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Abstract

We belicve that software engineering has much to learn from other mature engineering
disciplines, such as electrical engineering, and that the problem solving behaviors of
engineers in different disciplines have many similarities. Three key ideas in current artificial
intelligence theories of engineering problem solving are:

Abstraction - using a simiplified view of the problem to guide the problem

solving process.
Inspection -- problem solving by recognizing the form ("plan”) of a solution.
Debugging -- incremental modification of an almost satisfactory solution
to a more satisfactory one.
hese three techniques are typically used together in a paradigm which we call ATD (for
Abstraction, Inspection, Debugging): First an abstract model of the problem is constructed in
which some important details are intentionally omitted. In this simplified view inspection
methods are more likely to succced, vielding the initial form of a solution. Further details of
the problem are then added one at a time with corresponding incremental modifications to
the solution. ;

This paper siates the goals and milestones of the remaining three years of a five year
research project to study the fundamental principles underlying ihe design and construction
of large software systems and to demonstrate the feasibility of a computer aidzed design tool
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Introduction

In an earlier proposal [32] we discussed the nature of current productivity and reliability problems in
software cngincering and suggested how current theories of problem solving in artificial intelligence can
provide the conceptual basis for a solution. We also outlined a five year research project to study the
fundamental principles underlying the design and construction of large software systems and to demonstrate
the feasibility of a computer aided design tool for this purpose, called the programmer’s apprentice. This
proposal restates the goals and milestones of the remaining three years of this project updated by the 1n51ght
gained in the past two years.

We belicve that software engineering has much to learn from other mature engineering disciplines, such
as electrical engineering, and that the problem solving behaviors of engincers in different disciplines have
many similaritics. Three key ideas in current artificial intelligence theories of engineering problem solving
are:

(i) Abstraction -- using a simplified view of the problem to guide the problem solving
process [39].  An example of using abstraction in programming is to first implement the
desired behavior of a program on typical data before worrying about exception handling.

(ii) Inspection -- problem solving by recognizing the form ("plan") of a solution. In
programming, a plan may be a particular control strategy with unspecified primitive acuons
or an abstract data structure with an unspecified implementation.

(iii) Debugging -- incremental modification of an almost satisfactory solution to a more
satisfactory one. In programming, this evolution is triggered as often by a change in the
problem specification as by an error in the initial solution.

These three techniques are typically used together in a paradigm which we call ATD (for Abstraction,
Inspection, Delmggilrxg):1 First an abstract model of the problem is constructed in which some important
details are intentionally omitted. In this simplified view inspection methods are more likely to succeed,
yielding the initial form of the solution. Further details of the problem are then added one at a time with
corresponding incremental modifications to the solution.

This paradigm is a powerful mental tool used by enginecrs of all kinds for dealing with complex design
problems for which there are no gencral solutions. For example, consider the following advice found in a
textbook on designing integrated circuits [18].2

Probably the worst way to procecd in analyzing the behavior of a small-signal circuit is to
use the most complex model available for the device. Not only does such a procedure lead to
lengthy computation, but by its complexity it also obscures the really important aspects of the
circuit behavior. Instead, one should begin with a highiy idealized simple model for the device.
One can then focus on important circuit behavior and obtain some idea as to reasonable
approximations; onc can usually determine also what featurcs of detailed device behavior will
next be important.

1. Sussman [46] originaily named this paradigm “problem solving by debugging alimost right plans®.
2. Page 302,
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We feel that the myth, current in some circles, that approximation and debugging have no place in the
programming process has inhibited progress in developing more effective tools for programmers. Uniform
general methods for automatic programming do not appear to be forthcoming in the near future. We
therefore believe that the most reasonablc alternative for now is the disciplined use of the AID paradigm.

Note that the AID paradigm is a knowledge based approach to the problem. Inspection methods are the
embodiment of an experienced engineer’s knowledge of the standard problems and corresponding solution
forms in his ficld. A major part of formalizing the AID paradigm in programming is to compile a library of
standard program and specification forms. We intend not only to provide tools for describing the structure of
individual programs, but also a pre-analyzed set of standard forms out of which many different programs can
be constructed. These standard forms can be thought of as programming "cliches™.1 As we will see later, this
is a much more flexible notion than macros or subroutines. We will also sce how the task of compiling such a
library can be naturally divided up, starting with the most fundamental programming knowledge and
expanding to include more specialized arcas of programming.

The next section illustrates the issues and goals of our proposed rescarch by presenting a scenario of
program cvolution aided by the programmer’s apprentice. Section 2 describes the progress we have already
made towards achieving this scenario. Our two principle achievements to date are the construction of an
initial feasibility demonstration [51] and the development of an improved representation for knowledge about
programs and programming. Sections 3 and 4 describe our present and future research topics, which include
program analysis and synthesis by inspection, further codification of programming knowledge, the use of
dependency-directed reasoning in programming, and automated learning of new programming cliche’s.

We are currently working on a second demonstration system based on the improved knowledge
representation. Following this, we propose to complete a third system which demonstrates the feasibility of
all of the essential capabilities shown in the scenario below. We also propose to construct a well-engineered
prototype of the programmer’s apprentice (based on the level of technology of the second feasibility
demonstration) which will for the first time allow us to experiment with the actual use of such a system.

Section 1 - A Goal Scenario

We cnvision the programmer’s apprentice (PA) as an expert programmer’s junior partner and critic.
The expert programmer makes the key decisions in the program development, while the apprentice helps
with more limited tasks. The PA is not intended to be used by novice programmers or by non-programmers.
This restriction sets a more modest rescarch goal than automatic programming, but one which we believe is
more realistic in the short term and which allows a smooth transition to more automatic systems in the future.

The scenario below shows a programmer adding a user accounts system to an cxisting operating system.
We assume here that the existing operating system was originally implemented using the PA, so that the PA
already understands much of its structure and function. The user accounts system is a simple one which keeps
track of a balance for each user and prevents him from logging in when his balance is overdrawn,

An important theme to keep in mind when reading this scenario is what the PA knows as opposed to
what the programmer knows. The PA has scveral different kinds of knowledge. TFirst, it has extensive specific
Ynowledge about the existing operating system. It has a simple understanding of the basic entities and
operations in the operating system, such as uscrs, user ids, passwords, logging in, ctc., and it knows how the
various functions of the system arc implemented. Second, the PA has a lot of knowledge about programming

1. Perlis [28] uses the term "idiom™ for a similar notion
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in general. This includes knowing how to use standard data structures and algorithms (those you cxpect every
good programmer to know) and also some that arc more specialized, such as the manipulation of indexed
files. Finally, the PA has some knowledge in non-programming domains. In this scenario the PA does not
know what a user accounts system is per se, but it does know some simple accounting concepts, such what a
balance is, what overdrawn means, ctc. As will be discussed in following sections, we use a variety of artificial
intelligence techniques to represent this knowledge and bring it to bear in appropriate situations.

The programmer’s knowledge in this scenario partially overlaps with the PA’s knowledge and is
partially different. Both the programmer and the PA have a significant body of knowledge about basic
programming technique, and some more specialized knowledge that is particular to operating systems
programming. It is this shared knowledge which makes communication and cooperation between the
programmer and the PA possible. What the programmer lacks is the ability to keep track of the details of the
implementation of the existing operating system -- this is the PA’s responsibility. On the other hand, what the
PA lacks (and what the programmer provides) is an overall view of what needs to be done to create the new
user accounts system.

Given this division of knowledge, there are seven basic facilities illustrated in the scenario by which the
PA assists the programmer:

Programming with clichés -- The programmer can construct programs faster and with fewer
errors by combining and modifying entries from the PA’s library of standard algorithm and
data structure fragments, as compared with using a standard text or structure editor.

Flexible display -- The PA can display programs at different levels of detail and from different
points of view.

Propagation of design decisions -- As the programmer makes more and more design decisions,
other decisions become forced. When this happens, the PA makes them automatically.

Bug detection -- Whenever the programmer makes a design decision which contradicts earlier
decisions, the PA reports this fact as a bug.

Automatic modification -- The PA has explicit knowledge about many common kinds of
modifications and can perform them automatically when requested.

Automatic o})timizatz'on -- The PA knows how to perform a number of common optimizations,
and is able to recognize situations in which they should be applied.

Escape to the surrounding environment -- At any time the programmer can step outside of the
PA and use the tools in the surrounding environment,

Much of the sccnatio revolves around the concept of a master file system. This is a common
programming concept known to the PA. The PA knows that a master file is an indexed file which contains
most (if not all) of the information about a group of entities (such as users). It knows that there is a cluster of
programs which opcrate on this file, typically including an interactive program for updating the file, report
programs which print out selected information from the file, and various other programs which read and write
individual records in the file. The PA knows how these programs are structured and how they interact. In
addition, it knows the types of exceptional conditions which need to be handled in this kind of system and
about how this kind of system is typically modified.

The scenario is presented as a sequence of screen images. The screen is divided into two parts. In the
top part, the programmer types commands (in lower case) and the PA responds (in upper case). The PA uses
the lower portion of the screen to display relevant sections of code. The programmer-PA interaction shown in
the scenario is carried on in free form English; in the demonstration systems we implement, however, asimple
formal command language wilt be used. The code shown in the scenario is Lisp; however, the basic PA
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concept, as well as the actual implementation, is substantially programming language independent.
The Scenario

The scenario begins with the programmer creating a new master file system in which the master file is
keyed by user ids.

> Let user-accounts be a master file system.
> The keys of the file are user ids.

USER PASSWORDS ARE STORED IN THE FILE <SYS>PASSWORD.
SHOULD ALL INFORMATION ABOUT USERS BE STORED IN THE USER MASTER FILE? yes

MODIFICATIONS:
(1) THE PASSWORD FIELD HAS BEEN MOVED FROM THE FILE <SYS>PASSWORD TO
THE FILE <SYS>USER.
(2) THE PROGRAMS SYS-QUERY-PASSWORD AND SYS-CHANGE-PASSWORD HAVE BEEN
MODIFIED TO REFLECT THIS CHANGE.
(3) THE FILE <SYS>PASSWORD AND THE PROGRAM UPDATE-PASSWORD-FILE HAVE
1 BEEN ELIMINATED SINCE THE FILE HAS NO OTHER FIELDS.

. Since the file is indexed by user ids, the PA infers that the file contains information about users. Since
the file is a master file, it expects that the file will contain all the information about a user. The PA looks to
sec if there is any user information stored anywhere else and discovers that there is already a file containing
users’ passwords. After checking with the programner, it moves passwords into the user master file. (The PA
informs the programmer whenever it makes a change which affects some code which is not currently
displayed.) This is an example of a modification the PA can do automatically because it has specific
knowledge about this kind of modification as part of its general knowledge about files.

The programmer next looks at the cxisting login program and modifies it so that overdrawn users are
not allowed to log in.

> Show Tlogin.

(DEFUN LOGIN (ID)
(COND ((SYS-QUERY-PASSWORD 1ID)
(SYS-PRINT-ANNOUNCEMENTS)
(SYS-GRANT-SYSTEM-ACCESS))
(T (SYS-TERMINAL-DISCONNECT))))

> If a user's balance is overdrawn, then disconnect.
MODIFICATION: A BALANCE FIELD HAS BEEN ADDED TO THE USER MASTER FILE.

(DEFUN LOGIN (ID)
(COND ((AND (SYS-QUERY-PASSWORD ID) (NOT (USER-OVERDRAWN ID)))
(SYS-PRINT-ANNOUNCEMENTS)
(SYS-GRANT-SYSTEM-ACCESS))
(T (SYS-TERMINAL-DISCONNECT))))

(DEFUN USER-OVERDRAWN (ID)
(LET* ((FILE (OPEN "<SYS>USER" '(IN KEYED)))
(RECORD _(KEYED-RCAD FILE IDY))

(CLOSE FILE)
(MINUSP (USER-BALANCE RECORD))))

Notice that the programmer here only needs to specify the essential logical content of the change to be
made, while the PA takes carc of the details of appropriately modifying the code. The PA highlights parts of
the displayed code (rendercd here as underlining) to indicate what changes have been made. (LET# is a
primitive Lisp form which sequentially binds variables.)
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Because the programmer referred to a user’s balance, the PA adds a balance field to the user file. The
PA also constructs the appropriate code to read the balance out of the file. (The functions oPEN, CLOSE, and
KEYED-READ are standard functions for accessing files.) The PA has already chosen an external name for the
file and the selector function USER-BALANCE to access the balance field. It is convenient to let the PA choose all
of the names it needs, since the programmer is always free to change any name he doesn’t like. Notice that
because the PA knows what a balance is and what overdrawn means, it can construct the appropriate test in
the definition of user-overDRAWN. Finally, it uses its understanding of conditionals to combine this new test
with the test already in LOGIN.

In its role as critic, the Pa constantly looks to sce if there are any obvious optimizations which can be
made.

OPTIMIZATION: .
MERGE SYS-QUERY-PASSWORD AND USER-OVERDRAWN IN ORDER TO

REMOVE DUPLICATE CALLS TO OPEN, CLOSE, AND KEYED-READ. -- SHOW RESULT? yes

(DEFUN LOGIN (ID)

(COND ((USER-LOGIN-TEST ID)
(SYS-PRINT-ANNOUNCEMENTS)
(SYS-GRANT-SYSTEM-ACCESS))

(T (SYS-TERMINAL-DISCONNECT))))

(DEFUN _USER-LOGIN-TEST (ID) ;merge of SYS-QUERY-PASSWORD and USER-OVERDRAWN.
(LET* ((FILE (OPEN "<SYS>USER" '(IN KEYED)))
(RECORD (KEYED-READ FILE ID)))
(CLOSE FILE)
(AND_(EQUAL (SYS-PROMPT-WITHOUT-ECHO "PASSWORD: ")
(USER-PASSWORD_RECORD))
(NOT _(MINUSP (USER-BALANCE RECORD))))))

Here the PA notices that an inter-program optimization can be performed because SYS-QUERY-PASSWORD
(shown below) opens and closes the same file and reads the same record as USER-OVERDRAWN. The comment on
the definition of USER-LOGIN-TEST above indicates that although the PA has combined two other functions to
form this one, it continues to remember that logically they are two separate functions. As a result, if either
SYS-QUERY-PASSWORD Or USER-OVERDRAWN is later modified, the change will be reflected in USER-LOGIN-TEST.

(DEFUN SYS-QUERY-PASSWORD (ID)
(LET* ((FILE (OPEN "<SYS>USER" '(IN KEYED)))
(RECORD (KEYED-READ FILE ID)))
(CLOSE FILE)
(EQUAL (SYS-PROMPT-WITHOUT-ECHO "PASSWORD:") (USER-PASSWORD RECORD))))

Note that when the programmer moved passwords to the user file, SYS-QUERY-PASSWORD was modified as
shown above to read the user master file instead of the old password file,
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> Construct a report program.

(DEFUN ..report-name.. ()
(LET ((FILE (OPEN "<SYS>USER" '(IN SEQUENTIAL)))
(REPORT (OPEM "PRINTER" 'OUT)))
(FORMAT REPORT "~5% ..report-title.. ~|")
(PROG (RECORD LINES PAGENO)
(SETQ LINES 0 PAGENO 0)
LP (SETQ RECORD (READ FILE))
(COND ((NULL RECORD) (RETURN NIL)))
(COND ((..selection-predicate.. RECORD)
(COND ((ZEROP LINES)
(SETQ PAGENO (1+ PAGENO))
(SETQ LINES (- ..lines-per-page.. 2))
(FORMAT REPORT "..headings.. Page: ~D~2%" PAGENO)))
..print-iine..
(SETQ LINES (1- LINES))))
(GO LP))
(CLOSE FILE)
(CLOSE REPORT)))

The PA knows the structure of a typical report program in a master file system: it is a program which
looks at all of the records in the file, selects some subset of these records, and prints some of the information
in the selected records along with a title and headings. The PA does not, however, use Lisp code as its
internal representation of this structure. Programs are represented internally as composed of abstract parts,
each of which is named by its logical role in the overall function of the program (e.g. the selection predicate).
In response to the programmer’s request, the PA above has produced from its internal representation a
"sketch" of the code for the report program. This code has a number of gaps in it because several of the roles
are unfilled. Unfilled roles are indicated in the code by "..<role>..". (The FoRMAT function is a system
function for creating formatted output. Like the Fortran construct it is modelled after, it is inscrutable but
convenient.) ’

Thus the code shown by the PA here is only the tip of an iccberg. [t knows many things about a
program, such as its specifications, constraints on its logical parts, and its design history, which are not explicit
in the code. The PA produces code only as a summary of what is going on, and in order to communicate with
the programmer and other tools in the programming environment. Also, the code produced is based on the
PA’s idea of what a report is and what good programming style is. The programmer may well have somewhat
different ideas. However, just as with a human assistant, the programmer gains more from not having to write
the code himself than he loses from not being able to totaily control its initial form.
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> Select the users with overdrawn balances.
> Print each user's balance, name, and address.

MODIFICATION: TWO NEW FIELDS, NAME AND ADDRESS, HAVE BEEN ADDED TO
THE USER MASTER FILE.

> Sort the selected users alphabetically by name.
> Do not print headings.

> Edit title format. [Programmer directly edits the format]

(DEFUN REPORT-OVERDRAWN-USERS ()
(LET ((RECORDS (SELECT-OVERDRAWN-USERS))
(REPORT (OPEN "PRINTER" 'OUT)))
(SETQ RECORDS (SORT RECORDS
' (LAMBDA (RECORD1 RECORD2)
(SYS-NAME-LESSP (USER-NAME RECORD1) (USER-NAME RECORD2)))))
(FORMAT REPORT "~5% Overdrawn Users as of ~A~]" (DATE))
(MAPC " (LAMBDA (RECORD)
(FORMAT REPORT "~5D ~8,T ~A ~25,T ~A %"
(USER-BALANCE RECORD)
(USER-NAME RECORD)
(USER-ADDRESS RECORD)))

RECORDS)
(CLOSE REPORT)))

. (DEFUN SELECT-OVERDRAWN-USERS ()
(PROG (FILE RECORD RECORDS)
(SETQ FILE (OPEN "<SYSM>USER" '(IN SEQUENTIAL)))
LP (SETQ RECORD (READ FILE))
(COND ((NULL RECORD) (CLOSE FILE) (RETURN RECORDS)))
(COND ((MINUSP (USER-BALANCE RECORD)) (SETQ RECORDS (CONS RECORD RECORDS))))
(GO LP)))

The programmer issues a sequence of commands to tailor the report to fit his needs. (In order to save
space, only a single display showing the code after the final command is shown.) These commands illustrate
the basic ways in which the programmer can modify a program: fill in a role, add something new, delete
somcthing, and edit the program as text. This interaction shows how the PA’s understanding of the typical
report program for a master file system gces beyond simply having a template or macro for it. The PA has
specifications for each role and constraints on how they interact.

In the first command line above, the programmer specifies the selection predicate for the report. A
constraint in the internal representation of the program linking the sclection predicate with the function name
then causes the PA to automatically choose the name REPORT-OVERDRAWN-USERS for the function. Next, the
programmer fills in the print line by specifying what to print, namely the user’s name, address and balance.
This causes two new ficlds (name and address) to be added to the user file.

Third, the programmer adds something new to the program by specifying that the report should be
sorted by user names. This is a simple change in the PA’s internal representation of the program, but results
in conspicuous changes in the code, which now has two loops: one to select the appropriate records (which are
then sorted) and another to print the report. The PA puts the first loop into a separate subroutine in order to
make the program casier to read. '

In the fourth command line, the programmer stipulates that headings should not be printed. The
immediate effect of this is to delete the call to ForMAT which prints the headings. The PA then prunes out the
computations involving page numbers and line counting which are no longer used (:ssuming that the printer
automatically goes to the next page after the maximum number of lines that will fit on a page afe printed). In
general, the code initially produced by the PA contains features (such as headings) which are not strictly
necessary, on the theory that as long as there aren’t too many such features, it is casier for the programmer to
prunc things out than to think them up. '
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Finally, the programmer escapes to the surrounding environment and directly edits the title format as a
text string. When the edit is completed, the PA re-analyzes the code in order to integrate the change with its
understanding of the program as a whole.

> Construct the file update program.

IMPLEMENTATIONS :
(1) INTELLIGENT TERMINAL
(2) FAST DISPLAY TERMINAL
(3) SLOW TERMINAL -- CHOOSE? 3

(DEFUN UPDATE-USER-F:LE ()
(LET ((FILE (OPEN "<SYS>USER" '(UPDATE KEYED))))
(PROG ({COMMAND ID) ;command loop with quit command.
LP (SETQ COMMAND (SYS-PROMPT "type Edit, Delete, Create, or Quit:"))
(COND {((EQ COMMAND 'QUIT) (RETURN NIL)))
(SETQ ID (SYS-PROMPT "User id:"))
(CASEQ COMMAND
(EDIT (KEYED-WRITE FILE ID (EDIT-USER-RECORD (KEYED-READ FILE ID))))
(DELETE (KEYED-DELETE FILE ID))
(CREATE (KEYED-WRITE FILE ID (EDIT-USER-RECORD
(MAKE-USER-RECORD 'USER-ID ID 'USER-PASSWORD "" 'USER-BALANCE 0
"USER-NAME "" ‘'USER-ADDRESS "")))))
(GO LP))
(CLOSE FILE)))

(DEFUN EDIT-USER-RECORD (RECORD)
(FORMAT T "~|Id: ~A~%Password: ~A~%Balance: ~D~%Name: ~A~%Address: ~A~%"
(USER-ID RECORD)
(USER-PASSWORD RECORD)
(USER-BALANCE RECORD)
(USER-NAME RECORD)
(USER-ADDRESS RECORD))
(PROG (COMMAND VALUE) ;command loop with quit command.
LP (SETQ COMMAND (SYS-PROMPT "Field Name (or Quit):"))
(COND ((EQ COMMAND 'QUIT) (RETURN NIL)))
(SETQ VALUE (SYS-PROMPT "New Value:"))
(CASEQ COMMAND
(NAME (SETF (USER-NAME RECORD) VALUE))
(ADDRESS (SETF (USER-ADDRESS RECORD) VALUE))
(PASSWORD (SETF (USER-PASSWORD RECORD) VALUE))
(BALANCE (SETF (USER-BALANCE RECORD) VALUE)))
(GO LP))
RECORD)

The PA assumes that every master file system will have an interactive update program and it knows a lot
about what this program should look like. The first thing it knows is that the structure of the program varies
greatly depending on the kind of rerminal which will be used: an intelligent terminal which can do some of
the work itsclf, a fast display terminal that can support rapid medifications to arbitrary parts of the screen, or
a slow terminal where interactions are restricted to a line at a time. In order to find out what kind of terminal
is intended, the PA asks the programmer. '

When the PA’s general knowledge about update programs is combined with what it knows about the
uscr accounts system in particular, the result is code which has no unfilled roles at all. Notice that the code
has a two-level nested structure. The top level routine, UPDATE-USER-FILE, contains a command loop with
three commands, EDIT, DELETE, and CREATE, cach of which sclects a record in the file to be acted upon in the
appropriate way. 'The nested routine, LDIT-USER-RECORD, is used to modify an individuai record. 1t prints out
the record on the terminal and then lets the user change the ficlds one at a time. Fach of these routines
contains an instance of a command loop. This is an example of the PA automatically tailoring a standard
programming clichc according to the constraints of two different usages.
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> Replace each command in edit-user-record with its first Tetter.

(DEFUN EDIT-USER-RECORD (RECORD)
(FORMAT T "~|Id: ~A~%Password: ~A~%Balance: ~D~%Name: ~A~%Address: ~A~%"
(USER-ID RECORD)
(USER-PASSWORD RECORD)
(USER-BALANCE RECORD)
(USER-NAME RECORD)
(USER-ADDRESS RECORD))
(PROG (COMMAND VALUE) ;command loop with quit command.
LP (SETQ COMMAND (SYS-PROMPT "First letter of Field Name (or Q to Quit):"))
(COND ((EQ COMMAND 'Q) (RETURN NIL)))
(SETQ VALUE (SYS-PROMPT "New Value:"))
(CASEQ COMMAND
(N (SETF (USER-NAME RECORD) VALUE))
(A (SETF (USER-ADDRESS RECORD) VALUE))

(P (SETF (USER-PASSWORD RECORD) VALUE))
(B (SETF (USER-BALANCE RECORD) VALUE)))
(GO LP))
RECORD)

Looking at the code for the update program, the programmer find it satisfactory except for the names of
the commands in EDIT-USER-RECORD, which are too long (the PA by default used the names of the fields). He
therefore reduces them each to a single letter.

[The programmer modifies the logout program lo charge for connect time.]

The programmer has finished a first pass through the implementation of the new user accounts system.
He is now ready to make a second pass, paying attention to some details that were suppressed the first time
through. '

> Consider exceptional conditions.

EXCEPTIONAL CONDITIONS:
(1) MISSING FILE (OPEN) -- USER-LOGIN-TEST, UPDATE-USER-FILE,
REPORT-OVERDRAWN-USERS, LOGOUT.
) MISSING RECORD (KEYED-READ) -- USER-LOGIN-TEST, UPDATE-USER-FILE, LOGOUT.
) READ/WRITE CONFLICT ~-- UPDATE-USER-FILE, LOGOUT.
4) INVALID COMMAND (COMMAND LOOP) -- UPDATE-USER-FILE, EDIT-USER-RECORD.
) INVALID FIELD VALUE (USER RECORD)-- EDIT-USER-RECORD.
-- SHOW USER-LOGIN-TEST? yes

(DEFUN USER-LOGIN-TEST (ID) ;merge of SYS-QUERY-PASSWORD and USER-OVERDRAWN.
(LET ((FILE (OPEN "<SYS>USER" '(IN KEYED))))
(COND ((NULL FILE) ..missing-file-handler..)
(T (LET ((RECORD (KEYED-READ FILE ID)))
(CLOSE FILE)
(AND RECORD
(EQUAL (SYS-PROMPT-WITHOUT-ECHO "PASSWORD:")
(USER-PASSWORD RECORD))
(NOT (MINUSP (USER-BALANCE RECORD)))))))))

In the first part of the scenario, the programmer ignored many details such as the fact that oren and
KEYED-READ can fail (in which case they return N1L). The PA supported this abstraction by suppressing the
code concerned with these conditions in its displays. This made it casicr for the programmer to concentrate
on what he wanted the programs to do under normal conditions, Now the programmer is feady to start
considering exceptional conditions. The PA responds by listing the places where such conditions have been
ignored.
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The display of USER-LOGIN-TEST above shows two underlined sections of code concerned with error
handling which were suppressed untit now. The first section tests whether the open failed and includes an
unspecified action to take when it does. The other specifies that USER-LOGIN-TEST should return NIL if there is
no record corresponding to the input user id. USER-LOGIN-TEST is a combination of the two functions
USER-OVERDRAWN and SYS-QUERY-PASSWORD. In order to understand exactly where the error handling code
above comes from, we need to examine the error handling code in the two original functions, as shown
underlined below. (In the previously displayed versions of these functions, this detail was suppressed.)

(DEFUN USER-OVERDRAWN (ID)
(LET ((FILE (OPEN "<SYS>USER" '(IN KEYED))))
(COND_((NULL FILE) ..missing-file-handler..)
(T (LET ((RECORD (KEYED-READ FILE ID)))
{CLOSE FILE)
(COND ((NULL RECORD) ..missing-record-handler..}
(T (MINUSP (USER-BALANCE RECORD))))))M)))

(DEFUN SYS-QUERY-PASSWORD (ID)
(LET ((FILE (OPEN "<SYSM>USER" '(IN KEYED))))
(COND ((NULL FILE) . .missing-file-handler..)
(T (LET ((RECORD (KEYED-READ FILE ID)))
(CLOSE FILE)
(AND RECORD
(EQUAL (SYS-PROMPT-WITHOUT-ECHO "PASSWORD:")
(SYS-PASSWORD RECORD))))))))

When USER-OVERDRAWN was first created, the PA inserted the standard tests for failure of open and
KEYED-READ with unspecified error handlers. When SYS-QUERY-PASSWORD was converted to use the user master
file instead of the system password file, a missing file test with an unspecified handler was added because the
PA did not assume that the user file would be handled the same way as the system password file.
SYS-QUERY-PASSWORD alrcady had a test which returned nIL when no record with a given id was found. This
test is moved to USER-LOGIN-TEST in preference to the unspecified missing record handler from
USER-OVERDRAWN.

> Check that the master file exists at system startup and
protect it from deletion.

MODIFICATIONS:
(1) FILE EXISTS CHECK ADDED TO S5YS-STARTUP.
(2) <SYS>USER MARKED AS NON-DELETABLE.
(3) MISSING FILE TESTS REMOVED FROM USER-LOGIN-TEST, UPDATE-USER-FILE,
REPORT-OVERDRAWN-USERS, AND LOGOUT. -- SHOW SYS-STARTUP? no

(DEFUN USER-LOGIN-TEST (1ID) ;merge of SYS-QUERY-PASSWORD and USER-OVERDRAWN.
(LET* ((FILE (OPEN "<SYS>USER" '(IN KEYED)))
;file checked at startup and protected from deletion.
: (RECORD (KEYED-READ FILE ID)))
(CLOSE FILE)
(AND RECORD
(EQUAL (SYS-PROMPT-WITHOUT-ECHO "PASSWORD:")
(USER-PASSWORD RECORD))
(NOT (MINUSP (USER-BALANCE RECORD))))))

The programmer instructs the PA to add code to the operating system to check that the master file exists
at system startup, and to protect it from subsequent deletion (e.g. by setting a a file descriptor bit). The PA
deduces that this means that orcn’s on the user file cannot fail and therefore removes all the relevant
exception handling,

[The programmer completes the system and it goes into use]
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Much later someone decides to add a project hierarchy to the user data base. Specifically, a new field is
to be added to each user record which contains the user id of that person’s project leader. A programmer
(most likely different from the one above) is gncn the task of making this change and also creatmg a new
per-project report on overdrawn users.

> Describe user accounts.

USER-ACCOUNTS IS A MASTER FILE SYSTEM
MASTER FILE: <SYS>USER
KEY: ID
FIELDS: NAME, ADDRESS, BALANCE, PASSWORD
READ-ONLY ROUTINES: USER-LOGIN-TEST
REPORTS: REPORT-OVERDRAWN-USERS
UPDATE ROUTINES: UPDATE-USER-FILE, LOGOUT

The PA can help the new programmer by giving him a top level summary of the structure of the existing
user accounts system. It can also go into much more detail if requested. Notice that the division of the
various system programs into those which only read the master file and those which read and write (update)
the master file was not something the original programmer ever had to tell the PA. This division is part of the
PA’s knowledge of master file systems in general. Furthermore, the PA was able to analyze the programs the
programmer wrote to determine which fell into each category.

> There is a tree structure on users.
> A user's project leader is the user id of its parent node in the user tree.

PROBLEM: ADDING A PROJECT-LEADER FIELD IMPLIES ADDING THE COMMAND "P" TO THE
COMMAND LOOP IN EDIT-USER RECORD, SINCE THE FIRST LETTER OF EACH FIELD NAME
IS A COMMAND. THIS VIOLATES THE CONSTRAINT THAT A NEW COMMAND MUST NOT BE
EQUAL TO ANY EXISTING COMMAND. EXISTING COMMANDS ARE:
N(NAME), A(ADDRESS), B(BALANCE), P(PASSWORD), Q(QUIT).
-~ SHOW EDIT-USER-RECORD? no

> Rename project leader to supervisor.

MODIFICATIONS:
(1) A SUPERVISOR FIELD HAS BEEN ADDED TO THE USER MASTER FILE.
(2) EDIT-USER-RECORD HAS BEEN MODIFIED SO THAT IT CAN UPDATE THIS FIELD.

The programmer specifies that the tree structure on users is to be encoded using up pointers stored in a
field in each record. As a consequence of adding the new field, the PA runs into a problem. Because the first
letter of each ficld name is a command in en1T-USER-RECORD (the PA remembers this as a constraint rather
than a one-time change), adding a ficld named PROJECT-LEADER violates the constraint on command loops that
all of the commands must be different. The PA keeps track of a large number of constraints of this type and
reports a bug whenever onc is violated. In this case the programmer takes the expedient of simply changing
the name of the new field so that its first letter doesn’t conflict with any of the existing commands.
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> Construct a program based on the overdrawn users report.

> Copy the master file into memory using property Tlists.

> Invert the supervisor tree.

> Change the loop which selects overdrawn users so that it only enumerates
the subtree rooted at a given user id.

(DEFUN REPORT-OVERDRAWN-USERS-SUBTREE (1ID)
(LET ((RECORDS (SELECT-OVERDRAWN-USERS-SUBTREE ID))
(REPORT (OPEN "PRINTER" '0OUT)))
(SETQ RECORDS (SORT RECORDS
'(LAMBDA (RECORD1 RECORD2)
(SYS-NAME-LESSP (USER-NAME RECORD1) (USER-NAME RECORD2)))))
(FORMAT REPORT "~5% Overdrawn Users as of ~A~|" (DATE)) '
(MAPC '(LAMBDA (RECORD)
(FORMAT REPORT "~5D ~8,T ~A ~25,T ~A %"
(USER-BALANCE RECORD)
(USER-NAME RECORD)
(USER-ADDRESS RECORD)))
RECORDS)
(CLOSE REPORT)))

(DEFUN SELECT-OVERDRAWN-USERS-SUBTREE (1ID)
(LET ((*RECORDS* NIL) ;special.
(FILE (OPEN "<SYS>USER" '(IN SEQUENTIAL))))
(PROG (RECORD)
LP (SETQ RECORD (READ FILE))

(COND ((NULL RECORD) (RETURN NIL)))

(PUTPROP (USER-ID RECORD) RECORD 'USER-RECORD) ;copy file in memory.

(PUTPROP (USER-SUPERVISOR RECORD) ;invert supervisor tree.
(CONS (USER-ID RECORD)

(GET (USER-SUPERVISOR RECORD) 'SUPERVISOR-OF))

'SUPERVISOR-0F)

(GO LP))
(CLOSE FILE)
(SELECT-OVERDRAWN-USERS-SUBTREE1 ID)
*RECORDS*) )

(DEFUN_SELECT-OVERDRAWN-USERS-SUBTREE1 (ID)
(LET ((RECORD (GET 1D 'USER-RECORD)})
(COND_((MINUSP (USER-BALANCE RECORD)) (SETQ *RECORDS* (CONS RECORD *RECORDS*))))
(MAPC_'SELECT-OVERDRAWN-USERS-SUBTREE1 (GET ID 'SUPERVISOR-0F))))

As the last step of the scenario, the programmer constructs the required new report program. He
decides to start with the code for REPORT-0VERDRAWN-USERS and modify it in order to get the new report he
wants. Comparison of the program above with REPORT-OVERDRAWN-USERS shows that the key changes are
confined to the SELECT-OVERDRAWN-USERS-SUBTREE subroutine.

The new report program is derived from the old one in three steps. First, the programmer specifies that
the user file should be read into memory and stored using property lists. Next, the programmer specifies that
the supervisor tree links should be inverted. This part of the scenario is the most in-depth demonstration of
the PA’s understanding of common data structures and algorithms. Finally, the programmer specifics that
instead of enumerating every record in the file, only those records in the subtree with a given user id as root
are to be enumerated. The PA makes the given uscr id be an input to the report and defines a new recursive
subroutine, SELECT-OVERDRAWN-USERS-SUBTREE1, which traverses the subtree starting at the given user id,
accumulating the sclected records in the special variable *RECORDS®.  As before, the name for the new report
program is chosen to reflect the users sclected.
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Section 2 - Accomplishments to Date

This section reviews the progress we have already made towards achieving the level of performance
illustrated by the scenario. This includes several developments in the underlying theory and an initial
feasibility demonstration.

The theoretical component of our research centers on two fundamental questions: what knowledge
(about a particular program and about programming in general) does a programmer employ in scenarios such
as the one above; and how should this knowledge be represented so that it can be effectively manipulated in a
computer. '

The Plan Calculus

Our first step was to develop the notion of the plan for a program. Like blueprints and block diagrams
in other enginecring disciplines, the plan for a program is a centralized record of many different kinds of
information useful for design and maintenance. Some of this information (such as the flow of data and
control between the parts of a program) is evident in the program text. Other information (such as the logical
constraints between parts) is conspicuously absent from most program text. Furthermore, the plan describes
the program at various levels of abstraction, spanning the spectrum from abstract specifications to the
implementation language.

Our earlier proposal [32] describes an initial plan representation. A plan in this representation is
essentially like a flow chart, except that data flow as well as control flow is represented by explicit arcs. Using
this representation, many common programming cliches such as report programs, command loops and tree
enumeration can be expressed in a canonical, programming language independent fashion.

More recently [33] the plan representation has been refined into a formal plan calculus with an
underlying axiomatic semantics [37]. The axioms for plans are written in a situational calculus, a variant of
predicate calculus similar to the one used by Green [15] and McCarthy and Hayes[26], in which certain
variables and constants (called situations) are taken to denote different states of a computation. This provides
a formal system within which rules of inference, equivalence, and other relations on plans can be defined in a
rigorous way.

In addition to providing a formal basis for plans, Rich extended the representation in two important
ways. First, the plan notion was gencralized to include data abstraction as well as control abstraction in a
unified framework. Second, a mechanism was introduced for representing multiple points of view.

A plan is defined formally by a sct of namied, typed parts (called roles) and constraints between them.
When the roles of a plan are data objects and the constraints are logical invariants, it is called a data plan. A
data plan expresses a data abstraction similar to a data algebra [17,14] or an abstract data type [23]. For
example, indexed-vector is a data plan with two roles, named base (of type vector) and index (of type integer),
and a constraint requiring that the index must be within the bounds of the base vector. Indexed-vector is a
common data structure configuration which is used in the implementation of many other data abstractions
such as stacks, buffers and qucucs.

In contrast with the algebraic and abstract data type approaches, data structures in the plan calculus are
mutable. Although this introduces extra complexity into both the formalization of data plans and reasoning
about them, we feel that side-effects are an important feature of real programming which should not be
ignored. For example, the most natural way to think of the effect of the £pIT command in UPDATE-USER-FILE
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in the scenario is as a side-effect to the file.!

When the roles of a plan are operations and tests, and the constraints are control flow and data flow
connections between them, it is called a temporal plan. Temporal plans correspond to our original
flowchart-like idea of a plan. Data plans and temporal plans can be combined in order to express standard
programming forms which include both data and control abstraction. For example, the prototypical structure
of a master file system is expressed by a plan with a role for the master file (which is a data plan) and roles for
various temporal plans which typically go along with it, such as report generators, and the interactive file
update program.

Multiple Points of View

In the original plan representation, as in most knowledge representations, much use is made of the
ability to view an individual object as an instance of a more general abstract class. It was not however possible
in the original plan representation for a single object to be viewed as an instance of more than one class. For
example, it is often useful to view a single data object as an instance of several different data abstractions. In
particular, a Lisp list can be viewed alternatively as a singly recursive data structure, as a labelled directed
graph, or as a sequence. Each of these points of view emphasizes a different aspect of a Lisp list. Each one
provides a different vocabulary for specifying properties of the data structure and a standard set of
manipulations on it:

Singly recursive data structure -- a data structure with two roles, head and tail, where the tail is
defined recursively. Two standard operations on this data abstraction are push and pop. A
Lisp list can be viewed as a singly recursive data structure by taking the car of the list to be
its head and the CDR to be its tail. This viewpoint is appropriate for understanding cons and
CDR as the implementation of push and pop.

Directed graph -- a sct of nodes and an edge relation. Twe standard manipulations on directed
graphs are splicing in and splicing out nodes. A Lisp list can be viewed as a directed graph
by taking the individual cons cells to be nodes connected by the edge relation cpr. This is
the natural viewpoint for understanding RPLACD as the implementation of a splicing
operation.

Sequence -- a mapping from the natural numbers to some set of objects. A list can be viewed as
asequence in which the first clement of the list is the first clement of the sequence, etc. This
point of view is the most natural one in which to specify ordering propertics on a list.

Rich added to the plan calculus the notion of a formal mapping between plans, called an overlay, which
can be used to represent multiple points of view such as these. For cach of the three views of a list above,
there is a separate overlay which specifies how properties of a data structure viewed one way correspond with
properties expressed in another view. Furthermore, overlays are specified formally in such a way that several
may be used simultancously for the same object. For example, all three may be used to describe how a single
list is manipulated at different points in a single Lisp program.

1. Recent work on functional pregramming has shown how certain side-cffects of this type can be modelled with a primitive
non-deterministic merge operation added to an otherwise side-effeet free system [20].
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Overlapping Implementations

A closely related kind of multiple viewpoints occurs when there is overlap between the implementations
of different procedural abstractions, as illustrated by the program below.

(DEFUN MAX-MIN (L)
(LET ((MAX (CAR L))

(MIN (CAR L)))

(N)

(MAPC ' (LAMBDA (COND ((> N MAX) (SETQ MAX N)))
)

(COND ((< N MIN) (SETQ MIN N))))

(CDR L))
(CONS MAX MIN)))

The program max-MIN computes both the maximum and the minimum of a non-empty list of numbers.
The standard plan for finding the maximum (or minimum) clement of a list has three principal parts: an
initialization (here (CAR L)), an cnumeration of the elements of the list (here Mapc), and an accumulation
which tests each element to see if it is the largest (or smallest) found so far. The diagram below indicates how
MAX-MIN can be analyzed in terms of this plan.

The top node in this diagram represents the entire program. At the next level, the program is viewed as
the combination of two plans, one which finds the maximum and one which finds the minimum. The third
level shows how the more primitive components of the program are grouped and viewed as the
implementation of these two plans. There are only five nodes at this level rather than six because the list
enumeration is shared betwecen the implementation of maximum and of minimum. It must be simultaneously
viewed as filling a role in both plans.

This type of analysis is a violation of strictly hicrarchical decomposition, which is currently the
dominant technique in program design. We have found, however, that it is not always possible to maintain a
strictly hierarchical analysis and at the same time capture the appropriate generalizations.

The Plan Library

Using the plan calculus, we have begun the task of building up a library of standard plans in various
arcas of programming. Fig. 1 shows our view of how this knowledge is typically factored. The three large
ovals in the figure represent three general areas of programming: statistics, graphics, and systems
programming. The intersection of all three ovals in the center represents fundamental programming
techniques; the arcas of overlap between cach pair of ovals represent programming knowledge of
intermediate breadth; the remaining arca in cach oval represents specialized knowledge in that area.

Our initial focus of attention in the library has been on fundamental programming techniques. We
have at this point codified several hundred plans in this arca[33], for cxample: abstract input-output
specifications, such as set addition, removal from a graph, and inverting a mapping; data plans involving
integers, sets, sequences, trees, labelled directed graphs, and hashing; and temporal plans, such as gencrating,
scarching. splicing out, maximum, retricve (by key), and discriminate and retrieve (in a hash table). ‘
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Fig. 1. The Factorization of Programming Knowledge
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Examples of programming knowledge of intermediate breadth are basic input-output techniques (e.g.
files, strcams and displays), which are used in graphics and systems programming, but not statistics; and basic
mathematical algorithms (e.g. successive approximation and matrix manipulations), which are used in
statistics and graphics, but not systems programming.

Finally, there is programming knowledge which is specific to just one narrow application area, such as
the plans associated specifically with operating systems, statistical or graphics..

As is evident from the scenario, understanding programs also often requires knowledge in domains
which intrinsically have nothing to do with programming (signified by circles in the ﬁgure), such as branches
of mathematics, business, and knowledge about people, places and things in the real world. (Neighbors [27]
calls these the "problem domains"). We propose to do a minimum of representation work in these areas,
since many other researchers in artificial intelligence are already working on them.

The many plans in the library are interconnected so that they can be efficiently retrieved and reascned
about. There are currently four kinds of taxonomic relations which connect plans in the library as illustrated
by the example in Fig. 2. (For a detailed discussion of the plans referred to in this figure, sce [37]).

The first relation (component) indexes which plans are used as components in the definition of other
plans. This relation is particularly useful in program analysis. For example, if some data object has been
determined to be a set, then this relation can be used to retrieve various plans and specifications which involve
sets (for example, the find operation).

The next two relations in Fig. 2 are inheritance relationships by which a plan inherits the roles and
constraints of another plan and then adds additional constraints (specialization), or additional roles and
constraints between them (extension). These inheritance relations greatly reduce redundancy in the library.
In addition, these links can be used to retrieve the standard variations of a plan whicii might be useful during
program synthesis.

Finally, overlays between plans in the library encode the details of how one abstraction may be
implemented (or viewed) in terms of another and the conditions under which this is pessible. Many of a
programmer’s design decisions are cquivalent to deciding to use one overlay rather than another. The
overlays themselves are used both to record the decisions made and tw evaluate whether or not the decision
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Fig. 2. An Example of the Taxonomic Relationships in the Plan Library
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leads to a contradiction. Together with the specialization and extension links, overlays are also involved in
propagating design decisions. For example, these links can be used to automatically select different variations
of a plan depending on which implementation of a data object is chosen.

Knowledge Based Editing

Starting with the program analysis system described in [48] and [49], Waters constructed a knowledge
based editing system which demonstrates the feasibility of some of the basic capabilitics of the PA. The
architecture of this system is shown in Fig. 3. (The system is described in more detail in [51])

The important internal operations of this system are entircly based on the plan representation.
However, it must be noted that since this system is the culmination of work begun several years ago, it uses
the original plan representation described in [30] and [48] rather than the extended plan calculus discussed
above. Similarly, although there is a library containing plans for a number of basic programming cliches,
there arc no taxonomic links between the plans.

The central module in the system is the plan editor (sce Fig. 3). The interface presented to the user is
similar to a programming language structure editor such as Mentor [8] or Gandalf[12], in the sense that it
treats the program as a hierarchical structure rather than merely a text string. However, many of the facilities
offered by the plan editor are very different because it operates on the plan for a program rather than on its
parse tree. 'The plan editor allows the programmer to construct a program by instantiating plans from the
library and to modify a program by modifying its plan. We call this knowledge based cditing because it makes
usc of knowledge in the library and in the plan for the program which is only implicit in the program text.

Whenever the programmer uscs the plan cditor to modify the plan for a program, the coder module is
invoked to create program text (in Lisp) corresponding to the resulting plan. The programmer can also use an
ordinary text editor o modify a program. In this case the analyzer module is used to create an updated plan
so that the programmer can continuc with the plan cditor. Analyzers have been implemented for subsets of
Fortran and Cobol, as well as for Lisp. The ability to work with several different languages demonstrates the
language independence of the techuology being developed here.
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Fig. 3. Architecture of the Knowledge Based Editor.
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The current analyzer module is a restricted version of our eventual goal in that it analyzes programs in
terms of only a few basic plan fragments. This analysis decomposes a program into useful units and makes it
possible to use the knowledge based editor on a program which was not originally constructing using the
system. However, it does not make it possible to bring the full force of knowledge in the library to bear on
such a program. Scction 3 describes an improved analyzer which will be able to analyze a program in terms of
all of the plans in the library.

Of the seven main facilities of the PA discussed at the beginning of the scenario, the knowledge based
program editor more or less completely provides two of them (programming with clichés and escape to the
surrounding environment) and provides parts of two more (flexible display and automatic modification).

The most important facility provided by the current system is programming with clichées. The library is
capable of representing many complex program forms and the plan editor provides commands enabling the
programmer to manipulate them in essentially the manner illustrated in the scenario.

Due to the existence of the coder and analyzer modules, the current system is also able to provide for
escape to the surrounding environment. The programmer has available at all times an up-to-date version of
the code being worked on, which he can then manipulate with other tools in the programming environment.
Similarly he can take a program produced with some other tool and introduce it into the knowledge based
editing system.

The current system partially addresses the issue of flexible display in that the coder is capable of
producing the kind of sketchy code shown in the scenario for incomplete plans. However, the current coder
does not have the ability to suppress classes of details, such as error handling. The current system provides
some facilitics which partially automate modification. For example, the plan editor provides several
commands (such as "share these two roles in the plan™) which the programmer can use to modify a program
more easily than cditing the text directly.

As an example to compare the current knowledge based editor with our goal, consider the program
REPORT-OVERDRAWN-USERS. In the scenario this program is constructed via the following commands:

Construct a report program.

Select the users with overdrawn balances.

Print each user's name, address, and balance.

Sort the selected users alphabetically by name.

Do not print headings.

Edit title format. [Programmer directly edits the format]

A AR VERVIRS 4

Using the current system the programmer could say the following. (The plan editor implements a simple
English-like command syntax which is capable of processing these commands exactly as shown.)
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Define a program SELECT-OVERDRAWN-USERS.

Implement it as a report.

Implement the input-file as '"<SYSD>USER".

Implement the selection-predicate as overdrawn of '(USER-BALANCE RECORD).

Implement the print-Tine as '(FORMAT REPORT "~A ~A $~D"

(USER-NAME RECORD) (USER-ADDRESS RECORD) (USER-BALANCE RECORD)).

> Add a sort of the output of the filter by '(LAMBDA (RECORD1 RECORD2)
(SYS-NAME-LESSP (USER-NAME RECORD1) (USER-NAME RECORD2))).

> Remove the printout of headings. .

> Edit title format. [Programmer directly edits the formai]

VoV VYV Vv

The principal difference between the two sets of commands above is that there is no automatic
propagation of information in the current system. There is also no knowledge about data structures and no
bug detection. Itis left completely up to the programmer to make consistent design choices.

This means, for example, that although in the current system the programmer can invoke the same plan
for a report program that was shown in the scenario, none of the roles are filled in automatically. Also, when
it comes to specifying the selection prcdibate and the print line in the current system, the programmer has to
use literal text because there are no data plans. Finally, the current system does not know how to
automatically add new ficlds to a file when they are mentioned.

Other features of the scenario which the current system is capable of supporting include: breaking the
single loop in the SELECT-OVERDRAWN-USERS into two loops when the sort is introduced (the current coder
would not break the program into two subroutines however); and removing the calculation of pAGENO and
LINES when the printing of headings is removed.

Other Applications of Plans

_ Faust recently completed a Master’s thesis [11] exploring the application of the ideas described above to
the problem of maintaining existing software written in Cobol. He implemented a system based on the
analyzer module of the knowledge based editor which shows the feasibility of automatically translating Cobol
programs into a high level business data processing language called Hibol [38]. Hibol is a single assignment
language without explicit looping constructs in which data processing applications are specified by a set of
simple statements defining how the values in one data sct are to be derived from other data sets. Once a
program has been converted from Cobol to Hibol, it can be more casily maintained because the Hibol
program embodies the functional specifications of the program much more clearly.

Frank (a visiting scientist from Schlumberger-Doll Research) conducted an initial exploration [13] into
the feasibility of automatically generating program documentation based on recognition of standard
programming cliches. His study pointed out issues for future research which are currently being pursued by
other members of the group.

For her Master’s thesis, Steele [45] constructed a source-to-source program transformation system which
keeps track of the reasons why each transformation is or is not applicd at particular points in the program, and
of the exact effect of cach transformation. Her system does not use the plan representation; however, it
focuses on several issues which are of fundamental importance to the PA. In particular it is very important for
the PA to keep track of the decisions, modifications and cptimizations it performs and the reasons behind
them so that it can justify them to the user and so that it can determine what to do when a decision is changed.

Finally, Shapiro [41] has completed a Master’s thesis in which he developed an interactive debugging
aid which exhibits a deep understanding of a narrow class of bugs. The debugging knowledge in this system
is organized as a collection of independent experts which know about particular bugs. These experts operate
by applying a feature recognition process to the plan for a program and to the events which took place during
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the execution of the code. Shapiro’s system, like Faust's mentioned above, makes use of the analysis module
of the knowledge based editor system.

Section 3 - Ongoing Research

The main focus of our current research is extending the knowledge based editor described above to take
advantage of the improved plan calculus and plan library. Our first milestone in this work will be to complete
implementation of two modules which demonstrate the utility and gencrality of the new plan library. The
first module supports automater program synthesis using the library; the second one automatically analyzes
programs according to plans in the library. It is an important feature of our methodology to study
programming cliches from the perspective of both synthesis and analysis. These two modules will then be
combined with the existing knowledge based editing system to become a second level feasibility
demonstration for the PA as a whole.

Synthesis by Inspection

There have been many approaches to automating program synthesis. For example, powerful deductive
methods have been applied to construct small but potentially quite complex algorithms from
cxamples [19,42,44] or directly from specifications [24].  Another general approach, typically applied to the
synthesis of very large programs, are so-called "configurable” programs [47] in which one of a class of
programs for some particular application (typically in busincss data processing) is assembled out of a
parameterized super-program by specifying the values of some precomputed set of switches or options.

Another major approach to program synthesis is program transformations, of both the correctness
preserving and knowledge based variety. Work on correctness preserving transformations, such as the
folding-unfolding transformations of Burstall and Darlington [4], tends to focus on a small set of very general
transformations which are formally adequate to derive a large class of programs, but which must be composed
in long sequences to achicve intuitively natural implementation steps. The knowledge based approach to
program transformations, as excmplified by Barstow [2], Balzer [1] and Cheatham [6], de-emphasizes formal
program correctness in favor of representing larger transformations which are more specific to the particular
program being developed.

We feel that none of these approaches (with the exception of knowledge based program
transformations) directly addresses the heart of the current software crisis, i.c. the construction of programs
(or systems of programs) which are large and varied, but fundamentally straightforward. In our view, the
method which gives the most leverage on this kind of programming is synthesis by inspection. By this we
mean synthesis based on recognizing standard specification forms and choosing one of the corresponding
standard implementation alternatives.  The plan library, with its taxonomy of standard input-output
specifications, data plans, temporal plans, and overlays between them is designed to support this synthesis
method.

In our initial study of synthesis by inspection, we arc separating the task of recognizing possible
implementations from the task of choosing the appropriate one, because we believe the first task is casier.
Thus our initial synthesis module will be interactive. In response to a request from the programmer it will
produce a menu of implementation options for the part of the program currently in focus, as illustrated in the
construction of UPDATE-USER-FILE in the scenario. Once the programmer makes a choice, the details of the
implementation can be carried out automatically. The final result of this process is a detailed implementation
plan which can be translated by the coder module into program text.
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The selection of implementation alternatives takes advantage of the fact that the program under
construction always has a plan, parts of which are more and less abstract. Overlays in the plan library give
possible implementations of abstract plans and specifications in terms of more concrete ones (i.e. closer to the
abstract machine provided by the target programming language). Finding implementation alternatives in this
framework boils down to looking up parts of the current plan for a program in the library and retrieving
possible implementations via overlays. One use of this module will be to "shake down" the contents of the
plan library. .

There are several directions in which this first version of synthesis by inspection will be further
improved. It can be modified to take more initiative and suggest what part of the program might be
implemented next. This will require the integration of the synthesis module with the improved analysis
module described below. Another extension will be to reduce the number of options presented at a given
choice point by eliminating those which are clearly inappropriate. In many situations the number of choices
can be narrowed to one so that the system can procced automatically. This improvement will require the

“addition of some simple deductive capabilities (discussed further in the next section) so that the choice of a
particular option at one point in the program constrains the options available at other points.

Analysis by Inspection

Brotsky [3] is curréntly working on a module which is the inverse of the synthesis module described
above. Given a fully implemented program, this module constructs a hierarchical plan for it which identifies
instances of plans from the library at all levels of abstraction and the implementation relationships between
them. We call this process analysis by inspection because it derives new knowledge about a program by
recognizing standard forms rather than by applying general reasoning techniques, such as symbolic
evaluation [5].

Analysis by inspection is an important part of our research for several reasons. First, we are interested
in this kind of analysis from a theorctical point of view because it is a characteristic behavior of expert human
programmers. For example, expert programmers presented with a program they have not seen before are
able to identify the use of standard programming clichcs in it, which seems to help them understand how the
program works as a whole. Also from a theoretical point of view, we have found that using the same plan
library to drive both synthesis and analysis has helped us discover better factorizations of knowledge in the
library as compared to other approaches, such program transformations, which are used for synthesis only.

Analysis by inspection also has several important practical applications. The most obvious application is
analyzing programs which have already been written by other means so that they can be further modified and
maintained using the PA. Even in programming with the PA from the start, it is possible for a program to
evolve to a point when it is profitable to re-analyze it differently from the way it was originally built. For
example, the new analysis may decompose it in a way which better reflects its current logical structure.
Re-analysis may also reveal the presence of a standard pattern for which some optimizations are known.

The operation of Brotsky’s analysis module is based on treating the plan library as a web grammar[29],
which is the natural extension of the formal string grammar idea to more gencral graph structures, such as
plans. Each plan and overlay in the librarv becomes a grammar rule whose left-hand side is the name of the
plan or overlay. The right-hand side is cither the sct of roles and constraints which define the plan
(represented as nodes and arcs), or in the case of an overlay rule, the name of another plan which implements
it or which it can be viewed as. Thus the plans in the library become non-terminal symbols in the grammar
and the hierarchical analysis which identifies instances of library plans in a program is formally the parse tree
of the program according to the library grammar. Note however that duc to the phenomena of multiple
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points of view and overlapping implementations discussed earlier in this section, we allow for multiple parses
and joined nodes in the parse trecs.

Brotsky’s algorithm for parsing such grammars is also of interest. The basic strategy is to use standard
bottom-up parsing techniques on cach of the chains (linear subgraphs) in a plan, and then to asscmble the
results of these parscs into a parse of the plan as a whole. It is fairly clear, however, that this approach by
itsclf is combinatorically infeasible for the size of program and grammar we have in mind. An important part
of this research is therefore to discover constraints on the implementation structure of a program which make
efficient analysis by inspection possible. In other words, we do not expect to be able to analyze all programs
by this method, only those which are "well-structured”. It will be interesting to see the extent to which the
constraints developed for this purpose agree with our intuitive notions of clear program structure.

An Improved Knowledge Based Editor

The analysis and synthesis by inspection modules described above, combined with the already
completed knowledge based editing facilities described in Section 2, will constitute a second level feasibility
demonstration for parts of the PA. This system will be an improvement over the first system in two principal
ways.

First, the ability to program with cliche’s will be greatly enhanced. The new plan library contains many
more plans than the old system, especially plans for standard data structures. Furthermore, the use of menus
by the interactive synthesis module will help make these plans casier for the programmer to access.

Sccond, escape to the surrounding environment will be made more effective. In the current system, the
analysis module is not strong enough to completely re-analyze code returning from an editing escape with no
loss of information. With the new anélysis module the cost of escaping will be significantly reduced and in
many cases eliminated entirely.

QOther Applications of Plans

Duffey [10] is currently working on a Master’s thesis to develop a novel compiler strategy for generating
high quality machine code. This research is a first step towards formalizing the cxpertise of the assembly
language programmer in much the same way as we have been formalizing the expertise of the expert
high-level language programmer. He has found some of the same fundamental principles to be applicable. In
particular, he is using the plan representation and a library of standard implementation techniques.

Chapman is currently working on an undergraduate project to develop an incremental program testing
assistant, similar in some ways to Licberman’s Tinker system [22]. Chapman’s system will keep track of test
cases supplied by the programmer and try to decide which ones to run whenever a modification is made to the
program. The system will also have a rudimentary capability to modify test cases automatically when certain
classes of program modifications occur. In order to do these things, the system maintains some simple plans
for the user’s program, including information about calling relationships, side-cffects, and patterns of variable
usage. The system will also include a library of standard test cases which can be tailored to a programmer’s
needs. We eventually plan to integrate the test case assistant into the rest of the PA. In particular, we think
that bug detection might be greatly enhanced by a synergy between simple deduction and direct testing of
parts of the program. ’
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Section 4 - Proposed Future Research

This final section of the proposal describes research which remains to be done in order to further
formalize the AID paradigm of programming and develop the PA system to support it. ~ Three major
theoretical issues in this rescarch are: the use of reasoning and dependencies in program evolution, extensions
to the plan calculus and plan library to represent more knowledge, and automating plan acquisition and
learning.

On the implementation side, we propose a third demonstration system showing the feasibility of all of
the capabilities of the PA illustiated in the scenario. In addition, as soon as the improved knowledge based
editor described in Section 3 is completed, we propose to begin implementation of the first well-engineered
prototype of the programmer’s apprentice, based on this editor. The prototype PA will not have the full
capabilities illustrated in the scenario, but it will give us the ability to explore important human interface
issues.

Reasoning and Dependencies

Disciplined use of the AID paradigm in programming requires, among other things, the ability to
reason about dependencies between the parts of a program (for example to change design decisions) and
about program behavior under various conditions (for example to predict the effects of a modification).
Recent work in artificial intelligence [9] provides a model for this kind of reasoning in the form of truth
maintenance systems.

A truth maintenance system (TMS) is essentially a data base in which each assertion is accompanied by
a justification stating which other assertions form the logical support for believing it to be true. The
procedural part of the TMS automatically maintains consistency in this data base. For example, if an
assertion is retracted (i.e. its truth value changed from true to false or unknown), then all of the assertions
which depend on it are automatically retracted (unless there are independent justifications for believing them
to be true). Similar propagation through the dependency network takes place when an assertion becomes true
(where it was previously false or unknown). Also, as part of consistency checking, the TMS automatically
detects contradictions, i.e. chains of dependencies which would lead to an assertion being both true and false
at the same time.

Dependency directed reasoning makes it possible for incremental modifications to a program to cause
only incremental changes in one’s understanding of the program. For example, suppose that a programmer
decides to change the implementation of an abstract set from an array to a binary tree. This entails replacing
all the loops which enumerate the clements of the array to trec traversals which enumerate the nodes of the
tree. Although the new code might appear superficially very different from the old code, Shrobe [43] shows
how reasoning using plans and a TMS can handle this modification by an incremental rather than a complete
re-analysis.

Dependency directed reasoning would also be useful for keeping track of the relationship between
multiple versions of a program (which might co-exist) [7] and modifications made by multiple programmers
{perhaps in parallel). For both of these applications, the ability, provided by the plan representation, to relate
features of a program at varying grain size would be an improvement over existing practices.

We propose to develop a reasoning module for the PA which is similar in some ways to Shrobe’s system.
However, our module will be based on a more recent TMS developed by McAllester [25]. McAllester’s TMS
provides, in addition to the basic consistency checking and propagation facilitics described above, the
automatic application of some simiple rules of inference, namiely substitution and propositional resolttion. In
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McAllester’s TMS, if two terms are asserted to be equal, then an automatic mechanism operates to get the
effect of substituting one term for the other throughout the data base. Furthermore, this is done in such a way
that the substitutions are undone if the assertion of equality is later retracted. Propositional resolution means,
for example, that if the assertion A and the assertion (A implies B) are both belicved true, then B will be
belicved true.  Furthermore, the justification for B will be A and (A implies B) so that if either is later
retracted, B will be retracted also.

It is important to note that we arc not proposing to build a reasoning module which is a powerful
theorem prover. For example, the TMS described above does not apply any rules of inference involving
quantification or induction. Rather, the reasoning module is intended to support the flexible use of
straightforward reasoning. This is consistent with our knowledge bascd approach. Wherever possible we try
to include enough knowledge in plans and the plan library so that the reasoning the PA needs to do is
straightforward.

Extending the Plan Calculus and the Plan Library

Accounting for all of the aspects of the AID paradigm illustrated in the scenario will require both
quantitative and qualitative extensions to the programming knowledge we have been able to represent thus
far in our research.

As discussed in Section 2 (see Fig. 1), the initial focus of our representation work has been on the
fundamental programming clichés which are shared between all different kinds of programming. We
estimate that on the order of several thousand plans (we now have only several hundred) are needed in order
to get reasonable coverage of this domain. In addition, we expect that the each of the more specific
programming domains, such as 170 handling, basic mathematical algorithms, etc. also contains on the order
of a thousand plans. Thus we feel that the construction of a comprehensive library is a formidable but not
impossible task. To demonstrate the feasibility of this task we propose to extend the current plan library into
at least one or two more areas of programming.

There are several kinds of knowledge illustrated in the scenario which require qualitative extensions to
the plan calculus and library. For example, the concepts of control flow and data flow embedded in the
current plan calculus give significant leverage in representing the fine-grain structure of programs. They are
less useful, however, for representing the organization of large systems of programs. In order to write plans
for systems, the plan calculus will be extended to include concepts such as interrupt-driven control structures
and data communication via a globally shared data base.

The scenario also illustrated knowledge about standard types of modifications, such as the addition or
deletion of a field from a record definition. One way of representing this knowledge is by specific procedures
for cach type of modification attached to the appropriate plans in the library. We would prefer, however, to
represent at least some of this modification knowledge more explicitly so that it can be explained and
reasoned about. One way to do this is to structure the plan library so that every modification can be expressed
as a change to one or more design decisions.

A similar category of knowledge is that of standard bugs associated with different types of plans. Some
bug detection can be performed by the general mechanism of detecting contradictions between different
design decisions and tracing them back through the dependencies in the TMS. However, a knowledge based
approach can often yicld a more explanatory (to the programmer) diagnosis of the bug. For example,
Shapiro [41] has identified some standard bugs associated with manipulating lists by side cffect and shown
how they can be represented as expert procedures.
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A very important kind of knowledge exhibited by the PA in the scenario is knowledge of program
efficiency considerations. For example, improved program efficiency is the underlying justification for
optimizations that the PA performs. The current plan calculus is oriented towards representing what a
program does, how it does it, and why it is correct; there is nothing to indicate why it does something one way
as opposed to another. Some work has been done by Kant [21] in this area. We propose to investigate how to
add this kind of information to the existing plan calculus and library. This knowledge will enable the
synthesis module described above to make better decisions automatically.

Plan Acquisition and Learning

Adding a new plan to the plan library currently means writing out its formal definition in the plan
calculus -- something we do not expect the average programmer to be able to do. We propose to explore two
ways of automating this process. .

A first tool which will make it practical for programmers to define new plans without having to know
the details of the plan calculus is an extension of the knowledge based editing system described in Section 2.
We envision allowing a programmer to define a new plan by starting with a well-formed program containing
the clich¢ he has in mind, pruning away the parts of the plan for the program which are irrelevant to the
clich¢, and indicating where the logical gaps (roles) occur. This new tool will use the analyzer module of the
knowledge based editing system to transform the initial program into the plan calculus, and use the plan
editor to do the pruning.

Later, Brotsky intends to investigate how the PA might automatically learn new plans from experience.
One idea is to look at programs which perform known functions with some parts which are unfamiliar.
Working up from the bottom, Brotksy’s analysis module described in Section 3 will be able to recognize those
parts of the program which are doing standard things in standard ways. Working down from the
specifications, it should also be possible to identify the portion of the overall function of the program which is
not accounted for by the recognized parts of the program. A learning module could then reasonably
hypothesize that the unrecognized part of the program is an instance of a new plan for implementing the
leftover portion of the specifications.

For example, consider how the PA might be taught a new way of deleting an association from an alist
(list of dotted pairs) in Lisp. The most abstract plan for implementing this operation in the current library has
two steps, roughly, "find it" and "remove it". The "find it" step can be implemented by a loop which
cnumerates the list (with a trailing pointer) and searches for a pair which has the given key as its cAR. The
standard plan in the library for implementing the remove step uses RPLACD to splice the found pair out of the
list. Suppose that we now want to teach the PA a new technique, useful in some circumstances, of using
RPLACA to change the key of the found pair to NIL, thereby causing the associated datum be ignored in all
subsequent retricval (assuming that NTL is not a valid key). We present the PA with the following program
which uses this new technique.

(DEFUN FUNNY-DELETE (KEY ALIST)
(PROG (L)
(SETQ L ALIST)
LP (COMD ((NULL L)(RETURN NIL))
((EQUAL (CAAR L) KEY)
(RPLACA (CAR L) NIL)
(RETURN ALIST)))
(SETQ L (CPR L))
(GO LP)))
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Brotsky’s analysis module will be able to recognize all but the underlined portion of the program as an
instance of the standard plan for finding a pair in an alist by enumeration and search. Being told that the
overall function implements deletion from an alist, a learning module could then hypothesize that the
underlined portion of the program is a new way to implement the missing "remove it" step. It might even be
practical, now that the focus of attention has been narrowed to this small part of the program, to try to prove
that the new plan is a correct implementation of the specifications of the removal step. Finally, the new plan
would nced to be abstracted somewhat from this example and installed at the appropriate place in the
taxonomy of the library.

This work on plan learning may have interesting implications for computer science education, such as
predicting an optimal order in which to teach various programming techniques.

Feasibility Demonstration of the Full Scenario

There are five new or improved facilities which have to be added to the knowledge based editor
demonstration described above in order to create a feasibility demonstration of the full PA scenario:
propagation of design decisions, bug detection, enhanced automatic modification, automatic optimization,
and flexible display. This section briefly describes the work to be done in each of these areas.

The first four facilities listed above can all be supported by a TMS integrated with the plan library and
the plan for the program being worked on. All plans, specifications, overlays, and constraints between them
are encoded as assertions and dependencies in the TMS. Design decisions made by the programmer are also
represented as assertions, with dependencies linking them to the rcasons why they were made and the
resulting changes in the plan. Further dependencies in the library specify the conditions under which a
particular decision choice is forced to be true. Given this structure, propagation of design decisions happens
as a consequence of the TMS’s operations to guarantee consistency in the data base.

Bug detection is implemented in a similar way. The TMS signals a contradiction whenever an assertion
is made which implies an incompatible truth value for an existing assertion. Starting from the new assertion
and the contradicted assertion, the TMS traces back through dependencies to the programmer-originated
assertions (such as design decisions) which underlic the contradiction. A bug report can then be generated
which focuses on the underlying problem rather than on the superficial manifestation of the bug. For
example, in the scenario the problem of duplicate commands in EDIT-USER-RECORD is traced to the
programmer’s addition of a new ficld name. Using this technique bugs can be detected much earlier than in
present programming practice.

Automatic modification and optimization will initially be achieved by including special procedures for
each kind of change. The TMS can support the operation of these procedures in several ways. For example,
the TMS can be used to reason hypothetically about the cffects of a modification before it is actually made.
Also, as mentioned above, if a modification can be characterized as a change in design choice, the TMS can
automatically propagate the conscquences of the change.

Finally, to obtain the kind of flexible display at different levels of detail illustrated in the scenario will
require some simple modifications to the existing coder module, as well as some additional annotation on
plans indicating what can be ignored under what circumstances. The basic technology of this improvement is

fairly straightforward; the interesting problem to be studied is just what kinds of abstraction are useful.
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A Well-Engincered Prototype

There are a number of important issues about the programmer’s apprentice which can only be
addressed through experimentation, such as: what library plans are most natural and convenient to use, what
is a good command language for the programmer to use, and to what extent should the PA take initiative in its
interactions with the programmer. To investigate these issues we propose to develop a prototype system what
can be used on a daily basis to construct and modify programs. This section describes some of the problems
to be solved in order to construct such a prototype.

To start with, the PA has to be fully integrated with the rest of our local programming environment.
The basis for this already exists because the PA can analyze and synthesize standard program text (in Lisp,
which is the language of choice in our local environment). However, much is yet to be done to make the PA
interact gracefully with our local file system, editor, debugger, compiler and interpreter. We propose to use
the Lisp Machine programming environment [16] as the host for the PA since, among other factors, all of the
Lisp Machinc systemn programs are themselves written in Lisp.

Thus far in our research no effort has been expended towards making the PA work with reasonable
speed. There are therefore many bottlenecks which need to be removed. For example, many of the existing
modules of the PA demonstration systems need to be made more incremental. Currently, the PA does a great
deal of unnecessary recomputation. By breaking up internal tasks into smaller units and making greater use
of dependencies, it should be possible to improve performance in this area.

A related issue is the PA’s use of space. The current demonstration systems represent all of the
knowledge in the plan library and all of the knowledge about particular programs solely in terms of the plan
representation. This is computationally very convenient, but takes up an unreasonable amount of space in
memory and in long term storage. A possible solution is to use a scheme wherein only the knowledge that is
currently being used is represented in full, while other parts of the knowledge base are represented more
compactly. The key to doing this is segmenting the knowledge and determining a small subset of the
information stored in a plan which can be used as the basis for rapidly recomputing the rest. Among other
things, program text is a very compact representation for some of the information in a plan. Using
annotations of the text to store additional critical information, we believe that in principle a compact plan
representation necd not be more than two or three times the size of the program text.

Finally, the modules developed for the feasibility demonstrations need to be made considerably more
robust to be suitable for routine use. Some of the modules, such as the one which converts program text into
a simple plan, have seen a good deal of use and are approaching reliability. Other modules nced to be
rewritten. For example, we now know that the algorithm used in the coder module is too simple-minded. In
order to reliably produce acsthetic program text, it needs to be replaced by an algorithm which explicitly
reasons about trade-offs between various readability criteria.
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