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A Program Testing Assistant 1 - Introduction

1. Introduction

A programmer often tests his program as he writes it. As each part nears completion, he tries
it on a few examples to convince himself that it is mostly correct. These test cases are typically
lost, and little thought has gone into systems which aid a programmer in their full utilization.
This paper describes a program testing assistant designed and implemented by the author which

0 makes it easy for the programmer to define test cases;
o automatically runs test cases when appropriate;

0 automatically modifies test cases to preserve their usefulness when the program they test
undergoes certain types of design changes;

0 generates test cases at the programmer’s command from a library of common forms.

The testing assistant is designed to be as unobtrusive as possible. It does not require the
programmer to make major modifications in the way he works. To this end, it is integrated with
existing interactive programming tools, including a display editor, compiler, interpreter, and
debugger. Although many of its techniques are heuristic, it operates automatically most of the
time and recovers gracefully (generally by asking the programmer questions) when its heuristics are
insufficient to a task.

The testing assistant analyzes the programmer’s source code with his help, developing a data-
abstraction view of it. The assistant organizes functions into hierarchical modules, called layers,
and keeps track of the datatypes of the dataflow into and out of each function. The assistant
accepts programs and test cases written in Lisp only, but its design is substantially language-
independent.

My rescarch on the testing assistant avoided areas that have alrecady been worked on. Most
previous testing rescarch concerns gencrating test data that will cxhaustively exercise a nearly
complete program, for instance by ensuring that all controlflow paths are tested at least once. The
testing assistant has no notion of exhaustive testing and no general technique for producing test
data.

The next section presents a brief overview of the testing assistant. Section 3 gives an example
scenario of the assistant’s use, with commentary and with additional explanation of topics
introduced in the overview. Sccticn 4 examines interesting implementation issues and techniques,
and the final section relates the testing assistant to other research.
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2. An Overview of the Testing Assistant

2.1 The Structure and Function of Test Cases
The structure of test cases directly reflects their function. A test case consists of
0 a ftest form, which is a procedure to execute;
0 some fest data, to which the test form is applied;
0 a copied environment, which is a context in which the test case is run;
0 a saved terminal input stream;

o the correct results of running the test case, consisting of a return value and a saved
terminal output stream;

0 two success criteria, which determine whether the test case succeeds or fails based on its
results;

0 a feature for which the test case tests, and which is used to determine when it is run.

2.1.1 Test FForms and Test Data

A test form is a procedure (a lambda expression, in Lisp) which is executed to perform a test.
It may be applied to fest data; several different test cases may -consist of the same test form
applied to different test data.

2.1.2 Restoring Global State

Many programs reference or modify the contents of a global environment, such as a database.
Test cases for such programs may nced to be run with global variables in a particular state. The
assistant can make a copy of the part of the global environment a test case references when it is
defined and restore this global state when the test case is run later. Restoration of state protects
the test case against changes in the environment that may have been made by the programmer or
by its own previous runs. A gencrally useful copied environment can be shared among several
test cases and referred to by name.

The assistant saves terminal input typed by the programmer to a test case as it is defined.
This input stream is replayed when the test is run automatically.
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2.1.3 Success and Failure

When the assistant runs a test case, it can either succeed or fail, depending on its results:
that is, on its output to the terminal and on its return value. Failure is typically used to indicate
that there is a bug in the program, although test cases could detect other conditions. Successful
tests are invisible to the programmer; the assistant alerts him to tests that fail.

When the programmer defines a test case, it is run and its results are displayed. These are
taken as correct unless he indicates otherwise. The results of a later, automatic run and the
correct results are compared by two success criteria, one for the return value and one for the
terminal output, which signal success or failure. The programmer can explicitly set the success
criteria for a test case or use the defaults, which check for simple equality of a result and its
correct value. He can also define his own success criteria, for example to check for equality of
returned objects of a user-defined datatype.

2.1.4 Which Test Cases Are Run

When the programmer finishes a series of modifications of his program that leave it in a
consistent state, he can ask the assistant to test it. Many of the test cases the assistant has stored
may not be affected by the changes the programmer has made; it would be wasteful to run them,
because they will succeed or fail just as they did before. The feature mechanism associates test
cases with the portions of the program they test so that only those relevant to modified portions
have to be run. Lisp programs are naturally divided into functions; each feature associates the
test cases that test for it with a set of suspect functions. When the programmer asks the assistant
to test his program, it runs those test cases that test for features whose suspect functions are
among those modified. The programmer can also explicitly ask the assistant to test for a given
feature.

An example feature which will appear in the scenario is the multiser fault of sets. This is a
characteristic form of bug in which an object, inserted twice, remains in the set after being
deleted once. Multiset behavior might be due to a bug in the insert routine (which was supposed
to check that the object was not alrcady in the set before inserting it), or to one in the delete
routine (which was supposed to delete all copies of the object if there were several present); the
insert and delete functions arc the suspect functions for the multiset fault.

Not all test cases test for a specific bug. A test case may just exercise some portion of the
program to detect problems that might be introduced by later changes. In this case, the
programmer may specify a layer as a feature. All the functions in the layer are taken as its
suspects. If more functions are added to the layer, they become suspect functions automatically.
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2.2 Bug Records

The failure of a test usually indicates that some of the suspect functions of its feature are
buggy and need to be fixed. A record can be created of the failure, which will inhibit further
testing of the feature until the programmer declares that he has fixed the bug. Bug records may
contain a description of the problem, which the assistant reminds the programmer of periodically.
The programmer can also directly create a bug record when he notices a problem other than a
failing test case, and can ask for a list of all outstanding bug records. These operations form an
automated agenda for debugging.

2.3 Chains

Each time a test case is run, a new copy of its stored environment must be created to avoid
making permanent changes in it. It is possible to combine several test cases together in a chain in
which each is run in the environment left behind by the previous onc in the chain. Chaining
saves expensive copying operations, first because only one copy of the environment needs to be
made when the whole chain is run, and sccond because it is often possible to avoid copying
altogether by setting up an environment with an initializing form at the beginning of a chain.

2.4 The Test Case Transformer

‘ Some program modifications refiect changes in the specifications of functions. These

modifications may invalidate test cases, because, for example, they then call the changed functions
_ with the wrong argunients. The assistant’s rest case transformer tries to recode test cases when
program specifications change. This is extremely difficult in general, but the assistant succeeds in
some common cases which account for many program changes. The assistant also recognizes the
cases in which it can not help and asks the programmer to fix the affected cases manually.

2.5 Correspondences and the Library

Layer correspondences are a means of generating test cases automatically. The assistant has a
library of useful “cliche” test cases which can be modified slightly to test the user’s program. This
library comes in layers organized around abstract datatypes, such as sets, vectors, and associative
databases, and the functions that operate on them.

The correspondence mechanism is  designed principally to exploit the library. A
correspondence is much like an aralogy, in the sense of Winston [6]; it provides a mapping from
parts of a source object to a targer object that allows knowledge about the one to be applied to
the other. A layer consists of a set of functions, a set of datatypes, and a set of features; a layer
correspondence maps the functions, datatypes, and features of its source layer to those of its
target layer. The programmer can create a correspondence between a library layer and one of his
own layers or between two of his own layers. Once a correspondence is created, test cases from
the source layer are modified automatically to make them usable in the target layer.
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3. A Scenario

Reading a scenario illustrating the use of the testing assistant is the best way to understand its
functionality. I will take an air traffic control simulation as the program the assistant is helping
develop. This program is very simple, and was written specifically to illustrate the use of the
testing assistant. The testing assistant has been used to help test several larger programs, including
itself. :

Parts of the scenario are concerned with a set of geometric utilities which manipulate points
and vectors implemented as lists, so that a vector from (100, 200) to (300, 400) is represented as ~
(100 200 300 400). Points and vectors are created with the constructor functions make-vector
and make-point respectively, both of which simply return a list of their arguments. The
advantages of using these abstract datatype constructors in preference to the standard list-
constructor function list will be discussed in section 4.2.

The air traffic program moves a set of planes through two-dimensional Cartesian space at
varying velocities and keeps them from colliding. FEach plane has a course, which is a vector.
The first point in the course vector is the current position of the plane; the plane is heading
toward the other point in the vector at a velocity proportional to its length. A record object of
datatype plane is created with the constructor function make-plane which takes a course as its
argument; the course of a plane object can be accessed with the plane-course function.

First the programmer defines the datatypes plane, course, vector, and point. He writes the
function move, which updates a plane’s course according to its velocity and heading. It calls the
functions vector-add, vector-length, and vector-scale; the programmer makes all these the
suspect functions of the feature move.

Next the programmer does some testing. In a typical Lisp system without the assistant, he
would type test cases into a read-eval-print loop, a program which reads a Lisp expression from
the keyboard, calls the interpreter to evaluate it, and prints the result. The assistant provides an
augmented read-eval-print loop for defining test cases. This environment does all the same things
as a standard read-eval-print loop and in addition allows the programmer to declare that an
evaluated cxpression is a test case.

The programmer’s input is in bold face and capitalized.

(MOVE (MAKE-PLANE (MAKE-VECTOR 0 0 100 100)))
(33 33 133 133)

Note that move returns the new course of the plane it moves.
tTest case.

By typing control-T (1T) the programmer declares that the last form evaluated is a test case. The
system cchoes “est case.” and prompts for the feature for which this is a test.

Feature: MOVE




A Program Testing Assistant ~ 6 A Scenario

The assistant stores the test case along with its result for future use.

To detect collisions, the system needs to find intersections of course vectors. The programmer
writes intersection, which depends on several auxiliary functions, such as slope, intercept, and
between?. These are the suspect functions of the feature intersection.

In the next interaction, the programmer explicitly sets the feature for a series of test cases
with control-F. Note that it is always possible for either the assistant or the programmer to take
the initiative in communicating any piece of information, depending on whether the programmer
prefers to be asked questions or to issue commands.

tFeature: INTERSECTION

The parameterized test case facility makes it easy to produce many test cases with the same test
form. This is useful in extensively testing a single feature. When the programmer types a lambda
expression at the augmented read-eval-print loop, the assistant creates a series of parameterizations
of the expression, prompting for test data to apply it to.

(LAMBDA (VECTOR1 VECTOR2) (INTERSECTION VECTOR1 VECTOR2))
vectorl: (MAKE-VECTOR 0 0 100 100)

vector2: (MAKE-VECTOR 0 100 100 0)

(50 50)

vectorl: (MAKE-VECTOR 0 0 100 100)
vector2: (MAKE-VECTOR 300 300 400 400)
nil

intersection returns nil, the special object LiSp uscs to represent falschood or the empty set, if
the vectors it is passed do not intersect.

vector1: (MAKE-VECTOR 0 0 100 0)
vector2: (MAKE-VECTOR 100 0 100 100)

>>>>Error: Division by zero.

The interpreter has detected an error in the evaluation of this parameterization. It calls the
debugger so the programmer can see what went wrong. The debugger is used exactly as it would
have been without the assistant.

quotient:
Arg 0 (number): 100
Rest arg (numbers): (0)
-+ BACKTRACE.
quotient « slope ¢« line-intersection ¢ intersection
-» EXIT.

By looking up the stack, the programmer confirms his suspicion that finding the intersection of
two vectors involves finding their slopes, and that the slope function docs not handle vertical
lines properly. He exits the debugger, returning control to the assistant. The assistant notes that
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the the evaluation caused an error:

Make a bug record? VYES.
Bug: -SLOPE FAILS ON VERTICALS.

The programmer makes a bug record to remind himself to fix slope. When he has done so, the
following dialog ensues:

DONE EDITING.
Bug in feature "‘intersection’’: Slope fails on verticals.
-- Fixed? YES.

The programmer has modified slope, a suspect function of the intersection feature, so the
assistant asks if the modification included fixing the outstanding bug associated with that feature.
Given that it did, it is useful to run test cases for the feature.

Running test cases for this feature.

~((lambda (vectorl vector2) (intersection vectorl vector2))
(make-vector 0 0 100 0)
(make-vector 100 0 100 100)) =>

(100 0)

New result; is it correct? YES.

Note that although all the parameterized test cases are re-run, only the one that needs interaction
with the programmer is displayed.

Using the function intersection, the programmer defines a collision-detection layer. To test it,
he arranges an environment in which two planes are about to run into each other and saves it as
the standard environment to test collision detection in. The control-E command prompts for the
name of an environment: if it is a known name, the corresponding environment is retrieved;
otherwise the assistant copies global variables selected by the programmer and gives the newly
created environment the specified name. ‘

tEnvironment: COLLISION-ENV
[New environment.]
Copy what? *PLANES®*

The environment will include the contents of the plane database *planes*, which the programmer
has arranged with two planes on intersccting courses.

(RUN 1)

The top-level function of the simulation, run, moves cach plane in turn. It takes an argument,
which is the number of “ticks” or iterations to run for, and returns the symbol done.
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<<Warning! plane-23 is on a collision course with plane-69.>>
<<Collision! plane-23 and plane-69.>>

done

tTest case.

Feature: COLLISION

With collision detection apparently working, the programmer defines a collision prevention
layer to correct the courses of planes so they avoid each other. He can test collision preventlon in
the same environment he used for testing collision detection.

tEnvironment: COLLISION-ENV
The programmer retrieves his saved environment by typing control-E as before.

(RUN 1)

<<Warning! plane-23 is on a collision course with plane-69.>>
<<plane-23: course corrected.>>

done

(PLANE-COURSE PLANE-23)

(704 813 455 808) A

tSuccess criterion: VECTOR-EQUAL

The programmer verifies that the course of plane-23 has in fact changed. He sets the success
criterion for the last form to vector-equal, which he has defined to check equality of vectors.

t21Test cases chained.

The programmer marks the last expressions evaluated as a chain by typing control-2 control-T.

A more rigorous test is to see what happens when 'th_ree planes are abeut to collide.
tEnvironment: COLLISION-ENV

The programmer uses an initializing form to add another plane to the. standard collision-env
environment:

(PUSH (MAKE-PLANE (MAKE—VECTOR 650 760 650 900)) *PLANES*)
(plane-88 plane-23 plane-69)

tInitializing form.

(RUN 1)

<<Warning! plane-23 1is on a collision course with plane-69.>>
<<plane-23: course corrected.>>

<<Collision! plane-23, plane-88.>>

done

tWrong result.

Apparently the collision corrector is not smart enough; the programmer types control-W to mark
this as an incorrect result,
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Make a bug record? YES.

Bug: FAILS ON MULTIPLE COLLISIONS.
(PLANE-COURSE PLANE-23)

(704 813 455 808)

tSuccess criterion: VECTOR-EQUAL

t21Test cases chained with 1 initializing form,

Now it’s time to go home.

The programmer starts the next day by asking for a list of outstanding bug records and
decides to work on the multiple collision bug. The function correct-course-to-avoid will have
to be changed. It used to take as arguments a course to correct and a plane to avoid; it should
take a course and a list-of-planes, all of which should be avoided. When the programmer
makes this change, any test case calls on correct-course-to-avoid of the form

(correct-course-to-avoid course plane)
are automatically transformed by the assistant into
(correct-course-to-avoid course (LIST plane))

by applying the function list, a transformation which turns an object of any datatype into a list of
one object of that datatype,

It is important to understand that this sort of transformation is applied only in test cases, and
not in the programmer’s code. Transformations are not correctness preserving; they are heuristic
and may resulf in invalid or useless test cases. Nevertheless, a heuristic transformer is better than
the alternative—throwing away all test cases when the functions they call change.

DONE EDITING. A

Bug in feature ‘‘collision’’': Fails on multiple collisions.
-- Fixed? YES.

Running test cases for this feature.

(push (make-plane (make-vector 650 750 650 900)) *planes*)
(run 1)

<<Warning! plane-23 is on a collision course with plane-69.>>
<<plane-23: course corrected.>>

Output is different up to success criterion *‘equal’’.
Previous [incorrect] output was:

<<Warning! plane-23 is on a collision course with plane-69.>>
<<plane-23: course corrected.>>

<<Collision! plane-23, plane-88.>>

Is the new output correct? YES.

Next the programmer makes provision for planes entering and leaving the airspace the
program is concerned with.  The database *planes* contains all the “visible” planes. The
function plane-appears cnters a plane into the database; plane-vanishes removes one; and
where returns the (x, y) position of a plane, or nil if it is not in the database.
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Since this plane database behaves so much like a simple mutable set, the programmer makes
a correspondence with the set layer of the library. He supplies the datatype and functional
correspondences, from which the system derives new features and automatically codes new test
cases. -

~ The assistant represents the correspondence like this:

Layer
=> plane-db

Layer
set

Datatypes Datatypes
set \ \ = plane-db
element = plane

Functions Functions
set-insert = plane-appears
set-de]ete-———\\%_\} plane-vanishes
set-member > where
set-union
set-intersection
set-difference
set-contains

Features Features

multiset — — -— — — - plane-db-multiset
Test forms for

Test forms for .
plane-db-multiset

multiset

(Tambda (set element)
(set-member element
(set-delete element
(set-insert element
(set-insert element

set)))))

(Tambda (plane-db plane)
(setq *planes* plane-db)
(plane-appears plane)
(plane-appears plane)
(plane-vanishes plane)
(where plane))

Once the correspondence has been declared, the multiset feature and its test cases are applied
to the plane database layer. The assistant recodes the test form for multiset, changing the names
of the functions and variables: set-insert becomes plane-appears, and so on. In fact, plane-
appears has a slightly different interface from that of set-insert: set-insert is passed a set
argument, whercas *planes®, which plane-appears modifies, is a global variable. These sorts of
minor differences are smoothed out by the transformer. The set to plane-db correspondence is
an incomplcte one; set-union, for instance, is not in the correspondence. There may generally
be functions and datatypes in cither the domain or range of a correspondence, anc test cases
using these functions or datatypes can not be carried over.
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The test form produced for plane-multiset in the correspondence is not a complete test case;
it is a lambda expression which must be applied to a plane-db and to a plane.

Generated form for *‘plane-db-multiset’’:
(lambda (plane-db plane)

(setq *planes* plane-db)

(plane-appears plane)

(plane-appears plane)

(plane-vanishes plane)

(where plane))
Instantiate this form? YES.
plane-db: NIL .
plane: (MAKE-PLANE (MAKE-VECTOR 0 0 100 100))
Result is (0 0), OK? NO.

The plane database does indeed suffer from the multiset fault. The programmer fixes the bug
by modifying plane-appears, a suspect function of plane-db-multiset.

DONE EDITING.
Running test cases for feature ‘‘plane-db-multiset’’:
((1ambda (plane-db plane)
(setq =*planes* plane-db)
(plane-appears plane)
(plane-appears plane)
(plane-vanishes plane)
(where plane))
nil
(make-plane (make-vector 0 0 100 100)))
=> nil .
Return value is different up to success criterion '‘equal’’.
Previous [incorrect] value was:
(0 0)
Is the new return value correct? YES.
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4. The Implementation

The testing assistant has been implemented on the MIT Artificial Intelligence Laboratory’s Lisp
Machine [1], a single-user computer optimized for Lisp. Where possible, the testing assistant
makes use of existing programming tools and conventions in the Lisp Machine environment. The
assistant acts as an integrated part of the Lisp Machine display editor, Zwei (a relative of the
PDP-10 editor EMACS), which provides a completing reader and a uniform command syntax that
are exploited by the assistant. The assistant uses the interpreter and debugger in running test
cases and the compiler’s expert knowledge of program syntax in its analysis of free variable
references.

4.1 Some Success Criteria

The default success criterion is the Lisp function equal. Some other criteria are eq (a
“stronger” form of equality); not-nil, which ignores the correct result and succeeds if the test
case does not return nil; set-equal, which checks two sets to sce that they contain the same
elements; and isomorphic, which checks that arbitrary structures, possibly including pointer
cycles, are topologically identical.

4.2 The Representation of Test Data

A test datum is stored not as a value, but as a expression which yields a value when it is
evaluated. This is necessary because the value of a test datum is often relative to the environment
the test case is run in. For example, the programmer might supply plane-23 as a test datum for
a case whose environment includes *planes*. Each time the case is run, a new copy of plane-
23 is used, so it is necessary to find the current one. A somewhat different use is to supply
(random), which generates a random number, as a test datum; this will result in a different
number being used each time the datum is evaluated.

Storing test data as expressions to be evaluated has the additional benefit that if the
programmer uses abstract datatype constructors to specify objects, he is protected from changes in
the way the datatypes arc implemented. For instance, in the geometric utilities, vectors are just
lists, but they are constructed with the function make-vector which makes a list of its arguments.
If the implementation of vectors is changed to a record structure, the parameterized test cases
created in the scenario will still work, because ecach test datum is stored as (make-vector x0 y0
xI yl), which will now return a record object.
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4.3 The Copier

Environments, unlike test data, are stored as sets of variables and copies of their actual
values. This is complicated by the peculiarity of Lisp that variables are objects called symbols,
which also can be parts of data structure. Moreover, each symbol has not only a value but also a
property list, which sometimes stores unstructured data. Thus, an environment is in fact a set of
triples, each consisting of a symbol, its value, and its property list. When a test case is run,
each symbol in its environment has its value cell bound to a copy of the value specified in the
corresponding triple, and its property list bound to a copy of the stored property list.

The copier works much like a garbage collector: it starts from some root node or nodes
(which are global variables referenced by a test case) and traces pointers from them recursively,
marking items as they are copied, until every reachable object has been marked. A difference is
that typical garbage collector algorithms only leave one copy of the structure, destroying the
original with forwarding pointers, whereas the assistant’s copier must leave the structure being
copied intact. This is done by inserting copy objects in a hash table keyed by the object they are
copied from. '

A database may be sufficiently interconnected that all parts of it have pointers to all other
parts; in this case copying an apparently innocuous root node results in storing away the entire
thing. The programmer can use a filter to specify that a test case references only parts of a
database. A filter consists of a series of sets of objects that are either excluded from or included
in the copied environment. For something to be copied, it must be in all of the included sets
and not in any of the excluded ones. Things not copied are replaced by a special object that
makes it easier to detect when a test case tries to reference them. The sets themselves are
specified by predicates on objects; half a dozen common predicates are available from a menu
supplied by the assistant, or the the programmer can give a completely arbitrary one. Forms in
the menu include the value of -a given symbol; the property list of a symbol, or a certain
property of every symbol; a particular field of a record-structure; all the objects in a list; and all
objects of a certain datatype.

In principle, terminal strcam copying could be extended to input from and output to other
devices (disk files, for instance). Unfortunately, the structure of the Lisp Machine input/output
system makes this difficult in the general case.

4.4 Expense

Some test cases take an annoyingly long time to run, ecither because they do a lot of
coinputation, or because of environment copying overhcad. It is possible to label a test case
expensive. This allows the programmer to suppress or cnable the running of slow test cases at
different points in the program development process. He can sct one of three testing modes at
any time:  [xpensive, in which cxpensive test cases are run just like any others; Cheap, in which
only fast cascs are run; and Selective, in which the system asks before running expensive test
cases. The run time of a test case is measured, and if it exceeds a certain constant amount the
assistant offers to mark it expensive.
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4.5 Analysis of the Programmer’s Code

The testing assistant is made substantially language-independent by confining language-
dependent features to specific modules: analysis of the programmer’s code, and analysis and
recoding of test cases in the transformer. These modules could be .duplicated for other languages
" relatively easily.

For each function in a program the assistant needs to establish its ports and the layer it is in.
Ports are the means by which dataflow enters and leaves a function; knowledge abeut ports is
used by the transformer. A port has a route, a variable name, and a specification. The route of -
a port encodes the way the data passes to or from the function: by a free variable, through the
return value, or as an argument. The name of a port is the formal name of an argument or free
variable; return values have no names. In the present implementation the specification field of a
port is just the datatype of the objects that pass through it.

In determining a function’s ports, the compiler is called to find references to global variables.
This is the only route information not explicit in function definitions. Determining datatypes is
more difficult for Lisp, because it does not have any sort of datatype declarations. Traditional
datatype declarations such as integer, although perhaps heuristically useful, would not be a
complete solution to the problem, because the assistant manipulates highly specific datatype
information, such as “ordered list of late planes without duplicates”.

Typically, the mnemonic names given variables contain significant datatype information, much
of which the assistant can extract using heuristic rules. These heuristics are highly specific to Lisp
and to individual programming styles and conventions, so the programmer. may parameterize and
modify them to suit his own idiosyncrasies. The extraction of datatypes from variable names
doesn’t work in cases in which a port is not named explicitly: the return value of a function
being the only case in Lisp. In these cases, and in those in which the heuristics fail, the
programmer can add a datatype declaration to the function; the assistant uses a simple template-
driven recognizer to extract these declarations from comments.

;5 Run the simulation for a while, returning a dont-care.
;5 This function is in layer run.
(defun run (n)
(do ((i 1 (1+ 1)))
((= i n))
(mapc #’move planés)
(cond (*carefully-p* (check-collisions))))
"done)

In this example, the assistant assumes that the global variable *planes* is of datatype list-of-
planes, since list is the default aggregative datatype. By a Lisp convention, *carefully-p* has
datatype boolean since it ends in ~-p. The argument n is taken to be a number because it is
only one letter long. The programmer has specified that the return value is of datatype dont-
care, meaning that the function is for side-effect only.

Similar techniques are applied to the names of functions to guess their return values and
layers.  For cexample, late-p returns a boolean value, and move-internal-1 is in the same layer
as the function move. When a function name docs not supply enough information, as is the case
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with run above, the programmer can use a declaration, or the assistant will ask.

4.6 The Test Form Transformer

The transformer is triggered by changes in the set of ports for a function. Transformations
fall into two classes: syntactic and semantic. Syntactic transformations are ones that fix test cases
after the route of a port is changed. Examples are reordering the arguments to a function and
changing a function to take an input through a free variable rather than through an argument.
Semantic transformations are induced by changing the datatype of a port. The semantic
transformer tries to apply a datatype transformation to the datatype of the old port to make it
match that of the new port; a datatype transformation is a function which implements a “natural”
mapping from one datatype to another. The assistant has a heuristic scheme for finding the right
transformation to use given the datatypes of the two ports.

The transformer is implemented as five phases: the port correspondence matcher, the dataflow
analyzer, the syntactic transformer, the semantic transformer (incorporating the fransformation
inheritor), and the coder. '

The port correspondence matcher tries to figure out what changes the programmer has made
since the last time it was invoked. For each modified function, it looks at the sets of ports it had
before and after the changes, and heuristically matches them on the basis of several criteria: in
order of descending importance, by datatype, by name, and by route. (A port that either existed
before and was deleted, or was added in the changed version, is represented specially.) Such a set
of pairs of ports is called a port correspondence. (Each function pair in a layer correspondence is
in fact also implemented as a port correspondence; this is how the transformer is able to smooth
over minor differences in the behavior of corresponding functions.)

The test form transformer acts on dataflow diagrams rather than Lisp code, in order to
abstract the semantics of the test form away from Lisp syntax. Besides providing language
independence for the transformer, this is needed because conceptually simple transformations may
involve drastic syntactic changes. A dataflow diagram is a directed acyclic graph whose vertices
are functions and whose edges are labeled with ordered pairs of ports. (There is an example
dataflow diagram on page 17.)

The dataflow analyzer symbolically evaluates a test form and produces as output a dataflow
diagram. Since dataflow diagrams do not represent controlfiow, the analyzer can only operate on
test forms that are straight-line code, without control constructs such as loops or conditionals.
Waters’s knowledge based program editor system [5] uses dataflow diagrams augmented with
controlflow information to analyze and generate code involving complex control structure. It will
eventually be used in place of the comparatively simple analyzer and coder 1 wrote.

The coder (actually the last stage of the transformer) is the inverse of the analyzer: it takes a
dataflow diagram modified by the syntactic and semantic transformers and turns it back into Lisp
code. The transformer does not preserve syntactic style; it may produce quite different looking
code from that analyzed, even if a null transformation is applied. This is acceptable because its
output is still readable and the syntax of test forms is not important.
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4.6.1 'Syntactic Transformations

The syntactic transformer modifies the diagram produced by the analvzer to reflect the changes
expressed by the port correspondence. It substitutes the new ports in the correspondence for the
old ones. This induces changes in route when the diagram is recoded. Since route is not
represented explicitly in the dataflow diagram, but is a property of ports, the coder does all the
real work.

Suppose check-course-collisions is modified so that the set of planes is passed to it as an
argument instead of via the global variable *planes*. This is a typical syntactic transformation,
accomplished simply by substituting a new port with an argument route for the old *planes*
free-variable port. The following diagram makes the port correspondence clear; the syntax used is
<{name, route, datatype>.

Ports of check-course-collisions

Before After
<course, <argument 1>, course> ——>> <course, <argument 1>, course>

<xplanes*, free, list-of-planes>——> <planes, <argument 2>, list-of-planes>

When the coder is invoked, it needs to find something that will evaluate to the value of
*planes* to put into the second argument position; “*planes*” itself does, so

(check-course-collisions course)
is recoded in test cases as

(check-course-collisions course *PLANES*)

When the opposite modification is made, so that the argument becomes a free variable input,
a call of the form

(check-course-collisions course planes)
is transformed into

(SETQ *PLANES* planes)
(check-course-collisions course)
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4.6.2 Semantic Transformations

The semantic transformer looks for ports that have changed datatype; these are the ones to
which semantic transformations must be applied. It calls the transformation inheritor to find a
transformation between the new and the old datatype and splices. a new vertex into the graph
corresponding to that transformation function.

Suppose the function move, which used to take a plane argument, is changed to take a
course argument. :

<plane, <argument 1>, plane> —————>> <course, <argument 1>, course>

The function plane-course extracts the course field of a plane object, so it is the Tight
transformation to use.

(move plane)
is transformed into
(move (PLANE-COURSE plane))

New ports must be treated somewhat differently; since they are not paired with another port,
there is nothing to apply a transformation to. The programmer can either specify that a new Pport
cari be derived from some other port by applying a transformation, or can give a default form to
use for the port. Suppose move is further modified to take a velocity argument for efficiency
reasons; perhaps its caller computes the velocity for some other purpose. A velocity can be
derived from a course with vector-length and supplied as the second argument to move. The
dataflow diagrams for this example are

Before ’ 4 After

plane : plane

plane-course ' p;l;ne—course

move . ) vector-length

v

and the latter is coded as

move

\*

(LET ((COURSE-1 (plane-course plane)))
(move COURSE-1 (VECTOR-LENGTH COURSE-1)))

Because there arc two references to the return valuce of the call on plane-course, the coder
is forced to introduce a local variable course-1 to store it in. The name course-1 is generated
from the datatype of the corresponding dataflow edge (plane-course returns an object of datatype
course) and a numeric suflix which guarantees that the name has not been used clsewhere. This
non-local change, which, though semantically simple, involves major syntactic modifications, is an
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illustration of the utility of the dataflow representation.

4.6.3 The Inheritance of Datatype Transformations

Datatypes are arranged in an inclusion hierarchy, and transformations can be inherited
through the hierarchy. For instance, the function vector-iength transforms a vector into a
length; since a course is a kind of vector and a length is a kind of number, vector-length
also transforms a course into a number. In general, if a transformation is needed from some
source datatype to some larget datatype, it is safe to search for a transformation from any
datatype that is a gerferalization of the source to a datatype that is a specialization of the target.

[ generalization of source] vector

W

Ten gth [specialization of target]

[source] course =>>number [targer]

(Single arrows denote inclusion and double arrows transformations. The horizontal transformation .
can be inherited from the vertical one.)

More complicated schemes are needed for dealing with compound datatypes in which an
aggregative datatype (such as list, array, or set) is further constrained to have elements of
another datatype. This yields new datatypes like lisi-of-planes or array-of-sets-of-points.
Compound datatypes are represented specially internally because different inheritance rules and
different types of transformations apply to them. For example, an object may be turned into a
list-of-objects by applying list; and therefore a plane (which is a kind of object) can be so
transformed into a list-of-planes. This is a different sort of inheritance than that explained
before because a list-of-objects is not in general a list-of-planes.

list

object =—===>> list-of-objects

list

plane ==——==—o"1ist-of-planes

The function list is an example of a singlefon transformation, which creates an aggregate of
one clement; its opposite is the selection transformation first which transforms a list-of-objects
into an object. Aggregative datatypes often are provided with an iferafor, which applies a
function to cach of their elements; mapcar is the iterator for lists. A list-of-planes can be
turned into a list-of-courses by iterating plane-course over it with mapcar.

Transformations applied automatically by the assistant are intended to be “natural” so that the
meaning of the test case will usually be preserved. Unfortunately, selection transformations are
not invertible, and most of the object one is applied to will get lost. Test forms produced by
applying sclection transformations may not be very uscful, though they probably will not. cause
errors in cvaluation.
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~There are instances in which there is more than one inheritable transformation between two
datatypes, and cases in which there are none. In these cases, the user can specify a
transformation. Test case recoding can be made subject to the approval of the programmer if he
likes, and he can directly edit test cases when the transformer fails.

~ In order to give the transformation inheritor leverage, the programmer should use variable
names that contain complete datatype specifications. Still, the system can operate with reduced
functionality without this information; it does not force the programmer into a rigid data-
abstraction programming methodology.

4.7 Transformation of Data Objects

Techniques very similar to those used for transforming test forms are used to transform record
objects, such as those stored in cnvironments. In Lisp Machine Lisp, the defstruct special form
is used to define record datastructures. The assistant analyzes defstructs and notices when they
are changed. When the programmer edits a defstruct definition, a field correspondence is created
between the old and the new ficlds, just as a port correspondence is created between the new and
old ports of a function. The datatypes of the fields can often be guessed from their names. If
there are objects of the datatype defined by the defstruct in copied environments, the transformer
modifies them by adding, reordering, or removing ficlds as necessary. Again, where field
datatypes have changed, datatype transformations may be applied; and if there is a new field, it
may be calculated from existing fields or set to a default.
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S. Related Work

The testing assistant is quite different from most of the work that has been done in the
software testing field in that it is less concerned with the content of the test cases themselves than
with an environment to support their use. (For examples of testing- research, see [7], which has a
collection of papers on testing.) -

One system that does focus on incremental, interactive program testing is Lieberman’s
TINKER [2]. TINKER is a program synthesis system using a modificd programming by cxample
strategy in which the examples are not input/output pairs but code fragments. These code
fragments also serve as test cases for the program being developed. Whenever the program is

~ edited, all the test cases are re-run. TINKER was mainly intended to explore a novel synthesis

scheme; it has nonec of the features of the testing assistant that make testing of conventionally
constructed programs easy. One useful feature of TINKER which the testing assistant lacks is a
technique for automatically producing dummy subprocedures to test partially written code. This
feature encourages top-down debugging, rather than the usual bottom-up style.

Some research has been done on the understanding of specific types of bugs. Shapiro’s
“Sniffer” system [4] has a deep understanding of a few bugs. It can recognize them from their
symptoms and provide a detailed diagnosis of the cause of the problem. The testing assistant has
a shallow understanding (provided by test cases in the library) of many different bugs.

Systems similar to my testing assistant are used in industry. One tester I know of is used in-
house by a large finn to test microcomputer programs written in a low level language. It provides
input and output stream copying and checks output for equality with that stored. It also has a
facility similar to features for running only useful test cases.

The testing assistant will be integrated into the Programmer’s Apprentice system described in
[3]. The main limitation on the transformer’s power is the restriction of port specifications to a
datatype. The Programmer’s Apprentice will provide ‘a more complete specification language and
powerful “cliche-based” analysis and synthesis techniques. These will greatly extend the
transformer’s capabilities, and will make possible more sophisticated ways of generating test cases
than the current correspondence mechanism.
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