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ABSTRACT: Computational theorics of structurc-from-motion and sterco vision only specify
the computation of three-dimensional surface information at points in the image at which the ir-
radiance changes — for example, the zero-crossings of a V2@ operator applied to the image. Yet, the
visual perception is clearly of complete surfaces, and this perception is consistent for different observ-
ers. Since mathematically the class of surfaces which could pass through the known boundary points
provided by the sfereo system is infinite and contains widely varying surfaces, the visual system must
incorporate some additional constraints besides the known points in order to computc the complete
surface. '

Using the image irradiance cquation, we derive the surface consistency constraint, informally
referred to as no news is good news. The constraint implics that the surface must agree with the
information from sterco or motion correspondence, and not vary radically between these points. An
explicit form of this surface consistency constraint is derived, by relating the probability of a zero-
crossing in a region of the image to the variation in the local surface orientation of the surface,
provided that the surface albedo and the illumination are roughly constant.

The surface consistency constraint can be used to derive an algorithm for reconstructing the
surface that “best” fits the surface information provided by sterco or motion correspondence.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts
Institute of Technology. Support for the laboratory’s artificial intelligence research is provided in
part by the Advanced Research Projects Agency of the Department of Defense under. Office of
Naval Research contract N00014-80-C-0505 and in part by National Science Foundation Grant 79-

23110MCS. g MASSACHUSETTS INSTITUTE OF TECHNOLOGY. 1981




1. Introduction

Although our world has three spatial dimensions, the projection of light rays onto the retina
presents our visual system with an image of the world that is inherently two-dimiensional. We must
use such images to physically interact with this three-dimensional world, even in situations new to
us, or with objects unknown to us. That we casily do so implies that one of the functions of the
human visual system is to reconstruct a three-dimensional representation of the world from its two-
dimensional projection onto our eyes.

Methods that could be used to cffect this three-dimensional reconstruction include sterco vision
[c.g. Wheatstone, 1838; Helmholtz, 1925; Julesz, 1971] and structure from motion {for example, Miles,
1931; Wallach and O’Connell, 1953; Johannson, 1964]. Both of these methods may be considered as
correspondence téchniqucs, since they rely on establishing a correspondence between identical items
in different images, and using the difference in projection of these items to determine surfagc shape.

Most of the current computational theories of these processes [Marr and Poggio, 1979; Grimson,
1980, 1981a; Mayhew and Frisby, 1981; Ullman, 1979; Longuct-Higgins and Prazdny, 1980] argue
that the correspondence process cannot take place at all points in an image. Rather, the first stage
of the correspondence process is to derive a symbolic description of points in the image at which the
irradiance undergoes a significant change [Marr and Hildreth, 1980]. This symbolic representation
(called the primal sketch [Marr, 1976; Marr and Hildreth, 1980]) forms the input to the second stage
of the process in which the actual correspondence is computed. As a consequence of the form of the
input, the correspondence process can compute explicit surface information only at scattered points
in the image. Yet our perception is clearly of complete surfaces. For example, in Figure 1, a sparse
random dot stereogram yields the vivid perception of a squarc floating in space above a background
plang, rather than a collection of dots suspended in space. This suggests that some type of filling-in, or
interpolation of surface information, is taking place in the visual system.

This poses an interesting problem, since mathematically the class of surfaces that could pass
through the known boundary points provided by the sterco algorithm is infinite and contains widely
varying surfaces. The implication of our perception of complete surfaces, which is consistent for
different viewers, is £hat the visual systém must incorporate some additional constraints, besides the

known points, in order to compute the complete surface.
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Figure 1. A Sparse Random Dot Pattern. Although the density of dots is very small, the perception
obtained upon fusing this pattern is one of two disjoint planes, rather than dots isolated in depth.

In this paper, we will use the image irradiance cquation [Horn, 1977] to derive the surface
consistency constraint, informally referred to as no news is good news. The constraint implies that the
surface must agree with the information from sterco or motion correspondence, and not vary radically
between thésc points. We will derive an explicit form of this surface consistency constraint, by relating
the probability of an abrupt irradiance change in a region of the image to the variation in the local
surface orientation of the corresponding surface. We will then indicate how this constraint can be
used to derive an algorithm for reconstructing the surface that “best” fits the surface information

provided by stereo or motion correspondence [Grimson, 1981b, 1982].

2. The Computational Constraint

The input representation used by the stereo algorithm [Marr and Poggio, 1979; Grimson, 1981a,
1981b] consists of a symbolic rcprcsgntation of points at which the image irradiance undergoes a
significant change. These points are identified by the zero-crossings of a Laplacian of a Gaussian
(V2@) operator applied to the image; that is, the image is convolved with a V2G operator and the

points at which the resulting convolution changes sign are iocated [Marr and Hildreth, 1980; Hildreth,




1980]. As a consequence of the correspendence process, explicit three-dimensional information about
the surface shape will be computed only at these zero-crossings.

Suppose one were to attempt to construct a complétc surface description based only on the
surface information known along the zcro-crossings (where by complete, we mean that an explicit
surface value is assigned to each point on a rectangular grid). An infinitc number of surfaces would
consistently fit the boundary conditions provided by these surface values. Yet there must be some
way of deciding which surface, or at Ieast which small family of surfaces, could give rise to the zcj‘o-
crossing descriptions. This means that there must be some additional information available from the
visual process which, when taken into account, will identify a class of nearly indistinguishable surfaces
that represent the visible surfaces of a scene.

In order to determine what information is available from the visual system, one must first care-
fully consider the process by which the zero-crossing contours are generated. For instance, sudden
changes in the reflectance of a surface, caused by surface scratches or texture markings, will give rise
to zero-crossings in the convolved image [Marr and Hildreth, 1980; Hildreth, 1980]. Of more interest
here is the fact that sudden or shaip changes in the shape of the surface will under most circuinstances
also give rise to zcero-crossings. This can be used to constrain the possible shapes of surfaces that could
producc particular surface values along the zero-crossing contours

We illustrate the basic argument with an example. Suppose one is given a closed Zero-crossing
contour, within which there arc no other zero-crossings. An example would be a circular contour,
along which the depth is constant. There are many surfaces which could fit this set of boundary
conditions. One such surface is a flat disk. One could, however, also fit other smooth surfaces to this
set of boundary conditions. For example, the highly convoluted surface formed by sin (z2 + y2)%
would be consistent with the known disparity values (sce Figure 2). Yet in principle, such a rapidly
varying surface should give rise to other zero-crossings. This follows from the observation that if the
surface orientation undergoes a periodic variation, then it is likely that the irradiance values will also
undergo such a variation. Since the only zero-crossings lie at the borders of the object, this implies
that the surface sin (a:2 -+ yz)% is a highly improbable representative surface for this set of boundary
conditions.

Hence, the hypothesis, which will be evaluated in the following sections, is that the set of zero-

crossing contours contains implicit information about the surface as well as explicit information. If
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Figure 2. Possible Surfaces Fit Lmv Depth thlcs at Zero-Crossings. Given boundary conditions
of a circular zero-crossing conlour, along which the depth is constant, there are many possible
surfaces which could fit the known depth points. Two examples are a flat disk, and the highly

1
convoluted surface formed by sin (x2 -+ y2)7, shown here. (From Grimson [1981b}].)

one can determine a set of conditions on the surface shape that cause inflections in the irradiance
values, then one may be able to determine a likely surface structure, given a set of boundary condi-

tions along the zero-crossing contours.
2.1 No News is Good News

In general, any one of a multitude of widely varying surfaces could fit the boundary conditions
imposed along the zéro-crossings. Our intention is to show that to be completely consistent with

the imaging process, such surfaces must meet both explicit conditions and implicit conditions. The




explicit conditions are given by the depth values along the zero-crossing contours. The implicit condi-
tions are that the surface must not impose any zero-crossing contours other than those which appear
in the convolved image. This implicit condition Ieads to the surface consistency constraint [Grimson,

1981b], namely:
The absence of zero-crossings constrains the possible surface shages.

Just as the presence of a zero-crossing tells us that some physical property is changing at a given
location, the absence of a zero-crossing tells us the opposite, that no physical property is changing,
and in particular that the surface topography is not changing in a radical manner. We informally
refer to this constraint as 1o news is good news, since it says that in general the surface cannot change
radically without informing us of this fact by means of zero-crossings. Note that in practice, the
convolved image may not signal the entire extent of a discontinuity in the surface topography, but at
least some portions of the discontinuity will be evidenced by a zero-crossing. In order to complete
such a partial discontinuity, a subjective contour must be inserted between the known portions [Brady
and Grimson, 1981].

In order to make explicit any constraints on the shape of the surface for locations in the image
not associated with a zero-crossing, we will carcfully examine the factors which influence irradiance
and hence image intensity. (Note that while irradiance refers to the illuminant flux emitted from the
surface of an object and intensity refers to the brightness recorded by a sensor, we will use the terms
interchangably, since they are proportional [Horn and Sjoberg, 1979].) These factors will be expressed
in the image irradiance equation, which describes the manner in which a particular irradiance is
formed at a point in the image. Two goals arc kept in mind. The first is to determine what surface
conditions will cause a local change in irradiance, and the second is to combine this constraint with
the input from the visual processes, such as sterco or structure-from-motion, in order to design an
algorithm for interpolating surface information.

The basic result, corresponding to the intuitive argument given above, is that the probability of a
zero-crossing occurring, in regions where the illumination is roughly constant and the surface material
does not change, is a monotonic function of the variation in the orientation of the surface normal.
This means that the probability of a zero-crossing increases as the variation in surface orientation

increases. By inverting this argument, we will show that the best surface to fit the known data is that
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which minimizes the variation in surface orientation since this surface is most consistent with the zero-

crossings in the convolved image.

3. Image Formation

In order to examine the process of zero-crossing formation, a review of the factors involved in
the formation of an image will be presented. One factor is the geometry of the projectiorn (cither
orthographic or perspective) from the scene to the image. The sccond factor, which we will review
bricfly below, is the manner in which image irradiance values at a point are formed. A detailed
analysis of these processes has been undertaken by several investigators [Horn, 1970, 1975, 1977:

Nicodemus, et al., 1977; Woodham, 1978; Horn and Sjoberg, 1979].
3.1 Grey-Level Formation

In this section, we will outline the factors involved in the creation of image irradiances in order
to illustrate the relationship between changes in irradiance and zero-crossings in the convolved image,
(most of the discussion is based on Horn and Sjoberg, [1979]). To do this, we need to determine what
irradiance value will be associated with a particular image location.

The apparent “brightness” recorded by an imaging device is a measurement of image irradiance
E, the radiant flux striking a unit area of the receptive field. The flux reaching a small portion of
the receptive ficld will be exclusively a function of a corresponding small surface element on some
object in the scene, provided the imaging system is properly focused and the lens is small relative to
its distance from the object [Horn and Sjoberg, 1979]. We want to specify the factors that determine
the image irradiance ata point in the image, as a function of the corresponding surface element. 7

In general, there are three factors governing the irradiance recorded at any position in the
image:

(1) the amount of radiant flux striking a surface, a function of the distance of the surface from the
source r, the orientation of the surface relative to the source, and the intensity I of the source
itself:

(2) the percentage of incident flux reflected by the surface (as opposed to the percentage absorbed

or transmitted), a function of the surface material and usually described by the albedo p; and




(3) thedistribution of that reflected flux as a function of direction, usually described by a reflectance

function.

We shall show that a sharp change in each of these factors will give rise to a zero-crossing in the con-
volved image. Further, in regions where both the incident illumination and absorption characteristics
of the surface material are roughly constant, an cquation relating the recorded irracliances to the shape
of the surface will be derived. This image irradiance cquation will be used in later sections to verify
our surface consistency constraint.

Most surfaces have the property that the reflectance is not changed by rotating a surface clement
about its normal (exceptions are diffraction gratings, irridescent plumage and “tiger’s eye™). Such
surfaces are referred to as isotropic. 1f a surface possesses this property, only three angles are needed
to determine reflectance, as shown in Figure 3. The angle between the local surface normal and the
incident ray is called the incident angle and is denoted by ¢. The angle between the local surface
normal and the emitted ray is called the view angle and is denoted by e. The angle between the
incident and cmitted rays is called the phase angle and is denoted by g. In the following, we shall
assume that the surfaces are isotropic. This reduces the image irradiance to a function of I, 7, 1, é, g
and p, where I is the intensity of the source, r is the distance of the source from the surface, 2, ¢, and g
are the angles specificd above, and p is the albedo of the surface material.

We know that the incident flux density follows an invcrse-vsquarc reduction as a function of dis-
tance. If two surfaces lic at very different depths, and all other factors arc roughly equal, this inverse-
square depéndcncc will cause a noticcable difference in the irradiances associated with the different
surfaces. If the projections of the two surfaces are adjacent in the image, the different irradiances
will give rise to a zero-crossing in the convolved image. This is to be expected, since the Marr-
Hildreth theory of edge detection was based on the requirement of detecting changes in the image
corresponding to changes in some physical property of the surfaces. In this case, the changing physical
property is object continuity.

Given that these situations will cause a zero-crossing, we can restrict our attention to regions of
the image between the borders of the objects. We will further assume that the source is distant relative
to the surfaces. This has two consequences. The first is that each surface receives roughly uniform

illumination. This implies that the I/ r2 term is roughly constant and may be ignored in what follows.
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Figure 3. The Imaging Geometry. The incident angle ¢ is the angle between the incident ray
and surface normal. The view angle e is the angle belween the emergent ray and the surface
normal. The phase angle g is the angle between the incident and emergent rays. (Redrawn from
Woodham, [1978]).

The sccond is that the angle between the viewer direction and the source direction (the phaée angle g)
will be rougﬁly constant over cach surface.

- If the surface material changes, there will frequently be an associated change in the albedo. If

all other factors are roughly cqual, this will causc a change in the irradiances and there will be a

‘ cokrrcsporidin‘g zero-crossing in the convolved image. This is again expected from the Marr-Hildreth

theory of edge detection: a changing physical property of the surface should correspond to a zero-

crossing in the convolved image. In géncrdl we shall restrict our attention to regions of the surfaces

between such material changes, so that the albedo p is roughly constant. In these regions, we can
consider the image irradiances to be a function of ¢ ,ﬁe and p (ignoring scale constants).

If we assume that the source is distant enough and small enough té be treated as a point source,

then we can simplify the géometry further by reducing the angles ¢ and e to a specification of the local

surface n’orih;il, in the following man.ner.A Consider a Cartesian coordinate system with z-axis aligned

with the line of sight, and z-axis some arbitrary direction in the plane normal to the line of sight,

Suppose the surface is specified in tie coordinate system by z = f(z, y). Elementary calculus states




that the vectors
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are tangent to the surface at a given point. The cross product
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is normal to the tangent plane, and hence to the surface. Defining

the normal vector becomes {p, ¢, —1}. The quantity (p, ¢) is usually referred to as the gradient and
the space of all points (p, q) is referred to as gradient space [Huffman, 1971; Mackworth, 1973].

In this case, the angles ¢ and e can be straightforwardly transformed into the normal components
p and g [Horn, 1977]. Since we are considering the case of a distant point source, its direction relative
to the surface can be represented by a direction vector {py, g, —1}. A straightforward calculation of
the vector dot products shows that the angles ¢ and e are given by:
1 + pp; + 99,

V1I4p2+ 2 /1+p?+¢2
1

Extended sources (sources whose size relative to their separation from the scene cannot be treated

cos(t) =

cos(e) =

as a point source, for example, fluorescent lights in a normal room) can be frequently treated by su-
perposition of point sources, or as being equivalent to an appropriately chosen point source [Brooks,
1978; Silver, 1980]. Thus, the irradiance reduces to a function of p, g and p.

Finally, if we assume that the objects are distant relative to the viewer, the image projection may
be treated as orthographic. In this case, the coordinate system of the image and the coordinate system

of the scene can be treated as identical so that we obtain the image irradiance equation:

E(I, y) = p(z, y)R( p(:c, y): q(a:, y))

where E(z, y) is the image irradiance recorded at a point in the image, p is the albedo associated

with the surface intersecting the ray from (z, y) and R(p, q) is the reflectance map [Horn, 1970, 1975,
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Horn and Sjoberg, 1979, Horn and Bachman, 1977]. Note that the reflectance map R differs from
the reflectance function for a surface [Nicodemus, ct al., 1977]. The reflectance function describes
the amount of flux reflected in a particular direction, given an incident flux from a sccond given
direction. The reflectance map combines the cffects of the reflectance function in the case of uniform
illumination and isotropic surface matcrial with the illumination geometry and the image sensor’s
view point. In the case of constant albedo the image irradiance equation reduces to the partial

differential equation {Horn, 1970, 1975; Horn and Sjoberg, 1979}

E(z,y) = R( p(z,y), o=, y) )

These two cquations describe the manner in which an image irradiance (or grey-level) is obtained at a

particular point in the image.

4. The Interpolation Theorem

We have scen that zero-crossings can arise from many factors. We shall restrict our attention to
regions in which illumination is constant, albedo is roughly constant and surface material is isotropic.
Our intention is to shdw that in such cases, if the surface topography changes radically, the image
irradiances hust also change radically. We will then be able to use the contrapositive statement — if
the image irradiances do not change radically, then the surface topography also does not change. Note
that if the albedo or the illumination is not constant over the region, we cannot make this statement.
That is, there could be situations in which the surface topography does change radically without
causing a corresponding change in the image irradiances, because onc of the other factors, such as
the albedo, is also changing in such a ﬁlanncr as to mask out the effects of the change in topography.
These situations are fortunately very rare, since they require a precise meshing of the effects of the
changing albedo with the changing surface topography and in general are highly dependent on the
viewer position and illuminant direction. Thus, a small change in the viewer position will usually
decouple the conflicting effects of albedo and surface shape, and the change in topography will give
rise to a zero-crossing. (In other words, it is gencrally difficult to paint a radically curved surface so
as to appear flat from all viewpoints. The opposite is not true, of course. One can easily paint a

flat surface to appear curved. In otler words, we prefer to see topographic changes, as evidenced by
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the informal observation that photographs with smoothly changing albedo are usually interpreted as
having smoothly changing topography. }

The concern here is whether there can be zero-crossings corresponding to topographic rather
than photometric changés in an object, for example, in the radial sine surface of Figure 2. -Indccd,
if the albedo is roughly constant, the form of the equations indicates that there may be topographic
cffects that could also cause sharp changes in irradiance. The surface conditions under which such a |
change in irradiance can occur arc important, since the absence of zero-crossings in a regica would
then imply the absence of such surface conditions for that region. It is preciscly these restrictions
on surface shape which will allow us to determine a surface consistent with the depth values along
the zero-crossing contours. The basic problem is, under what conditions does bending of the surface
force an inflection in the irradiance array? This question will be answered in the following sections by
considering specific cases. |

There are two points to note, before beginning the mathematical detaiis. The first concerns the
role of the Gaussian filter in constructing the primal sketch representations upon which the stereo
correspondence is computed. The Gaussian performs a smoothing of the image, thereby isolating ir-
radiance changes at a particular scale. At the same time, it removes some of the noise problems which
arise from using a discrete grid to represent the image. In what fallows, we shall concentrate on the
differential operator (V2) and its role in the creation of the zero-crossings. The effect of the Gaussian
will not be considered in any detail. . Hence, the surface reconstruction will not account for minor
surface fluctuations on the scale of the grid resolution. This is not a major problem. (Equivalently,
the problem may be considered as one of applying the Laplacian V2 to the image G * E. The
reconstruction will be based on this image information.)

The second point concerns the use of the Laplacian operator V2 as opposed to directional
derivatives. The mathematical arguments which follow arc based on the consideration of zero-
crossings of the convolution of a directional second-order differential operator with the image, (v -
V) # E. We have already scen that the Marr-Hildreth theory of edge detection is based on the use
of zero-crossings of the image convolved with the Laplacian, V? * E. This difference is not critical,
for the following two reasons. Marr and Hildreth show that under some simple assumptions, the
zero-crossings obtained by either operator are identical. In particular, the condition of linear variation

[Marr and Hildreth, 1980] states that: the irradiance variation near and parallel to a line of zero-
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crossings should locally be linear. If this condition is assumed to be true then it can be shown [Marr
and Hildreth, 1980, Appendix A] that the zero-crossings obtained with the Laplacian are identical to
those obtained using dircctional derivatives. Thus, in those situations for which the condition of linear
variation is valid, no difference is obtained. In the case where the condition of linear variation docs
not hold, the difference in the zero-crossings of the operators lics in their position, not in the existence
of such zero-crossings. For example, at a corner (which frequently carries strong visual information),
both V2« E and (v- V) * E will give rise to zero-crossings. The only difference will be in the exact
position of the zero-crossings. We shall sce that such variation in position is of negligible consequence
to the reconstruction process. Hence, it will be assumed that the arguments developed in the next
section, bascd on the zcro-crossings of a directional sccond derivative will also gencrally apply to the
zero-crossings of the LLaplacian.

Finally, in what follows, the functions p, I2 and f arc assumed to have continuous sccond order
partial derivatives. Throughout, it is assumed that the albedo effects can be ignored relative to the
topographic ones, that is, the albedo factor may be considered roughly constant and will therefore not
affect any study of derivatives. Without loss of generality, one may assume that p = 1 and ignore the

albedo in what follows.
4.1 General Argument

The basic hypothesis is that in order for a surface to be consistent with a given set of zero-
crossings, not only must it give rise to a zcro-crossing in the convolved irradiances at those points,
but it must also nof give rise to zero-crossings anywhere clse. Under most situations, this restriction
would require that the surface not change in a radical manner between zero-crossing contours. (For
cxample, the surface shown in Figure 2 is not consistent with the boundary conditions of a circular
zero-crossing contour of uniform depth). It is difficult to prove this assertion in general, since the
image formation cquation includes terms dependent on the imaging process and on the light source
geometry, as well as factors dependent on the photometric properties of the surface itself. However,
under some fairly weak assumptions concerning the relative strengths of photometric and topographic
changes, and the form of the reflectance function, we will prove the surface consistency theorem,
describing the probability of a zero-crossing as a function of the shape of the surface. The importance

of this theorem is that it leads to a method for measuring the probability of a particular surface being
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Figure 4. An Exampk of a Developable Surface. The component of the surface orientation in
the y direction is constant for this region of the surface, so that the only vqnauons in surface
orientation take place in the z direction.

inconsistent with the zero-crossing information. This in turn suggests that it will be possible to derive

amethod for determining the best possible surface to fit the known information [Grimson, 1982].
4.2 A One-Dimensional Example

To illustrate the scope of the surface consistency theorem, we shall consider first the one-
dimensional case of a developable surface, before proving the gencral theorem concerning arbitrary
surfaces. Note that the Laplacian is drientation independent, so that without loss of generality, one
may rotate the coordinate system of the image to suit our needs. One may assume that the surface has
the form f(z, y) such that f,(z,y) = ¢(z,y) = c, in the local region under consideration. Hence,
the partial derivatives of ¢ vanish, as do any partial derivatives of p involving y. A sample surface is
shown in Figure 4.

Suppose that a one-dimensional slice in the z direction of the surface contains at least two
inflection points. Figure S indicates a sample surface and its derlvatlves Smce q is assumed constant,

the derivatives of the image 1rmd1am,e equation are given by:
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VQE = (Vzp)R + QPQerP; + p(Rpppi + Rpp:rz)-

(Note that except where explicitly stated otherwise, we shall usc a subscript to denote a partial deriva-
tive, so that, for example, p, = Jp/S8z.) In this situation of a developable surface, we can prove the

following result.

Theorem 0: Consider a portion of a second differentiable, developable surface oriented along the y

axis such that f,(z, y) = q = c, for some constant c. If the following conditions are true:

I The surface portion contains exactly two inflection points in the x direction, at zy and 3,
2 At the points xy and xy, normalized changes in albedo are dominated by normalized changes in
reflectance,
v2p Rypre
< )
p R
3 The reflectance map R does not pass through an extremum in this region of the surface,

x

The reflectance map R is not constant over this region of the surface,

“

The albedo p is non-zero,

then there exists a point 7y < 2’ < 3 such that V*E(z') = 0. That is, there exists a zero-crossing
here.

Proof: The signum function is defined by:

1 ifz>0
sgn(z) = —1 ifz <0
0 fz=0

From the derivatives of the image cquation,
VZE = (V2p)R + 20.Rppz + p(Rppp? + Rpprz).
At the inflection points z; and 3, p,(z;) = 0. Hence, evaluation of the equation yields
V2E(z;) = V2p(z;)R(p(z;)) +Vp(zi)Rp(p(x,~))pu($i) fori =1, 2.

Condition (2) implies that the albedo changes are negligible in this region, so that the first term may"
be ignored,
sgn(V>E(z,)) = sgn(p(z:)Rp(p(2:))pe(z:)).
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e e

Figure 5. One-Dimensional Example. The top figure illustrates a slice of the surface, containing
two inflection points. The second figure illustrates the first derivative of the surface function. The
two inflection points of the surface correspond to extrema in the first derivative. The third figure
illustrates the second derivative of the surface function. The two inflections in the surface correspond
to zero-crossings in the second derivative. The bottom figure illustrates the third derivative of the
surface function. Between the points corresponding to the two inflection points of the surface, the
third derivative contains a zero-crossing. (From Grimson [1981b]).
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Condition (5) implics that sgn(p) = 1. Observing that

sgn(zy) = sgn(z) sgn(y),

the sign of the convolved intensity function at the surface inflection points is given by

sgn(VzE(iCi)) = sgn Rp(p(xi))plw(xi))'

Condition (3) implics that R, does not change sign in this region of the surfacc and hence

sgn(R,(pla1))) = sgn(R,(p(z2).

Note that p, = 0 at zy, z,. The fact that there are exactly two inflections on the surface implies that

p. Z 0 over the neighborhood (zy, ). Thus,

Sgn_(Pm(-Tl)) 7é SQn(pxx(TQ));

and thus
sgn(V2E(z1)) 54 sgn(V2E(z,)) .

The second differentiat-lity of the surface implies that there exists a point ' € (zy, z) such that
V2(z') = 0. |

The contrapositive of this thcorem states something important about the possible surfaces which
can fit the known depth information. Specifically, given the conditions of the theorem, if there is a
set of known depth points to which a surface is to be fit, there cannot be two or more inflections in
the surface between any two zero-crossing points. If there were, there would have to be an additional

zero-crossing there as well.

Corollary 0.1: Suppose one is given a set of known depth points at a set of zero-crossings, along a
developable surface. If the albedo p is non-zero and the reflectance map R is not constant for this region
of the surface, then the surface cannot contain two or more inflection points between any pair of adjacent

Zero-crossings.
There are many ways of extending this result. Some are indicated in the appendix. The most

important extension is to consider general surfaces, rather than developable ones. We make this

extension in the following sections.
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4.3 The Analytic Argument

Take a planar slice of some surfacc: f, normal to the image plane, along some direction (given for

cxample by the angle a between the z axis and the direction of the slice). This is illustrated in F igure

- 6. At cach point along the resulting curve C, one may associate a surface oricntation, or gradient,

given by the pair of partial derivatives, p(z, y) == 8f(z, y)/dz, and q(z, y) = 9f(z, y)/Sy. Thus, one
may construct a two-dimensional space spanned by a coordinate system with axes given by p and q,
the gradient space introduced by Huffman [1971] and used by Mackworth [1973], and by Horn [1977]
to relate the geometry of image projections to the radiometry of image formation. The curve obtained

by the planar intersection of the surface transforms into a new, parametric curve in gradient space:

Nf(t) = {p(t), Q(t): —1}

In fact, this curve corresponds to the mapping of the normal to the surface, as one moves along the
planar slice; the subscript f is used to indicate that this is the normal to the surface f.

Becausc the albedo is roughly constant, the image irradiances are determined by the reflectance
map R(p, q). Thus, the irradiances may be related to Horn’s reflectance map, in which one considers
the surface defined by R(p, q) in gradient space. Hence, the curve C on the original surface will map
onto a curve Ny in gradient space and this may be projected onto the surface 2(p, q) to obtain a new
curve C'(t). At cach point ¢ along the parametric curve, the corresponding irradiance is given by
R(p(t), q(t)), (scaled by the constant p, which we will ignore without loss of generality).

We are interested in the conditions on the original surface and the reflectance surface that will
cause a zero-crossing in the second directional derivative of the image irradiances. (By reflectance
surface, we mean the reflectance map R(p, g) considered as a surface in gradient space.) Let v be a
vector in three-space with direction cosines cos a,, cos ay, and cos a, (the direction cosines refer to
the cosine of the angle made by the vector and the coordinate axes of the space). Thus, a unit vector in

the direction of v is denoted by
V= cosa,i-} cosayj+ cosa,k

where i, j, k are unit vectors along the coordinate axes. The directional derivative of ®(r), a function of

a vectorr, is the rate of change of ® with distance s along the direction v and is denoted by

e o f, )
(v-V)® = cos a,a—x -+ cosayé—y— + cos az;?;.
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Figure 6. The Generation of Image Irradiance. The curve C is generated by taking the intersection
of a plane normal to the image plane with the surface. The direction of the plane is given by
the angle a it makes with the z-axis. By taking the surface normal at each point, this curve C
can be mapped into gradient space, resulting in a parametric curve Nj. Furthermore, this curve
can be projected onto the reflectance map R (which defines a surface on p-g space) to obtain a
parametric cutve C’ along which the irradiance is given by the corresponding value of R. (From
Grimson [1981b]).
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If the direction vector is constrained to lic in the z-y planc, then cosa, = 0 and cos a, = sina,.
Now consider a planar slice normal to the image along the direction v and construct the
parametric normal curve Ny in p — ¢ space. Then the directional derivative of rradiance along this
slice is given by
(v+ V)E = Ry((v- V)p) -+ Ry((v- V)g).

This can be rewritten as

(v-V)E = VR-(v- V)N,

showing that the directional derivative along the slice is given by the projection of the gradient of the
reflectance surface R onto the tangent of the parametric p-¢g curve Ny, Now, if there are two points
ti, £, such that this dot product vanishes at those points, then Rolle’s theorem, and the assumption
that the surface f is twice continuously differentiable would imply the existence of a zero-crossing in
the second dircctional derivative at some point between ¢y and ¢,. Thus, to evaluate the probability
of a zero-crossing in some region of the image, we need to consider the probability of the vectors VR
and (¥ - V)N being orthogonal.

There are two cases to consider. The first is when the gradient of R vanishes at some point, cor-
responding to an extremum in the reflectance surface. If we assume that over all possible viewpoints,
VR is uniformly distributed, then the probability of VR = 0 for some point (p(t), ¢(t)) on the

parametric curve N(t) is given by the arclength of the curve

[ [+ ] e,

where the subscript ¢ indicates partial differentiation with respect to the parameter ¢.

The sccond case is when the gradient of R is non-zero and the two vectors are non-trivially
orthogonal. Consider first the one-dimensional case in which two inflections in a developable surface
imply the existence of a zero-crossing (as shown in Theorem 0). Since in this case ¢ = ¢, the
parametric curve Ny(t) in p-q space is parallel to the p-axis, and reverses direction at each of the
inflection points. At these points, the curvature of the parametric curve is essentially infinite, and the
tangent can be considered to sweep through all possible directions. As a consequence, the tangent
must be orthogonal to VR for one of those directions, and hence (v - V)E is zero at each point of

-~ infinite curvature. Thus, Rolle’s theorem guarantees a zero-crossing along the slice of the image.
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Now suppose that ¢ 5% ¢ but changes slowly. In this case, thc points of infinite curvature
become points of high curvature. Here, the tangent to the parametric curve sweeps through a large
range of dircctions. If we assume that the sccond order partial derivatives of the roflectance surface R
arc small, then over a small region of p-¢ space, VIR is nearly constant. Hence, in the region of the
points of high curvature, the direction of VR is ncarly constant, while the direction of the tangent to
N; sweeps through a large range of directions. Thus, at points of high curvature, the probability of
(v- V)E = 0 is high. If, on the other hand, the parametric curve is locally a straight line, the tangent
is constant and the probability of the directional derivative vanishing is small. Thus, along a slice of
the image, the probability that (v - V)N, and VR are non-trivially orthogonal, under the assumption

that R,,p,, Rypq and Ry are small, is monotonically related to the integral of square curvature

/ (Pthz — Qiptt)2
(Pt + q; )

where again the subscript ¢ indicates partial differentiation with respect to the parameter £.

H

Thus, we can combine the above discussion into the following result.

Theorem I (Surface Consistency Theorem): Consider some region of a surface

{f(-’b, y): (zy) €D CE2}.

If the reflectance surface R is isotropic, its normal VR is uniformly distributed, and the second partials
Ryp, Rpg, Ryq are small, then the probability of a zero-crossing in (v- V)QE' Jor some direction v, with

associated directional angle a, is a monotonic function of

[ L[]+ ]

(ttt"' {3 )
[l

where the integral with respect to t is taken along the parametric curve obtained by slicing the image in

and of

some direction, and the integral with respect to % is taken over all such slices of the image region %Ro.q

This theorem has the immediate corollary of specifying the “best” surface to fit through a set of

known points.




21

Corollary 1.1: The surface f mos! consistent with a set bf known points provided by the visual
system (e.g. from stereo) is that which is least likely to introduce zero-crossings not present in the primal
sketch. By the Surface Consistency Thecrem, this surface minimizes arclength of the parametric normal
to the surface along each direction and curvature of the parametric normal along each direction, subject

to passing through the known pointsyg

Finally, we would like to obtain a simple expression for this surface. Note that the curvature of a
curve at a point is simple the rate of change of its taugent at that point. Thus, the curve with minimum
integral square curvature is onc with a tangent as nearly constant as possible, relative to the constraints
imposed by the known points. Next, to minimize arclenth, we require the curve of constant tangent to

have as small a tangent as possible. This can be done by find the curve which minimzies
[ﬁ+ﬁﬁ
which is equivalent to
/ (pz cosa+ pysin a)2 + (g cos a + gy sin a)2 dt.

Integrating this form over all directions a, and using the fact that p, = g, (since f is assumed to be

twice continuously differentiable), we obtain

e T2+ 1

As a consequence, we obtain the following result.

Corollary 1.2: The surface f which “best” fits a set of known data in a region % of the image is

that which passes through the known points and minimizes
/ A foat 22y + fy dady.

It is interesting to note that this expression for “best” surface interpolation as the surface which
minimizes the integralef quadratic variation has been derived elsewhere from an analysis of fitting
this elastic plates to the known points [Grimson, 1981b, 1982].

Three assumptions were made in the statement of the surface consistency theorem. One was

that the reflectance surface R is isuuopic, a second, that its normal VR is uniformly distributed,
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and a third, that the second order partial derivatives of R are small. What do these assumptions
imply about the imaging situation? The assumption of an isotropic reflectance function is minor.
The assumption of a uniform distribution of the reflectance normal is stronger. Although a stronger
version of the surface consistency theorem can be proved by weakening this assumption, we can
also justify the assumption by an appeal to the “general position” principle of viewer geometry and
illuminant geometry. The notion of gencral position requires that all propertics of the observed image
irradiances be roughly independent of the specific viewer position or illuminant position. In other
words, a small movement of the viewer or the illuminant should not grossly affect the propertics of
the image irradiances. In terms of the reflectance surface, a slight alteration of the viewer position
or illuminant position will generally result in a translation (and possibly a scaling) of the reflectance
surface R relative to the p-g coordinate system. Within the proof of the theorem, the assumption
of uniform distribution is used to argue that at any point in the image, the reflectance normal VR
is equally likely to be found in any direction. By applying the principle of gencral position, we can
loosely argue that the illurﬁinant is cqually likely to be in any of a range of positions and that the
viewer is cqually likely to be in any of a range of positions. As a consequence, the reflectance normal
corresponding to a point in the image is equally likely to be found in any dircction, and hence is
uniformly distributed. The assumption of small R,,,, R,,, and R, indicates that the theorem may not
be valid for highly specular surfaces, but the assumption is reasonable for surfaces that are generally

matte in nature,
4.4 The Importance of the Surface Consistency Theorem

We began this paper by discussing the problem of creating complete surface representations
from sparse data such as that provided by stereo, and argued that additional constraints were needed
to effect such a surface reconstruction. The above corollary suggests that one such constraint has
been identified. In particular, given a class of surfaces that pass through a set of known points, the
surface which is most consistent with the imaging information is that which is least likely to introduce
additional zero-crossings. By the surface consistency theorem, we sce that this surface is defined as
the surface that minimizes the functional of quadratic variation, or at least minimizes some measure
‘which is monotonically related to this functional. In [Grimson, 1982], we combine this fact with

additional constraints, in order to develop a computational theory of visual surface interpolation.
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5. Examples

To illustrate these results, we show how inflections in the surface can cause zero-crossings in the
convolved image, for different light source positions. Figures 7, 8, 9 and 10 show cxamples of a one-
dimensional slice of a developable surface, with a Tambertian reflectance functior: (a perfectly diffuse
surface which reflects flux uniformly in all directions), and the irradiance values obtained for different
positions of a point light source. Figure 7 indicates the sample surfaces and the rough positions of
the light sources for the different examples. Figures 8, 9 and 10 indicate sample surfaces and the
corresponding irradiance profiles for different positions of the light source, as indicated in Figure 7.
The positions in the irradiance function which would give rise to a zero-crossing in the convolved

image are indicated.

6. Summary

In this paper, we have scen the need for interpolating the results of the sterco algorithm to
create complete surface dpscriptions. Determining which surface to fit to the known sterco data is
at first sight difficult, since any onc of a widely varying family of surfaces could be used. We saw,
however, that most of these surfaces can be discarded as possible interpolations, since they contain
rapid fluctuations in surface orientation and these fluctuations should give rise to additional zero-
crossings, not contained in the sterco data. Such zero-crossings would, of course, be inconsistent with
the imaging data, and hence such a surface is considered to be unacceptable as a possible interpolation

of the known data. Thus, we proved that the surface consistency constraint restricts the problem:
The abscence of zero-crossings constrains the possible surface shapes

To make this constraint 'prccise, we outlined the physics of image formation and outlined a
derivation of Horn’s image irradiance equation. We then showed that this expression accounts for
the zero-crossings of the Marr-Hildreth edge detection algorithm in the case of surface boundaries,
surface markings, texture changes, and so forth. The equations further suggest that even in regions
where the physical factors causing the previous types of zero-crossings are constant, there m:':y still be
zero-crossings, due to a change in surface shape. We used this fact to prove the surface consistency

theorem which relates the probability of a zero-crossing in the second derivative of an image to the
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Figure 7. Examples of One-Dimensional Surfaces. The top figure shows one surface and the
arrows indicate the rough orientations of the light source. The numbers refer to the irradiance
profiles in Figure 8. The bottom figure shows a second surface, with a set of rough orientations of
the light source. The numbers refer lo the profiles of Figures 9 and 10. (From Grimson [1981b]).
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Figure 8. Examples of a Surface with Two Inflections. The top figure shows a slice of a surface.
The bottom three figures indicate irradiance profiles for different positions of the light source.
Note that in all cases, there are six irradiance inflections. In case 3, the irradiances also undergo a
self-shadowing, where the irradiance value is zero. The positions in the irradiance function which
would give rise to a zero-crossing in the convolved image are indicated. (From Grimson [1981b]).
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tigure Y. Examples of a Surtace with One Inflection. The top figure shows a slice of a surface.
The bottom three figures indicate irradiance profiles for different positions of the light source.
The positions in the irradiance function which would give tise to a zero-crossing in the convolved
image are indicated. (From Grimson [1981b}).
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Figure 10. Examples of a Surface with One Inflection. The top figure shows a slice of a surface.
The bottom three figures indicate irradiance profiles for different positions of the light source. Note
that in case 8, the irradiance profile undergoes a self-shadowing. The positions in the irradiance
function which would give rise {0 a zero-crossing in the convolved image are indicated. (From
Grimson [1981b}]).
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variation in the original surface. The surfacc consistency constraint can be used to formulate a com-
putational theory of surface interpolation and a specific algorithm for computing the interpolated

surface [Grimson, 1982].

7. Appendix

Theorem 1 proved a relationship between any general two-dimensional surface and the prob-
ability of a zero-crossing occuring in the corresponding convolved intensitics. Because the theorem
dealt with any surface, the relationship was somewhat weak. In this appendix, a sct of alternate
theorems are given which apply in cases where the surface can be considered roughly cylindrical (or

developable). The proofs of these theorems are included for completeness.

Theorem 2: Consider a portion of a second differentiable, developable surface oriented along the y

axis such that f,(x, y) = q = ¢, for some constant c. If the following conditions are true:

1. The surface portion contains exactly two inflection points in the a:‘dz‘rection, at zy and xa,
2. Al the points xy and 3, normalized changes in albedo are dominated by normalized changes in
reflectance,
V2p Rypzz
I R

3 The reflectance map R does not pass through an extremum in this region of the surface,
4, The reflectance map R is not constant over this region of the surface,

5. The albedo p is non-zero,

then there exists a point 2y <z’ < z such that V?E(z') = 0.

Proof: The signum function is defined by:

1 ifz>0
sgn(z) =<¢—1 ifz<0
0 ifz=0

From the derivatives of the image equation,

VE = (V2P)R + 2p.Rpp: + P(Rpppz + Rppa::c)‘
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At the inflection points z; and 2y, p.(z;) = 0. Hence, evaluation of the equation yields

V’E(r) = V2(@)R(p()) + pe)Rp(ple))pecls) fori = 1,2

Condition (2) implies that the albedo changes are negligible in this region, so that the first term may

be ignored,

sgn(V2E(s;)) = sgn(p(z:)Rp(p(z:))peo(z:)).
Condition (5) implics that sgn(p) = 1. Observing that
sgn(zy) = sgn(z) sgn(y),

the sign of the convolved intensity function at the surface inflection points is given by

sgn(V2E(z;)) = sgn(R,(p(z:))p.=(:))-

Condition (3) implics that R,, does not change sign in this region of the surface and hence

sgn(Ry(p(21))) = sgn(Ry(p(z2)))-

Note that p, = 0 at z, 7. The fact that there arc exactly two inflections on the surface implies that

Pz % 0 over the neighbourhood (2, 25). Thus,

sgn(pea(21)) 7 89n(pra(22)),

and thus
- sgn(V2E(z1)) 5% sgn(V?E(z,)) .

The second differentiability of the surface implies that there exists a point z/ € (z1, z2) such that
V2E(z') = 0.}

Corollary 2.1: Suppose one is given a set of known depth points at a set of zero-crossings, along a
developable surface. If the albedo p is non-zero and the reflectance map R is not constant for this region
of the surface, then the surface cannot coniain two or more inflection points between any pair of adjacent

Zero-crossings.
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Theorem 3: Consider a portion of a second differentiable developable surface oriented along the y

axis such that f(z,y) = c, for some constant c. If the following conditions are true: »

I The surface contains exactly one inflection point in the z direction at z,, and the reflectivity R
achieves an extremum at the point zy, T, 5 o,
2 At the point xy the normalized changes in albedo are dominated by normalized changes in

reflectance of the form,
Vp
P

Rypzs
R

)

and at the point z, the normalized changes in albedo are dominated by normalized changes in reflectance

of the form,
Ryl
R

V?p
0

<

»

3. The reflectance map R is not constant,

4, The albedo p is non-zero,

then there cxists a pointzy < 7' < 1z such that V*E(z') = 0.

Proof: As in the proof of the previous theorem, at the point z;,

sgn(V2E(zy)) = sgn(R,(p(z1))p2s(21))-

At the point z, R, = 0 so that

V2E(zy) = V2p(z2)R(p(22)) + p(22)Rpp(p(22))P2(22) .

Condition (2) then implies that at this point, the normalized albedo changes are dominated by the

normalized reflectance changes,

sgn(V2E(z,)) = sgn(p(xz))sgn(Rp,,(p(xg)))sgn(pi(a:z)) .
Condition (4) implies that sgn(p) = 1, so that

sgn(V2E(z2)) = sgn(Rpy(p(22)))sgn(p2(z2))
= SQn(Rpp(p(zz))) '




There are two subcases. In the first subcase, p.(z1) > 0. Since there is only one inflection point

in the surface, this implies that p(z;) << p(z3). Then R,,,(p(22)) << 0 implics that

Ry(p(z1)) > Ry(p(22)) = 0.

Conversely, R,,,(p(z2)) > 0 implies that

Ry(p(z1)) < Ry(p(z2)) = 0.

-In cither case,
sgn(Rpp(p(22))) 7 591 Ry(p(21))pza(21))-
In the second subcase, suppose that py-(z;) < 0. This implies that p(z;) > p(z2). Then
Ry, (p(z2)) << 0 implics that V
Rp(p(z1)) < Rp(p(z2)) = 0.

Conversely, R,,,(p(x2)) > 0 implies that

Ry(p(z1)) > Rp(p(z2)) =0.

In cither case,
SQn(Rpp(p(x2))) # SQn(Rp(p(xl))pxz(xl))'

Thus, we see that
sgn(VzE(xl)) % sgn(V2E'($2))

and as before the second differentiability of the surface implies that there exists a point 2’ € (z;, )
such that V2E(z') = 0.y

Corollary 3.1: Suppose one is given a set of known depth points at a set of zero-crossings, along a
developable surface. If the albedo p is non-zero and the reflectance map R is not constant for this region
of the surface, then if the reflectance map R passes through an extremum, the surface cannot contain any

inflection points between any pair of zero-crossings. g

Theorem 4: Consider a second differentiable developable surface oriented along the y axis such

that f(z, y) == ¢, for some constant c. If the following conditions are true:
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I. Atthe point z,, the surface becomes self-shadowing, that is R(z;) = 0,
2 The reflectivity R achieves an extremum at the point =, 7y 5% 1,

3 At the point zy normalized changes in albedo are dominated by normalized changes in reflectance,

v?p Rypp?
p R/
4. The reflectance map R is not constant over this region,

5. The albedo p is non-zero,

then there exists a point ¢, << z’ << xp such that VE(z') = 0.

Proofi The fact that the surface becomes sclf-shadowing implies that there is a region of the
surface, beginning at ;, such that R is constantly zero. The fact that there is an extremum in R
for some other point implies that the intensity function must be concave down in the region of the
extremum and concave up in the region of sclf-shadowing. There must be an inflection point in

between and hence there must be a point 2’ such that V2E(z) = 0. g

Theorem 5: Consider a second differentiable developable surface oriented clong the y axis such
that f(z,y) = c, for some constant c. If the following conditions are true:
L At the point zy, the reflectivity R achieves an inflection point,

2. There exist points g << 1 << Ty such that reflectance changes dominate albedo changes,

Vip | Rof. p Rpp
- F Ll ) < | —2Ep2
p + R p pil' + pTT R pz ’
3 The first derivative of the surface, p, is monotonic in this region, (i.e. it does not achieve an
extremum),
4. The reflectance map R is not constant over this region,

S The albedo p is non-zero,

then there exists a point £, << z' << z, such that V*E(z') = 0.

Proof: The proofis very similar to the previous ones, except that in this case, by condition (2),
sgn(VE) = sgn(p)sgn(Rpp)sgn(pg) .
at the points xp, zp. Then condition (4) implies that

sgn(VZE) = sgn(Ryp) .
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Condition (3) implics that - _
p(zo) < p(z1) < p(z2)
or

p(z2) < p(z1) < p(0)

In cither case, condition (1) then implies that

sgn(Rpp(p(20))) 7 sgn(Rpp(p(22))) -

Hence,
sgn( V2E(zo)) sgn(V2E(z)),

and as before, the sccond differentiability of the surface implics that there exists a point 2/ € (g, 22)

such that V2E(z/) = 0. g
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