODE NAME 25
POSITION LAT 64N LONG 10W

Etligibility Specification
MUST~HAVE FFTBOX

Bid Specification
COMPLETION-TIME

Expiration Time
29 16457 NOV 1980

Fig. 11: Task announcement exampie.

The announcement is broadcast to all nodes within range ("To: *"), and indicates that there is a
TASK of TYPE FOURIER-TRANSFORM to be done. In order to consider bidding on it a node must have
an FFTB0OX and a bid should specify estimated time to completion of the task.

The common internode language is currently built around a very simple attribute, object,
value representation. There are a number of predefined (domain-independent) terms (like TYPE of
TASK); these are supplemented with domain-specific terms (like FFTBOX). The domain-independent
terms are part of the language offered to the user and help him organize and specify the information
he has to supply. The domain-specific terms have to be added to the vocabulary by the user as
needed for the application at hand.

We noted above that information in the slots of a message is stated in terms of a common
internodle language. The two important points here are that the information is being expressed as
statements in a language, and that the language is common to all the nodes.

It is useful to adopt the perspective that the messages are statements in a language, rather
than, say, patterns to be matched, because this offers the chance for more interesting exchange of
information. Standard pattern matching implies a restricted form of communication: A pattern either
matches or fails; if it succeeds the only information available comes from the bindings of pattern
variables. By viewing the messages as statements in a language we have attempted to make available
more general mechanisms tor examining and responding to the messages. In particular, we find the
two-way exchange of information an important capability (see Section 9).

Itis also’useful to identity a common "core" language shared by all the nodes. This makes it
much easier to add new nodes to the net, Any new node, preloaded with only the common internode
language, can use that language to isolate the' information it needs to begin to participate in solving
the problem at hand (i.e., it can listen to and understand task announcements, etc.), and express a
request for the transfer of any required information. If there were a number of distinct internode
languages, then a new node entering the net could only interact with a limited subset of the nodes,

NEGOTIATION AS A METAPHOR -21- DAVIS AND SMITH

those which spoke its language.® This would make addition of new nodes to the net less effective.

A common language also makes possible invocation schemes more flexible than standard
procedure invocation, and this in turn facilitates addition of a new node to the net. For example, a
common language makes it possible to use invocation based on describing tasks to be done,' rather
than naming specific KSs (procedures) to invoke next. When this technique is used, new nodes can
simply be added to the existing collection; they will find their own place in the scheme of things by
listening to task announcements, issuing bids, etc. With more traditional invocation schemes (e.g.,
standard procedure calling), a new node would have to be linked explicitly to others in the network.

8. EXAMPLE: DISTRIBUTED SENSING

The protocol described above has been implemented in INTERLISP and used to solve several
problems in a simulated multi-processor environment. The problems included search (e.g., the
8-queens problem) and signal interpretation (for details see [24]). In this section we describe use of
the contract net on one such problem in signal interpretation: area surveillance of the sort
encountered in air or ship traffic control. We explore the operation of a network of nodes, each
having either sensing or processing capabilities and all spread throughout a relatively large
geographic area. We refer to such a network as a distributed sensing system (DSS).

Although an operational DSS may have several functions, ranging from passive analysis to
active control over vehicle courses and speeds, we focus here on the analysis function. The task
involves detection, classification, and tracking of vehicles; the solution to the problem is a dynamic
map of traffic in the area. Construction and maintenance of the map requires interpretation of the
large quantity of sensory information received by the collection of sensor elements.

Since we want to produce a single map of the entire area, we may choose to have one
processor node --- which we will call the monitor node --- carry out the final integration of information
and transmit it to the appropriate destination. Itis also useful to assign that node the responsibility for
beginning the initialization of the DSS. lts total set of responsibilities therefore includes starting the
initialization as the first step in net operation, integrating the overall map as the last step in analysis,
and then communicating the result to the appropriate agent. We will see that this monitor node does
not, by the way, correspond to a central controller.

Since the emphasis in this work has been on organizing the problem solving activities of
multiple problem solvers, work on the signal interpretation aspects did not include construction of
low-leve! signal processing facilities. Instead it assumed the existence of appropriate signal
processing modules and focused on the subsequent symbolic interpretation of that information.

8.1 Hardware

All communication in the DSS is assumed to take place over a broadcast channel (using for
example, packet radio techniques, [13]). The nodes are assumed to be in fixed positions known to
themselves but not known a priori to other nodes in the net. Each node has one of two capabilities:
sensing or processing. The sensing capability includes low-level signal analysis and feature

13. Note that the extreme case (in which every pair of nodes communicates in their own private language) is precisely
standard procedure invocation. To decode a procedure call, one must know the expected order, type, and number of
arguments. This is information which is shared only by the caller and procedure involved, in effect a private language used for
communication between them.

14, Asis also done in PLLANNER and ihe ather pattern-directed languages.

NEGOTIATION AS A METAPHOR ® -22- DAVIS AND SMITH

extraction. We assume that a variety of sensor types exist in the DSS, that the sensors are widely
spaced, and that there is some overlap in sensor area coverage. Nodes with processing capability
supply the computational power necessary to effect the high-level analysis and control in the net.
They are not necessarily near the sensors whose data they process.

Figure 12 is a schematic representation of a DSS.

In the example that follows, some assumptions about such things as node locations, what
one node knows about another, etc., may seem to be carefully chosen rather than typically what one
would expect to find. This is entirely true. We have combined a number of plausible but carefully
chosen (and occasionally atypical) assumptions about hardware and software available in order to
display a number of the capabilities of the contract net in a single, brief example.

+ + +
s P s
+ + + o+ +
P s s M s
+ + + +
s s s P
+ + + + + +
s s P S s s

S= SENSOR NODE P = PROCESSOR NODE M = MONITOR NODE

Fig. 12: A distributed sensing system.

8.2 Data and Task Hierarchy

The DSS must integrate a large quantity of data, reducing it and transforming it into a form
meaningful to a human decision maker. We view this process as occurring in several stages, which
together form a data hierarchy (Figure 13).

As we have chosen to solve the problem for this illustration, at any given moment a particular
node handles data at only one level of the data hierarchy, but may communicate with nodes at other
levels. In addition, the only form of signal processing we consider is narrow band spectral analysis.'

15. Noise radiated by a vehicle typically contains narrow band signal components caused by rotating machinery. The
frequencies of such signals are correlated with the type of rotating machine and its speed of rotation; hence they are indicators
of the classification of the vehicle. Narrow band signals also undergo shifts in frequency due to Doppler effect or change in the
speed of rotation of the associated machine; hence they also provide speed and directional information. (Unfortunately,
alterations in signal strenglh also occur as a result of propagation conditions and vaiations in the distance between the
vehicle and the sensor.)

NEGOTIATION AS A METAPHOR -23- DAVIS AND SMITH

" OVERALL AREA MAP
AREA MAP
VEHICLE
SIGN[-\I_| GROUP
SIGNAL

Fig. 13: Data hierarchy.

At the bottom of the hierarchy we have audio signals, which are described in terms of several
features: frequency, time of detection, strength, changes in strength, name and position of the
detecting node, and name, type, and orientation of the detecting sensor.

Signals are formed into signal groups, collections of related signals. One common signal
group is the harmonic set, a collection of signals in which the frequency of each signal is an integral
multiple of the lowest frequency. In the current example, a signal group is described in terms of its
fundamental frequency, time of formation, identity of the detecting node, and features of the detecting
sensor.

The next level of the hierarchy is the description of the vehicle. It has one or more signal
groups associated with it and is further specified by position, speed, course, and classification.
Position can be established by triangulation, using matching groups detected by several sensors with
different positions and orientations. Speed and course must be generally established over time by
tracking.

The area map forms the next level of the data hierarchy, it contains information about the
vehicle traffic in a given area. There will be several such maps for the DSS, together they span the
total area of coverage of the system.

The final leve! is the complete or overall area map, produced in this example by the monitor,
which integrates information in the individual area maps.

The hierarchy of tasks, Figure 14, follows directly from the data hierarchy. The monitor node
manages several area contractors. These contractors are responsible for the formation of traffic
maps in their immediate areas. Each area contractor, in turn, manages several group contractors that
provide it with signal groups for its area. Each group contractor integrates raw signal data from signa/
contractors that have sensing capabilities.

The area contractors also manage several vehicle contractors that are responsible for
integrating information about individual vehicles. Each of these contractors manages a classification
contractor that determines vehicle type, a localization contractor that determines vehicle position,
and a tracking contractor that tracks the vehicle.

NEGOTIATION AS A METAPHOR -24- DAVIS AND SMITH

OVERALL AREA
AREA

|
VEHICLE
GROUP

l l
SIGNAL CLASSIFICATION LOCALIZATION TRACKING

Fig. 14: Task hierarchy.

8.3 Contract Net Implementation

There are two phases to this problem: initialization of the net and operation. Although there
are interesting aspects to both of these phases we will concern ourselves here primarily with
initialization. 1t is the phase that most easily illustrates the transfer of control issues that form one
focus of the paper. The operation phase is dealt with only briefly; for further discussion see [23].

The terminology in the discussion that follows highlights the fact that the nodes in the
contract net play a dual role: They are simultaneously contractors obligated to carry out a task that
they were awarded, and managers for any tasks which they in turn announce. For example, node
number 2 in Figure 15 is simultaneously (i) a contractor for the area task (and hence is charged with
the duty of producing area maps from vehicle data), (i) a manager for group formation tasks which it
announces and contracts out, and (iii) a manager for any vehicle tasks which it contracts out. Nodes
are thus simultaneously both workers and supervisors. (Compare Figure 14 and Figure 15.)

NEGOTIATION AS A METAPHOR <25 . DAVIS AND SMITH

MONITOR NODE
integrate area maps
into overall map

AREA TASK MANAGER
oversee area contractors

AREA CONTRACTOR
integrate vehicle
traffic into area map

GROUP TASK MANAGER VEHICLE TASK MANAGER
oversee group contractors oversee vehicle contractors

3 4
GROUP CONTRACTOR VEHICLE CONTRACTOR B
assemble signal integrate vehicle informatian
features into groups
SIGNAL TASK MANAGER CLASSIFICATION TASK MANAGER
oversee signal contractors oversee vehicle classification
LOCALIZATION TASK MANAGER

oversee vehicle localization
TRACKING TASK MANAGER
oversee vehicle tracking

6 6 7 8
SIGNAL CONTRACTOR CLASSIFICATION LOCALIZATION TRACKING
provide signal features CONTRACTOR CONTRACTOR CONTRACTOR
classify vehicie locate vehicle track vehiclse

Fig. 15: Nodes and their roles.

NEGOTIATION AS A METAPHOR -26- DAVIS AND SMITH

8.3.1 Initialization

The monitor node is responsible for initialization of the DSS and for formation of the overall
map. It must first select nodes to be area contractors and partition the system’s span of coverage into
areas based on the positions of those selccted nodes. For purposes of illustration we assume that the
monitor node knows the names of the nodes that are potential area contractors, but must establish
their positions in order to do the partitioning.

it begins by announcing the task of area map formation. Because it knows the names of
potential contractors, it can avoid using a general broadcast and instead uses focused addressing.
The components of the announcement of primary interest here are the task abstraction, the eligibility
specification, and the bid specification. The task abstraction is simply the task type. The eligibility
specification is blank, since in this case the monitor node knows which nodes are potential
contractors and can address them directly. The bid specification informs a prospective area
contractor to respond with its position.

Recall that the purpose of a bid specification is to inform a node of how to bid so that a
manager can select from all of the bidders the most appropriate one(s) to execute the task. In this
case, node position is the relevant information. Potential area contractors respond with their
positions, and, given that information, the monitor node can partition the cverall span of coverage
into approximately equal-sized areas. It then selects a subset of the bidders to be area contractors,
informing each of its area of responsibility in an award message. The negotiation sequence thus
makes available to the monitor node the positions of all of the potential area contractors, making
possible a partitioning of the overall area of the DSS based on these positions. This in turn enables
the DSS to adjust to a change in the number or position of potential area contractors.

Area contractors integrate vehicle data into area maps. They must first establish the
existence of vehicles on the basis of group data. To do this, each area contractor solicits other nodes
to provide that data. In the absence of any information about which nodes are suitable, each area
contractor announces the task using a general broadcast. The task abstraction in this message is the
type of task. The eligibility specification is the area for which the area contractor is responsible.'
The bid specification is again node position. Potential group contractors respond with their
respective positions, and based on this information the area contractors award contracts to nodes in
their areas of responsibility.

The group contractors integrate signal features into groups, and start by finding a set of
contractors to provide the signal features. Recall that we view node interaction as an agreement
between a node with a task to be done and a node capable of performing that task. Sometimes the
perspective on the ideal character of that agreement differs depending on the point of view of the
participant. For example, from the perspective of the signal task managers, the best set of
contractors would have an adequate spatial distribution about the surroundi'ng area and an adequate
distribution of sensor types. From the point of view of the signal task contractors, on the other hand,
the ideal match involves finding managers that are closest to them (in order to minimize potential
communication problems).

The ability to express and deal with such disparate viewpoints is one advantage of the
contract net framework. To see how the appropriate resolution is accomplished, consider the
messages exchanged between the signal managers and potential signal contractors. Each signal
manager announces its own signal task, using a message of the sort shown in Figure 16. The task
abstraction is the type of task, the position of the manager making the announcement, and a

16. This ensures that a node is eligible to bid on this task only if it is in the same area as the announcing area contractor and
helps to prevent a case in which a group contractor is so tar away from its manager that reliable communication is difficult to
achieve.

NEGOTIATION AS A METAPHOR -27- DAVIS AND SMITH

specification of its area of responsibility. This enables a potential contractor to determine the
manager to which it should respond. The eligibility specification indicates that the only nodes that
should bid on the task are those which (a) have sensing capabilities, and (b) are located in the same .
area as the manager that announced the task. The bid specification indicates that a bid should
contain the position of the bidder and the number of each of its sensor types, information that a
manager needs to select a suitable set of sensor nodes.

To: *

From: 25

Type: TASK ANNOUNCEMENT
Contract: 22-31

Tasl Abstraction:
TASK TYPE SIGNAL
POSITION LAT 47N LONG 17E
AREA NAME A SPECIFICATION(...)

Eligibility Specification
MUST-HAVE SENSOR
MUST-HAVE POSITION AREA A

Bid Specification
POSITION LAT LONG
EVERY SENSOR NAME TYPE

Expiration time
28 1730Z FEB 1979

Fig. 16: Signal task announcement.

The potential signal contractors listen to the task announcements made by signal managers.
They respond to the nearest manager with a bid (Figure 17) that supplies their position and a
descriplion of their sensors. The managers use this information to select a set of bidders that covers
their area of responsibility with a suitable variety of sensors, and then award signal contracts on this
basis (Figure 18).

To: 25
From: 42
Type: BID
Coniract: 22-3-1

Node Abstractlion
LAT 62N LONG 9W
SENSOR NAME S1 TYPE S
SIENSOR NAME S2 TYPE S
SENSORNAMETI TYPET

Fig. 17: Signal bid.

NEGOTIATION AS A METAPHOR -28- DAVIS AND SMITH

To: 42
From: 25
Type: AWARD
Contract: 22-3-1

Task Specification
SENSCR NAME S1
SENSOR NAME S2

Fig. 18: Signal award.

The signal contract is a good example of the negotiation process. It involves a mutual
decision based on local processing by both the managers and the potential contractors. The
potential contractors base their decision on a distance metric and respond to the closest manager.
The managers use the number of sensors and distribution of sensor types observed in the bids to
select a set of contractors that covers each area with a variety of sensors. Thus each party to the
contract evaluates the proposals made by the other using its own distinct evaluation procedure.

To review the initialization process: we have a single monitor node that manages several area
contractors. Each area contractor manages several group contractors, and each group contractor
manages several signal contractors. The data initially flows from the hottom to the top of this
hierarchy. The signal contractors supply signal features; each group contractor integrates the
features from several signal contractors to form a signal group, and these groups are passed along to
the area contractors, which eventually form area maps by integrating information based on the data
from several group contractors. All the area maps are then passed to the monitor which forms the
final traffic map."’

The initialization process reviewed above may appear at first glance to be somewhat more
elaborate than is strictly necessary. We have purposely taken a fairly general approach to the
problem to emphasize two aspects of contract net performance. First, as illustrated by the signal
contract, contract negotiation is an interactive process involving (i) a two-way transfer of information
(task announcements from managers to contractors, bids from contractors to managers), (i) local
evaluation (each party to the negotiation has its own local evaluation procedure), and (iiil) mutual
selection (bidders select from among task announcements, managers select from among bids).

Second, the contract negotiation process offers a useful degree of flexibility, making it well
suited to Al problems whose decomposition is not known a priori and well suited to problems whose
configuration is likely to change over time. To illustrate this, consider that exactly the same
initialization process will work across a large variation in the number of and position of nodes
available (indeed the description given never mentions how many nodes there are, where they are
focated, or how wide the total area of coverage is). There are clearly limits to this flexibility: If the area
of coverage were large enough to requires several thousand area contractors, then it might prove
uscful to introduce another level of distribution in the hierarchy (Figure 14) between the monitor node
and the area contractor. But the current approach works with a wide range of available resources
and needs no modification within that range. This can be very useful when available hardware
resources cannot be identified a priori with certainty, or when operating environments are hostile

17. As noted, in this example one arca contractor manages several group contractors and each group contractor in turn
manages several signal contractors. It is posaible, however, that a single group contractor could supply information to several
area conliactors, and a single signal contractor could supply information to several group contractors. It may be usetul, for
instance, to hive a particular group conlractor riear an arca boundary report to the area conlractors on both sides of the
boundary. This is easily accommaodaled within our framework.

NEGOTIATION AS A METAPHOR -29- DAVIS AND SMITH

enough to make hardware failure a significant occurrence.

8.3.2 Operation

We now consider the activities of the system as it begins operation. For the sake of brevity
the actions are described at the level of task announcements, bids, and contracts. For additional
details and examples of messages sent, see [23]. '

When a signal is detected or when a change occurs in the features of a known signal, the
detecting signal contractor reports this fact to its manager. This node, in turn, attempts to either
integrate the information into an existing signal group or form a new signal group (recall that the
manager for the signal task is also a contractor for the task of group formation, Figure 15).

Whenever a new group is detected, the contractor reports existence of the group to its
manager (an area contractor). The area contractor attempts to find a node to execute a vehicle
contract, which involves classifying, localizing, and tracking the vehicle. The area contractor must
first determine whether the newly detected group is attributable to a known vehicle. To do this, it
requests from all current vehicle contractors an indication of their belief that the new group can in
fact be attributed to one of the known vehicles. Based on the responses, the area contractor either
starts up a new vehicle contractor (if the group does not seem to fit an existing vehicle) or augments
the current contract of the appropriate vehicle contractor, adding to it the task of making certain that
the new group corresponds to a known vehicle. This may entail such things as gathering new data
via the adjustment of sensors or the creation of contracts with new sensor nodes. '

The vehicle contractor then makes two task announcements: vehicle classification and
vehicle localization. A classification contractor may he able to classify directly, given the signal group
information or it may require more data, in which case it can communicate directly with the
appropriate sensor nodes.”™ The localization task is a simple triangulation which is awarded to the
first bidder.

Once the vehicle has been localized, it must be tracked. This is handled by the vehicle
contractor, which issues additional localization contracts from time to time and uses the results to
update its vehicle description. Alternatively, the area contractor could award separate tracking
contracts. The decision as to which method to use depends on loading and communication. If, for
example, the area contractor is very busy with integration of data from many group contractors, then
it seems more appropriate to isolate it from the additional load of tracking contracts. If, on the other
hand, the area contractor is not overly busy, then we can let it handle updated vehicle contracts,
taking advantage of the fact that it is in the best position to integrate the results and coordinate the
efforts of multiple tracking contractors. In this example, we assume that the management load would
be too large for the area contractor.

A variety of other issues have to be considered in the design and operation of a real
distributed sensing system. Most of them, however, are quite specific to the DSS application and
hence outside the main focus of this paper.

18. As this example illustrates, the contract net makes it possible for iwo contractors to communicate directly (i.e., horizontal
communication across the hierarchy) as well as via the more traditional (vertical) communicaiion between managers and
contractors.

NEGOTIATION AS A METAPHOR -30- DAVIS AND SMITH

9. A PROGRESSION IN MECHANISMS FOR TRANSFER OF CONTROL
9.1 The Basic Questions and Fundamental Differences

The contract net appears to offer a novel perspective on the traditional concepts of
invocation and transfer of control. To illustrate this, we examine the range of invocation mechar‘\js‘ms;
that have been created since the earliest techniques were developed, and compare the perspective
implicit in each technique to the perspective used in the contract net.

In doing this comparison, we consider the process of transfer of control from the perspective
of both the caller and the respondent. We focus in particular on the issue of selection and consider
what opportunities a calling process has for selecting an appropriate respondent and what
opportunities a potential respondent has for selecting the task on which to work. In each case we
consider two basic questions that either the caller or the respondent might ask:

T Whatis the character of the choice available? (i.e., at runtime, does the caller
know about all potential respondents and can it choose from among them;
similarly does each respondent know all the potential callers for whom it might
work and can it choose from among them?)

¥ On what kind of information is that choice based? (e.g., are potential
respendents given, say, a pattern to match, or some more complex form of
information? What information is the caller given about the potential
respondents?)

The answers to these questions will demonstrate how our view of control transfer differs from
that of the earlier formalisims with respect to:

1 Information transfer: The announcement-bid-award sequence means that
there is the potential for more information, and more complex information,
transferred in both directions (between caller and respondent) during the
invocation process.

1 Local evaluation: The computation devoted to the selection process, based on
the information transfer noted above, is more extensive and more complex
than that used in traditional approaches. It is local in the sense that
information is evaluated in a context associated with, and specific to, an
individual KS (rather than embodied in a4 global evaluation function).

T Mutual selection: The local selection process is symmetric, in the sense that
the caller evaluates potential respondents from its perspective (via the bid
evaluation procedure) and ihe respondents evaluate the available tasks from
their perspective (via the task evaluation procedures).

To put it another way, in the contract net the issue of transfer of control is more broadly
viewed as a problem of connecting managers (and their tasks) with contractors (and their KSs). This
view is inherently symmelric in that both the caller (manager) and respondentis (bidders) have a
selection to make. This symmetry in turn leads to the concept ol establishing connection via

NEGOTIATION AS A METAPHOR -31- DAVIS AND SMITH

negotiation between the interested parties. Then, if we are to have a fruitful discussion, the
participants need to be able to "say" interesting things to one another (i.e., they need the ability to
transfer complex information). As the discussion below should make clear, previous models of
invocation do not share these qualities. They view transter of control as an essentially unidirectional
process (from caller to respondent), offer minimal opportunity for selection at runtime, and provide
restricted channels of communication between caller and respondent.

9.2 The Comparison

In discussing the various approaches to invocation we often refer to "standard" or
"traditional" forms of these approaches. Each of them could conceivably be modified in ways that
would render our comments less relevant, but our point here is to examine the techniques as
conceived and as typically used.

Standard subroutine (procedure) invocation represents, by our standard, a degenerate case.
All the selection of routines to be invoked is done beforehand by the programmer and is hardwired
into the code. The possible respondents are thus named explicitly in the source code, leaving no
opportunity for choice or nondeterminism at runtime.

In traditional production rule systems, a degree of choice for the caller (in this case the
interpreter) is available, since a number of rules may be retrieved at once. A range of selection
criteria have been used (called conflict resolution schemes --- see [5], but these have typically been
implemented with a single syntactic criterion hardwired into the interpreter. One standard scheme,
for instance, is to assign a fixed priority to each rule and then from among those retrieved for possible
invocation, simply select the rule with the highest priority. Selection is thus determined by a single
procedure applied uniformly to every set of rules.

In this approach to invocation there is some choice available in selecting a KS to be invoked
(since more than one rule may be retrieved), but the mechanism provided for making that choice
allows for only a single, preselected procedure that is to be applied in all cases. In addition, all of the
selection is done by the "caller"; there is no mechanism that offers the rules any ability to select how
they are to be invoked (e.g., if a rule can match the database in several ways, which of the possible
matches will actually be used?). Finally, only minimal information is transferred from potential
respondents back to the caller (at most a specification of what items in the database have been
matched, and how).

PLANNER's [10] pattern-directed invocation provides a facility at the programming language
lavel for nondeterministic KS retrieval, by matching goal specifications (patterns) against theorem
patterns. In the simplest case, theorems are retrieved one by one and matched against the goal
specification until a match is found. The order in which the theorems are tried is not defined by the
Janguage and is dependent on impleinentation decisions.

PLANNER does offer, in the recommendation list, a mechanism designed to allow the user to
encode selection information. The "use" construct provides a way of specifying (by name) which
theorems to try in which order. The theorem base filter construct offers a way of invoking a predicate
function which takes one argument (the name of the next theorem whose pattern has matched the
goal) and which can veto the use of that theorem.

Note that there is a degree of selaclion poszible here, since the theorem base filter offers a
way of choosing among the theorems that might possibly be used. The selection may involve a
considerable amount ot computation by the theorem base filter, and is local, in the sense that filters
may be specific to a particular goal pattern. However, the selection is also limited in several ways.
First, in the standard PLANNLE invocation mechanism, the information available 1o the caller is at best
the name of the next potential respondent. The caller does not receive any additional information

)
N

NEGOTIATION AS A METAPHOR DAVIS AND SMITH

from the potential respondent (such as, for instance, exactly how it matched the pattern), nor is there
any easy way to provide for information transfer in that direction. Second, the choice is, as noted, a
simple veto based on just that single KS. That is, since final judgment is passed on each potential KS
in turn, it is not possible to make comparisons between potential KSs or to pass judgment on the
whole group and choose the one that looks by some measure the best. Both of these shortcomings
could be overcome if we were willing to create a superstructure on top of the existing invocation
mechanism, but this would be functionally identical to the announcement-bid-award mechanism
described above. The point is simply that the standard PLANNER invocation mechanism has no such
facility, and the built-in depth-first search with backtracking makes it expensive to implement.

CONNIVER [18] represents a useful advance in nondeterministic invocation, since the result of
a pattern-directed call is a "possibilities list" containing a/l the KSs that match the pattern. While
there is no explicit mechanism parallel to PLANNER's recommendation list, the possibilities list is
accessible as a data structure and can be modified to reflect any judgments the caller might make
concerning the relative utility of the KSs retrieved. Also, paired with each KS on the possibilities list is
an association-list of pattern variables and bindings, which makes possible a determination of how
the calling pattern was matched by each KS. This mechanism offers the caller some information
about each respondent that can be useful in making the judgments noted above. CONNIVER does not,
however, offer the respondent any opportunity to perform local processing to select from among
callers.

The HEARSAY-II [16] system illustrates a number of similar facilities in a data-directed system.
In particular. the focus of attention mechanism has a pointer to all the KSs that are ready to be
invoked (i.e., those whose stimulus frames have been matched), as well as information (in the
response frame) for estimating the potential contribution of each of the KSs. The system can effect
some degree of selection regarding the KSs ready for invocation and has available to it a body of
knowledge about each KS on which to base its selection. The response frame thus provides
information transfer from respondent to caller that, while fixed in format, is more extensive than
previous mechanisms. Considerable computation is also devoted to the selection process. Note,
however, that the selection is not local, since there is a single, global strategy used for every
selection.

The concept of meta-rules [3] offers a further advance in mechanisms to support
sophisticated control schemes. It suggests that KS selection can be viewed as problem solving and
can be cffected using the same mechanism employed to solve problems in the task domain. It views
selection as a process of pruning and reordering the applicable KSs and provides local selection by
allowing meta-rules to be associated with specific goals.™

There are several things to note about the systems reviewed thus far. First, we see an
increase in the amount and variety of information that is transferred from caller to respondent {e.g.,
from explicit naming in subroutines, to patterns in PLANNER and from respondent to caller (e.g., from
no response in subroutines to the response frames of HEARSAY-Il. Note, however, that in no case do
we have available a general information transmission mechanism. In all cases, the mechanisms have
been designed to carry one particular sort of information and are not easily modified.

Second, we see a progression from the retrieval of a single KS to the retrieval of the entire set
of potentially useful KSs, providing the opportunity for more complex varieties of selection.

Finally, note that all the selection so far is from one perspective; the selection of respondents
by the caller. In none of these systems do the respondents have any choice in the matter.

To illustrate this last point, consider turning this situation around and creating a system
where respondents performed the selection: a "task blackboard” system. The simplest form of such

19. The concept of negotiation in the contract net grew, in part, from generalizing this perspective to make it "bi-directional":
Both managers and potential contractors can devote computational effort to selecting from the alternatives available to them.

NEGOTIATION AS A METAPHOR -33- DAVIS AND SMITH

a system would have a central task blackboard that contains an unordered list of tasks that need to be
performed. As a KS works on its current task, it may discover new (sub)tasks that require execution
and add them to the blackboard. When a KS finishes its current task, it Iooks at the blackboard,
evaluates the lists of tasks there, and decides which one it wants to execute.

Note that in this system the respondents would have all the selection capabmty Rather than
having a caller announce a task and evaluate the set of KSs that respond, we have the KSs examining
the list of tasks and selecting the one they wish to work on. It is thus plausible to invert the standard
situation, but we still have unidirectional selection --- in this case, on the part of the respondent rather
than the caller.

pUP6 [15], on the other hand, was the first system to suggest that transfer of control could be
viewed as a discussion between the caller and potential respondents. In that system, if a KS receives
~ more than one offer to execute a task, a special "chooser" KS momentarily takes control and asks

"questions” of the respondents to determine which of them ought to be used. This is accomplished
by querying the parts of the KS. Each KS is composed of a standard set of parts, each part designed
to deal with a particular question about that KS. For example, the procedure in the WHEN and
COMPLEXITY parts of a KS answer the questions When should you take control? and How
costly are you? This interchange is highly stylized and not very flexible, but does represent an
attempt to implement explicit two-way communication.

The contract net differs from these approaches in several ways. First, from the point of view
of the caller (the manager), the standard task broadcast and response interchange has been
improved by making possible a more informative response. That is, instead of the traditional tools
that allow the caller to receive only a list of potential respondents, the contract net has available a
mechanism that makes it possible for the caller to receive an extensive description of potential utility
from each respondent (the bidders). The caller also has available (as in CONNIVER and the meta-rule
approach) a list of respondents rather than a sequence of names presented one at a time (as in
PLANNER.Z Both of these make it possible to be more selective in making decisions about invocation.

Second. the contract net emphasizes local evaluation. An explicit place in the framework
has been provided for mechanisms in which the caller can invest computational effort in selecting
KSs for invocation (using the bid evaluation procedure) and the respondents can similarly invest
effort in selecting tasks to work on (using the task evaluation procedure). These selection procedures
are also local in the sense that they are associated with and written from the perspective of the
individual KS (as opposed to, say, HEARSAY-II's global focus of attention procedure).

Third, while we have labeled this process selection, it might more appropriately be labeled
deliberation. This would emphasize that its purpose for the caller is to decide in general what to do
with the bids received and not merely which of them to accept. Note that one possible decision is that
none of the bids is adequate and thus none of the potential respondents would be invoked (instead,
the task may be re-announced later).”" This choice is not typically available in other problem solving
systems and emphasizes the wider perspective taken by the contract net on the transfer of control
issue. '

Finally, there appears to be a novel symmetry in the transfer of control process. Recall that
PLANNER, CONNIVER, and HEARSAY-Il all offer the caller some ability to select from among the
raspondents, while a task blackboard system allows the respondents to select from among the tasks.
The contract net (and Purs), however, use an interactive, mutual selection process where task

20. More precisely, the caller has available a list of all those that have responded by the expiration time of the contract.

21. Similarly the potential hidders deliberate over task announcements rece ived and may decide that none is worth submitting
a bid. Mote also that receiving bids but deciding that none is good enough is distinctly different from receiving no bhids at all.
Receiving no bids is analogous to finding no useful theorems in PILANNER; receiving bids but turning down all of them after

" due consideration has no precise analogy in exisling languages.
p y g

NEGOTIATION AS A METAPHOR -34- DAVIS AND SMITH

distribution is the result of a discussion between processors. As a result of the information
exchanged in this discussion, the caller can select from among potential respondents while the KSs
can select from among potential tasks.

10. SUITABLE APPLICATIONS

In this section we consider the sorts of problems for which the contract net is well suited.

The framework has, for instance, been designed to provide a more powerful mechanism for
transfer of control than is available in current problem-solving systems. This mechanism will be
useful when we do not know in advance which KS should be invoked or do not know which node
should be given the task in question. In the first of these situations --- not knowing in advance which
KS to invoke --- we require some machinery for making the decision. The contract net's negotiation
and deliberation process is one such mechanism. It will prove most useful for problems in which
especially careful selection of KSs is important (i.e., problems for which we prefer the "knowledge"
end of the knowledge vs search tradeoff).

The second situation --- matching nodes and tasks --- is inherent in a distributed
architecture, since no one node has complete knowledge of either the capabilities of or the busy/idle
state of every node in the network. We have labeled this the connection problem and have explored
the negotiation and deliberation process as a way of solving it as well.

The framework is well-matched to problems that can be viewed in terms of a hierarchy of
tasks (e.g., heuristic search), or levels of data abstraction (e.g., applications that deal with audio or
video signals). Such problems lend themselves to decomposition into a set of relatively independent
tasks with fittle need for global information or synchronization. Individual tasks can be assigned to
separate processor nodes; these nodes can then execute the tasks with little need for communication
with other nodes.

The manager-contractor structure provides a natural way to effect hierarchical control (in the
distributed case, it's actually concurrent hierarchical control), and the managers at each level in the
higrarchy are an appropriate place for data integration and abstraction.

Note, by the way, that these control hierarchies are not simple vertical hierarchies but are
more complex generalized hierarchies. This is illustrated by the existence of communication links
other than those between managers and contractors. Nodes are able to communicate horizontally
with related contractors or with any other nodes in the net, as we saw in the DSS example, where
classification contractors communicated directly with signal contractors.

The framework is also primarily applicable to domains where the subtasks are large and
where it is worthwhile to expend a potentially nontrivial amount of computation and communication to
invoke the best KSs for each subtask. It would, for instance, make little sense to go through an
extended mutual selection process to get some simple arithmetic done or to do a simple database
access. While our approach can be abbreviated to an appropriately terse degree of interchange for
simple problems (e.qg., directed contacts and the request-response mechanism), other systems are
already capable of supporting this variety of hehavior. The primary contribution of our framework lies
in applications to problems where the more complex interchange provides an efficiant and effective
basis for problem solving.

Finally, the contract net is also useful in problems where the primary concerns are in
distributing control, achieving reliability, and avoiding bottlenecks, even if, in these problems, the
more complex variety of information exchange described above is unnecessary. The contract net's
negotiation mechanism offers a means for distributing control; sharing responsibility for tasks
between managers and contractors offers a degree of reliability; and the careful design of the
message types in the protocol helps avoid saturating the communication channel and causing

NEGOTIATION AS A METAPHOR -35- DAVIS AND SMITH

bottlenecks.

11. LIMITATIONS, EXTENSIONS, OPEN PROBLEMS
11.1 The Other Stages

Earlier we noted that this paper focuses on application of the contract net to the distribution
stage of distributed problem solving. The other stages --- decomposition, sub-problem solution, and
answer synthesis --- are important foci for additional work. Problem decomposition, for example, is
not a well-understood process. t is easy to recognize when it is done well or badly, but there are
relatively few principles that can be used prospectively to produce good decompositions.

We address below the issue of sub-problem solution, noting that a more cooperative
approach --- one in which individual nodes share partial solutions as they work --- can be useful in a
variety of problems.

Finally, as we have explored elsewhere [4], there are a number of approaches to synthesizing
individual sub-problem results, each addressing a different anticipated level of problem interaction.

In future work we intend to explore applications of the contract net and the negotiation
metaphor to each of these topics. :

11.2 Instantiating the Framework

The framework we have proposed --- the task announcement, bid, award sequence, the
comman internode language, etc. --- offers some ideas about what kinds of information are useful for
distributed problem solving and how that information can be organized. There is still a considerable
prohlem involved in instantiating the framework in the context of a specific task domain. Our protocol
provides a site for embedding particular types of information (e.g. an eligibility specification), but does
not specify exactly what that information is for any specific problem.

In this sense the contract net protocol is similar to Al languages like PLLANNER, CONNIVER, QLISP
[22], etc., which supply a framework for problem solving (e.g., the notions of goal specifications,
theorem patterns, etc.), but leave to the user the task of specifying the content of that framework for
any given problem. We expect that further experience with our framework will lead to additional
structure to help guide its use.

11.3 Alternate Models of Cooperation

We have emphasized task-sharing as a means of internode cooperation and have attempted
to provide some mechanisms for the communication required to effect this mode of cooperation. We
have not as yet, however, adequately studied result-sharing [26] as a means of cooperation. In that
approach, nodes assist each other through sharing of partial results. This type of cooperation
appears to be of use in dealing with several sorts of problems. For problems where erroneous data or
xnowledge lead to conflicting views at individual nodes, 'sharing results can help to resolve those
inconsistencies (as for example in [17]). For some tasks, any individual subproblem is inherently
ambiguous even when data and knowledge are complete and exact (e.g.. the blocks world scene
identification in [29]; here the sharing of intermediate results can be an etfective means of reducing or
removing ambiguity. It is our intention to examine the structure of communication for this mode of
cooperation with a view to extending the contract net framework to incorporale it.

NEGOTIATION AS A METAPHOR -36- DAVIS AND SMITH

It would also be useful to develop a more advanced form of task-sharing. In our current
formulation, task distribution results in the traditional form of "hand out a subtask and get back a
result" interaction. We are currently exploring the possibility of expanding this to a more cooperative
form of interaction in which "what is to be done" is negotiated as well as "who isto do it".

We are also exploring further development of the dynamic configuration capability which the
contract net makes possible. As noted in Section 8-3, initialization of the DSS can take into account
the resources available (number of sensors, etc.). We intend to extend this to dynamic
reconfiguration: the negotiation technique should provide a mechanism that allows nodes which have
become overloaded to shed some of their workload by distributing tasks to other available nodes.

11.4 Optimality of the Negotiation Process

As noted, a major goal of the contract net framework is to provide a mechanism for solving
the connection problem --- achieving an appropriate matching of tasks to processor nodes. Yet itis
easily seen that the negotiation process described above does not guarantee an optimal matching of
tasks and nodes.

There are two reasons why this may occur. First, there is the problem of timing. A node that

becomes icle chooses a task to bid on from among the task announcements it has heard up to that
time. Similarly, a manager chooses what to do on the basis of the bids it has received by the
expiration time for its task announcement. But since the net operates asynchronously, new task
announcements and new bids are made at unpredictable times. A better matching of nodes to tasks
might be achieved if there were some way to know that it was appropriate for a node to wait just a little
longer before bidding, or for a manager to wait a little longer before awarding a task.
‘ Second, at any given instant in time, the complete matching of nodes and tasks results from
a number of local decisions. Each idle node chooses the most interesting task to bid on, without
reference to what other idle nodes may be choosing; each manager chooses the best bid(s) it has
received without reference to what any other manager may be doing. The best global assignment
does not necessarily result from the simple concatenation of all of the best local assignments.*

Consider for example a situation in which two managers (A and B) have both announced
tasks, and two potential contractors (X and Y) have each responded by bidding on both tasks.
Imagine further that from A’s perspective, X's bid is rated .9 (on a 0 to 1 scale), while Y’s is rated .8
(Figure 19). Conversely, from B's perspective, X is rated .8 and Y is rated .2

Fig. 19: Managers rating bids from prospective contractors.

From a purely local perspective, both of the managers want X as their contractor; from a
rmore global perspective it may make more sense to have A "settle” for Y, and give X to B. Yet we
cannot in general create the more global perspective without exchanging what may be extensive
amounts of information.

22. This appears to be a variety of the "prisoner's dilemma™ problem (see e.g., [9], [28]).

NEGOTIATION AS A METAPHOR -37- DAVIS AND SMITH

The first of the two problems (timing) appears unavoidable given that we have chosen to deal
with the kinds of problems typically attacked in Al, problems whose total decomposition is not known
a priori. In a speech understanding problem. for instance, we cannot set up a fixed sequence of KS
invocations beforehand because the utility of any given KS is not predictable in advance. Similarly, in
a DSS, we have the same inability to predict KS utility, plus the added difficulty of new signals arriving
at unpredictable moments.

If we do not know in advance which subtasks will arise and when, or exactly which KSs will
be useful at each point, then we clearly cannot plan the optimal assignment of nodes to tasks for the
entire duration of the problem. Some planning may be possible, however, even if we lack complete
knowledge of a problem's eventual decomposition. We are currently studying ways to make use of
partial information about tasks yet to be encountered or nodes that are soon going to be idle.

The second problem (local decisions) appears inherent in any decentralization of control and
decision making. As noted earlier, we want to distribute control (for reasons of speed,
problem-solving power, reliability, etc.). Given distributed control, however, globally optimal control
decisions are possible only at the cost of transmitting extensive amounts of information between
managers every time an award is about to be made. With that approach, inefficiencies due to
suboptimal control decisions are traded for inefficiencies arising from transmission delays and
channel saturation. We are currently studying this tradeoff and exploring ways of minimizing the
difficulties that arise from this problem.

It appears then, that as a result of the unpredictability of the timing of subtasks and the
necessity of making local decisions, precisely optimal matching of nodes to tasks is not possible.
Note, however, that our stated goal is an appropriate assignment of nodes to tasks. Operation of the
contract net is not predicated on optimal matching. In addition, the small set of experiments we have
done so far indicate that overall performance is not seriously degraded by suboptimal matching.

11.5 Coherent Behavior

We do not yet fully understand the more general problem of achieving globally coherent
behavior in a system with distributed control. The fundamental difficulty was described earlier: We
require distributed control in order to effect loose coupling, yet coherent behavior usually requires a
global perspective. ,

Some aspects of the contract net protocol were motivated by attempts to overcome this
problem. First, each node in a contract net maintains a list of the best recent task announcements it
has seen --- a kind of window on the tasks at hand for the net as a whole. This window enables the
nodes to compare announcements, to assist in making the best task selections over time. Second,
the task abstraction supplies information which enables a node to compare announcements and
select the most appropriate. In a similar fashion, information in bids (the node abstraction) enables
managers to compare bids from different nodes and select the most appropriate. In addition, the task
and data hierarchies provide an overview of DSS function, helping to organize the overall efforts of
the nodes.

We still have the problem that good local decisions do not necessarily add up to good global
behavior. as the example in the previous section showed. However, the steps noted at least
contribute to local decisions that are made on the basis of an extended (not snapshot) view of system
performance and decisions that are based on extensive information about tasks and bids.

In the most general terms we see our efforts aimed at developing a problem solving protocol.
The protocol should contain primitives appropriate for talking about and doing problem solving, and
should structure the interaction between problem solvers in ways that contribute to coordinated
behavior of the group. We have thus far taken an initial step in this direction with the development of

NEGOTIATION AS A METAPHOR -38- DAVIS AND SMITH

the task announcement, bid, and award sequence.

12. SUMMARY

The preceding discussion considered the contract net in a number of different contexts. In
the most specific view, it was considered a mechanism for building a distributed sensing system.
More generally, it offered an approach to distributed problem solving and a view of distributed
processing. In the most general view, it was considered in the context of Al problem solving
technigues. In the sections that follow we consider the advantages offered by the contract net in
each of these contexts, reviewing in the process the central themes of the paper.

12.1 Contributions to Distributed Processing

) A distributed processing approach to computation offers the potential for a number of
benefits, including speed and the ability to handle applications that have a natural spatial distribution,
The design of the contract net framework attempts to ensure that these potential benefits are indeed
realized.

In order to realize speed in distributed systems, we need to avoid bottlenecks. They can
arise in two primary ways: by concentrating disproportionate amounts of computation or
communication at central resources, and by saturating available communication channels so that
nodes must remain idle while messages are transmitted.

To avoid bottlenecks we distribute control and data. In the DSS example, data is distributed
dynamically as a result of the division of the net into areas during the initialization phase. Control is
distributed dynamically through the use of a negotiation process to effect the connection of tasks with
idle processors.

The contract net design also tries to avoid communication channel saturation by reducing
the number and length of messages. The information in task announcements (like eligibility
specifications), for instance, helps eliminate extra message traffic, thereby helping to minimize the
amount of channel capacity consumed by communication overhead. Similarly, bid messages can be
kept short and "to the point" through the use of the bid specification mechanism.

Finally, the ability to handle applications with a natural spatial or functional distribution is
facilitated by viewing task distribution as a connection problem and by having the processors
themselves neqotiate to solve the problem. This makes it possible for the collection of available
processors to "spread themselves" over the set of tasks to be done, distributing the workload
dynamically.

12.2 Contributions to Distributed Probiem Solving

As we noted earlier (Section 6), a central issue in distributed problem solving is organization:
How can we distribute control and yet maintain coherent behavior?

One way to accomplish thic is by what we have called task-sharing, the distribution around
the net of tasks relevant to solving the overall problem. As we have secn, the contract net views
task-sharing in terms of connecting idle nodes with tasks yet to be done. I effects this matching by
structuring interaction around negotiation as an organizing principle.

Negotiation in turn is implemented by focusing on what it is that processors should say to
one another. The motivation for our protocol is thus to supply one idea on what to say rather than

NEGOTIATION AS A METAPHOR -39- DAVIS AND SMITH

how to communicate. ,

As the example in Section 8 showed, use of the contract net makes it possible for the system
to be configured dynamically, taking into account (in that example) such factors as the number of
sensor and processor nodes available, their location, and the ease with which communication can be
established. Such a configuration offers a number of improvements over a static, a priori
configuration. It provides, for instance, a degree of simplicity: The same software is capable of
initializing and running networks with a wide variation of available hardware. If the configuration were
static, each new configuration would presumably require human intervention for its basic design
(e.g., assigning nodes to tasks) and might require modifications to software as well.

Dynamic configuration also means that most nodes that must cooperate are able to
communicate with one another directly. This reduces the necessity for either indirect routing of
messages or the use of powerful transmitters for all nodes.

The contract net also offers advantages in terms of increased reliability. By distributing both
control and data, for instance, we ensure that there is no one node or even a subset of nodes whose
loss would totally cripple the system. In addition, recovery from failure of a node is aided by the
presence of explicit links between managers and their contractors. The failure of any contractor can
be detected by its manager; the contract for which it was responsible can then be re-announced and
awarded to another node. There s, in addition, the possibility of reliability arising from "load sensitive
redundancy”. When load on the net is low, we might take advantage of idle processors by making
redundant awards of the same contract. The system thus offers the opportunity to make resource
allocation decisions opportunistically, taking advantage of idle resources to provide additional
reliability.

The framewaork also makes it reasonably easy to add new nodes to the net at any time. This
is useful for replacing nodes that have failed or adding new nodes in response to increased
computational load on the net. Two elements of the framework provide the foundation for this
capability. First, the contract negotiation process uses a form of "anonymous invocation": the KSs to
be invoked are described rather than named. Second, there is a single language "spoken" by all the
nodes.

The concept of describing rather than naming KSs has its roots in the goal directed
invocation of various Al languages and the notion of pattern-directed invocation generally (see, e.g.,
[30)), where it was motivated by the desire for more sophisticated forms of KS retrieval. It also,
however, turns out to offer an interesting and useful form of "substitutability”, simply because where
names are unique, descriptions are not, and a wide range of KSs may satisfy a single description. As
a result, in a system with invocation by name, the addition of a new KS requires modification of the
existing code to insure that the new KS is indeed invoked. When invocation is by description, adding
a new KS involves simply making it available to the existing collection of KSs; it will be invoked
whenever its description is matched (in our case, whenever it chooses to bid on a task
announcement). The contract net thus shares with other systems using anonymous invocation the
ability to add new KSs by simply "throwing them into the pot".

Second, the use of a single language "spoken” by all the nodes simplifies communication. If
we are to add a new node, it must have some way of communicating with other nodes in the net. The
contract net simplifies this issue by providing a very compact language: The basic protocol (task
announcement, bid, award) provides the elementary "syntax" for communication, while the common
internode language provides the vocabulary used to express the content of the messages exchanged.

Thus, anonymous invocation means that it is possible for a new node to begin participating in
the operation of the net by listening to the messayes being exchanged. (If invocation were by name,
listening to message traffic would do no good). The use of a single language means that the node will
understand the messages, and the use of a very simple language means that the task of initializing a
node is easier. ‘

NEGOTIATION AS A METAPHOR -40- DAVIS AND SMITH

12.3 Contributions to Artificial Intelligence

The contract net offers a novel view on the nature of the invocation process. As we have
seen, it views task distribution as a problem of connecting tasks to KSs capable of executing those
tasks, and effects this connection via negotiation.

In Section 9 we used this perspective to examine existing models of invocation and_evaluate
them along several dimensions. This discussion showed, first, that in previous models connection is
typically effected with a transfer of information that is unidirectional; hence the connection process is
asymmetric. Control resides either with the tasks (goal-driven invocation) or with the KSs (data-driven
invocation). In the contract net view, by contrast, the transfer is two-way, as each participant in the
negotiation offers information about itself. This in turn means that control can be shared by both; the
problem becomes one of mutual selection.

We then showed that the information transferred is typically limited in content. In the
contract net, on the other hand, the information is not limited to a name or pattern, but is instead
expanded to include statements expressible in the common internode language.

Third, the discussion showed that information about a more complete collection of candidate
KSs is available before final selection is made. This makes possible a wider range of KS and task
selection strategies than are possible if KSs and tasks must be selected or rejected as they are
encountered.

Finally, we noted that this expanded view of invocation effects a true deliberation process,
since one possible outcome of the negotiation is that none of the bids received is judged good
enough, and hence none of the potential contractors will be selected. This appears to be a useful
advance that has no precise analogy in previous programming languages and applications.

12.4 Conclusion: the Major Themes Revisited

Two of the major themes of this paper were the notion of protocols aimed at problem solving
rather than communication and the concept of negotiation as a basic mechanism for interaction. The
first was illustrated by the use of message types like task announcement, bid, and award. This
focused the contract net protocol at the level of problem solving and provided a step toward
indicating what kinds of information should be transferred between nodes.

The utility of negotiation as an interaction mechanism was demonstrated in two settings.
First, our basic approach to cooperation relies on task-sharing, and negotiation is used to distribute
tasks among the nodes of the net. This makes possible distribution based on mutual selection,
yielding a good match of nodes and tasks. Second, negotiation was used to effect transfer of control.
In that setting it offered a framework in which the matching of KSs to tasks was based on more
information than is usually available (due to the transfer of information in both directions, and the
transfer of more complex iniformation). As a result, negotiation makes it possible to effect a finer
degree of control and to be more selective in making decisions about invocation than is the case with
previous mechanisms.

Aclgnow!edgments

This work describes research done at the Artificial Intelligence Laboratory of the
Massachusetts Institute of Technology and at the Defence Research Establishment Atlantic of the
Department of National Defence, Research and Development Branch, Canada. Support for the

NEGOTIATION AS A METAPHOR -41- DAVIS AND SMITH

Artificial Intelligence Lab is provided in part the Advanced Research Projects Agency of the
Department of Defense under Office of Naval Research Contract N00014-80-C-505.

The assistance of Bruce Buchanan and Ed Feigenbaum in the original development of these
ideas is gratefully acknowledged. Carmen Bright, Joe Maksym, Carl Hewitt, and Patrick Winston
provided useful comments on earlier drafts of this paper.

NEGOTIATION AS A METAPHOR -42- DAVIS AND SMITH

References

[1] J.-L. Baer, A Survey Of Some Theoretical Aspects Of Multiprocessing. Computing Surveys, Vol. 5,
No. 1, March, 1973, pp. 31-80.

[2] E. K. Bowdon, Sr. and W. J. Barr, Cost Effective Priority Assignment In Network Computers. FJCC
Proceedings, Vol. 41, Montvale, N. J.: AFIPS Press, 1972. Pp. 755-763.

[3] R. Davis, Meta-rules: reasoning about control, Artificial Intelligence, 15:179-222, Dec 1980.
[4] R. Davis, Models of problem solving: Why cooperate? SIGART Newsletter, Oct 1980, pp 50-51.

[5] R. Davis and J. King, An Overview of Production Systems. In E. W. Elcock and D. Michie (Eds.),
Machine Inteiligence 8. New York: Wiley & Sons, 1977. Pp. 300-332.

[6] C. R. D'Olivera, An analysis of computer decentralization, MIT LCS, TM90, October 1977.

[7]1D. J. Farber and K. C. Larson, The Structure Of The Distributed Computing System - Software. In J.
Fox (Ed.), Proceedings of the Symposium on Computer-Communications Networks And
Teletraffic. Brooklyn, N. Y.: Polytechnic Press of the Polytechnic Institute of Brooklyn, April 1972,
Pp. 639-545.

[8] J. R. Galbraith, Organizational design -- an information processing view, in Kolb (ed.),
Grganizational Psychology, 2nd Edition, Prentice Hall, 1974, pp. 313-322.

[9] H. Hamburger, N-person prisoner’s dilemma, J. Math. Sociology, 3(1973) 27-48.

[10] C. Hewitt, Description And Theoretical Analysis (Using Schemata) Of PLANNER: A Language For
Proving Theorems And Manipulating Models In A Robot. MIT Al TR 258, MIT, April 1972,

[11] C. Hewitt, Viewing Control Structures As Patterns Of Passing Messages. Artificial Intelligence,
Vol. 8, 1977, pp. 323-364.

[12] R. E. Kahn, Resource-Sharing Computer Communications Networks. Proc. IEEE, Vol. 60, No. 11,
November 1972, pp. 1397-1407.

[13] R. E. Kahn, The Organization Of Computer Resources Into A Packet Radio Network. NCC
Proceedings, Vol. 44, Montvale, N. J.; AFIPS Press, 1975. Pp. 177-186.

[14] S. R. Kimbleton and G. M. Schneider, Computer Communications Networks: Approaches,
Objectives, and Performance Considerations. Computing Surveys, Vol. 7, No. 3, September
1975, pp. 129-173.

[15] D. B. Lenat, Beings: Knowledge As Interacting Experts. [JCA/4, 1975, pp. 126-133.
[16] V. R. Lesser, R. D. Fennell, L. D. Erman, and D. R. Reddy, Organization of the HEARSAY I

Speech Understanding System. IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.
ASSP-23, No. 1, February 1975, pp. 11-24. '

NEGOTIATION AS A METAPHOR -43- DAVIS AND SMITH

[17] V. R. Lesser and L. D. Erman, Distributed interpretation: a model and experiment, IEEE Trans
Comp,C-29, Dec 80, pp 1144-11638.

[18] D. V. McDermott and G. J. Sussman, The CONNIVER Reference Manual. Al Memo 259a, MIT,
January, 1974,

[19] H. P. Nii and E. A. Feigenbaum, Rule-Based Understanding Of Signals. In D. A. Waterman and F.
Hayes-Roth (Eds.), Pattern-Directed Inference Systems. New York: Academic Press, 1978. Pp.
483-501.

[20] R. N. Noyce, From Relays To MPU’s. Computer, Vol. 9, No. 12, December 1976, pp. 26-29.
[21]L. G. Roberts, Data by the packet, IEEE Spectrum, vol 11, No. 2, Feb. 1974, pp 46-51

[22] E. D. Sacerdoti, et. al, aLIsP -- A language for the interactive development of complex systems,
Proc NCC, vol 45, 1976, pp. 349-356.

[23] R. G. Smith and R. Davis, Applications Of The Contract Net Framework: Distributed Sensing.
Proceedings of the ARPA Distributed Sensor Net Symposium, Pittsburgh, PA, December 1978,
pp. 12-20.

[24] R. G. Smith, A Framework For Problem Solving In A Distributed Processing Environment. Ph.D.
Dissertation, STAN-CS-78-700 (HPP-78-28) Dept. of Computer Science, Stanford University,
December 1978.

[25] R. G. Smith, The contract net protocol: high level communication and control in a distributed
problem solver, IEEE Trans Comp, C-29, Dec 80, pp 1104-1113.

[26] R. G. Smith, R. Davis, Frameworks for cooperation in a distributed problem solver, IEEE Trans on
SMC, Jan 1981.

[27] L. Svodobova, B. Liskov, D. Clark, Distributed computer systems: structure and semantics,
MIT-LCS-TR-215, MIT LLaboratory for Computer Science, March 1979.

[28] A. W. Tucker, A two-person dilemmma, mimeo, Stanford University, 1950.

[29] D. Waltz, Understanding line drawings of scenes with shadows, in The Psychology of Computer
Vision, Winston (ed.), McGraw-Hill, N.Y. 1975.

[30] D. A. Waterman and F. Hayes-Roth, (eds.), Pattern-Directed Inference Systems, Academic Press,
N.Y., 1978.

