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Abstract

The next generation of artificial intelligence programs will require the ability to organize
knowledge as groups of active objects. Each object should have only its own local
expertise, the ability to operate in parallel with other objects, and the ability to

Ve communicate with other objects. Artificial Intelligence programs will also the require a
great deal of flexibility, including the ability to support multiple representations of
objects, and to incrementally and transparently replace objects with new, upward-
compatible versions. To realize this, we propose a model of computation based on the
notion of an aclor, an active object that communicates by message passing. Actors
blur the conventional distinction between data and procedures. The actor philosophy is
illustrated by a description of our prototype actor interpreter Act 1.
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Section 1. The actor philosophy

1.1 Introduction

The Message Passing Semantics Group at MIT has been concerned with developing
formalisms for expressing computations which meet the needs of artificial intelligence.
Recently, there's been an important change of viewpoint in AI from modeling the
kind of intelligence that is found in a single individual, towards modeling the kind of
problem solving done in a society of people. We believe that organizing programs as
cooperating individuals in a society will require a radical departure from the
traditionally accepted models of computation. :

To address the requirements of Al programming, we have developed a model of
computation based on the notion of an actor. An actor is an active object which
communicates with other actors by sending messages. To test out our theory, we
have implemented an experimental programming language for constructing actor
systems called Acr 1.

1.2 Actors meet the requirements for organizing programs as societies

What capabilities are needed in a computational model to construct models of
intelligent processes as a society of cooperating individuals? This section will present
a number of principles which our experience has led us to believe are requirements
which should be satisfied by any system claiming to be suitable for constructing
intelligent programs. The remainder of the paper will show how these issues have
been addressed specifically in our experimental actor implementation Act 1.

A Preview of Act 1 1.2 Actors meet the requirements for organizing programs as societies
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First, Anowledge must be distributed among the members of the society, not
centralized in a global data base. Each member of the society should have only the
knowledge appropriate to his own functioning. He should not have to depend upon
global knowledge which may not be relevant to his concerns.

We shall show how Act 1 distributes knowledge entirely in individual actors. Each
actor has only the knowledge and expertise required for him to respond to messages
from other actors. There's no notion of global state in an actor system.

In a society model, each member should be able to communicate with other members of
the society, to ask for help and inform others of his progress.

In Act 1, all communication and interaction between actors uses message passing.
Message passing provides a uniform communications mechanism for all actors. No
actor can be operated upon, looked at, taken apart or modified except by sending a
request to the actor to perform the operation himself. This protects the integrity of
each actor.

Members of a society must be able to pursue different tasks in parallel. Putting many
members of a society to work on different approaches to a problem or on different
pieces of the problem may speed its solution enormously. Individuals should be able
to work independently on tasks given to them by the society, or generated on their
own initiative,

We will show how Act 1 allows a high degree of parallelism. Act 1 uses the object-
oriented, message passing philosophy to provide exceptionally clean mechanisms for
exploiting parallelism while avoiding the pitfalls of timing errors. Many actors may
send messages simultaneously without interfering with each other. We try to assume
a minimum of constraints on the ordering of events in an actor system to allow
maximum parallelism.  Eventually, we intend to implement Act 1 on a large
integrated network of parallel processors such as the Apiary [10]

Different subgroups of a society must be able to share common knowledge and resources,
to avoid duplicating common resources in every individual that needs them.

Act 1 uses the technique of delegating messages, which allows concentrating shared

knowledge in actors with very general behaviour, and creating extensions of these
actors with idiosyncratic behaviour more suited to specific situations.

A Preview of Act 1 1.2 Actors meet the requirements for organizing programs as societies
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1.3 Actors are active objects which communicate by message passing

The basic ideas of the actor model are very simple. There's only one kind of object
in our model - an acror. Everything, both procedures and data, is uniformly
represented by actors.

There's only one kind of thing that happens in an actor system - an event. An event
happens when a rarger actor receives a message. Messages are themselves actors, too.
We like to think of each actor as being like a person, which communicates with
other people in the society by sending messages.

What does each actor have to know and be able to do to fulfill his role in the
society? :

Each actor in the system is represented by a data structure with the following
components:

Each actor has his own behaviour when he receives a message, his own ways of
responding to different situations. The script of an actor is a program which
determines what that actor will do when he receives a message. When a message is
received, the script of the target of the message is given control. If the script
recognizes the message, he can decide to accepr the message. If the script doesn't
recognize the message, he rejecs it.

Each actor knows about another actor to whom he can delegate the message if his
script decides to reject the message. The proxy of an actor might be capable of
responding to a message on the basis of more general knowledge than the original
recipient had. Alternatively, the code for the script may also decide to explicitly
delegate the message to some other actor.

Each actor has to know the names of other actors so that he can communicate with
them. The acquaintances of an actor are the local data, or variables associated with
each actor. Think of the acquaintances like telephone numbers of people. Each
actor can call (send a message to) other actors, providing he knows their telephone
number. Each actor starts out with a set of known telephone numbers, and can
acquire new ones during his lifetime. We say that an actor knows about each of his
acquaintances.

This simple framework is general enough to encompass almost any kind of
computation imaginable. We shall discuss how the more traditional concepts used in

A Preview of Act 1 1.3 Actors are active objects which communicate by message passing
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programming can be expressed within our actor model, and the advantages of doing
so. Later, we shall make the model more concrete by describing how Act 1 is
implemented in Lisp, and we will show how we fool Lisp into regarding ordinary
data and procedures as active objects.

1.4 Why do we insist that everything be an actor?

Several previous and subsequent systems have embodied some form of active objects
and message passing. What makes Act 1 different? :

Act 1 takes the radical view that a/l computation should occur in the message
passing paradigm. This results in an exceptionally uniform and elegant framework for
computation. Act 1 is intended to provide a vehicle for an uncompromising test of
the actor philosophy.

Less radical systems like Simula-67, Clu, Lisp Machine Lisp, [25], [29], [22] and
others generally provide a special data type (or means of constructing data types) to
represent active objects defined by a user, along with a special message passing
procedure which operates on the special data type. However, the predefined
components of the system such as numbers, arrays, and procedures are not
considered as active objects. In a non-uniform system, a program must know whether
it has been given an actor data type in order to use the message send operation. A
program expecting a system data type cannot be given a newly defined actor. This
limits the extensibility of such systems. (Smalltalk ([15) - [18) is another language
which shares our. philosophy of uniform representation of objects.)

The actor theory requires that everything in the system, functions, coroutines,
processes, numbers, lists, databases, and devices should be represented as actors, and
be capable of receiving messages. This may seem at first a little dogmatic, but there
are imnortant practical benefits that arise from having a totally actor-oriented
systein.  There's a strong kind of modularity that results from having a system which
is made up completely of actors. This kind of modularity cannot be realized without
sticking to our principles of organizing systems as actors.

Modularity is the ability to treat a part of a complex system as a black box. A
system is modular if it can be broken up into a large number of small parts or
modules, each of which is easily understood in isolation, independent of all the
others. A user of a particular module should be able to rely on the behaviour of

A Preview of Act 1 1.4 Why do we Insist that everything be an actor?




June 11, 1981 at 0:03 Page 6 Henry Lieberman

that module without having to know details of the physical representation or
implementation which do not concern him.

Since in an actor system all communication happens by message passing, the only
thing that's important about an actor is how the actor behaves when he receives a
message. To make use of an actor, the user just has to know what messages the
actor responds to and how the actor responds to each message, not details like
specific storage formats which may be irrelevant to the user's application.

Relying on actors and message passing makes systems very extensible. Extensibility is
the ability to add new behaviour to a system without modifying the old system,
providing the new behaviour is compatible. In an actor system, the user may always
add a new actor with the same message passing behaviour, but perhaps with a
different internal implementation, and the new actor will appear identical to the old
one as far as all the users are concerned. We can also extend a system 'by
introducing a new actor whose behaviour is a superset of the behaviour of the old
actor. It could respond to several new messages that the old one didn't, but as long
as the new actor's behaviour is compatible with the old, no previous user could tell
the difference.

Conventional languages like Lisp tend to be very weak on introducing new data types.
A conceptually new object must be introduced using pre-defined data objects like
lists. The user must be aware of the format of the list to make use of it, and
rewrite the program if the format changes.

Suppose we wanted to implement an actor representing a matrix of numbers.
Matrices might accept messages to ACCESS an individual element given indices, INVERT
themselves, MULTIPLY themselves with other matrices, PRINT themselves and so on.

Traditionally, a matrix. might be represented as a two-dimensional array, and
elements accessed by indexing. Multiplication and inversion would be functions
which worked on the array representation. We can implement an actor which stores
the matrix in this form.

(Descriptions of programs will be given in English, to avoid introdubing the details of

Act I's syntax at this point. Important identifiers will be capitalized, and the text
indented to correspond to the structure of the program.)

A Preview of Act 1 : 1.4 Why do we Insist that everything be an actor?
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Create an actor called ARRAY-MATRIX.
with one acquaintance named ELEMENT-ARRAY,
which is a two-dimensional array of the size of the matrix.

If I'm an ARRAY-MATRIX and I receive an ACCESS message asking for an element,
I look up the element in my ELEMENT-ARRAY.

But now, suppose we have the identity matrix, which is more efficiently representable
as a procedure than wastefully storing elements of zeros and ones.

Create an actor called IDENTITY-MATRIX.

If I'm an IDENTITY-MATRIX and I get an ACCESS message,
If all the indices are equal, return 1.
. Otherwise, return 8.

Alternatively, suppose the matrix is in a data base which resides at a remote site. A
message to the matrix actor might result in communication over a computer network
to retrieve it. The user wouldn't have to worry about the actual physical location of
the data, or network protocols, as long as the elements appear when he needs them.
Another plausible use for a different data representation would be a sparse matrix,
where it would be more compact to encode the elements of the matrix as a list of
indices of non-zero elements and their contents, since most elements would be zero.
Here the matrix needs both a data structure and a procedure for accessing elements
in its representation.

Many different representations of matrices may be present in a system, and
implementing them as actors means that users can be insensitive to implementation
decisions which do not affect behaviour. Since all users of matrices access them by
sending messages, and all kinds of matrices respond to ACCESS messages, an IDENTITY-
MATRIX can he used interchangeably with an ARRAY-MATRIX. A calling program
doesn't hiuve to know whether the matrix is represented as a data structure or as a
procedure.  In a more conventional language, introducing a new representation
usually means the code for the users of the representation must be changed.

As well as being able to define multiple representations for new data types
introduced by the user, it also makes sense to allow multiple representations for
built-in system data types as well In order to allow multiple representations for
system data types, it must be possible for a user-defined data type to masquerade for
a systemn data object like a number. This requires that the system treat objects like

A Preview of Act 1 . 1.4 Why do we Insist that everything be an actor?
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numbers as full-fledged actors, with the ability to respond to messages. If a user
designs a new object which obeys the message passing protocol of numbers, prograns
designed to operate on system numbers can use the new object as well. This ability
to extend built-in objects is an area where all of the less radical languages such as
CLU or Scheme are deficient.

In our matrix example, it might be desired to treat certain matrices as if they were
scalars, as is often done in mathematics. The identity matrix could be represented
as 1, and any matrix with the same element N in all diagonal entries and zero
elsewhere could be represented as the constant N. Act 1 would allow the definition
of these matrices to respond to many of the same messages as scalars by passing
messages sent to the matrix along to its diagonal element. This would enable any
program which used scalars to accept these matrices as well

1.5 A uniform actor system makes managing parallelism easier

The actor model holds many advantages for systems which make large-scale use of
parallelism.

Since knowledge is extremely localized in actor systems, it becomes easier to isolate
subsystems of actors which can be run in parallel without interfering with each
other. Since each actor has only the data and procedures relevant to his own
operation, this avoids needless communication with global resources, which becomes a
bottleneck in parallel systems.

Actors may be distributed across many processors running in parallel and message
passing may involve communication across a network to reach other -actors living on
different physical processors. Since all communication is performed by message

passing, a user need not know whether the actor resides on the same processor or on
another.

Because of the principle that actors are defined by their behaviour and are
independent of representation, we can create actors which allow or restrict
parallelism, but otherwise behave identically to their serial counterparts. In other
languages, a user program must be aware of whether it is dealing with an ordinary
value, a parallel process, or a synchronized resource. This makes it more difficult to
exploit parallelism.

A Preview of Act 1 1.5 A uniform actor system makes managing parailelism easier
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Futures are actors which represent the values computed by parallel processes. They
can be created dynamically and disappear by garbage collection when they are no
longer needed. Other actors may use the value of a future without concern for the
fact that the value is being computed in parallel. Synchronization is provided by
serializers, which protect actors with internal state from timing errors caused by
interacting processes. An actor may send a message to a resource protected by a
serializer, in exactly the same manner as the message would be sent to the resource
itself.

One of the primary goals of the Act 1 effort has been to explore the actor ideas in
the” context of parallel programming for AL This topic merits a lengthy discussion,
so we have chosen to defer an exposition of parallelism in Act 1 to a companion
paper [2} This companion paper discusses in detail the use of future and serializer
actors to implement parallel control structures, as well as the implementation details
of Act 1's parallel constructs.

1.6 An inventory of messages: EVAL and MATCH

There's no monolithic, centralized interpreter for Act 1 as there is for Lisp. Act 1
has a distributed interpreter, consisting of a set of predefined actors which respond to
messages which correspond to the actions of a conventional interpreter. The best
way to describe Act 1 is through looking at the common messages used in the
system, and conventions for how the actors initially supplied with the system respond
to these messages.

The interpreter is driven by messages which ask actors to evaluate themselves. These
EVAL messages work like the EVAL function of Lisp, except, of course, that the code
for responding to these messages is distributed throughout the system, and the user
can define new kinds of actors which respond to EVAL messages differently. A list is
defined tu respond to EVAL by considering the first element of the list as a target,
the rest of the elements of the list as a message, then sending the message to the
target.

Symbols respond to EVAL by looking up their values as variables. There are also
APPLY messages, which bear the same relationship to EVAL messages as the EVAL
function does to APPLY in Lisp.

Some actors can be defined .to handle the EVAL or APPLY message specially to control

A Proview of Act 1 ’ 1.6 An inventory of messages: EVAL and MATCH
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evaluation of arguments in the message, replacing the mechanisms for FEXPRS and
MACROS in MacLisp. They can decide to evaluate some arguments and not others
(like FEXPRS), or return another actor to receive the EVAL message (like MACROS). EVAL
and APPLY messages include an ENVIRONMENT, an actor which can be sent messages to
LOOKUP the values of variables.

Act 1 allows the recipient of a message to describe the message he wants to receive
using pattern marching to say what the message should look like. In place of Lisp's
argument lists, an actor receiving a message has a pattern to which the incoming
message is matched. Pattern matching is used in place of argument lists in Lisp to
let an actor receiving a message Pattern actors receive MATCH messages, which ask if
an object included in the match message will satisfy the description in the pattern.
The MATCH message includes an environment, and matching can result in the binding
of variables to the message or its parts.

Pattern matching is used to name messages, by matching an object to an identifier
pattern which binds a variable to the message. Pattern matching is used to resr
objects for equality or data type. Objects can be used as patterns and will match
only objects equal to themselves. There are patterns which will match only those
objects belonging to a certain class. Pattern matching is used to break up composite
data structures, to extract pieces from the data and work with them separately. A
list of patterns used as a pattern will match objects which are lists, and recursively
match each element of the pattern to each element of the object. New patterns can
be defined by creating new actors which respond to MATCH messages. Pattern
matchmg by MATCH messages constitutes another kind of distributed mterpreter wh?ch
is complementary to EVAL.

1.7 Equality is in the eye of the beholder

The fact that actors are defined only by their behaviour in response to messages is
important because it allows many different implementations of the same concept to
co-exist in a single system. Implementations using different representations to
achieve various efficiency characteristics can be used interchangeably provided their
message passing behaviour is compatible. Allowing multiple representations requires
some flexibility in the definition of equality.

Testing objects for equality is done by sending actors EQUAL messages asking them
whether they are willing to consider themselves equal to other objects. Matching

A Preview of Act 1 . ‘ 1.7 Equality is in the eye of the beholder
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relies on these equality tests. Qurs is a different kind of equality relation than
appears in most systems. Since actors can have code for handling EQUAL messages,
two actors are equal only by their mutual consent. Equality can be made to depend
upon the circumstances, and the context in which the question is asked. Two actors
which have different definitions can claim to be equal to each other if one considers
its behaviour sufficiently similar to the other to warrant calling them equal.

Suppose we have actors for CARTESIAN-COMPLEX-NUMBERS represented  with
acquaintances who are the real and imaginary parts of the complex number. We
might also like to have POLAR-COMPLEX-NUMBERS which are represented with which are
represented with acquaintances for the angle and magnitude of the number. A
CARTESIAN-COMPLEX-NUMBER must be able to consider itself EQUAL to an equivalent
POLAR-COMPLEX-NUMBER.

Define ap actor called CARTESIAN-COMPLEX~-NUMBER:
with acquaintances REAL-PART and IMAGINARY-PART.

If I'm a CARTESIAN-COMPLEX and I'm asked if I'm EQUAL to ANOTHER-NUMBER:
I ask the actor in the EQUAL message ARE-YOU a COMPLEX-NUMBER?
If he says no, I answer NO.
If he says yes, I ask him for his REAL-PART, call it HIS-REAL-PART.
Then I ask my REAL-PART whether he's EQUAL to HIS-REAL-PART.
and if so, I ask my IMAGINARY part
whether he's EQUAL to the other's IMAGINARY-PART.
and if both parts are equal, I answer YES.
If either part is different, I answer NO.

This code says that the CARTESIAN-COMPLEX-NUMBER will consider himself equal to any
other actor who also thinks he is a complex number and has suitable real and
imaginary parts. We assume the code for POLAR-COMPLEX-NUMBER can figure out its
real and imaginary parts from the angle and magnitude. CARTESIAN-COMPLEX-NUMBER
should alsy be able to furnish its angle and magnitude for the benefit of actors like
POLAR-COMPLEX-NUMBER. |

A slightly unusual characteristic of the equality relation as we have it here is that is
asymmetrical. Since one actor gets a chance to field the message before the other
does, asking the question in the other order may have different results, although in
practice that almost never happens. A more symmetric way to set up this example
would be for both CARTESIAN-COMPLEX and POLAR-COMPLEX to delegate messages to a
more general COMPLEX actor where knowledge about how to convert between the
various representations would reside,

A Preview of Act 1 1.7 Equality Is In the eye of the beholder
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The equivalent of tppe checking is performed in Act 1 with ARE-YOU messages. There
are no data types in Act 1 in the sense of conventional fyped languages like Pascal.
Variables can name objects of any type, just like Lisp. But it is useful to be able to
ask an actor what kind of actor he is, to help predict his behaviour, or compare him
with other actors. The philosophy we adopt is that each actor will know what type
or types he considers himself to belong to.-

Since an actor can respond to messages by delegating the message to a proxy, the
actor conceptually inherits the type of his proxy. A CARTESIAN-COMPLEX-NUMBER might
delegate messages to a proxy which holds information common to COMPLEX-NUMBERS,
which might in turn delegate to a NUMBER actor. So the CARTESIAN-COMPLEX should
answer yes when asked “ARE-YOU a COMPLEX-NUMBER?", or "ARE-YOU a NUMBER?".

1.8 Continutations implement the control structure of functiohs

The message sending primitive in Act 1 is unidirectional. Once a target receives a
message, the script of the target has complete control over everything that happens
subsequently. There needs to be some way of sending a request to a target actor,
and receiving a reply to answer the question asked. This bidirectional control
structure is like functions or subroutines in conventional languages.

The Act 1 mechanism for implementing function call and return control structure
uses continuation actors. A continuation is an actor which receives the answer to a
question, and which encodes all the behaviour necessary to continue a computation
after the question is answered. A continuation is the actor analogue of a return
address for subroutines (26] . -

When an actor sends a REQUEST message (corresponding to a function call), the
message includes a component called the REPLY-TO continuation, which tells the target
who to send an answer to. When the target decides to furnish an answer, he sends
a REPLY message (corresponding to returning from a function) to the REPLY-TO

continuation received as part of the REQUEST message. The answer is included in the
REPLY message.

Lest the reader worry that writing out requests and replies explicitly would be a
burden on the user, rest assured that it is seldom necessary. REQUEST and REPLY
messages are automatically supplied by the Act 1 interpreter whenever the user
writes code with the function call syntax of Lisp.

A Preview of Act 1 1.8 Continutations implement the control structure of functions
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Continuation actors are usually freshly created whenever a request message is sent.
Replies are not usually sent directly to the actor who made the request, but to a
new actor whom the sender creates to receive the answer. . An important
optimization is that when the /ast argument to a function is evaluated, the caller's
continuation is passed along instead of creating a new continuation. This allows so-
called rtail recursive calls (where the last action in a function's definition is a call to
that function itself) to be as efficient as iteration.

Nested function calls produce a chain of continuations, each of which knows about
another continuation, like a control stack for Lisp. However, since the lifetime of a
continuation may extend beyond the time after a REPLY message has returned as
answer, continuations cannot be stored on a conventional stack.

Having continuations becomes important in situations where programs need to get‘
hold of an object which represents the behaviour of the program following a return.
Such a situation arises with communication in parallel systems, where an activity
running concurrently with another may need to wait for some condition to become
true. The program can store away the continuation of the waiting activity, wait for
the condition to become true, then issue a reply to the stored continuation, resuming
the activity.

Complaint continuations are another kind of continuation which represent the
behaviour to be taken when an error condition is encountered. A complaint is an
actor which receives error messages and takes corrective action, or calls a debugger.
By explicitly managing the complaint continuation, a user can set up error handlers
which can look at the error message and decide to take action, or delegate the
message to more general error handlers. Separating the complaint continuation from
the reply continuation was done only for implementation convenience. Instead, one
continuation actor could serve to collect both replies and complaints.

Section 2. Delegation

2.1 Knowledge is shared by delegating messages

Whenever an actor receives a message he cannot answer immediately on the basis of
his own local knowledge and expertise, he delegates the message to another actor,
called his proxy. Delegating a message is like "passing the buck”. The actor

A Preview of Act 1 2.1 Knowledge s shared by delegating messages
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originally receiving the message, whom we will call the client, tells his proxy, "I don't
know how to respond to this message, can you respond for me?",

Many client actors may share the same proxy actor, or have proxies with the same
script. Very general knowledge common to many actors may reside in a proxy, and
more specific knowledge in each client actor which shares that proxy. This avoids
the need for duplicating common knowledge in every client actor.

Delegation provides a way of incrementally extending the behaviour of an actor.
Often, actors existing in a large system will be almost correct for a new application,
Extension is accomplished by creating a new client actor, which specifically mentions
the desired differences, and falls back on the behaviour of the old actor as his proxy.
The client actor gets first crack at responding to messages, so he can catch new
messages or override old ones.

Delegation replaces the class, subclass and instance systems of Simula, Smalltalk and
Lisp Machine Lisp [25], [16] It provides similar capabilities for sharing common
knowledge among objects, but since delegation uses message passing instead of a low
level built-in communications mechanism, delegation allows more flexibility.

2.2 New actors are created with CREATE messages

We will give each actor the ability to create new actors similar to himself. For
creating new objects, we introduce a message called CREATE, which we expect all
actors to be able to respond to. When an actor receives a CREATE message, he
produces a new copy of himself,

However, the new copy doesn't have to be exactly like the old copy. We can
include in the CREATE message a list saying how we would like the new copy to differ
from the old copy. The differences are specified in the form of new values for
acquaintances of the actor. :

Usually, the target of the CREATE message responds by creating a new actor whbse
script is the same as the script of the target. Actors with the same script are of the
same “type" because the script of an actor determines his behaviour.

For each acquaintance of the actor, if a value for that acquaintance is specified in
the CREATE message, that value appears in the newly created actor. If no value is
specified in the CREATE message, the value is copied from the target.

A Preview of Act 1 2.2 New actors are created with CREATE messages -
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Each actor is like a prototypical member of a set. When we are asked to create a
new object, we can use as much specific information about what the new object
should look like as is available in the request Any other information which is
necessary to create the new object is taken from the prototypical object. '

Individual actors can intercept the CREATE inessage, so that special action can be

taken when an actor is created. This is a convenient way to initialize newly created
actors.

2.3 Extending the behaviour of actors with EXTEND messages

As large systems evolve, it's often useful to be able to improve on the expertise of
existing actors, creating new ones which respond to additional messages or which
modify the behaviour for existing messages. This is implemented by creating a new
actor which has a pre-existing actor as his proxy, or a proxy with a pre-existing
script.

The convention we adopt for extending actors is that actors respond to an EXTEND
message. The EXTEND message creates a new script for the new actor which can have
handlers for new messages. The EXTEND message also contains the names and values
of new acquaintances for the new actor, and values of acquaintances of his proxy.

2.4 Implementing default behaviour for messages

When an actor doesn't understand a message, he delegates the message to his proxy,
who might be able to respond to the message based on more general knowledge.
The proxy may then delegate the message to his proxy, and so on. Eventually, the
process of delegation must stop somewhere.

We introduce a distinguished actor called OBJECT, which contains the most general
knowledge common to all actors. The script for OBJECT can contain default
responses for all messages that should be understood by every actor even if there's no
code in the script of the actor or any of the actor's proxies to explicitly handle that
message.

The behaviour we described above for common system messages like CREATE can be

A Preview of Act 1 2.4 implementing default behaviour for messages
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implemented by putting that behaviour in the script for OBJECT. Every actor will
then respond to a CREATE, message with the default behaviour, It is very important
for messages like PRINT to have such default behaviour, so that every actor can be
printed, even if the user writes no code for PRINT. Any particular actor who
disagrees with the default behaviour in OBJECT may put code in his script to intercept
the message and produce different behaviour.

Alternatively, we could put the default behaviour with each message instead of with a
universal proxy like OBJECT. Messages could be actors who know their default
behaviour if a target fails to accept them. The script for OBJECT would then simply
turn around and ask the message if he had any default behaviour and execute that.
Associating default behaviour with messages is preferable since it makes it easier to
incrementally add a new kind of message to an existing system. The default
behaviour is introduced when the new message is defined, instead of modifying
OBJECT. ’

2.5 Implementing turtle graphics illustrates delegation

Using delegation, we will develop some actors to draw pictures using furtles as in the
language Logo [30], [31] Turtles are objects which keep track of a position on the
screen, and a heading. They respond to FORWARD and RIGHT messages, and have a
PEN which can draw when the turtle moves. :

First, let's develop the notion of a POSITION, which keeps track of X and Y
coordinates. We'll allow positions to MOVE to different places on the screen. The
actor POSITION is created by extending OBJECT, since POSITION need not have any
special behaviour other than that common to all actors. He has acquaintances
named X and Y, given initial values in the center of the screen.

Create an actor called POSITION by

Sending to OBJECT a message to EXTEND himself, with new acquaintances:
named X, with value 8,
and Y, with value 8.

The script will contain one handler for a MOVE message, and rely on OBJECT for all
other messages. »

A Preview of Act 1 2.5 Implementing turtie graphics illustrates delegation
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If I'm a POSITION and I get a message to MOVE to a NEW-X and a NEW-Y,
~ I update my X to the NEW-X and my Y to the NEW-Y.

Messages other than MOVE miessages, such as messages to access and update
acquaintances, will be delegated to OBJECT. New positions are created by sending the
actor POSITION a CREATE message.

Create an actor called ANOTHER-POSITION by
Sending to POSITION a CREATE message
with X value 188,
and with Y value 288,

If we hadn't included the values for X and Y, they would default to 8, just like in
POSITION. Changes to the acquaintances of ANOTHER-POSITION don't affect POSITION.
Any changes to the script are reflected in both since they share the same script.

Now, let's extend the notion of a position to keep track of a heading and be able to
accept FORWARD and RIGHT messages.

Create an actor named TURTLE-POSITION by:
Sending to POSITION an EXTEND message,
with a new acquaintance named HEADING, initially 8.

If I'm a TURTLE-POSITION and I receive a message to turn RiGHT some DEGREES:
I update my HEADING to be the sum of my present HEADING and DEGREES.

If I'm a TURTLE-POSITION and I receive a message to go FORWARD some STEPS:
I increase my X coordinate by,
the product of the number of STEPS and the SINE of my HEADING.
I increase my Y coordinate by,
the product of the number of STEPS and the COSINE of my HEADING.
and 7 return my new position

TURTLE-POSITION is now an actor whose script has handlers for FORWARD and RIGHT
messages. He has one acquaintance, HEADING, and his proxy is a POSITION, which has
acquaintances named X and Y. If the message is FORWARD or RIGHT, the script for
TURTLE catches the message, otherwise the message is delegated to the POSITION,
which can respond to MOVE. In all other cases, the message is passed to OBJECT.

We can further extend TURTLE-POSITION to TURTLE by adding an acquaintance, the

A Preview of Act 1 2.5 Implementing turtle graphlés lllustrates delegation




June 11, 1981 at 0:03 Page 18 Henry Lieberman

PEN, which draws lines on the screen when the turtle moves. TURTLE intercepts the
FORWARD message to draw a line between the TURTLE's old and new positions. TURTLE
would delegate the FORWARD message to his TURTLE-POSITION to compute the new
position,

2.6 The expertise of different actors can be combined

Several extensions to the same actor can be orthogonal. If we create two different
extensions to the same actor, each of which responds to a new message, and the two
messages don't interfere with each other, we might like to create an actor which can
respond to both of the two new messages. Each extension has his own expertise, we
should be able to combine the expertise of several actors in cases where their
behaviour is compatible. An actor can accept a message to COMBINE himself with
another actor, returning a new actor which combines the expertise of both.

The CONTRAST message allows us to construct a new actor selecting just those features
of an already existing actor which are desired for a new actor. CONTRAST messages
are supposed to return an actor representing the differences in behaviour between a
given actor and the target of the CONTRAST message.

Suppose we extended TURTLE to VISIBLE-TURTLE, which displays a marker to indicate
his position on the screen. Suppose also we have LIZARD, a different actor which also
would like to display his position on the screen. We can extract the feature we need
from TURTLE and combine it with LIZARD.

Create an actor called VISIBLE-LIZARD by:
Sending a COMBINE message to:
LIZARD, and
the result of sending a message to:
VISIBLE-TURTLE to CONTRAST himself
with TURTLE. '

See [19] for some discussion of combining orthogonal capabilities of objects in
Smalltalk.

A Preview of Act 1 : 2.6 The expertise of different actors can be combined

Eaiis



June 11, 1881 at 0:03 Page 19 Henry Lieberman

Section 3. Implementation issues

3.1 Peaceful co-existence between actors and Lisp

The process of constructing a concrete implementation for the actor ideas has helped
clarify the issues involved. The remainder of this paper will describe the solutions
that have been adopted in Act I, our experimental interpreter written in MacLisp
[21] for the PDP-10. Another implementation is currently in progress for the MIT
Lisp Machine [22]

The actor model is attractive for its simplicity and elegance. But can it made to
work as a practical tool? There are a number of questions that have to be resolved
in implementing the actor theory. Can the kinds of computation done in more
traditional formalisms be easily expressed in the actor model? How does an actor
system keep from getting caught in an infinite loop of sending messages to actors,
causing more messages to be sent to other actors, without any useful computation
being performed? The recursion of actors and messages must stop somewhere, some
primitive data types and procedures are needed. Yet the implementation should
remain faithful to the theory, which says that all components of the system are
treated as actors and obey the message passing protocol.

Ideally, we might like to have an actor machine, which deals with everything as
actors, right down to the lowest level of the hardware. However, the design of most
machines available today is poorly suited for implementing actors. The machine
thinks in terms of numbers, registers, and instructions rather than active objects and
message passing. We expect that in the near future, machines can be designed which
offer a congenial environment for implmenting actor languages.

Meanwhile, we must make compromises with existing machine architectures. In
implemesiang Act 1 in Lisp, we must make it appear to the user as if everything in
the system is an actor, and all interaction happens via messages. But at some level,
the implementation must get down to dealing with ordinary Lisp objects, which
aren't actors. How do we create the illusion of actors on a machine which doesn't
believe in them?

The answer is, we cheat, but cheating is allowed as long as we can't get caught' At

the implementation level, everything isn't really an actor, and we must be able to get
some real computation (like adding or printing) done by invoking primitive machine

A Preview of Act 1 3.1 Peaceful co-existence between actors and Lisp
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operations, not by sending messages. The ground rules are that the implementation
is allowed to violate the actor model only when it is guaranteed to be invisible to
the user.

Efficiency is an important consideration. Since conventional machines work on the
Von Neumann model, actors must be simulated. This simulation incurs a certain
cost, but the overhead must be kept down to a reasonable level. Message passing
must be efficient enough so that its cost is not prohibitive even for the simplest
operations. Can we employ shortcuts for efficiency without compromising the
integrity of the actor model? ’

In addition to cheating tq make sure the actor interpreter is well founded, cheating
can also be done to improve efficiency. As long as an actor behaves according to
the message passing rules, the implementor is always free to use more efficient
procedures behind the scenes to accomplish that behaviour. ’

It's also important to provide a smooth interface with the host language, Lisp. Lisp
functions should be callable from actor programs, and Lisp data usable without
requiring explicit conversion to a different representation. This means that we can

build upon all the existing facilities in Lisp without having to duplicate them in our
~ actor language.

3.2 Rock-bottom actors prevent infinite regress of actors and messages

How does an actor interpreter perform some computation like adding two numbers?
The actor interpreter must be grounded in both the procedures and data of the
implementation language. Numbers can only be added using the primitive addition
operation of the implementation language, which only works on the machine's
representation of numbers.

We can have actors whose acquaintances are actors, who in turn know about other
actors, but the actor data structure must terminate in the primitive data of the
implementation language and do not have pointers to any other actors. We can
perform computations by sending messages to actors which in turn send messages to
other actors, but some actors must have the ability to reply to messages they receive
without sending any more messages.

There are a set of actors called rock-bortom actors which are allowed to cheat on the

A Preview of Act 1 3.2 Rock-bottom actors prevent infinite regress of actors and messages
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actor model and use the primitive data and procedures of the implementation
language. Some data objects in the implementation language can be considered as
actors in their own right, and can receive messages. Which actors are considered
rock-bottom actors will, of course, depend on the base language, but in Lisp they
are numbers, atomic symbols, and lists. Instead of representing a number by an
actor with a stored NUMBER-SCRIPT and the value of the number as an acquaintance,
we represent the number actor using just the machine representation of the number
itself.

We don't have to store the script or the proxy of the actor with the data, because
the interpreter can be fixed to know specially about these data types. The object
itself is like an acquaintance of the actor - it contains all the information necessary
for its script to respond to messages. Since there are only a fixed number of such
types known in advance, the interpreter can always find the script corresponding to a
particular. rock-bottom actor by looking in a table indexed by the type of the object.

Actors which have explicitly stored scripts and proxies we will call scripted actors.
These can be implemented as a vector, record structure, or one-dimensional array
containing script, proxy, and acquaintances. The implementation must have some way
of being able to tell whether an actor is a rock-bottom actor or a scripted actor just
by looking at it.

We are now in a position to describe how the fundamental loop of the Act 1
interpreter works:

A Preview of Act 1 3.2 Rock-bottom actors prevent infinite regress of actors and messages
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Here's what happens when an EVENT occurs:
The EVENT consists of a TARGET receiving a MESSAGE.
Check to see if the TARGET actor is a rock-bottom actor.
If so, find the script of the actor by
Looking up the type of the actor in the table of ROCK-BOTTOM-SCRIPTS.
and invoke the script.
The script may access the TARGET actor like an acquaintance.
If the actor is a SCRIPTED actor,
Extract the script and invoke it.
The script can access the acquaintances and proxy,
which are stored in the actor itself.
If the SCRIPT REJECTs the MESSAGE,
the MESSAGE is DELEGATED to the TARGET's PROXY.
The SCRIPT causes a new EVENT, with a new TARGET and a new MESSAGE .
The new TARGET and MESSAGE may come from:
The ACQUAINTANCES of the TARGET, or
the MESSAGE, or
an actor newly CREATED by the script.

There are a special set of scripts, rock-bottom scripts, which are allowed to directly
operate on an actor without sending messages. When is this safe? Since the script of
an actor determines how it will behave, recognizing the script of an actor allows a
rock-bottom script to ascertain what that actor is supposed to do and take
appropriate action with primitive operations. The code for rock-bottom scripts is

written in the implementation language, and these scripts are supplied with the initial

system. A compiler may also convert user-written scripts to rock-bottom scripts for
efficiency.

We will illustrate the relationship between rock-bottom actors and scripted actors by
showing how numbers work in Act 1. Numbers respond to messages asking if the
number is EQUAL to another number. Numbers are rock-bottom actors, which are
represented using Lisp numbers. The user may have defined all kinds of number
actors, like complex numbers, or infinite numbers, which may have code to receive
EQUAL messages. It must be possible for a user-defined number to consider itself
equal to a Lisp number, and vice versa.

When the number is sent a message, it is recognized as a rock-bottom actor by the
interpreter. The interpreter finds the script corresponding to Lisp numbers, and
invokes it. The script for numbers checks the script for the other number in the
message, and sees if he can answer definitely yes or no. If he can't, then he turns
around and sends a message to the other number, giving him a chance to respond.

A Preview of Act 1 3.2 Rock-bottom actors prevent Infinite regress of actors and messages
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Define the rock-bottom!script for LISP-NUMBER actors: 3
for a particular NUMERICAL-VALUE of a number.

If I'm a LISP-NUMBER and I'm asked if I'm EQUAL to ANOTHER-NUMBER:

I check to see if he's a rock-bottom actor,

using the primitive Lisp test for rock-bottom actors.

If so, then if he's EQUAL to my NUNERICAL-VALUE using Lisp's EQUAL,
Then I answer YES.

If he's not EQUAL to me, I answer NO.

If he's not a rock-bottom actor,

Then he might consider himself equal to me, so I turn around and
send him an EQUAL message asking whether he thinks he's equal to me.

It's also possible to introduce different kinds of equality for different purposes. It

‘would be useful to have a three-valued equality, which could return pes, no, or

maybe, indicating the actor didn't have enough information to make a judgment
This would help avoid the situation of two actors unfamiliar with each other getting
in a loop, each trying to pass the buck to the other.

A final problemn concerns calling functions written in the implementation language
from Act 1. Lisp functions require standard Lisp objects as arguments, not actors.
It is necessary for the interpreter to check when a Lisp function is being applied to

an actor argument. The actor can be sent a LISP-APPLY message telling it that it

was the argument to a Lisp function. The message includes the function to be
applied, the list of arguments, and tells the actor which position it was in the
argument list. The actor may decide to convert itself to a rock-bottom Lisp object
for the occasion, or ask other arguments to convert themselves. A ROCK-BOTTOM
message asks an actor to supply a rock-bottom Lisp object which can take the place
of the actor when applying Lisp functions.

3.3 Actors accept messages asking them to identify themselves

Communication between an actor system and a person using the system is
accomplished by messages which ask actors to display, or print themselves to the
user. An actor usually responds to messages like PRINT with some representation
which clearly identifies who the actor is, and prints the values of important
components of the actor.

A Preview of Act 1 3.3 Actors accept messages asking them to Identify themselves
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There's an interesting issue which arises concerning conventions for printing actors.
Most conventional languages have just a few kinds of data, and the number of
different data types is fixed in advance by the language. These languages can
establish conventions for printing by defining a different printed representation for
each kind of data object. These conventions are used to convert the object to a
character string which can be printed out. The reader can create an object of the
appropriate type by parsing the input string according to the conventions. In Lisp,
parenthesized expressions denote lists, sequences of alphabetic characters are atomic
symbols.

Since Act 1 allows the user to introduce new data types at any time by defining new
actors, how can they be typed in and printed? Of course, each actor can have
message handlers to print itself in a special way, but it is helpful to establish some
conventions for printed representations that actors can fall back on.

Qur solution is an extension of the printing philosophy of Lisp. In Lisp, the PRINT
function is expected to produce a printed representation such that if that printed
representation were read back in using the READ function, it would result in an
object which is EQUAL to the original object. The fact that READ and PRINT are
inverses is especially helpful to programs which need to convert back and forth
between objects and their printed representations. . "
We have an UNREAD messa\ge which asks an actor to return a printed representation,
suitable for reading back in and creating an actor equal to the original one. The
printed representation must be in a form which can be printed on the user's screen
with the printing primitives of the implementation language, in our case the Lisp
PRINT function,

To be able to read and print arbitrary actors, we devise a way to interpose EVAL
between READ and PRINT. EVAL is capable of constructing any actor whatsoever. The
reader recognizes a special escape character which causes it to invoke EVAL on the
following expression, and return that as the result of the read. Thus, any actor can
be typed in by typing the escape character, followed by an expression which
evaluates to the desired actor.

Our convention for PRINT then, is that an actor can print starting with the read-time
EVAL character, followed by an expression which evaluates to an equivalent actor. If
we have actors called TURTLEs, a plausible way to print them might be by printing
out a call to a function which creates turtles, say CREATE-TURTLE, along with
arguments which would create a turtle with the appropriate state components, such
as POSITION, HEADING, PEN.

A Preview of Act 1 ) 3.3 Actors accept messages asking them to identify themselves




June 11, 1981 at 0:03 Page 25 Henry Lieberman

The ability to use EVAL in reading and printing supplies the needed flexibility for
representing actors. Each actor responds to an UNEVAL message requesting that he
return an expression which will evaluate to an actor equal to himself. For simple
actors like symbols and lists, they will just return QUOTEd objects when sent UNEVAL,
but for newly introduced data types, UNEVAL will produce a form which can perform
an arbitrary computation. The UNEVAL message also carries an environment, like the
EVAL message. This aids printing actors relative to the current environment, so that
unnecessary detail can be omitted.

Actors can also be defined to respond to different varieties of PRINT messages, to
print in different formats which may be more readable in a given context. The last-
ditch heuristic for printing actors is just to show the user who the script, proxy and
acquaintances are, since this is enough information to determine who the actor is.

3.4 Making decisions

Special care is needed in the treatment of conditionals. In conventional languages
like Lisp, a conditional can just compare the result of a test to the TRUE and FALSE
objects in the language to decide which branch of a conditional to execute. But if
we want to adhere to our policy of allowing user-defined actors to appear anywhere a
system-provided actor can appear, we must provide for the case where the result of a
predicate in a conditional is a user-defined actor. The Act 1 interpreter must be
prepared to send a message to the value of a predicate to decide how to proceed
with a conditional. The IF message asks if a target considers himself to be TRUE for
the purposes of making a choice between two branches of a conditional.

3.5 Previous work and acknowledgements

Act 1 is just part of a continuing research effort into the idea of object-oriented
message passing systems. Many of the ideas in this paper represent a synthesis of
ideas which first appeared in earlier research. We owe a great debt to past efforts
in exploring these and related ideas.

Carl Hewitt originally developed the notion of an actor, and has guided the
development of both the actor theory and implementation since its inception. Carl
has lent much support and encouragement to our implementation effort. We owe
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special thanks to those in our group who have worked on previous projécts to
implement actors, including Marilyn McLennan, Howie Shrobe, Todd Matson,
Richard Steiger, Russell Atkinson, Brian Smith, Peter Bishop and Roger Hale.

Act I's most distant ancestors are the languages Simula and Lisp. Simula was the
first language which tried to support object-oriented programming. [25] Simula
grafted the notion of objects onto an Algol-like base language, and provided for
sharing knowledge among objects by organizing them into classes. Although
traditional Lisp does not provide direct support for objects and messages, Lisp's
flexibility and extensibility has allowed many in the AI community to experiment
with programming styles which capture some of the actor philosophy [20], [21], [22]
Experience in construcing so-called data-driven programs in Lisp, and Lisp's uniform
control structure of function calls have been valuable to us in designing Act 1 [23}

Alan Kay's Smalltalk replaced Simula's Algol base with a foundation completely built
upon the notion of objects and messages [15], {16}, [17} Smalitalk is the closest
system to ours in sharing our radical approach to building a totally object-oriented
language. A major area where Smalltalk and Act 1 differ is in our proposals for
parallelism.  Smalltalk follows Simula in using coroutines to simulate parallelism.
Smalltalk also retains the class mechanism of Simula rather than sharing knowledge
by delegating messages as we do. The success of Xerox's Learning Research Group in
using the object-oriented programming philosophy in a personal computer for children
has been a great inspiration and encouragement to us. '

Kenneth Kahn has developed an actor language called Director, as an extension to
Lisp [11}, [12], [13] Director does not treat everything as an actor, and is quasi-
parallel, but has developed extensive dynamic graphics facilities and a means of
compiling actors to Lisp. Our mechanism for delegation was strongly influenced by
Director. Director and Act 1 have developed concurrently, and throughout our work
we have enjoyed our interaction with Ken, for providing much insight and important
ideas.

Aspects of the actor philosophy have also been explored by others in the context of
experimental extensions to Lisp. Guy Steele and Gerald Sussman implemented a
dialect of Lisp called Scheme, which compromises between traditional Lisp and actors
[26]  Active objects can be implemented as Lisp functions, and message passing
performed by function call, but Scheme's built-in data types, (numbers, symbols, lists)
are not active objects in the same sense as functions are. Sussman and Steele have
contributed to understanding the issues of continuation control structure and
compilation. '
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Daniel Friedman and David Wise have a modified Lisp interpreter which uses
DELAVed control structure for the Lisp CONS primitive, and their FONS implements list
structure with parallel evaluation of elements and synchronization as does our RACE
[27], [28])

An interesting area of recent research applies the object-oriented philosophy and
parallelism to systems which manipulate descriptions such as those of Luc Steels and
Giuseppe Attardi [38], [37], [36]

We would like to extend thanks to Jonl White for help with MacLisp, in which Act
1 is implemented, and alsd to Richard Greenblatt and the MIT Lisp Machine GrmLp.‘

We would like to thank Luc Steels, Carl Hewitt, Kenneth Kahn, Giuseppe Attardi,

Maria Simi, William Kornfeld, Dan Halbert, David Taenzer for their helpful
comments and suggestions on earlier drafts of this paper.
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