Massachusetts Institute of Technology
Artificial Iniclligence Laboratory

A.I.Memo 652 ' ’ Logo Memo 60
December 1981

SOME POWERFUL IDEAS

Rohert Lawler

ABSTRACT

Here is a sct of problem solving ideas (absorbed by and developed through the MIT T.ogo project
over many years) presented in such a way as to be useful to someone with a Logo computer. With the ideas
on unbound, single sheets. you can easily pick out those you like and set aside the others. The ideas vary in
sophistication and accessibility: no threshhold, no cciling.

The wark reported in this paper was supported in part by the National  Science Foundation under grant
number 77-19883SED and by the Spenser Foundation. It was cenducted at the Artificial Intelligence
Laboratory of the Massachusetts Institute of Technology. ‘The views and conclusions contzined in this paper
are those of the authors and should not be interpreted as necessarily representing the official policics, cither
expressed or implied, of the National Science Foundation or the United States Govemment.

© MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1987






SOME POWERFUL IDEAS

Here is a set of problem solving ideas (absorbed by and developed through the
MIT Logo project over many years) presented in such a way as to be useful to
someone with a Logo computer. With the ideas on unbound, single sheets, you can
easily pick out those you like and set aside the others. The ideas vary in
sophistication and accessibility: no threshhold, no ceiling. '

CONTENTS

What is a Powerful Idea ?

Getting Off the Ground

Do it yourself

Make It Your Own

Can | Make Logo Commands ?
Hooray for Bugs !

Do it again

Thinking About Variables

Do Something a Little Different
What Good Is Planning ?
Passing the Buck

The Clever Hack and Clever Tactics
Advice to a Teacher

Flying High

Computers and People
Single-key Interfaces
Microworlds and Learning

The Idea of a Formalism
Different Kinds of Variables
- Variables and Abstraction
Getting Off the Garden Path
Re-solving Problems
Sometimes You Need Another Idea

collected by
Bob lLawler



WHAT'S APOWERFUL IDEA ?

Everybody knows what a grapefruit is and how to cut one in half. When you cut
a grapefruit perpendicularly to the core, the cut face shows a pattern like a wheel,
with axle, spokes and rim. A little energy and perserverance are all you need to dig
out and enjoy the juicy meat from between the spokes. There must have been a time
when you didn’t know which way to cut a grapefruit. Did you find out how the hard
way ? What happens if you divide the grapefruit the other way, along the core ? It is
nearly impossible to get at the still buried meat, for the tough skin of the sections is
an intact obstacle. The grapeiruit looks pretty much uniform on the outside of its
skin, but when you look deeper you can see there is a very specific and important
organization that you must understand if you want to get at what's inside. This very
simple, very concrete situation of cutting up a grapefruit provides a useful way to look
at many other very troublesome problems. It points up the issue that how you
analyze a problem, whether your analysis "goes with the grain" or "against the
grain", can make a world of difference in how hard the problem is to solve.

The intrinsic thing that gives such an example power in thought is its simplicity,
in the sense that given the perspective of the idea (embodied in the concrete
example), the primary conclusions that can be drawn are obvious without long
chains of arguments. That is, such ideas are elegant in the mathematician’s sense.
The extrinsic root of power is the example’s fruitfulness, how well it can serve in
helping you understand other prablem situations by analogy.

The more powerful ideas you have the better. If you have only one possible
model of a situation, you are a prisoner of a limited point of view. If you can interpret
a situation in terms of several possible models, you can compare the fit of each to
judge which is most appropriate. As a situation changes, some alternative model
may come to better fit the situation than the one originally best. Could it be that the
flexibility of mind we ascribe to "smart" people derives directly from their having a
well developed stock of such powerful ideas ? ‘

Descartes introduces his Discourse on Method with the witticism that
intelligence in the only thing in the world of which there is no scarcity, for although
‘men may complain that they lack goods or information, no one complains that his
judgment is inadequate. Why should this be the case ? People don't know -- or
belisve -- that ideas can be powerful. The most powerful idea of all is that there are
such things as powerfu! ideas. Those of us who lack this idea may struggle valiantly
with problems, combing the world for information and our minds to make
connections, without imagining that we need to formulate the problem through a
fundamentally different mode! of the situation.




Vi

DO ITYOURSELF |

How do you make a Logo circle ? Circles have something to do with centers
and a thing called a radius, don’t they ? But the Logo turtle doesn’t know anything
about centers or a radius -- all it knows is how to turn right and left and to move
forward and back. What would YOU do if you were the turtle ? You might do it
yourseif, try to make a shape that's a little bit like a circle by taking one step forward,
turning a little, and doing both over again and again. If the path you follow has rnany
turns, the shape of your path will be like the circle the turtle makes in this procedure:

TO CIRCLE
'FORWARD 1
RIGHT 1

CIRCLE

When you do it yourself, you can understand better what the turtle is doing.

Suppose you made a picture of a bird and wanted to make it fly. How would you
do it ? Can you put yourself in the scene and write a "people-procedure” for your
own flying ? It must have something to do with flapping your arms and going forward.
If you do it again and again, as in the circle example, your simplest people-procedure
might be like this: ’

TO FLY

RAISE ARMS

LOWER ARMS :
FORWARD SOME-AMOUNT
FLY

Does it seem childish to do it yourself ? Grown up people never go around
imitating turtles or pretending to fly, do they ? Some really smart people do; they
know that putting themselves in the scene, being a part of the action, helps them
understand what's going on. One of the most famous scientists of modern times,
James Clerk Maxwell, once imagined himself a super-ordinary tiny creature (he
named it a "demon") who could control the flow of molecules in a gas by opening
and closing a tiny window. Maxwell was not being childish by putting himself in the
middle of the action. He was raising a fundamental challenge to the basic laws of
physics. Give it a try when you have a problem to solve. Do it yourself.




MAKE IT YOUR OWN

A six year.old was introduced to the INSP! procedure beiow. When she saw it
executed with these variable values, [INSP! 10 0 1], she declared that it looked like a
“seahorse" and asked if she could have a seahorse procedure of her own. (I coded
for her the equivalent SEAHORSE procedure.) Her "SEAHORSE" procedure was
one she explored with considerable interest and satisfaction for several days,
~ delighting in the pretty designs she discovered:

TO INSP! :DISTANCE :ANGLE :CHANGE TO SEAHORSE :CHANGE
1: FORWARD :DISTANCE 1: MAKE "ANGLEO
2: RIGHT :ANGLE 2: FORWARD 10
3: MAKE "ANGLE (:ANGLE + :CHANGE) 3: RIGHT :ANGLE
4:GO " 4: MAKE "ANGLE (CANGLE + :CHANGE)
: 5 GO "2
Seahorse 1 Seahorse 7

It was important to this child to make the procedure her own because it put limits on
how much complexity she had to cope with. She didn’'t have to worry about other
people’s procedures or how they related to hers. She created her own little world
where she was free to explore and develop her own ideas.

Making things your own limits the problems you face at one time. It also serves
to make you more independent. You can use your own procedure whatever way you
want. You can become as certain as you need to be about how your procedure
hehaves. You can change your procedure without doing something unexpected to
anybody else. But greater independence has its problems. You may get frustrated
when your procedure doesn't work the way you think it should; you may have a
harder time explaining your own procedure to somebody when you ask them for help.
Even if you begin Logo by copying others’ procedures and changing them to be
exactly what you want them lo be, you will soon go from changing other people's
procedures to making your own procedures from scratch.




CAN | MAKE LOGO COMMANDS 2

Any procedure you write is a new Logo command. In this first sense, the
answer is "yes" and obviously so. On the other hand, if you write a procedure whose
only function is to print "FOQO", that would clearly be of a different stature from the
Logo primitves, such as RIGHT and FORWARD, mainly because it won’t do much for
you. Do you need more "Logo commands ?" Do you have enough experience to
know what you need? Hardly anybody can answer "yes" very positively to such
difficult questions as these. The way to find out if you need more Logo commands is
to look at what you do and the procedures you've coded. Ask yourself: are there
sequences of repeated instructions in procedure after procedure ? Are there tests of
data conditions applied time after time ? There probably are. Here is an example of a
command you might find a valuable addition to Logo:

PURPOSE: when programming with lists, most frequently iteration is
terminated by testing a data condition; for example, the list is empty so no
more processing can be performed on its members. It would be useful to have
a predicate which directly reports whether a list is empty or not. Such a one
could be encoded this way:

TO EMPTY? :LIST

IF :.LIST =[] OUTPUT "TRUE
OUTPUT "FALSE

END

PURPOSE: when programming with lists, very often you want to know if a
specific item is a member of a list. The MEMBER? predicate will answer that
question.

TO MEMBER? :ITEM LIST

IF EMPTY? :LIST OUTPUT "FALSE

IF :ITEM = FIRST :LIST QUTPUT "TRUE
OUTPUT MEMBER? :TEM BUTFIRST :LIST

The gain in your programming from using such a new command may appear a
small one, and so it is. But small gains add up to significant advances. Easy
extensibility is a key feature of the Logo language. Using that feature to simplify your
own coding will enable you to code more complex procedures and understand them
better. ‘




HOORAY FORBUGS !

. Making a square with the turtle is pretty easy, FORWARD 100, RIGHT 90 and do
it again and again and again. The simplest procedure does it this way, using
"recursion” (the third line, "SQUARE" means perform the entire procedure again):

TO SQUARE
FORWARD 100
RIGHT 90
SQUARE

‘A procedure to make a little square would start with the turtle going forward some
smaller distance, such as ten turtle steps. One little change can make a square maze
grow out of the little square. You can figure out just what the turtle will draw with this
procedure: :

TO SQUARE.MAZE :DISTANCE

FORWARD :DISTANCE

RIGHT 90

SQUARE.MAZE :DISTANCE + 5

When the turtle turns RIGHT 90, the maze is square. How much should the
turtle turn to make a six-sided maze ? ("Sixty degrees," you say ? That's right.) How
much to make a five-sided maze ? Five is halfway between four and six. Because
75 is halfway batween 60 and 90, that would be one good guess for how many
degrees to turn.

TO FIVEMAZE :DISTANCE
FORWARD :DISTANCE
RIGHT 75

FIVE.MAZE :DISTANCE + 5

Would you say that using ‘75’ is a mistake because it does not make exactly what you

hoped ? If so, you have to be willing to see that mistakes can be good things. When
“the result of a procedure turns out different from what was expected, programmers
say the procedure has a "bug"”. But sometimes the surprising result is a better one
‘than what you first intended. That's a "new discovery" bug, one of the best kind.

Any bug, something which makes your procedure do the unexpected -- if you
bother to fingure it out -- leads to an increase in your knowledge. Although a bug
~ may hinder your objective, the bugs of your procedures will be the best guidance you
can get of what to learn to master the Logo programming environment. If bugs can
lead you into new discoveries and give good guidance on what to learn, this suggests
a new way a teacher or advisor could be helpful to you. Such an advisor could help
in exploring and understanding the difference between what you expected and what
the computer did. If you, or anybody else, want to know how you're coming along
with the computer, the best indication of progress in understanding is a record of the




bugs you have encountered, and understood, and those you are still working on.




DO IT AGAIN

A ten year old girl met the Logo language for the first time. She didn’t have any
idea of what to do or what could be done. She started to draw with the turtle, making
it go forward different amounts and turn various numbers of degrees. Sometimes she

didn't like the latest line the turtle put on the screen and wanted to erase it. The turtle
didn’t have an eraser, so she used a clever trick: whenever she liked an addition to
her drawing, she would code it into a procedure she wrote as the drawing developed;
when she didn’t like a change, she would clear the screen and execute the
procedure, that way re-creating the drawing as it looked before the latest change.
She completed here effort with a drawing that looked a bit like a boot, as you see
below:

"Boot" | 25 "Boots"

The girl had given Logo a fair chance, worked dutifully, had some good ideas,
but she was basically bored. "Is that all the turtie can do ?", she asked. For no very
good reason, she executed her "BOOT" procedure again. The second boot drawn
over the first was rotated through a large angle. She did it again, and again, and

-again, becoming caught up in the design that was emerging from repeating her
"BOOT". Finally, she cleared the screen and executed "BOOT" twenty five times in
rapid succession under control of the REPEAT command. She was thrilled with the
design above which emerged from her doing it again.

_ SUMMARY _
Repeating a spegcific list of commands can have interesting results if the executions
"add up”. The ways to do it again are by re-keying, naming the commands as a
procedure and rekeying the name; executing a named procedure under the scope of
a repeat command; recursive invocation; and looping.




THINKING ABOUT VARIABLES

Variables are names which have values assigned to them. A good first way to
think about variables is as little boxes, say the kind that are used to keep wooden
matches in. Computer memory is made of of these little boxes, each of which may or
may not have something in it. Naming the boxes is a good way to keep track of
specific boxes into which you put things. When you ask what's in a specific box, for
example, :BOX2 (read as "dots Box 2"), you don’t change what’s in the box. When
you use the MAKE command, you always CHANGE the contents of the box. You
could think of it as emptying the box before packing a new thing in it.

A second important way to think about variables comes from their use as inputs
to procedures. You can imagine a procedure as a list of instructions  to be
performed by a lazy little man. The little man knows how to do what the steps of his
procedure specify. He sleeps whenever he is not doing his procedure. He wakes up
when somebody calls his name; then he does what he knows how tc do and goes
back to sleep. The little man never sees other people, but he can get mail in his mail
box. This is necessary because he sometimes needs a message to specify exactly
how he should execute a command. The message in his mail box when he wakes up
is the value of the input variables he needs to perform the steps of his procedure.

A third important way to think about variables comes from their use in
controlling the repetition of procedures (whether by looping or by recursion). Here
are two ways to draw a square with iteration:

TO SQUARE1 TO SQUARE2 :SIDES.LEFT
1. MAKE "COUNT 4 IF :SIDES.LEFT = 0 STOP

2: IF:COUNT = 0 STOP FORWARD 25 RIGHT 90

3: FORWARD 25 RIGHT 90 SQUARE2 (:SIDES.LEFT -1)
4. MAKE "COUNT (:COUNT - 1) . END ‘

5: GO "2 SQUARE2 4

END

SQUARE1

Executing SQUARE1 or SQUARE?2 4, the turtle passes over each side one time.
With the variable some other value, the turtle would trace that many sides of a
square. In general, such iteration count variables control execution of the steps
within a procedure’s boundaries.

SUMMARY

variables - permit indirect reference to values which may change -- as one

may refer to the contents of a box by naming the box.
input variables - permit specification of values for use by operations within

procedures refering to variables -- one may think of them as messages

needed by the little man who executes the procedure steps.
iteration variables - control the number of times procedure steps are

executed within their iteration boundary.




DO SOMETHING A LITTLE DIFFERENT _

One of the basic procedures most people work out when starting Logo is a
procedure to make a square. If you're willing to stop the turtle with "control G, this
procedure will do quite nicely:

TO SQUARE

FORWARD 100

RIGHT 90

SQUARE
If you want to do something a little different, you might pick out a command operand,
such as 100 and turn it into a variable. Doing so would permit you to makes squares
of any size.

TO SQUARE :DISTANCE

FORWARD :DISTANCE

RIGHT 90 |

SQUARE :DISTANCE

If you want to do something a little different, you might consider changing the value
of distance in every invocation of SQUARE. You would have a SQUARE.MAZE
procedure: :
TO SQUARE.MAZE :DISTANCE :CHANGE
FORWARD :DISTANCE

RIGHT 90

SQUARE.MAZE (:DISTANCE + ‘CHANGE) :CHANGE

If you want to do something a little different, you might look at the operand of the
second command in the procedure and turn that ‘90’ into a variable. You would then
‘have what's becomé known as a POLYSP! procedure (can you find some of the many
good numbers for angle ?): '

TO POLYSPI :DISTANCE :ANGLE :CHANGE

FORWARD :DISTANCE

RIGHT :ANGLE

POLYSP! (:DISTANCE + :CHANGE) :ANGLE :CHANGE

If you want to do something a little different, you might think of applying the charige
value to the variable "ANGLE" instead of to "DISTANCE". You wéuld then have
what's been called the INSP! procedure (be certain to try INSPI 50 7):

TO INSPI :DISTANCE :ANGLE :CHANGE

FORWARD :DISTANCE

RIGHT :ANGLE

INSP! :DISTANCE (:ANGLE + :CHANGE) :CHANGE

If you want to do something a little different, you might ask yoéurself about
symmetrical versions of the POLYSP! and INSPI procedure. Or ask yourseif why the
procedures genérate the attractive designs they make. Or ask if you can apply in
other places the idea of isolating some single element of a procedure and changing it
to create new things and to understand them.




WHAT GOOD IS PLANNING ?

The first view is that planning breaks a problem up into parts, 2ach of which can
be more simply solved than can the whole. For example, if you wanted the turtle to
draw a picture of a house, you probably would find it easier first to write a triangle
procedure for the roof and a square for the storey then put the two together than you
would composing a procedure for drawing the whole thing at once.

A richer view of planning is that the breaking up of a problem is very fruitful --
because you will create partial solutions which can be used in different ways to make
other things. Let’s extend the "HOUSE" example. The simplest extension of a

"HOUSE would be to separate the parts from each other and reconnect them a
different way. Doing so you could make a "WISHINGWELL", such as the one drawn
by this procedure:

TO WISHING.WELL

RIGHT 180 STOREY
RIGHT 180 FORWARD 100
ROOF

END

This attempt to use the parts of a HOUSE as parts of a WISHING-WELL runs
into an immediate problem: the WISHING-WELL is bigger than the house! If you
want both of them in the same picture, it would be necessary to make another
triangle and square procedure for a small wishing-well. At such point, it makes sense
to generalize the ROOF and STOREY sub-procedures, specifying their size by the
use of input variables, as in the procedure below:

TO STOREY :SIDE TO ROOF :SIDE

LEFT 90 LEFT 90

FORWARD :SIDE/2 FORWARD :SIDE/2

RIGHT 90 FORWARD :SIDE RIGHT 120 FORWARD :SIDE
RIGHT 90 FORWARD :SIDE RIGHT 120 FORWARD :SIDE
RIGHT 90 FORWARD :SIDE RIGHT 120 FORWARD :SIDE/2
RIGHT 80 FORWARD :SIDE/2 RIGHT 80

RIGHT S0 END

END

Not only are these new procedures more flexible. The way they fit together can
now be modified to make a better house than the original !

TO HOUSE.WITH.EAVES
RIGHT 180 STOREY 100
RIGHT 180 ROOF 120
END




PASSING THE BUCK

Sometimes‘hard problems can be simplified by doing a small partéhd "passing
the buck”. This worked example is to clarify the idea and the Logo techniques for
applying it. Suppose d you want to print messages in a code where every word is
spelled backwards, e.g. sdrawkcab. How can you write a procedure to switch letters
around? You know the procedure begins with a title line and a variable: input, such
as:

TO SWITCHEM :INPUT

If the input to SWITCHEM has no letters, hothing should be printed -- maybe a space.
If the input is only one letter long (such as "I" or "a"), it should be printed. If the
input is longer, you will always want to print the last letter of the input anyway, so you
might as well do that and pass the buck (all those other letters except the last one) to
another procedure, call it HARDER:

TO SWITCHEM :INPUT

IF EMPTY? :INPUT PRINT SPACE STOP
TYPE LAST :INPUT

HARDER BUTLAST :INPUT

END

MNow, what should the HARDER procedure be like ?

If the input to SWITCHEM was one letter long, the input to HARDER will have no
letters -- it should stop. If HARDER's input is one letter long, that letter should be
printed.  If longer, you will want to print the last letter of the input anyway, so you
might as well do that and pass the buck (all those other letters of HARDER's input
except the last ohe) to another procedure -- call it EVEN- HARDER

Doesnt that sound familiar? EVEN-HARDER will have to do the job that
HARDER was supposed to do. HARDER does the same thing as SWITCHEM. The
good trick in passing the buck is you never have to write the HARDER rﬁ'ocedure i
SWITCHEM calls itself:

TO SWITCHEM :INPUT

[F EMPTY? :INPUT PRINT SPACE STOP
TYPE LAST :[INPUT

SWITCHEM BUTLAST :INPUT

END




THE CLEVER HACK AND CLEVER TACTICS

Two children played a simple Logo game, SHOOT. In that game, the turtle first
draws a circle on the video display then, after lifting the pen, sets the turtle down at a
random screen location. The objective of the game is to turn the turtle with RIGHT
and LEFT commands until it points at the target then SHOOT the turtle forward into
the target. When SHOOT is executed, first it moves the turtle forward the specified
number of turtle steps. SHOOT next computes whether or not the turtle has landed
within the circumference of the target. If so, a point is scored, the screen is cleared
and a new round begins. Otherwise, the turtle is returned to its initial location and
orientation.

This is a simple, low pressure game, used to familiarize new Logo people with
the commands of the language. But with these two children taking turns at one
terminal, the game quickly became competitive. It became important to score every
time SHOOT was executed (they counted SHOOT executions as the basis of turn
taking). One child noticed that the turtie always drew the target at the center of the
screen. He also knew that the HOME command puts the Logo turtle at the center of
the screen (and thus at the target center). He proceeded to score every time with the
command sequence [HOME SHOOT 0], despite the outraged complaints of
cheating from his opponent. This solution to the SHOOT problem is a clever hack. A
"hack" is an accidentally effective way of getting around a particular problem. ”

The child's clever hack was easy enough to render ineffective. Some one else
had only to change the game so that the turtle drew the initial target at another
location for the clever hack to become worthless in itself. And yet, this clever hack
served well as an example of a more general form of solution the child developed. He
developed what he called a “clever tactic”. Knowing that the SETHEADING
command could point the turtle in a specific direction, he used SETH O then moved
the turtle forward or back as necessary to align it horizontally with the target. A
RIGHT or LEFT 20, with more forward and back commands would always then put
the turtle within the target and permit SHOOT O to bring a certain score.

SUMMARY ,

It is useful to distinguish between specific solutions to a problem in a particular
circumstance and general solutions to ail problems of a given class. Never despise
the particular solution, however, for it can show the way to a more general and more
powerful solution.




ADVICE TO A TEACHER

| write here about my own experience and out of that experience, but my
- situation has been different from yours. You've had to worry about instructing twenty
or thirty children. | have merely had to play with two children -- and those children
were my own and | knew them well. | write here also with the conviction that your
work in the future will be more like my experiences than it has been. Computers will
permit the construction of intellectual worlds where children will be able to spend
much time learning effectively on their own. This will give you more time to know
individual children and to intervene in their learning as the advisor you, their paréents,
and the children themselves hope you will be.

Geometry has been an important central theme of instruction in our laboratory
because its founder invented a kind of geometry for children. We've called it "turtle
geometry"”. It is distinguished from other geometries because it is a geometry of
action. The leading actor, the agent of this action, is "the turtle". Either a
mechanical robot or a triangular cursor on a video-display screen, the turtle goes
forward some distance or turns through some angle on command. When its pen is
down, the turtle draws a line. At their ages of six and eight, | introduced my children
to SHOQT, a simple turtle geometry game. A setup procedure drew a target and
placed the turtle at some random screen location. To score, the children had to turn
the turtle right or left some angle to point it at the target then SHOOT forward some
distance into the target. The game was easy for them to play and they enjoyed it.
(They even played the game without the computer; setting a hula hoop on the floor
for a target, the children took turns playing turtle and keyboard commander.)

Robby, the older child, came to want a more complicated game. He was
fascinated by the air battles of World War Il and asked me to make a game where the
targets would be airplanes. READY-AIM-FIRE (we called it R.A.F.) satisfied him; even
more, it engaged him. Robby spent the better part of an entire day trying to score
more kills than von Richthofen, the famous Red Baron of World War I. This game
permitted him to do what he wanted -- play in his own fantasy world. It permitted me
to introduce him to absolute coordinate geometry. The AIM procedure required
specification of the airplane's location through naming its X and Y coordinates.
(Axes provided a scale from which these values could be read off.) After the plane's
location was specified, the AIM procedure moved the "gunsight" to the location. AIM
could be executed as many times as necessary to get the gunsight on target, where
FIRE would destroy the plane and increase the score. When Robby later wanted a
similar game for sinking ships, | showed him how to modify the R.A.F. procedures so
that he could replace the gunsight with a SUB and the airplane with a CARRIER, both
simple drawing procedures he made.

The style of introduction presented in this story is opportunistic in the extreme.
In depends on three things: the initiative of the child to connect his computer
activities with what he knows about other things that concern him; the flexibility of
computer systems to enable the building of simple models; the knowledge and values

) ~ of a teacher in shaping particular procedures through which the child’'s objectives

‘are achieved in such & way that the child is introduced to important ways of looking
“at-and describing the world.




COMPUTERS AND PEOPLE

R ]

is playing with computers good for children? Couldn’t it be bad ? Might they
not begin to think of themselves and others as machines ? Here is a story about how
my daughter, Miriam, pretended to be a machine -- the Logo turtle -- and what she
made of that. ‘ o

This night is the last night of summer, so defined by the children’s having to
begin school on the morrow. Qver the summer they have gradually become
accustomed to going to bed late, and now, in order to rise early, they should go to
bed early. No one found this argument convincing. We negotiated a compromise
that the children get into pyjamas, return for dessert (delayed by conversation
with dinner guests, Jose and Fernando), and then go off to bed. Robby lived up
to the agreement; Miriam would not.

When given a direct order to go to bed, she went to my bed instead of hers.
| had mentioned during dinner the children’s inclination to play turtle. Fernando
tried to help. "Miriam, FORWARD." She did nothing. | advised him that he had
omitted the carriage return. Upon his "carriage return" Miriam complained, "You
haven't told me how far to go", chuckled, and popped back onto my bed.
Gretchen attempted "FORWARD 100, carriage return."  With the gripe "You
haven't told me how to FD100" still in the air, | described this bug as the well
known space omission between command and input. Fernando was then
precise: "Miriam: FORWARD, space, 100, carriage return.” Miriam played fair
and proceeded stepwise (counting each step) down the length of the loft. At first,
we expected 100 steps to be too few. Miriam counted "70" in the kitchen and at
88" gleefully announced "Out of bounds" as she walked into the wall in the
hallway. While so close to her bed room, she picked up her ‘security blanket’ (the
air was a little chilly) and came skipping back into the living area.

The game wore on (hide turtle under the blanket, and so forth), after a while

" became wearing, and | directed her to bed with the threat of physical force.

Miriam replied, as she has for some months now, with the counter-threat "I'm

quitting your research, Daddy, | really am." Having thus preserved her dignity,
she acquiesced to the demand that she go to bed.

In this incident and many others, Miriam showed that this robot-role which she
“was willing to adopt was one she subjected utterly to her ends as a person. Playing
turtle was an enrichment of her repertoire, not a constraint upon it. As we
paraphrase William Blake:

Tools were made; born were hands.
Every child understands.




SINGLE-KEY INTERFACES

Young children, especially those who have never used a typewriter -- and even
more so those who have not yet learned to read -- can have a lot of fun with turtle
geometry if using the keyboard is made simple for them. One obvious and simple
way to do so would be to make an "interface" for their use. An INTERFACE translates
what someone keys into Logo commands and then executes those commands.
Many such have been made in the past, and surely more will come. Typically, the
simplifications are in reduction of the child’s keying burden to a single character for
any action desired. For example, when the child keys the single character F, the
interface translates this into a command "FORWARD 20" and executes it.

Many computer based games depend upon the speed of reaction of the person
playing the game. Consider a real-time game where you have to fire a rocket to
change the trajectory of a space ship. Keying "FIRE" and "return" could take so
long the result of the force would be different from what you wanted. In contrast,
keying a single letter whose value was encoded to mean "FIRE" could be effective at
once in changing the space ship's speed. :

Have you ever wondered why the letters on the typewriter keyboard or the
computer terminal are where they are ? Alvin Toffler relates the history of keyboard
development, pointing out that the keyboard arrangement was made difficult on
purpose, to slow people down so that their high speed keying would not jam the
originally slow-moving mechanical linkages of early machines. Would you like to
make your own keyboard arrangement ? You can. All you need is an interface which
will substitute your characters for those wired at the keyboard, and a set of sticky
labels to show how the interface will assign meaning to the keys struck.

SUMMARY

Writing an mterface which reads one character at a time is a primary way of shapmg
your computer environment to be what you want it to be like. You can make is
simpler, more responsive, you can even change the meanings of individual keys.




MICROWORLDS AND LEARNING

The central problem of humane education is how to instruct while respecting
the self-constructive character of mind. Teachers face a terrible dilemma in
motivating children to do schoolwork that is not intrinsicaliy interesting. Either the
child must be induced to undertake the work by promise of some reward or must be
compelled to do the work under threat of punishment. In neither case does the child
focus his attention on the material to be learned. The work is seen as a bad thing
because either it is an obstacle blocking the way to a reward or it is a cause of the
threatened punishment.

‘} Psychologists know that -- however much insights do occur -- much learning is
a gradual process, one of familiarization, of stumbling into puzzlements and resolving
them by proposing simple hypotheses in which a new problem is seen as like others
already understood, and performing very simple experiments to test the latest
"theory". '

Microworlds can be seen as worlds designed for virtual, streamlined
experiences, worlds with agents and processes one can get to know and understand.
Properly designed microworlds embody a lucid representation of the major entitites
and relations of some domain of experience -- geometry and music and two examples
.- as understood by experts in the domains. This is where the knowledge of the
culture is made available, in the very terms in which the microworld is defined.

The child's appropriation of that knowledge is made possible by the microworld
not being focussed on problems to be done, but on "neat phenomena” - i.e., the
primary manifestation of the power made available by knoweldge about the domain.
If there are neat phenomena, then the challenge to the knowledgeable expert is to
formulate so crisp a presentation of the elements of the domain that even a child can
grasp its essence. The value of the computer is in building the simplest model which
an expert can imagine as an acceptable entry point to his own richer knowledge.

If there are no neat phenomena that a child can appreciate, there is no function
that knowledge of the domain can serve for him. He should not be expected to learn
about it until he is personally engaged with other tasks which will make the specific

knowledge tolerable as a supporting prerequisite to something desirable to know.




A formalism is a set of symbolic objects that are related by the operations or
manipulations that can be performed on them. Everyday arithmetic is an example of
a formalism: the numbers are related to one another by addition, subtraction and so
forth. We often use formalisms, such as arithmetic, without asking what there is
about them ‘that really makes them useful in thinking. The
mathematician-philosopher Whitehead raised this question about the calculus,
another formalism, and proposed an answer of the following sort. A formalism is
useful because it gives you one less thing to worry about. You learn a set of rules of
"almost mechanical manipulation -- then you can concentrate on how to apply them to
a specific situation you want to know more about. You judge the applicability of a
mathematical formalism by whether or not its predictions correspond to what
happens in the probiem domain.

A programming language such as Logo is also a formalism -- but one whose
focus is more on its concrete use than on its symbolic prediction. In this sense, the
Logo language is a kind of empirical mathematics, one whose value does not depend
upon immediately mastering perfectly a set of rules. One can begin with a faulty
procedure and perfect it by debugging -- retrying the execution until it produces the
intended ‘result or some better one discovered along the way. Eventually one may
become sufficiently expert to compose perfect code, but it is not-necessary that one
ever do so. ‘

A relaxed requirement for perfection is one major way that Logo programming
contrasts with the child’s other experienced formalism, arithmetic. This is important
because in the world of turtle geometry, the domain of design is so rich that
unintended results can often be more attractive than what the programmer first
intended. This is a direct contrast with arithmetic -- where errors are of positive value
. only to psychologists. There is a second sense, however, in which Logo
programming requires perfection as much as any other formalism. When one is
“committed to a specific result, specific operations must be performed in the correct

order to achieve that result. Because of the relative richness of the error paths in
turtle geometry, Logo may be a more accessible formalism -- because a more
attractive one -- than children commonly met before the advent of computers.




' DIEFERENT KINDS OF VARIABLES

I a variable is defined outside of a Logo procedure, its value can be changed by
keyed commands or by executing any procedure which refers to it. Such a variable is
called a GLOBAL variable. Now, if you store something in a box, generally you would
like it to remain there until you change the contents of the box. You can'’t count on
the contents of a global variable unless you take special care to guard against
unexpected references. One way it to give your variables unusual names, e.g.
[MAKE "GRANDMOTHER'S.SHIN.BONE 3]. The reason not to use UNIQUE variables
is the difficulty of remembering what name you assigned.. A second technique is to
“initialize" every variable in every procedure before you refer to it. Doing this
becomes a little tedious when you write lots of procedures. A third method is to use
local variables. '

LOCAL variables are defined only within the context of the procedure which
references them -- so no procedure or keyboard entry can alter the value of another
procedure’s local variables. Further, local variables exist only within a specific
execution (or "instantiation") of a defined procedure. This convention of the Logo
language (and a number of others as well) is central to the use of input variables (and
others) in recursion. Consider the procedure below: '

TO SQUARE :SIDES.LEFT
IF :SIDES.LEFT EQUAL 0 STOP
FORWARD 25 RIGHT 90
SQUARE :SIDES.LEFT - 1

~ end

When you key SQUARE 4, the Logo interpreter creates an instantiation or copy
of the SQUARE procedure for execution. Let’s refer to it as 1-SQUARE. The value of
the corresponding variable 1.:SIDES-TO-GO is 4. Wher: the third line of 1-SQUARE
executes, the Logo interpreter creates a second copy of SQUARE; call it 2-SQUARE.
What is the value of the corresponding variable 2.:SIDES-TO-GO ? The answer is
three. Executing 1-SQUARE, the Logo interpreter evalates 1-:SIDES-TO-GO as 4 and
subtracts one from it, then assigns 3 as the value for the variables 2-:SIDES-TO-GO.
In successive recursions of SQUARE 4, this is what happens:

COPY , ‘SIDES.LEFT ACTION
1-SQUARE 4 draw and turn
2.SQUARE 3 draw and turn
3-SQUARE 2 draw and turn
4-SQUARE ' 1 draw and turn
5-SQUARE 0 stop

The theoretician DIJKSTRA, inventor of the language ALGOL and one of the
pioneers in the development of programming, said that once you understood how
variables are used in programming, you understand the essence of programming.
We believe he was refering to local variables as used in recursion when he said that.
Understanding local variables has become more important in the world of systems
and commercial programming as well with the use of "re-entrant" code in operating
systems. Many such systems have extensive subroutine libraries. When these
subroutines use local variables and observe other coding restrictions, they are
re-entrant --which means they can be used simultaneously by several programs.




VARIABLES AND ABSTRACTION

The Logo turtle can’t deal with abstractions. It must go forward some specific
amount or turn through some specific number of degrees. When you key
"FD :some-distance", the LOGO interpreter evaluates the symbolic name
"some-distance"” (looks in the box or storage cell to determine its contents and
substitutes that contents for the expression ":some-distance").

People apparently can deal with abstractions, but find problem solving easier
when they don't have to do so. Most often when a new procedure is being written,
people use specific operand values, e.g. FD 100, which they later change to variable
-form, such as FD :some-distance. The nature of the abstraction mvolved is common
to some other examples of mathematics as well. The famous mathematician
Bourbaki describes the creation of an axiomatic system as proceding from the
mathematician’s working out a series of theorems with very concrete examples in
mind and subsequently examining the inferences of his theorems to define precisely
which characteristics of his examples were used by the theorems. In a third step, he
redefines the set of objects to which his axioms apply as that most general class of
objects having all those characteristics used in the theorems. That is, he bases his
generalization on the operations he performed and not on a list of the characteristics
of the example he began with. We stress that the process through which a chi,ld
generalizes a procedure after creating a concrete product with a concrete precursor,
this child’s play, is a particular kind of -abstraction of value in the most inteliectual
endeavors as well.

This mathematical form of abstraction is called reflexive abstraction by Piaget,
where he sees the child creating his own mind through processes of thought that gre
like those of Bourbaki's mathematician. This points to the most significant potential
impact of computer experience on children developing their minds. Reflexive
abstraction may become more "natural” to them than what Piaget calls "anstotelsan
abstraction"” (abstraction by feature selection and classification) with which Praget
contrasts it. That is, more children of the future may more often think like
mathematicians than do children of today.




GETTING OFF THE GARDEN ATH
‘ Some problems are tembly difficult because they tempt you to set up your
descnptnon in an unproductlve way -- and lead you that way down a dead end path to
useless fretting. Here's a good examp!e of such a problem one that you m1ght run
into at a party:

You need people who are willing to work at the problem as couples. You need
- string and a little ability to tie knots. Here'’s what you do. Take one string and tie
it loosely around the wrist of one "vnct:m (Leave about two feet of string
between the wrists.) The circle of string, arms and body form the first loop. Pass
the second string through the first victim’s loop and tie each end loosely around
the wrist of the partner. Passing the second string through the first victim’s loop
made the loops interlocking. The puzzle is how these two victims can separate

without cutting the string or untying the-knots.

2

Your victims might get angry if you don’t help them ’m solve the problem Maybe you
should try it yourself before imposing on anyone else.

Most everybody sees the string, arms and body as forming a loop. This is what
puts them on the dead end of the garden path. After they have been told it’s illegal to
slip the string loop off the end of their arms from around the wrists, they frequently try
all sorts of contortions to get free, then give up. Have you given up yet ? Do you see
how to solve the problem ?

A critical question to ask here is "what can | really count on * ?". Note that if the
arms, body and string really do form a loop the problem can n not be solved. That
whole way of looking at the problem must be wrong. Next notice that the places
where there might be a break in the loop can’t be between the body and arms; it has
to be at the wrists. There are four wrists, but if you can get the string past cne of
them the problem is solved. Focus on one wrist and try to think of a different way of
seeing the problem. | think of it as being like the picture below:

f NQ/
7
That "pole" is supposed to be a wrist. The first string and loop g6 around the wrist at
one end and then off somewhere eise. The problem is now to get the second string
out from under the first. It's easy, isn’t it: through the loop, over the pole and down
on the outside. This sort of problem can only be solved after you get off the garden
path,
SUMMARY

1. when you have a hard problem, it can be very important to ask yourself,

"what can | really count on in the way the way | am describing the problem ?"
2. a second good question, when you are looking for a new way to describe a

problem is "What's the point where there is something unusual or still unclear ?"

Focus your attention on that point.




RE-SOLVING PROBLEMS

Some problems you want to put behind you -- like having to do what you don't
~ want to do, and not being able to do what you do want. Such problems should be
resolved. Other kinds of problems have a friendlier face, and certain of them are
worth solving and re-solving. Think about making a circle. Doing so is a classic
Logo problem for beginners. Novice learners are typically asked to "dg-it-yourself”,
to walk through the probiem by simulating the turtle. Their typical explanation of
what they are doing as they walk in a circle is that they go forward a little and turn a
little and do it again. This explanation transiate directly into the Logo circle:

TO CIRCLE

FORWARD 1

RIGHT 1

CIRCLE

END
The Logo circle is very easy to make with a Logo computer, but it would be difficult to
make such a circle by drawing on a piece of paper. The Logo circle is very
perimeter-focussed because the turtle knows nothing at all about "centers”. (This
leads to some interesting bugs and problems in turtle geometry procedures.) The
Logo circle is natural in the sense that it is no more than the path of an activity as
familiar as walking is.

In plane geometry if you ask, "What’s a circle ?" the object, "the locus of all
points in a plane equidistant from another point”, is easy to construct with a compass
and not even hard to construct without one. The euclidean circle is as "natural” as
the Logo circle in the following sense: imagine a person sitting; the figure traced by
the farthest reach of his arms is as circular as the path followed by any person
imitating the Logo turtle. The euclidean circle is center-focussed, and the circle is
the boundary of the center’s territory. Can you get a computer to draw a euclidean
circle? There are several ways. |If your computer speaks "polar”, you can specify
the definition of a circle with the simplest of equations, radius = constant.
Descriptions of circles in polar coordinates are simple, but they get complicated
quickly if located away from the coordinate system origin.

While the description of a circle in polar coordinates still keeps in mind the
relation of the circle to its center, and to a process a person could use unaided to
make a circle, the description of a circle in a system of cartesian coordinates
becomes remote from the process of generating a circle:

X2 + Y2 = C?
This algebraic equation for an origin centered circle (of radius ‘C’) specifies that the
circle is the set of all point pairs (X,Y) in a cartesian coordinate system which satisfy
the equation. The primary relationship between the circle and "something else" is
here between the circle and the cartesian reference frame. This contrasts w:th the
Logo circle (where the primary relation was between the circle and its process of
creation) and the euclidean circle (where the primary relation was between the circle
and its center). The cartesian description of the circle and other curved lines,
although central to the development of modern mathematics and science, seems
relalively un-natural as compared to the Logo and euclidean circles because of the
extent to which the person is removed from the description of the circle. (over)




, SUMMARY ,

~ Scientists have recommended re-solving problems through the ages. Descartes
recommends that whenever you encounter a new idea, you bring it into comparison
with all the other ideas you hold as valuable and try to appreciate their interrelations.
Feynman, a famous physicist of our time, relates that his practice as a student was
typically one of solving a problem whatever way he could, then, with a worked out
solution to gui‘de him, to re-solve that same problem in as many different other
formalisms or frames of reference as he could. ‘ ’




One of the most famous problems in the history of ideas puzzied the
mathematicians of ancient Greece. They knew how to count very well (even though
they used letters of their alphabet to represent numbers). They even knew about
fractions, and this is where the puzzle came up. They knew about numbers like 1,
and 1/2, and 1/4, but they wondered if there were any numbers that couldn’t be
represented by whole numbers or fractions made from whole numbers. The puzzie
became a hot issue for them after the discovery of the pythagorean theorem. They
could prove that the areas of two squares constructed on the edges of a right triangle
was equal to the area of a square constructed on the longer line (the hypotenuse),
througtt the use of a technique such as shown below:

Hypotenuse Square F) Two Side Squares

X}

rotating T ~
pieces
around

their

2\ 1l
&

This proof helped make the problem more critical because it raised a specific
question. if you start with a square, one unit long on the side, and make a triangle by
drawing the diagonal of the square, the sum of the areas of the two squares
constructed on the side will be two units of area; but how long must be the
hypotenuse, H, of the triangle made from half a unit square ? "H" must be greater
than one and less than two. It must te more than five-fourths and less than
three-halves. Greek mathematicians suspected no fraction of whole numbers would
result in the number two when muitiplied by itself, and they began the attempt to
prove there was no fraction of whole numbers equal to H. They tried to represent the
number H a fraction of two wholes numbers, T (the TOP number) and B (the
BOTTOM number). They knew that H times H had to equal 2 and developed these
equations:

first, HxH = 2

T T

then, ---X-- = 2
B B
T2

or e = 2

finally, T2= 2 B2
Having reduced their relation of the possible whole numbers T and B to this simplest
form, they were stuck. What else is there to do? Where can you go from here with
this one idea ? Think about it for a while. Can you go on from here ? (over)




Another idea is needed, another whole different way of looking at what "T" and
"B" might be. The trick is to look "inside” T2 and B2 What must they be made of ?
No square can be a prime number (squares are made by multiplying at least two
other numbers together).  The factors of a square must be two (in number) if the
roots are prime or some multiple of two if the roots are not prime, as in the example
below: ‘ '

SQUARE 25 36 64 100
PRIME FACTORS  5x5  (2x3)x(2x3) (2x2x2)x(2x2x2) (5x2)X(6%2)
COUNT OF FACTORS 2 4 6 4

Any number is either a prime number or can be decomposed into prime factors.
Therefore every square must have an even number factors. But think back about the
equation: T2 = 282 Doesn't that imply there is at least one square, T2, which must
have an odd number of factors? It surely does, and therefore it must be wrong.
Consequently, there must exist numbers, like the square root of two, which can not
be expressed as the ratio of two whole numbers. That is, irrational numbers exist.

This mathematical proof was a difficult one for men to discover. Then someone
realized that a new idea was needed, a new way of looking at the problem. Once a
second way of describing the problem was brought to bear, its solution was relatively
straight-forward, almost obvious. When you have a real hard problem, maybe you
ought to think about whether some other description of the problem could help you
with it. Finding the right description isn’t always easy; it may, however, be necessary.




o~




