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Ahstract :

A lightness scale is derived from a theoretical estimate of the probability distribution of image inten-
sities for natural scenes. The derived image intensity distribution considers three factors: reflectance,
surface orientation and illumination, and surface texture (or roughness). The convolution of the
effects of these threc factors yields the theorctical probability distribution of image intensitics. A use-
ful lightness scale should be the integral of this probability density function, for then equal intervals
along the scale are equally probable and carry equal information. The result is a scale similar to that
used in photography, or by the nervous system as its transfer function.
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1.0 Introduction

A lightness scale is a rule for assigning numbers to the possible range of light intensities en-
countered in a natural world. Clearly the exact form of the scale will depend upon the objectives
of the sensing device. Because the possible range of intensities is quite large (108), most practical
lightness scales involve compressive transformations to limit the output (scale) range to 102 or so.
Common examples are the transfer functions used in photography, TV, or by the human eye.

One striking feature of these examples is that the scales characterized by the transfer functions are
remarkably similar, suggesting that each scale has roughly the same objective. Considering that both
TV and photography are aimed to please the human viewer, the root of the similarity has generally
been taken to be the transfer function of the human eye. Conscquently, most theories of lightness
scales have begun by considering the constraints the visual mechanism imposes upon the stimulus-
response relation (Judd and Wysecki, 1975). For example, if the observed threshold intensity change
is proportional to intensity (Weber’s Law), and one assumes that any just-noticeable-intensity change
corresponds to a fixed sensory increment, then Fechner (1860) argues that the resultant lightness
scale will be the logarithm of intensity. Stevens (1961), on the other hand, disputes this assumption
of a constant sensory increment regardless of sensation magnitude, and proposes a power law for a
lightness scale. Other assumptions about the mechanism have led to many other proposals (Van de
Grind, et al, 1971; Treisman, 1966; MacKay, 1963). ' :

Yet in spite of the many different proposals, the resultant lightness scales are still remarkably
similar over any 1000-fold range of intensitics. Clearly, all of these competing assumptions cannot be
correct simultaneously in the same mechanism. Rather, they illustrate that there arc many different
ways of achicving essentially the same lightness scale (Resnikoff, 1975). But why is the end result
always the same? Clearly, there must be some constraining influence independent of the mechanism
that is the major factor in determining the useful form of a lightness scalc. This study proposes that
this factor is the probability distribution of intensities in the world as scen by any visual system,
whether it be an eye or a camera. The mode of processing is irrelevant. What matters most is the necd
to respond to the distributions of intensities in the world in an cfficient manner, regardless of the exact
nature of the visual device (Marr, 1982). This reasoning thus leads to the following simple starting
point for a lightness scale: '
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Proposal: A useful lightness scale will be one that, on average, will sample the expected image

intensities in such a manner to optimize the encoding of the available intensity information.

Thus, in contrast with the previous approaches, the present derivation simply asks what lightness
scale would optimize the information content of each intensity sample regardless of the nature of the
sensory mechanism. In any given scene, the distribution of intensity values will generally be quite
non-uniform, with intermediate “gray” values being the most common and “blacks” of zero intensity
and “whites” of great intensity occurring rarely. It then clearly makes sense to sample the middle
grays more carcfully and the extremes less so. Such considerations yicld a lightness scale where
the principal constraints upon the scale will be the external properties of the world, rather than the
internal properties of the visual mechanism.
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2.0 Background: The Image Intensity Equation

To determine an optimal lightness scale first requires determining the probability distribution of
image intensities falling upon a reetina. Such distributions have not previously been calculated for
the factors of interest here. Although many texts on geometrical optics describe how light is reflected

~off surfaces (Keitz, 1971), they do not address the problem of how frequently one encounters any

particular image intensity value. Without knowledge of this latter probability distribution, we have
no way of specifying a scale (or transfer function) that will sample the image intensities in an optimal
manner. To solve for the expected probability distribution of intensities in the image, the image
intensity associated with any small surface patch must be calculated, and then the areal projection of
this patch on the retina must be integrated with all patches of similar image intensities. This total for
each image intensity value, relative to the total retinal area under consideration, will determine the
probability of encountering that particular image intensity value.

To proceed, we consider first the factors that affect the image intensity corresponding to any small
patch of surface as projected onto a retina. These include primarily the strength and spectral composi-
tion of the illuminant, its angular position relative to the viewer, the orientation and reflectance of
the viewed surface, its reflectivity function including textural, spectral and specular factors (Horn and
Sjoberg, 1979). These many factors combine together multiplicatively to produce the image intensity
I(\) associated with the patch of surface of reflectance (albedo) p(N), illuminated by a source of
strength E(N): : »

I(N) = A(NE(N(NL)R(o,6) o

where the term (N - L) reflects the orientation of the surface normal N and illuminant direction L
relative to the viewer (see Fig. 4) and where R(o,6) is the reflectivity function that characterizes
the textural and specular properties of the surface. (Although the imagc intensity equation (1) is a
function of wavelength \, this dependence will be ignored in subsequent derivations.)

To simplify the recovery of scenc properties from image information, it is desirable to remove the
cffects of the overall illuminant strength by setting E(A) = 1. This normalization, together with
the multiplicative behavior of the remaining contributions to image intensity, generally leads to the
examination of intensity ratios (Helmholtz, 1910;Land and McCann, 1971). A useful lightness scale
will therefore be a ratio scale.

" In sum, three factors are the primary contributors to achromatic image intensities: reflectance,
p: surface orientation and illuminant position (N - L); and the reflectivity properties of the surface,
R(o, ). especially its textural properties. For each of these factors, probability density functions can
be determined by calculating the relative retinal arca associated with any given image intensity. Since
the three factors are independent, the desired probability distribution of retinal image intensities
will be the joint probability density function for all these factors, calculated by convolving the three
independent density functions.

* The first objective will be to show that this resultant probability density function is roughly log-
normal and thus can be specified by two numbers—a mean and a standard deviation. The second
objective will be to show how this log-normal distribution of image intensitics constrains the shape of
an idcal lightness scale.
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Figure 1. The envelope characterizes a possible distribution of image intensities. Idea! sampling would require
the measurements be taken such that each interval has an equal area under the curve and hence is equally
likely.

3..0 The Normal Log Approximation

Lemma 1. The most probable (mcan) image intensity will be the product of the mean intensities of
the separate probability distributions of the N factors affecting image intensity and the variance of the
resultant joint probability distribution plotted on a logl axis will be the sum of the squares of the N
independent variances (also measured in terms of log!).

The above lemma follows straightforwardly from the Central Limit Theorem, provided that each
density function is convolved on a Log/ continuum (Bracewell, 1978). Note that the convolutions
cannot be performed on a linear continuum on I because intensitics multiply, rather than add as
required in the convolution integral. The log transformation thus permits the addition of the pairs
of variables as each convolution is performed. As N increases without limiy, the distribution will
therefore approach a Gaussian on a logl axis, which is the log-normal function. However, even for
small N, exccllent approximations to the log-normal function can be achicved, provided that cach
individual probability distribution has finite (positive) area, mean, variance and third moments. (Our
derived distributions will Satisfy these properties.)

- Because the mean image intensity is somewhat arbitrary, depending upon the normalization proce-
dure, the problem of defining a lightness scale based upon multiple, independent factors reduces to
finding the standard deviation of the Gaussian distribution defined on a logl axis. Our procedure,
then, will be to calculate the variances of the image intensity probability distributions arising from
three factors: reflectance, surface orientation and lighting direction, and textural shadow and to use
the sum of these variances (on logI) to define a Gaussian approximation to the distribution of image
intensitics. This probability distribution, in turn can be used to construct a usetul lightness scale. Prior
to estimating the three variances. the general strategy for creating a lightness scale will be considered.
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4.0 An Ideal Lightness Scale

Before embarking on a more exact probability density function for image intensities, it is helpful to
iltustrate first why such a density function may be used to create a useful lightness scale. Assume that
the form of this ideal density function is Gaussian on a logI continuum centered about some mean
value I,¢. Given this a priori Gaussian distribution of (log) image intensities, the problem is to decide
where on the (log) intensity continuum the sample measurcments be taken, and specifically at what
intervals. Three constraints will be imposed:

1. Although each measurement will be centered at fixed positions along the logl continuum, the
value measured will be the total density within a window where the window sizes are such that
together the total range of intensitics is spanned. '

2. Each measurcment will be independent of another. Thus the “windows” will not overlap.
3. The total amount of information should be maximized (over time).

The first two constraints merely define the nature of the “channels” that sample the range of inten-
sities. Referring to Fig. 1, the “carets” indicate the "centers” of nine hypothetical “channels” that
sample the log! intensity continuum. The width of the “channels” is indicated by the vertical bars
placed under the Gaussian envelope.

Let p; be the probability of an image intensity falling into the 2nd mcasurcment “channel”. Then
the expected value of pp is

1 b

P=—
Vaor e

exp — %(log[ Lvg)d(logl) - )

which is the cross-hatched arca in Fig. 1. The third constraint that the total measurement information
H be maximized is equivalent to maximizing

N
H =Y —pilog pi ?3)
3

where p; is defined as in (2). To maximize H, it can be shown that p; = p; = —,'\7 where N is the
number of measurement samples or “‘channels” (Brillouin, 1962). Thus, the third constraint will be
satisficd if the arca between the vertical bars in Fig. 1 are equal.

If image intensitics are distributed normally, therefore, a reasonable choice for a lightness scale will
be to choose intervals that yicld equal areas under the Gaussian envelope. For a ten-point scale, the
first logl value will be located at a log I/ ] v, value of —1.22, which would correspond to an I/Ioug
ratio of 3.9 for a natural log base. Continuuing this procedure, we obtain the lightness scale function
depicted in Fig. 2 (Gaussian assumption). The locus is a straight line because log-normal axes have
been chosen. (This relation between subjective scales and information-rich variables has been known
for some time (Zipf, 1949; Richards, 1967).
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Figuré 2. Lightness scales constructed by integration of various theoretical density functions for image
intensities. The ordinate is in units of standard deviation, and thus a Gaussian probability distribution of (log)
image intensities, such as in Fig. 1, will yield a straight line. A more plausible basis for a lightness scale is
the Kubelka-Munk theory of reflectance, which yields the curve labelled “K-M Theory”. This result begins
1o approximate a common scale (Munsell) shown at left

5.0 Estimating three independent density functions

As previously discussed, the Central Limit Theorem assures us that the combination of multiplica-
tive factors that contribute to image intensitics will tend to produce a Gaussian probability density
function on a logl continuum, as more and more factors are considered. However, although the
approximate form of the final image-intensity density function is known, two parameters remain to
define the shape and position of the Gaussian: its mean and standard deviation. These unknowns set
the horizontal position and slope of the straight-line lightness scale in Figure 2. Since by appropriate
normalization, the mean can be set to the midpoint of the scale, as it is in Figure 2, the standard
deviation of the Gaussian remains the principle single unknown. How can this unknown bz found?

Our procedure will be to estimate the image intensity distribution for each of the ‘hree major
factors in the image-intensity equation (1). This will result in three separate probability density
functions (pdf), onc for reflectance, another for surface orientation and illumination, and a third for
surface roughness or texture. The final distribution of image intensities will then be the zonvolution
of these three independent density functions. The final lightness scale will be the integral of this joint
probability distribution function, suitably normalized.
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If each of the individual density functions were approximately Gaussian, then the final joint-
density function could be obtained simply by adding together the standard-deviations (on logl) of
the component functions. However, because each factor, such as reflectance, cannot exceed 1, the
observed individual density functions will not be Gaussian. Furthermore, because of this assumption,
when the individual density functions are integrated, they will depart considcrably from the straight-
line “ideal” lightness scale, as illustrated by the two broken curves in Figure 2. A “practical” lightness
scale will therefore not be a straight-line on a log-normal graph. To find its shape, numerical convolu-
tions of the three component density functions must thus be performed, once each function has been
estimated.!

5.1 Estimating the Density Function for Reflectance

As we examine the properties of materials in the world about us, we note that their achromatic
reflectances cover the range from black to white, with these two extremes corresponding to completely
absorbing materials (such as carbon black) to completely non-absorbing or light scattering materials
(such as snow or pure cellulose). It is not unnatural to view the intermediate grays as some mixture
of these two extremes, because absorption and scatter are the two primary properties that determine
the reflectance (albedo) of a material. For many natural materials, such as wood, grass or even silica-
based minerals, most of the scattering of light comes from the “white”” substrate to which the added
pigment (or metallic impurities) provides most of the absorption. Many natural materials then may
be considered to be made up of two types of particles-a pigmented particle that is responsible for
the absorption, and a non-pigmented “white” particle that comprises the substratc and causcs most
of the scatter. For such materials, the reflectance will depend upon the relative amount of pigmented
particles in the white substrate.

To estimate the distribution of image intensities arising solely from reflectance changes, we there-
fore will follow Judd and Wysecki (1975) and consider an “ideal” achromatic material as one made up
of various portions of ideally absorbing pigment and an ideally scattering “white” substrate. By using
the Kubelka-Munk theory of reflectance, we can now rclate the absorbing and scattering properties
of such a material to its reflectance. With a simple assumption about the distribution of pigment in
materials, the desired probability density function for reflectance can then be obtained.

Appendix 1 shows that for an opaque surface made up of fine particles in a clear medium, the
limiting reflectance of the surface can be described by the following relations between the pigment
concentration, C, and the absorbing power a, of the matcrial. (The parameter a is the ratio of the
absorption coefficient of the ideal pigment to the scattering cocfficient of the idcal substrate.)

4
_ Ca Ca 2(1—-C)
""1‘*(1-—0)'(1—0){1+ } @

Since the value of a will be fixed and is determined simply by measurements of the coefficients of
highly scattering and highly absorbing materials, the principle unknown in equation (4) is the value of

YAl calculations and convolutions were performed on an Apple 11 cumputer.
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the pigment concentration, C. However, C is itself a distribution function. To find the distribution
of reflectance p we must therefore have some knowledge of the distribution of pigment in materials.
Specifically, we need a probability density function (pdf) for the pigment concentration, C. Once the
pd f(C) is known, we can apply Bayes Rule to determine the density function for reflectance, p:

_ . 4(C)

pds(e) = pdf(C) g1 ©)

The simplest assumption about the distribution of pigment concentration is that it increases

monotonically to some asymptotic level, following a growth curve. This is most certainly the case

for many natural materials such as foliage, grass and trees, which occupy the largest portion of

our reflecting environment. Recognizing that the time for growth is much shorter than the adult

lifespan of a material, the density function for pigment concentration can be approximated by a
power relation:

pdf(C)=C” (6)

where the cxponent 3 lies between 0 and 1 and C is defined over the same range. With this rather
weak assumption, Appendix I shows that the probability density function for reflectance will be

_ 227+ (1 — p)*(1 — 4?)
T e+ 2 —2a)p+ PP

where a is a material constant describing the ratio of the scatter to absorption coefficients. This func-
tion is plotted as the smooth curve in Figure fora=4and B = 4. The histogram is an empirical
distribution of the reflectances of natural materials taken from a compilation by Krinov (1971). The
mean of both distributions is about .15. :

)

pdf(p)

The choice of the two parameters B and a can be justified independently of the good fit to Krinov’s
measurements. First, the exponent for A should be considerably less that 1, in order that the “mature”
concentration of the adult material be the most common. However, 3 cannot be as small as zero,
otherwise the growth processes would not be represented. Given no other constraints, a # value of
4 is the best compromise between these two undesirable extremes. (In practice, any § value ranging
from 4 to % will not significantly alter the lightness scale result, as shown in Appendix 1.)

The choice of the scatter to absorption cocfficient, a, is dictated simply by mcasurements of
coefficients of highly scattering and absorbing materials, such as white and black (or dark gray)

f)aints. From Davidson and Hemmendinger (1966), a maximally practical scatter cocfficient is about.

10, whereas the absorption cocfficicnt of a black pigment will be about 100. A dark gray pigment,
however, will have an absorption cocfficient of about 10 to 20. Considering that the spectral absorp-

tion band of most natural pigments is not flat like carbon black, but rather confined to a portion of the

spectrum, their cocfficient will be in the range 10 — 20. Although this cocfficient is lower than that for
carbon black, it is important to note that a material consisting entirely of an absorbing pigment with
no scatter at all will appear black, regardless of the absorption cocfficient of the pigment. The effect of
the absorption cocfficient is merely to control the rate at which any increasc in pigment concentration
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Figure 3. A comparison of empirical and theoretical probability distributions of reflectance. The histogram
is an empirical distribution of the reflectances of natural materials taken from a compilation by Krinov (1971).
The smooth curve is a theoretical probability distribution based upon an extension of the Kubelka-Munk
theory.

causes a reduction in reflectance. With the scatter coefficient of the “white” substrate takcn as 10 and
the absorption coefficient of the pigment as 10 1o 20, the parametcr a will range from 0.5 to 1. The
former value was chosen to give a distribution of reflectances close to Krinov’s.

The function described by equation (7) and illustrated in Figure 3 fora. B = % is our estimate
of the expected probability distribution of reflectance. On a logl scale. its variance is approximately
3.32 or 10. As shown in Appendix 1, this valuc is relatively insensitive to the choices for a and 3.
When integrated, the reflectance-density function yiclds the curve labelled “K-M Theory " in Figure
2. Because of the upper bound of 1 placed upon reflectances, this curve rises rapidly abeve its mean
value, and more closcly resembles the most common Tightness scale-the Munsell Scale Howcver,
for natural scenes, two other image-intensity factors must still be evaluated before a firial practical
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Figure 4. A hemisphere illuminated by an overhead source lying along L at 90° to the viewer's line of
regard V. As before, N is the surface normal and J is the flux emitted in the viewer's direction. The inset
defines the slant angle, 6. Orthographic- projections and Lambertian surfaces are assumed.

lightness scale can be constructed.

5.2 Surface oricntation and lighting

A factor second to rcﬁgctancc in producing image intensity variations is surface orientation relative
to the illuminant direction. These effects are characterized by the N - L term in equation (1), where
N is the (vector) orientation of the surface normal relative to the viewing direction V, and L is the
illuminant direction. (See Figure 4.) When sunlight strikes a uniformly reflecting sphere, the surface
perpendicular to the rays is intensely lit. whereas the parallel edge or the back side is dark or only
dimly illuminated by diffuse light. How do these illumination effects alter the expected lightness
scale? Specifically, we wish to calculate the probability density function for surface effects so that
this probability distribution may be convolved with the pdf for reflectance alonc. 'Two- cases of
illumination will be considered: extended and direct overhead.
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5.2.1 Extended Illumination

When the sky is completely overcast, as object is illuminated almost equally from all directions.
Reflectance and surface orientation relative to the viewer then become the two major factors in deter-
mining image intensity. For a surface of constant reflectance, image intensity will be a function solely
of surface orientation? .

A major class of natural surfaces are those that act like a perfect diffuser. (These are called
Lambertian surfaces.) For such surfaces, it is well known that the combined effects of surface orienta-
tion and illuminant direction are exactly cancelled by the foreshortening of the surface patch relative
to the viewing angle (Wysecki and Stiles 1967). The effective image intensity J per unit area is thus
simply proportional to the incident flux on the surface patch of interest. But if the illumination is
extended, then the total incident flux is constant everywhere on the surface and the distribution of
image intensities arising solely from surfacc orientation will be a spike at 1.

Thus, for Lambertian surfaces seen under extended illumination, surface orientation and lighting
will have no effect on the expected probability distribution of image intensities.

5.2.2 Overhead Illumination

A second natural lighting condition is when the sun dircctly illuminates surfaces from overhead as
at “high noon”’. Figure 4 depicts the relations between the viewer V, the illuminant direction, L, and
the normal vector to the surface, N. What is the expected probability distribution of image intensities
in this case?

To simplify the analysis, the following assumptions will be made:

i) the view is orthographic-i.e. there is a parallel projection onto the image;

ii) there is a uniform distribution for the slant of all surfaces relative to the viewer. The view of
sphere can thus be taken to represent this distribution;

iii) the surfaces are Lambertian;

iv)there is a 90° angle betwcen the viewer and the source (i.c., (V - L) =0).

Referring to Figure 4, we sce that the horizontal circles about the illuminant axis L will correspond
to loci of constant slant to the source, and hence refiect equal flux, whereas vertical circles (not shown)
about the viewer’s axis V will have equal foreshortening. The net image intensity will be a combina-
tion of these two factors. The problem is to determine the loci of constant image intensity as seen by
the viewer and to measure their relative sizes, thereby determining the weights that should be given to
each image intensity.

The derivation of this density function is given in Appendix 11. Surprisingly, the result is quite
simple:

pdf(l) =1 —I? )

2The underneath surface of an object may be illuminated to a lesser degree than the top, because the diffuse reflectance
of the ground is less than that of the sky. Such differences will be ignored here.
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where I represents the intensities arising solely from the variations in the [N - L] féc_tor in equation (1).
This density function is shown in Figure § as the solid curve labelled E = 0. (The spike at E' = 1 is
the previous case where all the illumination is extended.)

5.2.3 Overhead plus diffuse illumination

In the more common casc, diffuse illumination of surfaces will also be present. A portion of this
diffuse illumination may come from the sky, and a second portion may be reflected off the array of
surrounding surfaces. For simplification, we will assume that all of the diffuse contribution to image
intensities is reflected off surrounding surfaces. In this case, as shown in Appendix I, on the average,
20% of the total illumination will come from diffuse reflection. This diffuse light contribution can
now be included with the direct source illumination to calculate a new density function for overhead
plus diffuse illumination. The dotted curve labelled E = .2 in Figure 5 shows the form of this
function, which will be the one chosen to represent the contribution of the (N - L) factor in the image
intensity equation (1). The variance of this function is approximately 3 (on alogl), with a mean value
of 0.4. ' ' '

5.3 Textured surfaces and shading

The third factor affecting the distribution of image intensities is the reflectivity function R(0, o).
Generally this term in the image-intensity equation is used to describe the specular properties of the
surface, which depend dramatically upon the surface orientation relative to the viewer and illuminant
direction. Hence the angular paramcters 6,0 (Horn and Sjoberg, 1979). However, because of its
highly dircctional nature (Torrance and Sparrow, 1967), specularities represent only a very small con-
tribution to the total distribution of image intensities. A much more important factor is the structure
of the surface itself, namely its roughness or textural quality.

Surface texture generally arises from three-dimensional “clements” that are the constituents of the
underlying two-dimensional surface seen at a much larger scale. Such “clements” may be blades of
grass, or leaves at many oricntations, or the pebbles on a beach. Because the elements are three-
dimensional, they produce sclf-shading and shadows. In order to estimate the image intersity density
function for surface texture, it is necessary to model the cffects of these small, three-dimensional
surface clements. Two such models will be considered. The first is a surface texture created by dis-
tributing cylinderical “matchsticks” on a planar sheet (simulating a “lawn™); the second is the texture
created by strewing spheres on a flat surface. This latter model texture is particularly uscful because
it captures the essential properties of many natural surfaces. For example. the resultant distribution
of intensities is a very good approximation to that actually measured for shrubbery. Our explanation
for this similarity is that within a sufficiently large region of the shrub (relative to leaf size), all orien-
tations of the leaf are equally likely and hence, cach leaf can be mapped onto a different portion of
a model sphere that represents that portion of the shrub. The fact that most shrubs (or trees) have
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Figure 5. Probability distribution functions of intensily for various amounts of an extended source that,
together with an overhead point source, illuminate a uniform distribution of surface orientations. Point source
alone: E = 0; 209 extended illumination; E = .2; extended illumination alone: E=1.

a round shape will further strengthen the success of the model when the image intensities are taken
from the entire object.

Figure 6 summarizes the probability density function for image-intensity arising from textured
surfaces that can be modelled cither by spheres or cylinders lying on a planar substrate of the same
material. (Refer to Appedix 111 for derivations.) Both types of density functions are very similar, with
a sharp peak at the lower image intensities corresponding to the dark cracks or shadows between the
textural elements. (See Fig. CS.) The position and magnitude of this “spike” will, of course, depend
upon the density of the textural clements. The parameter S in Fig. 6 shows how the space between the
elements alters the resultant probability density function.

For the case of a planar surface textured by abutting spheres of identical size and reflectance, with
uniform illumination, the “gap” between the spheres corresponds to the shadowed region and con-
tributes to 1/8th of the total image intensity distribution. (This is the “spike™ in Appendix Figure B2.)
Thus, the major contribution to the density function for “pebbled™ textured surfaces comes from the
surface of the spherical elements. As shown in Appendix 111, this portion of the probability density
function (pd f) may be approximated by the rather simple formula:
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Figure 6. (A) Probability distribution of imensity/vaiucs for a surface textured by cylinders and illuminated
by a hemispheric source, such as the sky. Each curve is for a different scparation of the cylinders. with the

’ gap (S) measured in radius units. (B) Distribution. of intensity values for a surface “pebbled” by abutting
spheres, illuminated by an cxtended overhead source such as the sky. Refer 1o Appendix 111, Fig. C5 for a
comparison of the model with an image intensity distribution taken from a natural object

pdf(I) = I*(1 — I*)} ©)

This function is plotted as the curve Ty on alogl axis in Figure 7. The dashed curve labeled Ty is the
contribution from the gap, and C is the combined result. The mean of this combined texture density
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Figure 7. The probability distribution of (log) intensity values for a surface pebbled with closely packed
spheres (7). The components Ty and T describe the density functions for image intensities arising from the
surface or the gap between the spheres, respectively. The dashed curve, labelled "I, is the joint intensity
distribution function for the pebbled texture and an overhead illuminant.

function is 0.46 and its variance (on log]) is about 3z.

6.0 The Dcrived Lightness Scale

We now have obtained imagc-intensity density functions for the three major factors that cause
intensity variations in an image: reflectance, surface orientation and illumination, and surface rough-
ness. Missing are intensity variations due to sources: specularities, the sun, the sky and cast shadows
(other than those due to surface texture). The distribution of these variables is difficult to estimate
but is expected to be small as compared with the three previous factors. For example, the 2 deg
sun occupies only 1/7000th of the total sky and can be considered a singular intense point. More
relevant intensity variations are the cloud patterns and North-South hemispheric variations in the sky.
However, even these amount to only about 309% on the average (Wysccki and Stiles, 1967). It is this
value which will be taken as a token estimate for source variations.

Table 1 summarizes the expected means and variances for the major factors that create intensity
variations in an image. We now are in a position to calculatc a joint probability density function for
all these factors by successive convolution of their individual distributions (cquations 7. 8, 9). The
resultant probability density function is shown in Fig. 8. With source variations excluded, this density
function has a mean of 0.025 and variance of 16z. The resultant lightness scale is the intagral of this
function, as shown by the broken line.
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TABLE |
FACTOR xean 1t ‘«'32‘3’5%
Reflectance 0.1 - 0.2 10x
Suxfn.cc Orientation and
Illumination .4 3x
fexture ' .46 3x
Sources .8 2x
TOTAL 0.020 18x

Figure T1. Table L Summary of the expected means and variances of the separate major factors that create
- intensity variations in an image. )

7.0 Relation to Empirical Photometric Scales

To determine whether the preceding analysis captures the major factors that contribute to the
image-intensity distribution function, it is necessary to compare the derived probability function with
empirical measurements. Two kinds of photometric data are of interest in this regard. The firstis a
comparison with the distribution of photometric measurements madec by Jones and Condit (1949) for
a large number of scenes. The second explores the relation between the derived lightness scale and the
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Figure 8. Threc-factor probability density function for image intensities (solid line) resulting from the
convolution of intensity variations introduced by reflectance, surface orientation and surface roughness (texture).
The ogive is the integral of this function, and is the theoretical lightness scale. The pluses describe the Naka-
Rushton neural transfer function.

Munsell Scale.

7.1 The Jones and Condit Mcasurements

In the 1940's, Jones and Condit of Eastman Kodak (1949) obtained data on the luminances and
Jluminance scales of 121 outdoor scenes. The luminance scale was defined as the ratio of the maximum
to the minimum luminance. The luminances werc measured with a portable, telescope-type visual
photometer with a small field of view. The values of luminances found in different regions of one
typical outdoor scene is shown in Table 11. Note that the range of the measurements is almost 200 to 1.

Figure 9 is a plot of the distribution of the range of luminances found in the 121 scenes studied.
The mean range is 160z, with some values as high as 700 to 1. To estimate the range expected from
the theoretical three-factor distribution of intensities, we must recognize that Jones and Condit were
attempting to measure a practical maximum for the intensity range in scenes typically photographed.
Their choice of scenes, and the measurements taken on cach scenc are therefore not random.
Nevertheless, one constraint on their sclection was that all scenes yiclded at least a 30 to 1 luminance
range, since this is the lowest range measured. Presumably the sky (or illuminant) was measured
in cach outdoor scene, and hence the greatest lower bound on the luminance measured was 033
(=1/30) relative to the maximum scene.

Returning to Figure 8, we then deduce that the remaining measurements were confined to the left
portion of the image intensity distribution below the value .033. The mean of this portion of the
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Figure 9. The distribution of the range of luminances found by Jones and Condit (1949) in 121 outdoor
scenes is given by the open circles. The solid curve is a distribution of the range predicted from the theoretical
distribution of image intensities. The dashed curve is the prediction based on the best log-normal approximation
to the theoretical image intensity distribution.

distribution is 0.01, suggesting that the mean luminance range should be 100, as compared with the

160 value found by Jones and Condit. However, because Fig. 8 does not include source variations, our

estimate of the mean is low by at lcast 20% (sec Table I).

To recover the shape of the range distribution, we must consider the scene sampling procedure
used by Jones and Condit. If the assumption is made that scenes with similar content will have similar
probability distributions of image intensitics, then the greatest changes in scenc content will occur
where the image intensity distribution changes most rapidly. Thus, if Jones and Condit chose a wide
varicty of scencs of different content, then the derivative of the image intensity distribution below
.033 should yicld the distribution of the luminance range. This derivative is shown as the solid line in
Figure 9 and clearly is skewed to the left of the sample points.

If source variance is added to the theoretical intensity distribution of Figure 8, then the expected
distribution of the luminance range is the dashed curve of Fig. 9. This is a quite reasonable match to
the Jones and Condit data, considering estimation errors involved.
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TABLE 11

LUMINANCE VALUES IN AN OUTDOOR SCENE3

Area No. Description of Area Luminance in‘ ft-L.
1 White cloud | | 3500
2 Blue sky 1350
3 Grass 1000
4 Side of stone bridge in sun 800
5 Water in sun 460
6 Stone bridge in open shade 300
7 Tree trunk (1) 135
8 Bridge in heavy shade 33
9 Tree trunk (2) 33‘
10 . Heavily shaded portion of tree 18

LUMINANCE RANGE: 195

3From Jones and Condit (1949)

Figure T2. Table IL
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7.2 The Munsell Scale

The Munsell Scale for lightness is onc of several that characterize the relation between reflectance
and the subjective brightness as scen by a “typical” human observer (Judd and Wysecki, 1975).
Although the Munsell Scale is defined by a fifth order polynomial, good approximations can be found
wsing rather simple formulae, especially considering the wide variations between the proposed scales.
(For example, the original system by Priest, Gibson and McNicholas (1920) used a simple, square-
root relation.) Undoubtedly, a rather simple relation could also be found to describe the integral of
the complex convolutions required to construct the “ideal” lightness scale depicted in Fig. 8. Such a
simple expression would give no insight, however, into the factors that underlie the scale and which
give the scale its basic shape.

In the case of the Munsell Scale, the linking assumption is that the human visual system will
optimize the spacing between refiectance samples seen under uniform illumination to match the ex-
pected distribution of reflectance in the world. If he does this, then the Munsell Scale should be
very similar to the scale created by integrating the image-intensity distribution for reflectance, p. This
is simply the integral of equation (7), which is plotted in Fig. 2 as the dotted loci labelled “K-M
Theory”. Qualitatively, the fit is good and within the range of proposcd lightness scales. A near-
perfect fit can be had by adding the effects of surface orientation (not shown).

8.0 Relation to Biological Transfer Functions

One important use of a lightness scale is to describe how image intensities should be transformed so
that any one value is equally likely. Such a transformation thereby gives the most efficient sampling of
the input. If the visual system is to code image intensity by neural firing levels, then the most effective
transfer function should result in each level being equally likely (Laughlin, 1981). In this way, the
amount of information per signal willl be maximized. The mapping of possible image intensities onto
a range of neural activities is thus equivalent to defining an internal lightness scale. 1t should not be
surprising, therefore, to find that the theoretically derived lightness scale is a good approximation to
the neural transfer function.

The Naka-Rushton relation (Naka-Rushton, 1966) is one of the most widely-used neural tra‘nsfer
functions (Normann and Werblin, 1974; Hood, et al., 1979):

V/V* = I¢/(I° + o) (10)

where V is the retinal response relative to its saturation value V*, I is the light intensity and o ande
arc constants.

Figure 8 compares the three-factor lightness scale with the Naka-Rushton equation setting the
cxponent e = 1, V* = 12.5 and a saturation constant o = 3. The ogive is the theoretically derived
curve that includes variations in image intensity due to surface orientation, texture and reficctance.
The plusses. which are calculated from the Naka-Rushton relation (equation 10), fall close to the
theoretical lightness scale function. A similar result has been noted by Laughlin (1981) in the con-
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trast response function of first order interneurons of the insect compound eye. It appears, therefore,
that the neural mechanisms that determine the visual transfer function are optimal for information
processing. ‘
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APPENDIX |

Derivation of Reflectance Density Function

Consider an opaque surface made up of fine particles of pigment embedded in a clear medium. As
diffuse light strikes this surface, a portion of the flux will be reflected back, whereas another portion
will pass into the layer either to be absorbed or to pass through. At the next deeper layer, again a por-
tion of the light will be reflected back towards the surface and the remaining portion will be absorbed
or transmitted through. For any arbitrary layer, there will be two factors that decrease the amount of
light passing in to the next layer: absorption K and backward scatter S. These two coefficients are
constants of the material comprising the surface.

The calculation of surface reflectance requires solving two differential equations for the net amount
of light flux that leaves the surface. The general solution to this problem was first found by Kubelka
and Munk in 1931. A special case of their solution is when the material itself is so thick that any
further increases in thickness will not change the net flux leaving the surface. This condition is
very suitable for most opaque natural objects and yiclds the following theoretical relations between
absorption K, scatter S, and surface reflectance, p.

p=1+K/S—(K?/5* +2K/S)} (A1)

For an “ideal” achromatic material, its pigment will scatter no light, whereas its embedding
medium or substrate will absorb no light (Judd and Wysecki, 1965). Since the pigment has no scatter,
its scatter coefficient is Sp = 0. Similarly, an ideal white substrate will absorb no light, hence its
absorption coefficient Ks = 0. Thus, the pigment provides all the absorption Kp and the substrate
is responsible for all the scatter, Ss. If the fraction of pigment in the mixture is C, then the net
absorption cocfficient in the mixture will be C - Kp, and the scatter coefficient will be (1 — C) - Ss.
The value K /S for the mixture will then be:

K/S=C'Kp/(1—-C)-Ss - (A2)

Letting the two material constants K p/Ss be represented by the single material constant, a, we have

K /S8 = Ca/(1 —C) (A3)
Substitution into equation Al yiclds text equation (4):

Ca Ca 2(1—C)

r=ttiog oot e ) (A9

The final density function for reflectance p, then follows the derivation given in the text.

Since the density function (7) for reflectance has two free parameters. a and B, it is of interest
to determine how sensitive this density function is to the choice of these values. To fit Krinov’s
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Figure Al. Two theoretical distributions of reflectance. The solid curve assumes a scatter to absorption ratio
(a) of 0.5, and the same distribution as in text Fig. 3, but on a log] axis. The dashed curve assumes a == 1.
Although the two means are clearly different, the standard deviations are almost the same.

empirical distribution, a was chosen at 1 /2, which is in accord with values reported by Davidson
and Hemmendinger (1966). However, the different materials can require quite different values. For
example, a more appropriate a for paints would be 2, whereas for textiles, a is nearer 1/4. Figure
A1 shows two probability density functions for reflectance based on the Kubelka-Munk theory with
a = 1/2 (solid curve) and @ = 1 (dashed curve). Although the mean reflectance value changes
from 0.12 to 0.18 for this change in a, the standard deviation of the reflectance distribution is altered
hardly at all. This result is illustrated in Fig. A2, which shows how various choices of a and 3 affect
the mean and standard deviation of the density function. Within the dotted rectangle, a ranges from
1/4 to 14 and A ranges ffom 1/8 to 1, but the standard deviation varies only from 2.7 0 4.3z. Over
60%of the region, the standard deviation of the reflectance distribution is within 10%of 3.3x. (In other
words, 68%of the log reflectances lie within 1/3 to 3.3 of the mean reflectance.) The measure of the
variance of the distribution of reflectances was thus taken as 3.3%2 = 10.
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Figure A2. Effect of variations of the two parameters a, 8 on the mean and standard deviation of the
probability density function of reflectances as derived from the Kubelka-Munk theory. The practical range
of a and 3 i¢ indicated by the dashed rectangle Note that over this range, the standard deviation of the
distribution does not change appreciably.
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APPENDIX I

Derivation of Density Function for Surface Orientation and Illumination

AIL 1. Overhead Illumination Alone

Given the condition of an overhead point source and a spherical Lambertian surface viewed at 90°
to the source direction (as shown in Fig. 4), the flux Jp along any horizontal circle at angle 4 to the
illuminant direction L is given by

Jy=R-F-(Ng-L)=R-F - cosh (B1)

where N is the surface normal. To determine the flux Jp , in the direction of the viewer, we find the
projection of Jy onto V:

Joo =Jp (N V) = Jpcoso (B2)

The net image intensity I , per unit area will then be Jp , corrected for the foreshortening of the
surface patch. This foreshortening will be proportional to (N - V) = coso, yielding

IB,c = Je,a/cosa = Jp

or from equation (B1)

ho=R-Fcosf =1l | (B3)

The orthogonal (horizontal) circles about L thus correspond to loci of constant image intensity for
Lambertian surfaces, regardless of the viewer’s position.

To calculate the distribution of image intensities, we must now measure the area of the loci of con-
stant Iy, as projected onto the image plane. Imagine that each of the circles of constant I is replaced
by a ribbon or band of thickness e. The projected width will then be less due to foreshortening, which
is equal to (N - V) = coso. For a sphere of unit radius, the total projected arca of Ag of a ribbon
located at altitude © will thus be

%/2
Ag=c¢€- / x 8ind coso do (B4)
$=0

where 7sind is the arc length and cosod¢ is proportional to the foreshortened area. (Thek‘angle ¢ is
the angle between N and V as projected onto the horizontal plane—sce insct to Figure 4.

~ Becausc coso is a function of 6 and @, this rclation must be determined before integration. Ior a
unit vector N = 1, the insct to Figure 4 shows that
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coso = 8inf - cos¢d (BS)

Substituting this relation into (B4) and performing the integration, we find that

Ay =¢€ 7 3in%0 (B6)

The area Ay is thus proportional to the frequency of the image intensity along the locus where 8 is
constant. But sind can be determined from equation (B3), remembering that cosf = (N - L):

i ) I2
inf = (1 — c0s?0)!/? = [1 — (5%)]!/? B7
sind = (1 — c0s™)"/? = [1 — (5] ®7)
Normalizing the image intensities to the maximum on the surface by multiplying all [, by R - F,,
equations (B6) and (B7) can be combined to yield the following normalized probability distribution

for image_intensities:

pdf(I) = 1 — I’ (B8)

This simple expression thus describes the expected density function for image intensities of
Lambertian surfaces due solely to direct overhead illumination. It is plotted as the solid line in the
upper graph of Figure Bl.

AIL2. Overhead Plus Extended Illumination

To calculate the image-intensity density function for a Lamberiian sphere illuminated by a point
source overhead plus an extended source, we must first determine the relative strength of the diffuse
illumination. If this diffusc illumination arises solcly from reflection off surrounding surfaces, then the
density function of Fig. 3 (equation 7) provides a basis for estimating the diffuse light contribution
relative to the original (point) source. This function (7) describes the probability of finding an object
of reflectance p. To calculate the total of light reficcted by all objects of reflectance p, we merely
multiply the probability of finding p times p itsclf and sum over all p’s: :

. ,
Trefiected =/,, 0lmif(p) p dp (B9a)

Note that if all objects had a reflectance of 1, then the total incident light will be

1
Tincident = opdf(p) -dp . (B9b)

p=
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Figure Bl. The upper solid line shows the intensity distribution function for a single overhead point source
illuminating a uniform distribution of Lambertian surfaces. If extended illumination is also preseat, then
the intensities are shified to the right as indicated by the dashed line where 2507 additional illumination
everywhere is added as an example. When this new distribution is normalized so the maximum inteasity is
1, the lower curve results, which is the expected image intensity distribution for an illuminant consisting of
an overhead point source and plus an extended light source. These functions are also replotted in Fig. 5 on
a logl intensity axis.

The fraction of diffuse light relative to the strength of the direct light is thus Tregiected [ Tincident-
Numerical integration of text equation (7) yielded an estimate of 20% for the contribution of ex-
tended il]umination to the total. (Note that this corresponds to the mid-point of the Munseil Scale.)

To visualize how extended illumination will modify the probability distribution of image intensities
for a hemisphere of constant reflectance, refer to Fig. Bla. The solid curve describes pd f(I) for
overhead illumination alone. If an extended illumination of 25% of the source intensity (I = 1) is
added everywhere to 7, the new pdf will be shifted to the right as indicated. Renormalization of this
curve so the maximum [ is 1 will result in the new pd f described in Fig. Blb.
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To quantify this result, let E be the fraction of the total source illumination due to extended
sources, and I be the intensity due to the overhead source plus surface orientation, Ing.. The
combined illumination I’ at any surface point will be '

I'=E Inmaz+ (1 —E) (B10)

To calculate the new probability density for I’; let I .. equal 1 to normalize I and then solve
equation (B10) for I':

I=({"—E-1)/(1—E) ~ (BL)

Since pdf(I) is known from equation (B8), substitution of (B11) yields
; I'—E
pdf(I=1—(—%) (B12)
. 1—E
for I' > E, otherwise 0. Note that this density function is 1 at I’ = E and zero where I’ = 1.
To normalize the areas of pd f(I') for different fractions of extended illumination, we may divide by

(1 — E) to give the following general equation for the intensity distribution resulting from extended
and point overhead sources:

pisll) = gyl — (=5 N E)

for I > E. otherwise 0. Text Fig. § illustrates the form of this density function for no extended
illumination (E' = 0) and for 20% extended illumination.
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APPENDIX Il

Derivation of a Density Function for Texture

Two models for a textured surface are considered: one with the texture elements consisting of
identical cylinders lying parallel on a flat surface of the same material, and illuminated from overhead,
and the second texture created by closely packed spheres. '

Although the utility of the “pebbled” surface model is emphasized in the text, it is simpler to derive
its image-intensity density function by first considering the surface corrugated by cylinders. This
approach has the further advantage of revealing the similarity between the density functions obtained
from quite different model surfaces.

AIIL1 A “Matchstick” Surface

If cylindrical matches lie on a surface and are locally parallel, illuminated from above by a distant
extended source such as the sky, then the significant variable is the cylinder scparation measured in
terms of the cylinder radius. The situation is depicted in Fig. C1, which is a cross-sectional view ofa
plane perpendicular to the cylinder axis. '

The large hemisphere represents the overhead sky. The small circles are the ends of Lambertian
cylinders, cach of identical reflectance and size. Letting our coordinate axis begin at the center of the
second circle, consider a point p on the cylinder located at a horizontal distance y from the top of the
cylinder. Point p will be illuminated by the entire sky less that portion 6 below its tangent plane, and
less that second portion ¢ that is occluded by the adjacent cylinder. The intensity profile / (y) along
the cylinder will thus be:

y)=(r—0—9¢)/x

I<y<l (8
where
0 = arc sin(y) , (Cla)
¢ = arctan(1/B) — arctan|cosd/A] (Clb)
where

A=S+2—y
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Figure Cl. Cross-sectional view of three cylinders scen on end beneath a hemisphere of uniform illumination,
such as the sky.

and

B = |A? + cos?0 — 1)/? (Clo)

A similar geometric analysis yields the following relation for the illumination of any point lying on the
ground planes in the gap between the cylinders:

Ily) = (x— Zarctan% — 2arctan%)/ n (C2)

I<y<(5+1

where A is as before in (C1b). If the reflectance of the ground plane is not the same as that of the
cylinders, we may calculate the image intensity profile for an overhcad observer. Four such profiles
are shown in Fig. C2 for cylinder separations of 0.5, 1, and 2 radius units.

_ Two features are worth noting about these profiles. First, the intensity distribution along the
cylinder surface is not affected appreciably by the neighboring cylinder, except at the edge. An
excellent empirical approximation to this profile is the relation I(y) = (1 — y*/2)1/2, Second, in the
region of the gap between the cylinders, the intensity is rather constant, especially for separations less
than twice the cylinder diameter. To a first approximation, this portion of the intensity profile can be
described by the following relation, which is dependent only on the gap size S:

Iy)=1—(3/4 (C3)
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l<y<(S+1)

These approximations will become useful in the case where the textured surface can be modelled by'
spherical pebbles lying on the ground plane.

To calculate the probability density function pdf(I) for image intensities of a corrugated surface of
cylinderical matchsticks, we now apply Bayes’ rule as before:

pdf(I) = ply) - dy/dl (C4)

where dy/dI can be determined by equations (C1) and (C2) or their approximations. Note that p(y)
will be constant because the sampling of image intensities will be at fixed increments in y for the
orthographic view.

Fig. C2 shows how the density function varies for surfaces textured by cylinders spaced at intervals
S. Note that the image intensity density function rapidly approaches a spike for cylinder separations
greater than three times their radius. The greatest range in the intensity distribution occurs for S = 0,
where the cylinders abut one another. Here the mean value is 0.8 and the variance is 1.2z (on a logl
scale).

AlIL2. A “Pebble” Surface

Consider next the case where the surface roughness can be approximated by identical spheres lying
on a ground plane. As seen from above, the appearance in a small region may be depicted as in Fig.
C3. Note that when the spheres abut one another, the triangular region ABC' includes the entire
intensity profile of the configuration because similar triangles will completely cover the surface. The
approach will be to determine first the probability density function for the triangle ABC, and then to
explore the effect of increased separation of the spheres upon this distribution.

Profile A: The intensity profile of A is determined by the angle of the tangent plane along A. This
profile is at most that of two abutting cylinders whose axis is perpendicular to the plane of A. The
cylinder profile is given in Fig. C2a, and is replotted in Fig. C4 as curve A. The actual profile along
A will lie below that of C2a, because the tangent plane will intersect spheres F' (and its counterpart
F'). Although this reduction in the illumination can be estimated in principle, it is not important
except near the juncture of the two spheres where the illumination is small. To a first approximation,
therefore, the intensity profile of locus A will be that of Fig. C2a.

Profile C: Again, this profile will be estimated by making the cylinder approximation as before and
ignoring the intersection of the tangent plancs with the neighboring spheres. The upper bound on the
profile C is thus that for a cylinder separation of (31/2 — 1) = 0.7. This profile will be intermediate
between that shown if Figs. C2b and c. The correct profile has been replotted in Fig. C4 for the locus
C.
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Figure C2. Intensity profiles along a surface comprised of cylinders. In A, the cylinders touch one anciher;
in B the separation is 0.5 radius units; in C, 1.0 units and D, 2 radius units. Note that the profile alonz the
cylinder surface is relatively independent of gap size.

Profile B: Recalling that in Fig. C2 the illumination in the gap between cylinders is essentially a
function of gap width only, we can usc this relation (C3) to estimate the profile of the gaps between
adjacent sphercs. Where locus B intersects A, the gap is zero, and so is the illumination, as shown in
Fig. C4 at the unit distance 3'/2. As we proceed along the locus B toward C, the increase in gap size
will increase the illumination of the ground plane to its maximal value at C located .13 units from the
edge of the sphere. Again, this latter estimate is too high because the occlusion by spheres adjacent
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Figure C3.  Overhead view of a portion of a surface pebbled with identical Lambertian
spheres. The intensity profiles of the loci A, B and C as shown in Fig. C4.

to the tangent plane has not been taken into account. Nevertheless, it will serve as an estimate of the
illumination profile along B.

The three profiles A, B, and C' now describe the intensity profiles at the boundaries of the basic tri-
angle that covers a “pebbly” surface of Lambertian spheres. To characterize the intensity at any point
within this basic triangle, we note that in the sphere itself, the profile everywhere is essentially the
same function of its radius, since the profiles A and C are very similar over the region 0 to 1. Using
the approximating Is(y) = (1 — y*/?)!/2, we then find that the distribution of image intensities on
the sphere will be:

: | pafils) = I*(1 — I?)'/3 (C5)

if p(Is) is plotted on a logl axis. Because the sphere itself occupies very close to 7/8ths of the area of
the triangle to an overhead viewer, equation (C5) represents the major portion of the image intensity
density function due to this type of roughness. (This function is plotted as the curve Ty in Fig. 7.)

To determine the added effect of the dark gap between the spheres, we use the approximation for
the gap illumination I = (1 — .75%) and note that the gap width, S is roughly proportional to the
distance travelled along B from A to C. But sincc the gap width is proportional to the arca of the gap

v"\u
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Flgure C4. Three intensity proﬁles along the abutting spheres as shown in Fxgure C3.

for a given fixed increment along B, we can find that the image intensity distribution funcuon in the
gap is roughly:

WIs) = (o logr=7,  OSI<S ©

wheré a log] axis is used. This distribution function is the lower lip on curve “Ty” in Flg 7 having a
weight of 1/8th, corresponding to the area of the gap relative to that sphére.

The total of curve “T” in Fig. 7 is thus the combined image intensity density function for both the
gap and the sphere. (The same function is rcplotted on lincar axes in Fig. 6b.) This envelope is thus
an estimate of the intensity distribution that might be measured for a surface “pebbled” with roughly
identical, closely-packed spheres. As the spheres move farther apart, the density funcnon for intensity
variations due to surface roughness must approach a spike at 1.0—i.e., the surface will be smooth and
have a single intensity valuc everywhere. The upper curves in Fig. 6 give an indication of how fast a
rough surface becomes smooth.

AINL3. An Empirical Test

To insure that the image intcnsity density function for surface roughness shown in text Figs. 6
and 7 is an adequate model for a class of naturally textured scenes, a frontal photo of a leafy scction
of a thododendron bush was taken and the image digitized. Fig. CS shows the resulting intensity

histograms as the irregular smooth curve, superimposed upon the “pebble” surface modcl which is
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the dashed curve taken from Fig. 6b. Note that the characteristic “spike” due to the shadowed
portions of the leaves is captured by the model. Considering the simplifying assumptions made in
the derivation (as well as in the choice of scene!) the theoretical image intensity density function for
téxtural variations can be considered adequate.
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Figure C5. A comparison between an empirically measured image intensity distribution for a roughly textured
surface and the “pebble” surface model. The smooth curve is the intensity histogram for the rhododendum
bush shown in the top portion of the figure. The pebble-surface prediction is the dashed line taken from Fig.
6l (courtesy of D. D. Hoffman). )




