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Abstract:

This paper presents a bug understanding system, called gniffer, which applies inspection methods
ta penerate a deep understarding of a narrow class of errors. Sniffer is an interactive debugging aide.
fr can locate and identify crror-containing implementations of typial programming cliches, and it
can deseribe them using the terminology employed by expert programmers.

The denugging knowledge in Sniffer is organized as a collection of independent experts wiiich
undersiand specific errors. Each expert functions by applying a featurc recognition process to the test
piogram (the program under analysis), and to the events which took place during the execution of
that cede. No deductive mackinery is involved. "This recognition is supported by two systems, the
Jictie_Ander which identifies smalt portions of algorithms from a plan for the code. and the fime
rever which provides access 1o all program states which occurred during the test program’s execution.

i a typical scenario, Gic user interacts with Sniffer to identify a manageable subset of the test
pregram which seems fo contain an error. He then issues a complzint describing the expected
wehavior of that region of the code. The sniffer system then selecis and applics the relevant bug
expeiis, and produces a detailed report about any error which is discovered. This report includes a
high level summary of the error, an analyis of the intended function of the code in terms of its
compaonent parts, and a description of how the particular data values and control paths involved

di:2ing execution led to the manifestation of the error observed.
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1. Introduction

This thesis presents a system, called Sniffer, which decply understands some etrors in code.

Starting from a bug description supplied by the user, the system can trace an error to its source,
recognize the purpose for the code involved, and describe the problem at 2 level of detail appropriate
to an expert programmer. Sniffer identifics errors in programs regardless of their domain of
application, and it employs mechanisms which are language independent in form.

The design of Sniffer was motivated by the observation that debugging is currently an arcane
science which provides very little guidance for the task of identifying errors. The process of
recognizing bugs requires knowiedge from a varicty of sources, and typically involves a number of
different strategies for localizing errors. A partial list of these sources includes the program, its
intended purpose, the execution paths and data states involved in its execution (either inferred or
observed), a knowledge of the primitives of the programming language and of the language
interpretation process, and the mappings between the symptoms of bugs and their probable causes.

In the face of this diversity, Sniffer employs a generalized production rule forinat to represent its
knowledge about bugs. Each cxpert (or production) in the system contains all of the information
relevant for locating and identifying a specific error. This approach defincs an initial theory of bug
recosnition. Tt considers errors to be positive entities around which knowledge can be organized, as
opposed to representing them as differences from an established norm. This mechanism makes it
possiblie for individual bug experts to contain extensive knowledge about particular crrors., At the
same time, the production rule format constitutes a default theory of bug recognition; it is a simple
mechanism for localizing information which does not restrict the problem solvixig mcthods that can
be emploved. Tt is also a modular organization in that new bug experts can be introduced with
comparative ease.

The expert system methodology is particularly effective in the domain of debugging because it
cleanly coordinates the process of obtaining information from a number of independent sources of
knowledge. In a move elaborate theory, uniform methods (such as deduction) should be involved,
but perhaps as tools, as opposed to the guiding principles of the solution. At the cuirent level of
sophistication, Sniffer shows that an expert system is a ratural erganization for the task of
understanding errors.

Smiffer is also a demonstration of the power of inspection methods in program recognition and
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analysis. The system gencrates its understanding of errors by recognizing the pattern of events
associated with particular bugs. It identifies algorithms by matching them against programming
cliches, and it determines the circumstances surrounding errors by directly examining a history of the
execution of the code. 'This research shows that inspection techniques are a conceptually simple
alternative to the creation of deductive engines for discovering facts about code.

Sniffer is implemented in three major components; the sniffer system which contains all the
information relevant for recognizing specific bugs, the time rover which supports queries about a
program’s history, and the cliche finder, which identifies fragments of algorithms in programs that
arc used later as a basis for recognizing errors. (Sce figure 1).

The debugging knowledge in sniffer is organized as a collection of independent experts for
specific bugs. Each expert (or sniffer) can examine the user supplied complaint, the suspect picce of
code, and the exccution history of the program to determine if the bug it knows about is present, The
sniffers do not contain background knowledge about the particular program being examined. Their
expertise lies in the domain of programming, and concerns typical problems in the use or
implerientation of programming cliches. In the current version of Sniffer, each expert identifies a
narrowly defined error. The generality of the sniffers come from their ability to recognize
implementations of typical aigorithms independentiy of the way in which they arc coded. This ability
is derived from the cliche finder, which in turn is supported by a system, written by Waters [Waters
1978] that transformns programs into a regular and language independent representation called a
PLAN (see aiso [Rich and Shrobe 1976]). The expressive power of PLANSs are central to this thesis.

The cliche finder is constructed as a collection of procedures which recognize algorithms as
patterns in the PLAN language representation for programs. The object of the system is to raise the
level of discourse about a program. Rather than talk about car and cdr operations, the cliche finder
makes it possible to speak about aggregates the size of list enumerations or splice-in operations. The
cliche finder operates on the primitive structures of the PLAN language, which include an explicit
representation for the data and control flow within a program, and a taxonomy for the building
blocks of recursive and iterative routines.

The time rover monitors the execution of the test program (the program undergeing analysis)
and provides access to the information it records. It remembers both control information, and the
succession of values acquired by all data objects in the code. At cvery instance of a side-effect

operation, the system deposits a record which preserves that information. On every function call and
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function return it deposits an analogous record as well. The result is a complete picture of the
program’s staie as it evolves through time. The information in this trace is sufficient to rewind the
program to an eailier point, or to run it backwards if that is desired. In addition, the time rover can
evaluate an expression as if it occurred at an arbitrary moment during the test program’s execution.
Both the user, and the bug experts make use of this facility.

A general scenario for use of Sniffer is as follows: the user is sitting at a terminal, watching a
program run. At some point, he becomes aware that the output is incorrect, although the program is
still functioning. He stops the exccution and investigates the problem using the facilities of the time
rover. He might examine the order of function calls on the stack, the values of several parameters, or
events and data in procedures which were invoked and which successfully returned some time ago.
Bventually, the user finds a particular execution of a region of code which seems to contain a

problem. He then makes a complaint to the sniffer system, of the logical form
(get-expert-help expected-result time-t code-region)

The sniffer system analyzes the code for expected-result and for code-region to obtain a quick
understanding of the type of the error. It then invokes all the relevant bug sniffers.

A sniffer might look at a the flow of control through a specific execution of a nested conditional,
or compare the values in a list before and after a function was called, or ask the user for further
information. If the bug the sniffer knows about is present, it produces a detailed error report. This
report includes a high level summary of the crror, an analysis of the intended function of the code in
terms of its component parts, and a description of how the particular data values and control paths
involved during execution led to the manifzstation of the error observed,

Sniffer was implemented in Lisp on the MIT Lisp Machine. The Lisp Machine was chosen
because it has the high speed and large memory capacity required by Sniffer.  The programs
submitted to the system were also written in Lisp. This decision simplificd the implementation
considerations, although it restricted the sct of programs which could be analyzed. However, the

focus of the rescarch reniains in lunguage independent techniques.
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2. A scenario using Sniffer

This chapter contains a scenario produced by using Sniffer. However, in order to create a
scenario which shows bug detection, onc necds a test program that is spiked with errors. This
program has to be complex enough to illustrate subtle errors, but also simple cnough to avoid

becoming a distraction from the main part of the research.
2.1 The test program

The test program is a morphogenesis simulation, called prosper, which loosely models the growth
of a colony of bacteria. In prosper, the user provides an initial pattern of cclls and a collection of
production rules which govern their division. The simulation outputs a trace of the bacteria colony
through time.

The cells live on a rectilinear array called the grid. Each cell occupies one square of the grid and
may have up to four neighbors, correspending to the top, right, bottom and left positions of the array.
Fvery cell has three basic properties, a type, an age, and a division time (which is the next time at
which it is expected to divide). The productions cause cell division. They are local transformations
that apply to one cell in the context of its immediate neighbors. Productions can access any of the
properties of the adjacent cells. For example, a typical transformation (sce figure 2) might map a cell
of type "c¢" surrounded by "a" cells into two "c” units. In order to makc the necessary room, the
neighbors are pushed out of the way.

Prosper is implemented as a production rule system that operates on data kept in a priority
queue. This queue, called the events-queite, orders the cells according to their division time. The cell
with the next (or lowest) division-time has the highest priority. (See figure 3 for the top level code.)
The flow of control is as follows: the grid is initialized with some pattern of cells, and those cells are
assigned division times and placed on the events-queue. The central loop removes the first member
of the queue, and finds the set of productions which can affect cells of that type. One of these
candidates is sclected and applied. The transforms are responsible for requeucing any
second-generation cells which they produce. Prosper terminates when the events-queuce is empty.

The grid is implemented as a hash table keyed on the location of cells. (This allows incidental
conngctivity to be discovered, when separate formations grow together.) The transformations are

stored in a library, also in the form of a hash table keyed on the type of the celt affected, The
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m Fig. 2. Some sample transformations
b / b
b a |lb ¢arcinoma - b | C b
b b
b b
b b

Fig. 3. The code for prosper

(DEFUN PROSPER (EVENTS-QUEUE)
((LAMBDA (TRANSFORM-LIB GRID)
(PROG (MATCHES CELL DIV-TIME)
(GRID-INIT EVENTS-QUEUE GRID)
LP  (COND ((NULL EVENTS-QUEUE) (RETURN NIL)))
(DISPLAY-GRID GRID)
(SETQ CELL (TOP-CELL EVENTS-QUEUE))
(SETQ DIV-TIME (TOP-TIME EVENTS-QUEUE))
(SETQ EVENTS-QUEUE (REST EVENTS-QUEUE))
(SETQ MATCHES (FIND-TRANSFORMS CELL TRANSFORM-LIB))
(APPLY-TRANSFORMS MATCHES CELL GRID)
(GO LP)))
(CREATE-TRANSFORM-LIB) (CREATE-GRID)))

cvents-queuc is implemented as asorted list, with division-time used as the index.
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2.2 The scenario

The following scenario was produced with Sniffer. The dialogue starts after the program,

prosper. has been running for sorne time, and has started to generate incorrect output at the terminal.

~The problem is that the user expected a collection of productions to cause an explosive growth of

cancer cells (cells of type "c¢”), and nothing happened. (The productions are shown in figure 2.

Figure 4 shows the output of prosper.)

Fig. 4. The output of prosper

. | o
ARE ARE ACA
ACA = ACCA = AEA
AAA ARA AAA
s .
. | . , A
 [WINDOH-2 MINDOW-2 WINDOM-2

The user’s input is in lower case, and is preceded by a "<" prompt. System output is in upper

casc. [ have interspersed comments describing the user's thoughts throughout the scenario.

...........

"The user notices that the program is outputting bad data. and interrupts it to find the bug.

;Breakpoint BREAK; Resume to continue, Abort to quit.
(examine-histary)

Jocus-time = ~26402, [CDR TRANSFORM]®*

This indicates that the program was interrpted at time ~26402, which was at the end of the

exceution of the form (COR TRANSFORM). [ocus-time is a system maintained global variable,
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The user moves the focus of attention to the most recent point in time at which prosper was being
cxecuted.
< (move-to (past-when '(in prosper)))
Sfocus-time = ~26373, GRID®
This request locates a moment inimediately inside of prosper, as opposcd to a time within a function

that prosper calls.

< (print-frame)

Execution time: ~26373, GRID®*
Function: PROSPER
Executing at:
(NAMED-LAMBDA PROSPER (EVENTS-QUEUE)
((LAMBDA (TRANSFORM-LIB GRID)
(PROG (MATCHES CELL DIV-TIME)
(GRID-INIT EVENTS-QUEUE GRID)
LP (COND ((NULL EVENTS-QUEUE) (RETURN NIL)))
(DISPLAY-GRID GRID)
(SETQ CELL (TOP-CELL EVENTS~QUEUE))
(SETQ DIV-TIME (TOP-TIME EVENTS-QUEUE))
(SETQ EVENTS-QUEUE (REST EVENTS-QUEUE))
(SETQ MATCHES (FIND-TRANSFORMS CELL TRANSFORM-LIB))
(APPLY-TRANSFORMS MATCHES CELL GRID®*)
(GO LP)))
(CREATE-TRANSFORM-LIB) (CREATE-GRID)))

The function print-frame displays the context of the current execution time. Focus_time is at top
level during the execution of prosper, at the end of the evaluation of the atom, GRID. After this
moment, the flow of control enters apply-transforms, and eventually leads to the interrupted
exccution of (CDR TRANSFORMS).

Since the problem is that cancer cells are not dividing, the user checks to see if any are scheduled

for processing. He prints out the contents of the events-queue.

< (@ focus-time 'events-queue)
((24 A (-2 0) 2) (24 A (1 0) 2) (24 A (1 1) 2) (24 A (1 -1) 2) ...)

The function, @, causes a Lisp form to be evaluated in the context of the time supplied as its first
argument. The events-queue is a represented as an association list of division-times and cells. The
car of cach item is the division time, and the cdr represents a cell

The user prints out just the types of the cells which are in the queuc.
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< (@ focus-time '(mapcar 'cadr events-queue))
(AAAA...)

The cells near the top of the events-queue should be cancer cells and they are not. However, the
cell which is currently being processed has already been removed from the queue. The user examines

its value.

< (@ focus-time 'cell)
(A (0 -1) 2)

The user then finds the most recent time when a cancer cell was being processed. Its division

should have instigated explosive growth.

< (move-to (past-when '(just-became-true
‘(@ 7 '(eq (cell-type cell) 'c)))))
focus-time = ~00720, [TOP-CELL EVENTS-QUEUE]*

This expression returns the moment when the variable, CELL, became a cancer cell. The request
is implemented by scanning the cxccution history for the moment when the predicate,

(just-became-true ...) applies. The variable "?" accesses the scan-time.

< (print-frame)

Executieon time: ~00720, [TOP-CELL EVENTS-QUEUE]*
Function: PROSPER
Executing at:
(NAMED-LAMBDA PROSPER (EVENTS-QUEUE)
((LAMBDA {TRANSFORM-11B GRID)
(PROG (MATCHES CELL DIV-TIME)
(GRID-INIT EYENTS-QUEUE GRID)
LP (COND ((NULL EVENTS-QUECUE) (RETURN NIL)))
(DISPLAY-GRID GRID)
(SETQ CELL [TOP-CELL EVENTS-QUEUE]*)
(SETQ DIV-TIME (TOP-TIME EVENTS-QUEUEY))
(SETQ EVENTS-QUEUE (REST EVENTS-QUEUEY))
(SETQ MATCHES (FIND~TRANSFORMS CELL TRANSFORM-LIB))
(APPLY-TRANSFORMS MATCHES CELL GRID)
(GO LP)))
(CREATE-TRANSFORM-LIB) (CREATE-GRID)))

Exccution is at the end of (TOP-CELL EVENTS-QUEUE), just before the setq fiinction returned.

< (8 focus-time 'cell)
(C (0 0) 1)

This cell should have metastasized, and yet it did not. The next expression looks forwaid to a
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time when the transformations which could apply to CELL have been selected, and evaluates MATCHES

in that environment.

< (& (future-when ‘(eq (current-function ?) 'apply-transforms))
'matches) :
((OLD-AGED-CELL DIE) (CANCER-CELL-WITH-ONE-NEIGHBOR METASTASIZE))

MATCHES is a list of two transformations. Each transformation has two parts, a predicate which
determines whether the preduction can apply, and a function which implements the transformation
itself. The first candidate in MATCHES removes old-aged celis from the grid, the second

transformation causcs explosive growth. The user determines which one was selected.

< (@ focus-time '(old-aged-cell cell grid))
NIL

This expression reevaluates the predicate for the "die" transformation in the current
time-environment. The result is necessarily identical to the one returned by the original invocation of
that form in the test program. Since it is NIi, the metastasize function must have been selected
instead. The user moves forward in timc to a moment wlien top level code in "metastasize” is being

evaluated.

< {move-to (future-when '(in metastasize)))
focus-time = ~01751,

*[NAMED-LAMBDA METASTASIZE (RIGHT-CELL KEY-CELL) ...]
< (print-frame)

Execution time: ~01751,
*[NAMED-LAMBDA METASTASIZE (RIGHT-CELL KEY-CELL) ...]
Function: METASTASIZE
Executing at:
*NAMED~LAMBDA METASTASIZE (RIGHT-CELL KEY-CELL)
{(LAMDDA (HE4W-CELL LOGCATION)
{INCREMERT-DIVISION-COUNT KEY-CELL)
(MAKE-ROOM-BETWELN KEY~CELL RIGHT-CELL GRID)
(GRID-INSERT NIW-CELL LOCATION GRID)
(EVENTS-QUEUE-IMSERT NEW-CELL (+ DIV-TIME 2) EVENTS-QUEUE)
(EVENTS-QUEUE-INSERT KEY~CELL (+ DIV-TIME 2) EVENTS-QUEUE))
(CREATE-CANCER-CELL) (CELL-LOCATION RIGHT-CELL})]

The calls on cvents-queuc-insert should have placed the cancer cells, new-cell and key-cell, on

the events-queue with a high prionty division time. The user checks to sce if the events-queue was

rodified at any time during the execution of that procedure,
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< (move-to (future-when '(eq (current-function ?)
'events-queue-insert)))
focus-time = ~02672,
*[EVENTS-QUEUE-INSERT NEW-CELL (+ DIV-TIME 2) EVENTS-QUEUE]

< (unmodified* (@ focus~time 'events-queue)
(@ (end focus-time) 'events-queue))
T

In an environment where different versions of an object can be compaied across time, several
new types of equality become important. Unmodified* is the strongest test possible. (See the section
on cquality and coreference for a detailed discussion.) The expression (end focus-time) returns
the time corresponding to the end of the evaluation of the current function.

The results of the test confirms the user’s suspicions. The insert function was calied, but the data

never entercd the events-queue. This is a suitable point to ask the sniffer system for its opinion.

< (get-expert-help '(events-queue-member new-cell events-queue)
focus-time
(end focus-time))

The get-expert-help function invokes the sniffers. The first argument is a Lisp predicate that is
expected to apply (to be non-nil) after the exccution of the region of code specified by the last two
arguments has occurred. In this case, that region happens to enclose a single s-expression (the call on
events-queue-insert). The sniffers use the predicate as a partial specification for the code in the
region. They examine the code for the predicate, and the code inside the region, as well as the
control flow and data values involved during those scctions of exccution. The sniffer which

identified the bug produced the following report.
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Bug Summary

The bug 1is a case of violated expectations. The function METASTASIZE
called EVENTS-QUEUE-INSERT with the apparent intent of inserting
NEW-CELL into the EVENTS-QUEUE by side-effect. The insertion did not
occur because EVENTS-QUEUE-INSERT is an insertion function for sorted
1ists without header cells. It does not act by side-effect when the
item sorts to the beginning of the queue. It conses it onte the top
of the Tist instead.

Analysis

The function
(DEFUN EVENTS-QUEUE-INSERT (ITEM TIME EVQ)
(PROG (NEW OLD ENTRY)
(SETQ ENTRY {CONS TIME ITEM))
(COND ((OR (NULL EVQ) (BEFORE? ENTRY (CAR EVQ)))
(RETURN (CONS ENTRY EVGQ))))
(SETQ NEW (CDR EVQ))
(SETQ OLD EVQ)
LP (COND ((OR (NULL NEW) (BEFORE? ENTRY (CAR NEW)))
(RPLACD OLD (CONS ENTRY NEW))
(RETURN EVQ)))
(SETQ OLD NEW)
(SETQ MEW (CDR NEW)) T
(60 LP)))

is recognized as a non-~header-cell insertion function for sorted
Tists. In this execution, the item to be inserted was (12 C (-1 0) 1)
and the value of [VQ was

{((24 A (0 1) 2) (24 A (0 -1) 2) (24 A (-2 0) 2) (24 A (1 0) 2) ...)

The ordering test, (BEFORE? ENTRY (CAR EVQ)) sorted the item tou the
top of the 1ist, and therefore the spiice-in did not occur.
EVENTS-QUEUE-TINSERT returned (CONS ENTRY EVQ) which evaluated to

((12 C (-1 0) 1) (24 A (0 1) 2) (24 A (0 -1) 2) (24 A (-2 0) 2) ...)

The function
(DEFUN METASTASIZE (RICHT-CELL KEY-CELL)
((LAMBDA (NEW-CELL LOCATION)
(INCREMENT-DIVISION-COUNT KEY-CELL)
(MAKE-ROOM-BETWEEN KEY-CELL RIGHT-CELL GRID)
(GRID-INSERT MEW-CELL LOCATION GRID)
$[EVENTS-QUEUE-TINSERT MNEW-CELL (+ DIV-TIME 2) EVENTS-QUEUE]®
(EVENTS-QUEUE-INSERT KEY-CELL (+ DIV-TIME 2) EVENTS-QUEUE))
(CREATE-CANMCER-CELL) (CELL-LOCATION RIGHT-CELL)))

ignores the valuve returned by EVENTS-QUEUE-INSERT on the indicated
call, and consequently the resuits of the insertion were forgotten.

The mechanisms which support this analysis arc described in the following chapters
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3. The Time Rover

The purpose of the time roving facility is to allow the user, and the bug experts, to query the
execution history of the program undergoing analysis. The system was designed to support the style
of investigation displayed in the scenario. In order to do this, the time rover maintains a complete
trace of the events which occurred during execution, and allows arbitrary Lisp expressions to be
evaluated as if particular program states were in effect.

The best way to explain the issues invclved in time roving is to discuss its implementation. This
is not intended as an overture to the inclusion of excessive detail.  Since Sniffer was written to
demenstrate a point rather than as a system utility, it was implemented with a conceptually simple

design. Efficiency was not a conceri.

3.1 Terminelogy

The execuiion history of a program refers to the sum total of events which occurred while it was

running; the flow of control, the sequence of side effect operations, etc. The execution trace refers to
the physical structures which are used to represent that history.

Within an execution history there are various named times, or moments. Time can ordinarily be

thought of as an integer. It starts at 1 and increases monotonically as execution progresses. The
beginning and the end refer to the first and the last moments during the exccution of the user’s
program. Focus-time corresponds to a specific moment in the exccution trace. It is the focus of
attention within the history.

There is also a convention for naming dircctions. Farlier moments are closer to the beginning

and Juter moments are nearer the end. Figure 5 illustrates these idecas. A time-cnvironment is an

abstract object in which one can look up the bindings of variables and their properties, ctc., which are
in effect at a given time. For lack of a better method, all moments will be referred to in the present

fense.
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Fig. 5. Vocabulary for discussing time travel
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3.2 Implementation

The time rover is composed of two parts, called the keeper and the seer, both of which are
constructed as modified cvaluatoré for Lisp. The keeper is used (primarily) to generate a history for
the test program. It can be thought of as a careful evaluator which deposits records as it executes
forms. The scer listens to the uscr's debugging requests. It has the ability to investigate and compare
any of the states associated with the test program’s history.

[n the scenario, the keeper processed the original exccution of prosper, and all forms typed by
the user were handled by the scer. The special function, @, invoked a second usage of the keeper; it
causcd the keeper to cvaluate an expression in the context of a specified time. (In sorne sense, the
biggest distinction between the keeper and the scer is that the keeper can only think about one

moment at a time, while the scer knows about all times at one moment.)
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3.3 The keeper

The keeper hnplémcms a restricted version of Lisp, called K-lisp, which is diffcrent from normal
Lisp in two ways; it considers code to be an immutable object, and it uses the exccution trace as the
environment for containing K-lisp objects. This includes "hcap™ data and variable binding
information. The execution trace is a structure which totally orders control flow events, and
side-effects events (changes in the contents of memory cells) with time. Conceptually this
information is divided into two parts, the control flow history, and the incarnation series.

The control flow history records all calls and all returns from the evaluator. It is a
straightforward extension of the Lisp stack, where no information is forgotten. Every call moment
contains a link to the invocation time of its parent, and every refurn nioment contains a link to its
matching caller. (Sce figure 6.) This history contains more infonnation than is necessary to record
the control flow unambiguously (only the choices taken at branch points are strictly required), but it

was more convenient for my purposes to have the data in this form.

Fig. 6. A control flow history
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The incarnation series is a time ordered sequence for the values which each memory cell acquires
during the execution of the test program. This information is stored in terms of [name, binding]
pairs, called trace-cells. A trace-cell is an immutable object that records the contents of a cons (or the
value of an atom) at a particular time. The name component of a trace-cell is analogous to the
address of a cons in Lisp. It provides a handle on all of the versions of a given cell. The binding field
of a trace-cell contains a car-part and a cdr-part which represent the car and cdr of the corresponding
Lisp cons. Trace-cells are invisible to the programmer.

In the keeper, a value is a name. The data associated with a given name (id or cell-id) at a given
time is found by scanning the incarnation series for the most recent trace-cell with the appropriate id.
This search fulfills a role which is exactly analogous to looking up an address in normal Lisp. During
the evaluation of the test program, the current execution time is used as the starting point for
scanning the incarnation series. During debugging, that time is supplied by the seer.

The primitive operations of K-lisp are modified to accommodate trace-cells. The functions
which preduce side effects causc trace-cclls to be deposited, and the information obtaining
operations, car, ¢dr, and symeval are modificd to access these structures via search. (I will discuss the
new versions of eg and equal in a later section.) For example (sec figure 7), the function cons in the

statement
(cons 'a 'b)

produces the trace-ceil [cons-24, a.b], which indicates that the binding associated with the cell-id,
cons-24 represents the (traditional) cons of the atoms @ and b (The cons function is a side-effect
operation in the sense that it allocates storage where none was required before.) Trace-cells, like

conscs, contain the values of Lisp cbjects. The statement

(cons a b)

would produce a different trace ccll, who's car-part was the value of a and who’s cdrpart was the
value of b, The functions rplaca and #placd create similar trace-cells, except that the name ficld
contains the id of the cell which is being updated. The function setq in the statement

(setq h 3)

results in a trace-celt who's name is the atom, A, and who’s binding ficld has a car-part containing the

number 3. Only mutable objeets necd o have trace-cells to record the sequence of their values,
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Fig. 7. Some example trace-cells

name car-part  cdr-part

cons2Y a b

Numbers and similar constants can appear in the binding parts of trace-cells. but not in name ficlds.
The operations car, ¢dr, and symeval cach map a cell-id into another cell-id. The carofa cell-id is
the car-part of the corresponding trace-cell (the onc in effect at the current time). Similarly, the cdr
of a cell-id is the cdr-part of the associated trace-cell.  All of these functions involve an identical
scarch through the incarnation series. IFor example, the function symmeval takes in an id (which must
be an atom naine), scans the incarnation serics for the most recent trace-cell with that id in the name

ficld, and outputs the car-part of the trace-cell which is discovered.

3.3.1 An example of the evaluation process

Figure 8 shows a collection of snapshots of the incarnation series as the following statements are

executed.
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(setq y (cons 1 nil))
(seiq z (cons 2 y))
(rplaca (cdr z) 3)

The first event is the creation of the trace-cell for (cons 1 ni1). The name ficld is arbitrarily set
to cell-1, and the trace-cell is deposited at time 1. The setq operation deposits a trace-cell with the
name ficld y, and 2 binding field who’s car-part is the cell-id, cell-7. No pointers are involved.
Similarly, in the trace-cell which is deposited by (cons 2 y), the value of y is represented by cell-1
again. This process continues until (rplaca (cdr z) 3) is evaluated. In normal Lisp, this side-effect
would have changed the contents of an existing cell. In the keeper, a new trace-cell is deposited with
the same name ficld, cell-1.

In order to evaluate Lisp expressions, the keeper has to find the appropriate trace-cell every time
a cell-id is referenced (there may be many with the same name). For example, in figure 8, the value
of y at time-2 is found from trace-ccll #2 to be the cell-id, cell-1. To print out the value of y, the
binding of cell-1 at time-2 has to be printed. In this case, the contents of trace-cell # 1 are the correct
vesult. The list "(1)" is printed.

In order to evaluate the predicate (@ time-5 '(car y)) the keeper has to discover that y was
changed by an indirect side effect through z. This process is accomplished as follows. Starting from
time-5, the keeper looks for the most recent setq record for the atom y. The value of y turns out to be
the id, cell-1, which was discovered from the trace-cell deposited at time-2. Next, the keeper takes the
car of cell-1, in the context of time-S. It scans backwards from time-5, looking for the most recent
version of cell-1 and returns the car-part of the resulting trace-cell. Trace-cell #5 has the appropriate
name, and the number "3" is returned.

In order to print out the clements of a list in the context of a given time, the keeper has to
interpret cach of the cell-ids involved. For example, the value of z st both time-4 and time-5 is cell-2,
but the list it represents at time-4 is composed of trace-cells # 3 and #1 (the list "(2 1)™). At time-5,

z is built from trace-cells # 3 and # 5, corresponding to the list "(2 3)".
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Fig. 8. The development of the incarnation series during execution
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3.3.2 Eifeciency considerations

The time rover was implemented with a list like representation for its environment in order to
make the system easy to code. Once it was implemented, I discovered that it was slow, but not quite
so slow as expected. For simple requests, the keeper responded almost as quickly as the normal Lisp
interpreter. However, the time requirement for cach reference unfortunately increases with the size
of the execution trace. At the end of the scenario, the time rover required approximately half of a
second to locate each cell-id.

The searches involved in running the test program can be entirely climinated by introducing a
new data structure, called the now-array, to maintain the end time-environment. (This envirorment
is the one normally associated with a running program, it always holds the state of the latest moment
of execution.) This table would contain a mapping of cell-ids to their current bindings. In different
words, the now-array would be a shallow binding of cell-ids to carpart, cdr-part pairs from
trace-cells. Since cell-ids can be chosen fieely, thiey can be set up as indices into successive memory
locations of the now-array. This would essentially eliminate ail searches for celi-ids (at a factor of two
overhead in space).

The now-array would not speed up the execution of debugging requests. These requests
typically access a number of time-environments in rapid succession, which suggests that a search
paradigm is more reasonable than the alternative of updating the now-array to contain the
time-environment of focus-time, whenever focus-time changes.

A second improvement would be to move to a non-lincar representation for the execution trace.
Since the critical issue is to find celi-ids as fast as possible, a hashing scheme on cell names is a
possibility. T did not employ this approach because there was some subtlety involved in integrating it
with the need to represent alternate evaluation sequences (see below).

In any case, the memory requirement for the keeper grows with the duration of execution. At
some point, this will threaten to exceed the capacity of any machine, in which case it would be
possible to "forget” about certain portions of the exccution history. These regions would then
become opaque to the time rover. [o running the scenario, no memory capacity problems were

¢ncountered.
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3.4 The seer

The function of the seer is to provide the user with a uniform mechanism for operating on data
from the exccution trace, and for manipulating the objects defined in his own local debugging
environment. The seer is constructed as an evaluator for Lisp that is extended to contain
time-stamped objects, called #pairs, which refer to data from the incarnation series.

A t-pair contains two parts, a reference time and a cell-id where the reference time specifies the
time-environment to use for interpreting the cell name. Reference times are sticky, in the sense that
the car of a t-pair is another t-pair with the same rcference part. This approach allows the user to
change the perspective used to view an entire Lisp object by altering the reference time attached to its
topmost cell-id. A t-pair is represented here as a bracketed pair of the form {time id}.

The primitive operations of the seer are modified to accommodate this new data type. If a
primitive is calied on a normal Lisp object, then it is evaluated in the normal way (this might yicld a
t-pair). When a primitive is applied to a t-pair, it is evaluated with the aid of the corresponding
operation of the kecper. For example, from figure 8, symeval of {time-4 z} is the t-pair
{time-4 cell-2} where cell-2 was obtained by applying the keeper’s symeval function to z at time-4.

The function "@" (which invokes the keeper’s evaluator on a Lisp form) can dbe used to state the
effect of these primitives in a more concise forrn.

(symeval {t id}) => (@ t '(symeval id))

(car {t id}) => (@ t '(car id))
(cdr {t id}) => (@ t '(cdr id)})

@ returns a t-pair who’s reference time is the time supplied by its first argument.

3.4.1 Alternate time-tracks

It is not immediately clear how to interpret the application of a side effecting primitive to a
time-stamped object. The issuc is that a t-pair refers to an object from the history of the test program
which was never subjected to the side effect that the user is requesting. (Information obtaining
operations arc benign in this sense. They have no potential for altering the data in the trace.) If the
exceution trace is intended to record the actual history of the program, the question is how can side
effects created by the debugger be factored in?

There are many very confusing ways to reselve this auestion.  If the debugging session s
1 )
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considered to occur after the test program is executed then a side-cffect to a variable, say at time-10,
would actually occur at a moment which is later than any moment in the execution history. This
implies that a debugging request which accesses the supposedly side-cffected data at time-11 finds
that nothing has changed.

The approach I take is to interpret all debugging iequests that access the history of the code as
explorations into alternate time-tracks for the test program’s development. These debugging requests
are processed as if the test program executed them at the specified time. For example, in the context

of figure 8, the effect of the statement
(@ time-4 '(rplacd (cdr z) 1))

is to grow a branch off of the incarnation series at time-4 (forming an incarnation tree) and to deposit

a trace-cell for cell-1 at that time. The side effects created by the functions setq, cons, and rplaca are
handled in a similar way. (See figure9.)
This approach implies a small redefinition of the function "@". T have described @ as a utility for

invoking ihe evaluator of the keeper. To be more specific, @, in the statement
(R fime 'expression)

instructs the keeper to form a branch in the incarnation tree, and then hands the expression to the
keeper to be evaluated in the context of the tinc-environment dzfined by time. (The seer evaluates
the parameters to @.) @ returns a t-pair which packages together the cell-id returned by the keeper
and the time at which the keeper finishes its evaluation. A time can be interpreted as a pointer into
the incarnation tree, which bi-directionaily links tracc-cclls.

The seer can use the function @ to retricve information from the environment of the keeper, but
the keeper cannot access data defined in the seer. This occasionally causes some confusion. For
example, the following expressions (in the seer)

(setq D '(a b c))
(6@ time-2 '(setq y D))

will result in an error when the keeper atiempts to symeval D at time-2, assuming that D is not defined
in the context of the test program at that time. (The keeper does have limited access to the seer, in
that it can run functions which the user defines in the course of debugging. These functions, must be
runnable in K-lisp. They may not reference t-pairs.)

The definition of @ makes it possible te express the action of the scer’s primitives on t-pairs by
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Fig. 9. \n example of an alternate time-track
This figure shows the growth of a branch in the exccution history in response to the code statement

shown.
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the following rewriting rules.

(symeval {time id}) => (@ time '(symeval id))
(car {time id}) => (@ time '(car id))

(cdr {time 1id}) => (@ time '(cdr id))

(setq {time id} x) => (@ time '(setq id x))
(rplaca {time id} x) => (@ time '(rplaca id x))
(rplacd {time id} x) => (@ time '(rplacd id x))

The information obtaining operations create degenerate branches of the incarnation scries (the time
does not increase), and the side effecting operations augment the data in the trace.' Note that the
cons of two t-pairs within the seer is not implemented in terms of the keeper’s primitives. The

statement
(cons (@ time-4 'z)(@ time-2 'y))

simply creates a cons cell in the environment of the seer which contains the resulting t-pairs.

3.4.2 Equality and coreference

The concepts of equality and coreference have to be extended to fit an environment where many
versions of data cells are available simultaneously. In normal Lisp, there are only two ways to
comparce objects. One can ask if they are eg, meaning that they have the same name or address
(which is cquivalent to asking if they are coreferent), or if they are egual, meaning that they contain
isomorphic data structures.

In the seer, more distinctions are available. One can ask if two t-pairs refer to the same object in
the keeper (I call this test unmodified), or if iwo cell-ids are the same (eg). These questions arise when

objects arc compared across times. For example (sce figure 8),
(eq (@ time-2 'y) (@ time-5 'y))

is true. Here, the list contained in y is different at the two times although the top level cell-id which is

the value of y is cell-1 in both cases. (y contains (1) at time-2 and (3) at time-5.) The statement

1. This is not strictly true. Since the structures representing the control flow history are mierged into the exceution trace, the
time does change on every call to the keeper. However, for the purpose of the primitive eparations, it docs not change in any
interesting way.
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(unmodified (@ time-2 'y) (@ time-5 'y))

is false. This test shows that the value of y was changed between the two times.

When these predicates are extended to lists, one can ask if two lists contain the same cell-ids at
every level (called eg®), or if they involve the same trace-cells at every node (unmodified®).
Unmodified* is the coreference test in the time roving environment. Fg*is a weaker function. For

example, suppose that an identical copy of the variable y is created by executing the statement
(@ time~-4 '(rplaca (cdr z) 1))

(sce figure 9). This deposits a record for cell-7 in a side branch at time-6. In this case, the expression
(egq* (8 time-6 'z) (@ time-4 'z))

is true, but
(unnodified* (@ time-6 'z) (@ time-4 'z))

is false.
Note that two lists are not necessarily identical if their top level trace-cells are the same. There is

always the possibility that some internal cell has changed across the two times. From figure 9,
(unmcdified (@ time-5 'z) (@ time-4 'z))

is true (z evaluates to cell-2 in both cases), but
{unmodified* (@ time-5 ‘z) (8@ time-4 'z})

is false. (Cell-1 was updated between the two times.)

The function equal remains essentially unchanged in the context of the scer. It still tests for
isomorphism of structure. There is no requirement that the lists share the same trace-cells or even
that the same cell-ids are involved. The atoms at the Icaf nodes of the trec must be identical.

The relationship between these functions is sammarized in figure 10.
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Fig. 10. The heirarchy of equality tests

The cquality tests for lists represented in trace structures are stronger than the analogous tests on
cell-ids: eq* implics eq and unmodified* implies wunodified. The converse is not true. Unmodified*
implics eg*, becausc lists with the same trace-cells must contain the same cell-ids. g™ implies equal
because lists built with corresponding cell-ids must match at the level of atoms.
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3.5 A summary of the kecper and the seer

The keeper and the scer define a mechanism that allows the user to exccute and then examine the
history of a test program. The kecper creates the exccution history, and cvaluates any requests
submitted by the scer which access that data. The scer provides the uscr with a Lisp environment for
exccuting debugging requests. It answers questions about the exccution history by employing the
facilitics of the keeper. Figure 11 shows the relationship between these systems.

The overall environment which the system presents has the user's debugging requests occurring
in a kind of a supcr-time which is not ordered with respect to the execution history. From the user’s
perspective, all of the information in the trace is cqually accessible.

The use of alternate time tracks makes it possible to move to moments in the test program's past
and evaluate arbitrary Lisp expressions in those contexts. ‘The user can define functions, and exccute
them in any time-environment. or explore hypotheses about the test program’s behavior by
re-executing portions of the code on modified data. The alternate histories which these actions create

can themselves be investigated in the same manner.,
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Fig. 11. An overview of the time rover
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The functions of the keeper and the seer could conceivably be combined into a single evaluator
that would have an extra degree of freedom, namely time. In this system, called the time-probe, it
would be possible to write programs that routinely call procedures which will be defined in the future
to modify data which was current at some time in the distant past. The difference between the time
rover and this hypothetical system is that the time-probe can travel in its own history. Neither the
seer nor the keeper has this ability (and it is not clear that they require it).

The creation of the time-probe is left for future research.!
3.6 Methods for specifying times

The primitives for locating times are cast in the framework of search through the incarnation
series. There is a notion of the focus of attention, called the focus-time, which can be moved
throughout the execution history. The scarches for other moments move either forward or
backwards from that time.

Time is a data type recognized by the seer. There are two functions which yield times;
futurc-when and past-when. The syntax is '

(future-when form)
where form is an arbitrary predicate evaluated by the secr (it may contain calls on @ which invoke the
keeper). The function future-when scans forward in time from focus-time and returns the first
moment when form yields a non-nil (and non-error) result. Past-when performs the analogous
function for moving towards carlicr moments in the history.

The implementation for these functions is fairly intricate. It would be prohibitive to attempt to
apply form at every moment in the history which is scanned, so the search functions first compute the
reference set of cell-ids accessed by form, and then move aitention to the nearest moment when one
of those cell-ids has a different binding. At the resulting time, form is reevaluated and the reference
set computed once again. The process repeats until form returns a non-nil value (success), or until the
scarch passes beyond the boundaries of the incarnation serics (failure).

The scarch mechanism is also capable of detecting transitions in the values of form. For example,

1. The time-probe would have to deal with a few very serious problems, including the temporal fun-arg problem. This occurs
whei a function, defined in the pastis passed az an argument into a future when its definition is different. Or worse still, a
function defined i one time-track can be passed into 2o altersate branch in which it nover will, and never has existed at all.
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the expression from the scenario,

(move-to (past-when '(just-became-true
'(@ 7 '(eq (cell-type cell) 'c)))))

caused the form
(@ ? '"(eq (cell-type cell) 'c))

to be applied at the moment discovered by the scan, and the immediately preceding moment. The
function, just-became-true, identifics a particular kind of transition in the value of its form. Since
a scan can cause expressions to be applied in time-environments where they yield errors,
just-bacame-true looks for a transition from cither a nil or errcr result, to a non-nil value. The
implementation of sniffer contains a number of similar functions; error-to-true,
error-to-false, false-to-true, etc, as well as two  special  functions,
just-about-to-become-true and just-about-to-become-false which return the moment
immediately before a transition is going to occur. (All transitions are defined to start at earlier times
and finish at later ones. The transition functions are not sensitive to the direction of search.)

The scarch functions can also employ predicates which depend upon data in the control flow

history. For example, thic expression
(future-when '(during metastasize))

(not shown in the scenario) returns the ncxt time when exccution is within the definition of
metastasize. Since the records in the control flow history provide the code associated with cach call
and return from the evaluator, detecting during-ness is not very hard. The procedure ascends the
parent hierarchy of function calls to sce if it locates the expression which is the definition of
metastasize.

It turns out that the interaction between these kinds of requests and the search mechanism is
somewhat tricky. In order for the scarch functions to know when next to apply a form, each
predicate on control flow has to identify the borders of its current truth value. In some cases this is
casy; during knows that it ceases to apply at the endpoints of its span (whicl are trivially available
from the exccution trace). However, if during docs uot apply at the current moment, it has to find
the bordering times where it does. This partially subverts the purpose ol the scen mechanism, which
was altempting te find those moments to begin with, Some more sephisticated approach may be

calted for.
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4, The cliche finder

The cliche finder performs two functions within Sniffer; it recognizes small algorithms from the
test program in order to provide the bug experts with a context for identifying errors, and second, by
identifying algorithms, it raises the level of the vocabulary which the system can use to describe code.

For example, in order to identify the error described in the bug report (see page 18), the cliche
finder recognized that events-queue-insert implements a particular kind of list insertion (a
non-header-ceil insertion for sorted lists). It also identified cliches which were components of that
insertion, namely a splice-in operation, an ordering predicate test and a list enumneration, some of
which it referred to by name in the bug report.

The cliche finder is composed of a collection of algorithm detectors which operate on an
alternate representation for programs, called a PLAN. PLANs /developed by Waters, Rich and
Shrobe [Waters 1978] [Rich and Shrobe 1976]) are a powerful tool for supporting program
recognition because they are a language independent notation, and they represent small algorithms in
an essentially canonic form. The generality of the cliche finders depends upon these properties of

PLANS.

4.1 An overview of PLANs

PLANs identify several critical constraints on the rcpresentations of algorithms. (See
[Waters 1978] for a detailed discussion.) I summarize the main points below.

PILANs ignore the way in which control and data flow is implemented. For example, it makes no
difference if the control structure for a program usecs conditionals or goto statements, both map into
the same PLAN. Similarly, all the possible mcthods of using variables to hold partial results or
propagate values are judged equivalent. PLANS are based on data flow; they extract only the
essential interconnections between operations that produce and consume data in code.

PLANSs associate related segments of code which may have been widely separated in the original
text. A PLAN is a compound chject composed of data flow related segments. The fact that one picee
of code outputs data which another consumes is a simple pioof that both are working towards some
unified goal. The conseguence of this organization is that feature detection in PILAN space involves

far less search than it would reguire in the original text for the code,
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The PLAN representation is partitioned into fragments which have stereotyped behaviors. This
allows complex programs to be undeistood in terins of simple purposeful parts. For example,
iterative and recursive routines are represented by a single PLAN structure (a PLAN Building
Method, or PBM in Waters’ terminology) called a temporal composition which can contain five types
of components; initializations, generators, filters, accumulators and terminators. (The output of his
analysis system labels the segments which fulfill each of the five roles.) An initialization is a segment
that is executed once before a loop is entered. A generator produces a sequence of values that are
used in later calculations (a list enumerator is an example of a generator). Filters restrict the
sequence of values which are available beyond their location in the code. Accumulators perform
calculations, they remember results  Terminators are like filters in that they restrict sequences of
values, however, they may also stop the execution of a loop. The remaining plan building methods
categorize the program actions in straight line code. Taken together, the PBMs provide a complete
parse of a program into these purposeful parts. (The mechanisms which perform this analysis are too
lengthy to describe here. Sce [Waters 1978] for a full explanation.)

The result of features described above is that many textual representations for the same
algorithm are mapped into identical (or ncarly identical) PLANs. For example, if the function,
events-queue~-insert, is implemented using either of the expressions in figure 12, it analyzes into
the exact same PLAMN. This is true even though the forms involve different control structures,

different variable names, and distinct Lisp primitives.

4.2 An example of cliche recognition

The algorithm recognizers identify procedures by matching their PLANSs against known cliches.
This match must be essentially exact. (The cliche finders can tolerate variations at the level of
ignoring extrancous detail.) For algorithms of complexity of events-queue-insert this approach
has been successful. The recognition of larger programs will require more sophisticated methods. (I
discuss some alternative approaches in the section entitled extensions.)

The following three figures present the PLAN for events-queue-insert in its entirety. These
diagrams explicitly represent a considerable amount of information which is hidden in code, and they
contain some special notation as well. However, most of the detail can be safely ignored. The figures

are presented in order to motivate specific examples which draw on portions of the PLANS.
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Fig. 12, List insertion programs which map into the same PLAN
[a]-

(DEFUN IRSERT (DATUM KEY QUEUE)
(LET ((OBJECT (CONS KEY DATUM)))

Section4.2.1

(COND ((OR (NULL QUEUE) (BEFORE? OBJECT (CAR QUEUE)))

(CONS OBJECT QUEUE))
((DO ((NQ (CDR QUEUE) (CDR NQ))
(0Q QUEUE NQ))

((OR (NULL NQ) (BEFORE? OBJECT (CAR NQ)))

(RPLACD 0Q (CONS OBJECT NOM)I))
-[b]-
(DEFUN EVENYS-QUEUE-INSERT (ITEM TIME EVQ)

(PRCG (NEW OLD ENTRY)
(SETQ ENTRY (CONS TIME ITEM))

(COND ((OR (NULL EVQ) (BEFORE? ENTRY (CAR EVQ)))

(RETURN (CONS ENTRY EVQ))))
(SETQ NEW (CDR EVQ))
(SETQ OLD EVQ)

LP  (COND ((OR (NULL NEW) (BEFORE? ENTRY (CAR NEW)))

(RPLACD OLD (CONS ENTRY NEW))
(RETURN EVQ)))

(SETQ OLD NEW)

(SETQ NEW (CDR NEW))

(GO LP)))

4.2.1 Notation

PLAN diagrams contain threc kinds of entities; bexes, solid lines and

dashed lines. Boxes

represent actions which may be cither primitive or compound. A primitive actien corresponds to a

biack box in the code, such as a cons statcment in Lisp. There are cleven typcsf

of compound actions,

these include conjunctions, predicates, and conditionals for representing straigh:; line code, and filters,
{

accumulations and terminations for representing looping behavior, Dashed 1§nes represent control

flow, solid lines represent data flow. For example, the diagram of figure 13 répresents the top level

PI.AN for events-queve-insert as the PBM exclusive or, where the predicate

(or (null evg) (before? entry {(car evg)))

determines whether the function returns through a cons, or enters the expi

ession containing the
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- Fig. 13. The top level PLAN for events-quecuc-insert
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£ Fig. 14. The predicate for testing list elements
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Iig. 15. The PLAN for inserting an element in a list
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body of the loop. (Sce figure 12b for the code for events-queue-insert.) There is data flow from the

inputs item and time to the cons function
(cons time item)

which produces the data value entry that is tested by the predicate above. The diagram contains
branched control flow to show that there are iwo possible outcomcs of the test. The box at the
bottom labeled join preserves the one-in one-out property of compound actions.

Fach compound action has certain allowable componeats, calied roles. There is a grammar
(which T will not present here) that restricts the elements which can fulfill a given role, and also
determines the number and the types of roles permitted in compound actions. In the figures, the role

a component fulfills is printed on its upper left-hand corner.

4.2.2 The PLAN for events-queue-insert

The PLAN fer events-queuve-insert is broken up into a conditional that determines whether the
loop is to be entered (figure 13), a compound predicate which represents an ordering test (figure 14)
and a PLLAN for the loop which contains the splice-in portion of the inscrtion (figure 15).

The most interesting part of the PT.AN is figure 15. This loop is decomposed into a generalor,
which enumerates the elements of the events-queue (evq in the diagram), and a terminator which
controls the execution of the loop body.

The generator represents the code segment

(defun events-queue-insert (item time evq)
{prog (naw old entry)

.

(satq new (cdr_evg))
{setg old eva)

ip ...
(setq old new)
{setg _new {cdr new))

(go 1p)))

Generators are composed of an optional initialization and a body which is the portion that is executed
many times. The body can contain an operation, a recursion and a join, which 1 explain below.
The sole input to the generator is the variable named evqg. This data passes through the

faiiialization
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(cdr evq)

which outputs the data (labeled new). The body of the gencrator receives two inputs, new and old,
where old starts as the unmodified events-queue. The operation of the generator body is the function

cdr, from the code
(cdr new)

above. At each successive iteration, this operation causes new to become successive sublists of the
events-queue. The data values new and old become the output of the generator, cmerging from the
data jein box in the diagram. The join indicates that the output can come from one of two places; it
can be the input to the generator body (in case the generator terminates), shown by the data lines that
pass straight through the diagram, or it can come from the box labeled "R" which stands for a
recursive instance of the enumerator. The cross over of data, where new becomes old at the next
iteration, can be seen from the change of labels on the data flow lines at the input ports of the R
segment.

The terminator for the loop is conceptually exccuted in parallel with the generator. At each
iteration, the predicate compares enfry with the value of new that is obtained from the top of the body
portion of the generator segment. If the predicate returns through its right hand branch, control

passes out of the terminator segment, and iteration of the generator body is stopped as well.

4.2.3 Feature recognition in cliches

The algorithm recognizer for events-queue-insert is constructed as a hierarchy of procedures
which identify cach of the segments in the PLLAN. This cliche finder operates via an exact match
paradigm; essentially all of the structurcs present in the diagrams are required for a non-header-cell
insertion to be found. The clements of the inscrtion that were referred to in the bug report (see page
18) were identified by a featurc extraction process that was appliced after events-queue-insert had
been identified as a whole.

For example, the input to events-queue-insert containing the quecue is identified as the
souice of the data flow line that enters the generator portion of the loop in figure 15. The name of
the program variable associated with this input (evq in this case) is obtained from an annotation in

the PLAN. (Waters™ analysis system provides the code associated with PLAN segments whenever
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possible.)

The item to he inserted is identified from figure 13 as the first input to the cons function
fulfilling the action role of the PLAN. By tracing this data flow line to its source, the entry can be
identified as the output of the cons function of the initialization. (If the entry had been one of the
inputs of events-queue-insert, there would not have been an initialization. The source of the
data flow line would have been a lambda input in the PLAN.)

The generator in figure 15 exactly corresponds to the PLLAN for the trailing pointer enumeration
cliche. This cliche is a list enumeration that returns pointers to two successive subsets of a list. It
requires cdr operations in both the initialization and operation roies of the generator, and it demands
that the data flow line which is the second input of the generator body be the input to the
initialization segment as well. These restrictions ensure that successive elements of the list are
returned no matter how many times the body is executed.

Events-quaue-insert also contains a splice-in operation which is trivially recognized in figure
15. The PLAN fer a splice-in is shown in figure 16. (It does not correspond to a simple piece of
code.) This operation is composed of a cons, a cdr and a rplacd fanction, where the cons creates
an augmented list, and the rplacd attaches it to the end of the immediately preceding portion of the
fist. The PLAN representation for this algorithm requires that the second input to the cons, and the
first input to the rplacd function start as a single data path. This path must be split by a cdr
operation just prior to the cons and rplacd statements involved. In figure 15, the cons and rplacd
operations are evident, while the role of the cdr function is fulfilled by the cdr in the initialization

and the cdr in the body of the trailing pointer enumeration.

4.3 Extensions

The generality of the cliche finders could be extended by employing more powerful recognition
techniques. The existing version of the sysiem can use an exact match paradigm only becausc it deals
with algorithins that are simpie enough to be represented by a-single canonical PLAN. As the size of
the algorithm increases, the variability associated with its different implementations begins to show
up in the PLAN, and the exact match paradigm eventually fails. For the recognition tasks involved in
the scenario, this approach has been successful. However, it has not been theroughly tested. The

cliche finder currently conisins two algorithin recognizers; once for the membership test and one for
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Fig. 16. The PLAN for the splice-in operation
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the non-header-cell inscrtion function used in the scenario.

My original intention was to write the algorithm recognizers as a composition of feature detectors
for smaller cliches. ‘I'he hope was that ﬁhis more hierarchical design could be scaled up to identify
larger functions.  However, the logical analysis underlying PLLANs actually docs a poor job of
localizing some cliches. For example, the splice-in function in figure 15 is spread across 4 different
segment boundarics. The result was that a considerable amount of scarch was involved in finding
such cliches. (T'his problem was the motivation for extracting features from events-queue-insert
after the program ;vzls recognized as a whole. [t turned out to be easier to identify the more complex
entity first, and then pull out the meaningful sub-cliches.)

The process of recognizing an algorithm from its parts also has the problem that the interface
between the sub-cliches in a PLAN can be complex. For example, the trailing pointer ecnumeration
and the splice-in operation within events-queue-insert share substructure. In order o correlate
these overlapping parts, more sophisticated data representations have to be involved.  Rich [Rich

1960] develops a tool called overfays in his thests which address this issue.
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A generalized pattern matching facility for performing PLAN recognition would be the method
of choice for identifying cliches. The creation of such a facility is a very difficult task, and it involves
both computational and representational issues that are unsolved. It is well beyond the scope of the

cliche finder as I envisioned it. Brotsky [to appear] is working on this topic for his Master’s degree.
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5. The sniffer system

The sniffer system provides a mechanism for representing knowledge about errors in code. It is

organized as a collection of independent experts (called sniffers) which localize the information

required to identify specific bugs. Each expert can use the facilities of both the time rover and the
cliche finder to recognize its particular crror. For example, the cons bug sniffer (which produced the
bug report in the scenario) used the cliche finder to determine that events-queue-insert was a
non-header-cell insertion, and it cmployed the time rover to identify the control paths taken during
that function’s evaluation. In addition, the cors bug snitfer found the values for data objects by
causing the time rover to reexectite portions of the test program’s code.

The sniffer system currently uses a simple control structure to chose the experts relevant to
particular problems. It runs all of its sniffers all of the time, and each expert is designed to fail
quickly when it does not apply to the task at hand. In the current version of Sniffer, there is exactly
one expert (the one used in the scenario), although a number of extensions are planned. (See the
section on futnre work for a discussion.) When the experts begin to share information, a more

complex control strategy will be required.

5.1 A geueric bug detector

Fach expert in the sniffer system coatains three basic parts; a collection of triggers which
determine if the expert is relevant, a body, which reccgnizes an error, and a template report that
produces output which describes the bug.

The triggers are filter functions which determine if a given cxpert should be tried. If they
succeed, the body of the expert is exccuted, and if the body succeeds, the template output is
displayed. Triggers are computationally inexpensive tests that fail if some cssential feature is not
present. For example, the trigger for the sniffer used in the scenario was the cliche finder responsible
for identifying events-queue-insert. (Other cheaper triggers could also be cmployed. For
example, the presence of keywords such as "member” or "insert” inside of function names within the
user’s code could cause specific bug experts to be applied.)

The body of an expert containg tests which recognize a particular error. These tests are not

restricted in any way; the bedy can use both the time rover and the cliche finder to detect the critical



A generic bug detector 48 - Section 5.1

features which "implement” a given bug. For example, the body of the saiffer used in the scenario
examined the control flow in events-queue-insert, the PLAN for that function and specific
values of the events-queus. It also examined the PLAN and execution sequence in the caller of
events-queue-insert, which was the function metastasize. Once the bug has been recognized,
the body determines some additional context elements (such as the text for the programs involved, as
opposed to their PLANS) and sends the results to the template report.

The template report mechanism produces the most comprehensive description of the bug which
the sniffers can provide. Each template contains two scctions; a summary of the error, and an
analysis of the events surrounding the specific occurrence of the bug. The summary is a picce of
canned text that uses a vocabulary which is justified by the ¢cxaminations the experts perform. All the
cliches it mentions are recognized by the sniffer body in the process of identifying the error. The
analysis section explains how the test program acted on specific data values to preduce the
manifestation of the error observed. It provides the input anhd output values of procedures, and
displays interesting intermediate resulis that weie internal to specific cliches.

The sniffer system employs template reports in order to avoid the nced for natural language
generation facilities. Fach teraplate contains canned text interspersed with slots that are filled with
data provided by the sniffers. In the output shown in the scenario (see page 18), the lower case
tnformation was produced by the template, and the data in upper case were the parameters which

filled in the holcs.

5.2 The Cons Bug Sniffer

In the scenario, the sniffer systern was invoked by the expression

(get_expert_help '(events-queue-member events-queue new-cell)
{focus-time)
(end focus-time))
where the region enclosed by the two times cncompassed a single exccution of
events-queue-insert. (The function get-expert-help runs ali the bug experts, taking the
union of their results.) The sniffer which produced the output showrn on page 18 was called the cons
bug snifier for sorted Iists.

The eritical actions of the cons bug sniffer are summarized in figure 17, The trigger of the expert
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was the cliche finder for identifying a non-header-ccll insertion. It was applicd to the PLLAN for
events-queue-insert. When this ran successfully, the sniffer body extracted the following
features from that PLAN; the ordering predicate test,' the header-cell-insertion (which corresponds
to the PLAN in figure 15), the splice-in operation, the cons function which was evaluated on exit
from events-queue-insert, and the variables or code fragments which identified the item to be
inserted and the queue. These features were identified by simple operation on PLLANs. For example,
the cons return fills an action role of the exclusive-or shown in figure 13. (See the discussion in the

section on feature recognition in cliches.)

Fig. 17. The Cons Bug sniffer.

The cons bug sniffer is invoked with a user-supplicd predicate describing the error, and a region of
the test program’s execution which specifies a particularpiece of code. The following tests define the
preserice of the cons bug.

Triggers

* The PLAN for region must cxactly match the PLAN for a
non-header-cell-insertion

Body

* The header-cell-insertion, and tac splice-in poition of region must
not be exccuted between the two times.

* The ordering predicate test was exceuted,

* The insertion function returned by consing the item to be inserted
onto the list.

* The value returned by the insertion function was not used (in the
environment of its caller) to side-cffect the list,

L The ordering predicate was identified by the presence of an ordering test of the form (<a by or O a b). The enclosing usage
of that predicate was ignored. e.g., (O ab), and (not (< a b)), cte., were judged cquivalent.
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With these features in hand, the cons bug sniffer proceeded to identify the critical events
associated with its bug. These tests were principally involved with determining the control path
actually taken through the events-queue-insert. First, the sniffer determined that the
header-cell-insertion in the PILAN was not exccuted. This was accomplished by finding the code
attached to the PLAN for that cliche, and submitting a request to the time rover (which was expected

to fail) of the form

(future-when '(during code) focus-time (end focus-time))

This expression translates to the statement, "was this code executed between these two times”. (The
last two arguments arc optional parameters which identify a region of the execution trace to
examine.) In the case of the non-header-cell-insertion, therc was no single picce of code associated
with the entire cliche. The search was conducted for a picce of code attached to an internal segment
of the PLAN which had to have been executed if the insertion occurred. The cons bug sniffer
performed similar tests to establish that the ordering predicate was executed and that exccution led to
the cons return described above.

The final criteria for the cons bug requires that the list returned by the insertion function cannot
be used to side cffect the queue. This can be cstablished in several ways. The most direct method is
to use the time rover to examine the qucue for side-effects. The cons bug sniffer accomplishes this

by running the expression

(unmodified* (@ focus-time events-queue)
(&€ (end focus-time) events-queue))

if the predicate returns true, then the list held by the variable events-quaue was not side-cffected
between the two times.

In the example of the cons bug shown in the scenario, the sniffer discovers the same fact (in a
more informative way) by examining the PLLAN for the function metastasize. This PLAN shows
that there is no data flow coming from the return value of the insertion function. This can be seen in

the body of metastasize (scc page 18) by the fact that the code fragment

(events-queue-insert new-cell (+ div-time 2) events-gquaue)
(events-queue-insert key-cell (+ div-time 2) events-gueue)

cansists of two independent s-expressions. When the cons bug sniffer detected this information, it
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produced the bug report statement

the function (defun metastasize ...) ignores the value returned by
events-queue-insert.

Once the cons bug sniffer established that the bug was present, it determined a number of
specific data values to be used as context in the bug report. This information included the code for
events-queue-insert and metastasize (obtained from an annotation on the top level segments
in their PLANS), the value of the variable containing the events-queue within the insertion routine,
and the value returned by events-queve-insert. Each of these data values was obtained by using
the time rover to recxecute portions of the code.! For example, the value returned by
events-queue-insert was duplicated by the request

(@ (future-when '(during '(cons entry evg)) focus-time)
'(cons entry eva))

This expression searches forward from focus-time to the moment when (cons entry evq) was
being evaluated, and exccutes that same expression in an aliernate time track branching off from that
moment. The results are necessarily cquivalent.

The predicatc, (events-queue-member events-queue new-cel1), which the user supplied to
describe the bug, was not employed as a specification for the error. It was used only to provide
contextual information for the bug report. (Specifically, if the PLAN for the predicate included a
membership test, it was used to extiact the variable name for the object which the membershipv test
scarched for. The user presumably wanted that object to be stored in the queue. This was the
variable new-ce11 in the scenario.) In this particular case, a problem descriptioi was not required
because the cons bug is essentially a violation of rational form in the domain of programming. It is
rare to invoke any function for its side-effects when it does not always preduce them, but in the case
of a routine known to be a list insertion, the expectations associated with its use are much stronger.

There is an issue here relating to the bicadth of knowledge in the bug experts. When the sniffers
are attempting to recognize the code associated with an error, they know precisely what they are

looking for. In this environment, an exact match paradigm is a reasonable method to employ.

1. The exccution trace contains the values returned by all expressions evecuted by the tost program., but they are not
necessarily easy to identify as return values. The time rover records all side-effect events, but a given function can return any
cell-id in the trace.
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However, there are no constraints on the expression which the user types in to describe the bug. It
could be a specific and useful definition of the error, or it might revolve on a fact in the application
domain for the test program which would make little sense to the bug experts. This points out that
the analysis applied to the user’s predicate neceds to be flexible. If the predicate cannot be totally
recognized, then it can be parsed for features which could be used to select relevant bug experts.
Alternatively, if the sniffer system grows considerably larger, the user’s predicate could function as a

source of hints for the direction which further analysis should pursue.
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6. Future work

The top level goal of this research was to develop a system that understands (some) bugs. Sniffer
has accomplished a portion of this task by demonstrating a deep understanding of one bug with what
appears to be a general mechanism. The next step of the project involves proving that generality, and
testing the power of Sniffer’s expert system approach. To do this, I intend to expand the sniffer
system by implementing a number of additional bug experts. These experts will cover a range of bug
types, some related to the cons bug, and some concerned with more abstract programming cliches.

For examiple, a list data abstraction can contain a number of bugs which involve violated
expectations about the maintenance of objects. If the Jookup function helieves there is a header cell,
but the insert function docs not, then any data item at the beginning of the list becomes invisible with
respect to the lookup operation. 1If the insertion algorithm implements a bag which can contain
multiple copies of an item, but the delefe function removes them all, the user will perceive that
inserted data spontancously disappears, There are 1« number of similar errors of this type.

Another class of bugs detectors would deal with the interactions involving shared data. These
bugs are particularly confusing to programmers (as they involve dynamic list structure and subtle
interactions in code) but are idcal candidates for Sniffer because of the facilities provided by the time
rover. A typical symptom of unexpected sharing is the unexplained appearance or destruction of
data objects. A problem that comes from the absence of shared data is that expected side effects do
not occur. Alternatively, items which arc expected to be eq arc not judged to be equivalent.

I suspect that there is also a set of bugs involving violations of rational form in the programming
domain. These bugs could be catalogued by examining the expectations associated with specific
programming cliches. The cons bug in the scenario is an example. Except for bizarre situations, any
time a list insertion returns without side-effecting its input, something is likely to be wrong. (This is
especially true when the user decides to complain about it.) In the case of a queue and process cliche
(this corresponds to the control structure of prosper), it is reasonabic to expect that the results of
processing an item are inserted back into the queue. The bug in the scenario also relates to this
cliche.

The power of the bug recognizers can also be demonstrated by expanding the amount of bug
focalization cach sniffer performs, Fer example, the sniffer system could have been invoked at an

carlicr point in the scenario, when the bug had only been traced to the function metastasize. The
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cons bug suiffer would then identify the presence of an insertion within metastasize and proceed
to recognize the bug from there. There is also no reason why a sniffer cannot localize a bug to section
of code and a region of execution that are completely different from the ones which the user initially
provides. The support routines are present, what it requires is a more flexible method for directing a
given sniffer. Each bug detector could presumably function by extracting hints from the user’s error
description, or directly from the user if that input was required.

Once a number of bug detectors have been written, T expect the research to proceed in the
direction of formalizing the knowledge which was gained. At that point, it would become
appropriate to rewrite the sniffer system to involve sharing of information between experts, a
taxonomy of bugs, and perhaps a hierarchical understanding of cliches. Some of these developments
rely on more powerful recognition techniques which are not yet available, although they are being
developed at this time. (See [Brotsky, to appear].) One potential outcome of this research is an
understanding of the constraints involved in the problem of error recognition, which is a step towards

a theory of understanding bugs.
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7. Related work

To my knowledge, no previous work has had the primary goal of generating a deep
understanding of bugs in programs. The most closely related efforts are Hacker [Sussman 1973] and

Ruth’s thesis entitled "The analysis of algorithm implementations™ [Ruth 1973]. (Sec [Lukey 1978]

for a survey article describing work in this general field.)

Hacker is a system that designs and modifies programs to solve problems in the blocks-world
domain. It employs an iterative approach. The system proposes a possibly buggy solution for a
problem, runs the code, and analyzes any error which is produced. Hacker then applies a method for
modifying the code that is belicved to correct the error of the type discovered. If the new solution
does not work, the process is repeated.

Hacker is primarily an cffort in learning and automatic programming, as opposed to a thesis

about debugging. (This is emphasized by Hacker’s complete name, "A_Compuiational Model of Skill

Acquisition™.) One of the system’s major developments is that it explicitly represents knowledge
about coding. There is no doubt that Hacker demonstrates a deep understanding of the programs it
writes. It can notice when a program violates ong of the subgoals of a blocks-world task, and it can
use the information associated with this crror to generate a complex program that avoids the bug.
However, the process of bug classification is the least well-defined portion of the system.

Hacker gains a considerable amount of its leverage from the use of a toy domain which allows
only a limited set of well understood operations. For cxample, cach of the primitive blocks-world
functions has a known purpose, which can be cited in the process of analyzing errors. The bugs
which Hacker recognizes also involve constraints in this domain, For example, one of the errors
discussed in Sussman’s thesis involves two sub-goal problems which exsctly undo one another’s
effects in the act of building a tower.

Sniffer applies similar dornain constraints to generate its understanding of errors. In Sniffer’s
case however. the expertise lies in the domain of programming, and concerns the implementations
and use of programming cliches. As a result of this approach, the system can recognize bugs in
arbitrary programs, regardless of the tasks they perform.

Greg Rutli’s dissertation describes a system that can recognize implementations for algorithms of
a given class, and can also iccognize buggy versions of those procedures. The system is based on a

grammar which defines a class of programs. It inputs 2 grammar, and a function which it then
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attempts to parse using that grammar. If it succeeds, the code is recognized as a member of the set of
correct programs. Ruth extends the number of programs which can be identificd by applying a
collection of behavior preserving transformations to the code being analyzed. If the transformed
function can be parsed by the grammar, it is also recognized as correct. Much of the system’s
knowledge concerns these rewriting rules.

In a similar way, Ruth’s analyzer can identify crrors. It does this by applying corrective
transformations to the input code and then attempting to recognize the resulting routine. If the new
function is within the set defined by the graminar, the error is analyzed as the inverse of the
corrective transformation which was applied.

The kinds of bugs which Ruth’s system can discover have a very syntactic feel. It treats programs
as textual objects, without any detailed representation for their composition or the purpose of their
parts. Sniffer, on the other hand, generates its power from an in depth analysis of the building blocks
involved. The two programs also take fundamentally different approaches to the task of recognizing
errors. Ruth’s thesis diagnoses bugs as deviations from a predefined norm, whereas Sniffer searches
for specific error-defining patterns. Sniffer uses this mechanism to represent extensive knowledge
about particular bugs.

The programmier’s apprentice project at MIT has produced a good deal of work in the domain of
program understanding. Rich and Shrobe {1976] laid down the basics for the decomposition of Lisp
programs into purposeful parts. Waters [1978] developed an analyzer which translates programs into
PLLANs. (This thesis relies heavily on the system which Waters implemented.) Rich’s dissertation
[Rich 1980] develops a mathematical foundation for the PLAN representation, and creates a library
of PLLANs for programming cliches. The complexity of the PLANs in this library range from the
level of a variable interchange to the the queuc and process strategy emploved by prosper. (The
library also includes the insertion plan discussed in the scenario.) Rich makes concrete suggestions for
the construction of a PLLAN recognition system which a more general version of the cliche finder
would require. Brotsky [to appear] is working on this topic as the subject of his Master’s thesis.

There has been some work towards an abstract theory of bugs in programs [Miller and Goldstein
1977] which goes beyond the domain dependent classifications developed in Hacker. The authors
develop a planning grammar which can be used to describe programs, where statements in the
grammiar can be refined into runnable code, The anthors then define a semantic error as a violation

of the problem description, and a syntactic error as a bug in the use of the grammar. This grammar
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does not have the conceptual richness of the PLAN representations used in the apprentice project,
and the relation between their bug types and errors in more complicated programs is unclear.

There has been a considerable amount of work on expert systems (analogous to Sniffer) which
perform complex tasks. That method of organization is one of the most successful paradigms in AL
The unifying characteristics of the systems which use this approach are that they rely on a number of
independent methods for gathering information and they deal with a large number of facts in the
process of finding solutions.

The Simulation and Evaluation of Chemical Synthesis project (SECS) [Wipke 1969], the Tendral
projcet, and much of the work in AT and medicine are in this class. SECS is an expert in the design of
organic syntheses. The information relevant to this task includes empirical facts about reaction
conditions and the sensitivitics of functional groups, the 3-dimensional shape of the target molecule
(the one to be synthesized), the composition of the target, and electronic energy levels of both the
product and the reactants. To coordinate these different sources of information, SECS confines a
great deal of its expertise to a set of productions which examine these facts and determine if a given
chemical reaction {applied to a particular molecule) will succeed or fail. The system performs at the
level of a skilled chemist.

Sniffer also provides a tool for supporting the debugging process. There are two basically
differcnt approaches to this task. First, there are systems that simplify the process of tracking down
bugs, and sccond, there are methods that prevent bugs from happening in the first place. The first
category includes debugging environments similar to the one implemented on the Lisp Machine,
which provide a single step evaluator and predicates for examining the data in the excecution stack.,
The time rover is a straight forward extension of this environment. (Every major programming
installation provides some support for activity of this kind.)

Bug prevention methods cxist primarily in the domain of sofiware engincering. Many of the
ideas included under this term refate more to the process of coding than to the structure of the code
which is produced. However, data abstraction techniques [Liskov 1977] are particularly relevant to
the kinds of crrors which Sniffer detects.

Data abstractions occupy the bordertine between program  understanding methods and
programming language techniques, since abstraction mechanisms build the level of vocabulary used
to discuss a prograsn. Rescarch in verification uses this fact, in that it tends to rely heavily on data

abstractions as a place to attach restrictions about the properties for segments of code.
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Data abstractions also imply a very strong form of type checking which makes certain kinds of
errors much harder to commit. For example, the cons-bug error (which concerns the integrity of an
object and the division of responsibility for maintaining its properties) can only be committed within
the confines of a particular abstraction. These kinds of errors can not be totally avoided, but their

frequency can be diminished by employing these techniques.
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