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1. INTRODUCTION

RUP (Reasoning Utility Package) is a colicction of utilitics relevant to automated rcasoning, RUP
contains a truth maintenance system (TMS) which can be used to perform simple propositional deduction
(unit clause resolution), to record justifications, to track down underlying assumptions, and to perform
incremental modifications when premiscs are changed. RUP also provides a fast system for performing
deductions concerning cqualities. The cquality system contains routines which "intern™ expressions. This
system also performs all deductions which can be made purcly via substitution of equals for cquals and can
simplify terms under a large class of simplicity orderings. RUP also contains miecchanisms for writing
PLLANNER-like demons. The demons created via this package can be compiled as ordinary lisp functions in
which the pattern matching mechanism is open coded into the definition of cach such demonic function.

In designing the RUP environment an attempt has been made to maximize the flexibility of the utilities
and allow them to interact cffectively with user defined systems. Thus there are many "hooks™ which allow
the user to modify RUP in different ways. For example hooks are provided for installing user defined
backtracking functions and user defined pattern directed invocation mechanism. There is also a general
control methodology adopted in RUP which associates qucues with invariants. The demonic triggering
mechanisms provided by RUP allow the user to define his own quecues and invariants and to maintain those
invariants by having forms qucued dcmonicélly when an invariant is violated. RUP provides a simple data
base in the form of interned expressions but users typically define their own data structures and define
invariants which associate their data structures with thosc provided by RUP.

This document describes the major functions in RUP and examples of their use. The description of each
function is prefaced by the name of the function in bold letters followed by the list of arguments taken by that
function. RUP is implemented in both LISP Machine LISP and in MACLISP. There are two versions of the
TMS one which implements a semi-automatic certainty based premise controller and one which leaves

~ premise control entircly to the user. One can load RUP into LISP by loading whichever of the following files

is appropriate (the files reside on MIT-AI):

AL:RUP;RUP > LISP machine RUP without premise controller

AL:RUP;RUPP > LISP machine RUP with semi-automatic premise control
AL:RUP;MRUP > MACLISP RUP without premise controller
- AL:RUP;MRUPP > MACLISP RUP with semi-automatic premise control

The LISP machine versions loads into the package RUP and all symbols in this manual which do not
have an explicit package prefix reside in the RUP package. In the MACLISP version package prefixes are
simply interpreted as part of the character name. ’
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2. SOME SIMPLE SCENARIOS

This section is intended for first timc users who want to use RUP in the most straightforward manner
possible. A series of scenarios is presented cach of which is intended to demonstrate some feature of the top
level RUP environment. The reader should be cautioned against just recading these scenarios and not reading
the remainder of the manual. There arc many utilitics which are not demonstrated in these scenarios.
Furthermore the scenarios emphasize the use of RUP as a programming language and leave out the important
view of RUP as a utility package, ,

The first scenario demonstrated the simple propositional rcasoning facilities and the explanation

generation mechanisms,

The second scenario demonstrates how the simple propositional deduction mechanisms can be extended
with a refutation mechanism invoked by the top level function try-to-show while the third scenario shows the

Scenario 1.

(assert "(:-> p q))
(;;;ert (:=> q r))
(;;;ert 'p)

(;A; 'r)

"R IS :TRUE FROM:"

"1.Q IS :TRUE"
"2 (:-> Q R) IS :TRUE"

(why 1) )
"Q IS :TRUE FROM:"

"1 P IS :TRUE"

"2 (:-> P Q) IS :TRUE"

(why 1)
"P IS :TRUE AS A PREMISE"

(why 0)

"Q IS :TRUE FROM:"

"1 P IS :TRUE"

"2 (:=> P Q) IS :TRUE"

(why 0)

"R IS :TRUE FROM:"

"1 Q IS :TRUE"

"2 (:=> Q R) IS :TRUE"

(why 2)
"(:=> Q R) IS :TRUE AS A PREMISE"
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substitution capabilitics of the system.

The final scenario demonstrates the use of simple demons. Of course demons are not normally defined
by typing them into the top level RUP environment. Each pattern directed demon has a trigger pattern, a
triggering condition keyword (such as :intern) and a queue on which the invocation of the body is placed
when the triggering occurs. The symbol *hasic-queues* is bound to a list of queues which are emptied by
certain top level functions such as assert and why. The body of a demon may be any list of LISP expressions.
The macro Iconst constructs clauses in the TMS corresponding to the assertions it is given. Constructing a
clause in the TMS is different from asserting an implication; specifically clauses never appear in explanations
while asserted implications do.

Scenario 2.

(assert '"(:=> p r))

(assert '(:-> q r))

(assert '(:or p q))

(why 'r)

"I DON'T KNOW WHETHER OR NOT R IS :TRUE"
(try-to-show 'r)

(why ’r)

"R IS :TRUE FROM:"

"1 (:-> P R) IS :TRUE"

"2 (:-> Q R) IS :TRUE"
“3 (:OR P Q) IS :TRUE"

Scenario 3.

(assert '(= (f a b) a))

(why (= (f (f a b) b) a))
"(= (F (F A B) B) A) IS :TRUE FROM:"
"1 (= (F A B) A) IS :TRUE"
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Scenario 4.

(setq *user-queue* (make-fifo))
(setq *basic-queues* (append *basic-queues* (1ist *user-gueue*)))

(notice (intern (dog 7x)) *user-queue*
(lconst (:-> (dog ?x) (mammal 7x))))

(notice (intern (hawk ?x)) *user-queue*
(1const (:-> (hawk ?x) (bird 7x))))

(notice (intern (mammal ?x)) *user-gqueue*
(lconst (:not (:and (mammal ?x) (bird ?x)))))

(assert '(dog fido))

{(why '(hawk fido))
"(HAWK FIDO) IS :FALSE FROM:"
"1 (BIRD FIDO) IS :FALSE"

(why 1)
"(BIRD FIDO) IS :FALSE FROM:"
"1 (MAMMAL FIDO) IS :TRUE"

£ (why 1)
"(MAMMAL FIDO) IS :TRUE FROM:"
"1 (DOG FIDO) IS :TRUE"

(why 1)
"(DOG FIDO) IS :TRUE AS A PREMISE"
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3. THE TRUTH MAINTENANCE SYSTEM

A truth maintenance system is a utility which operates on an assertional data base (a collection of TMS
nodes) and has at least the following four properties:

1) It can perform some form of propositional deduction from propositional premises

(propositional deduction does not involve quantification).

2) It records justifications for deduced assertions and can generate explanations for those

assertions.

3) It can incrementally retract deductions when premises are retracted so that all "true"
asscrtions in the data basc arc cither premises or follow logically from the premises.

4) Itcan perform "dependency directed backtracking”. That it to say that when a contradiction
arises it can use the recorded justifications to track down the premises underlying that

| contradiction. Furthcrmore when one of these premises is retracted it can use the contradiction
to deduce the negation of the retracted premise,

This section describes the functionality of RUP’s TMS in dctail. The first part of this section describes
the association between queues and invariants which is used in much of RUP. The second part describes the
two basic data structures uscd in the TMS. The third describes the basic TMS invariants which form the major
specifications for the functi-nality of the TMS. The fourth part describes the major functions defined in the
TMS. The fifth part describes TMS demons. '

3.1. Queues and Invariants

Much of RUP is specified by stating invariants which should hold in the RUP environment. Several of
these invariants are associated with queues, such that for cach violation of the invariant there is some entry on
the queue that can be used to correct that violation. Thus when a queuc has been emptied the invariant
associated with that queuc must hold. For example there is a TMS invariant which says that for each
contradiction in the TMS there is an entry on the queue *backtracking-invariant*. While there are many
TMS invariants, the only user visible queue associated with these invariants is *backtracking-invariant¥.
(There are other user visible queues which are associated with other RUP invariants.) The basic primitives for
constructing and manipulating all RUP queues are described here.
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- mutke-fifo ()
This function returns a new first in first out queue.
fifo-push (item queue)

This function pushes an item on a fifo queue. Fach item on a queue miust be a list of a
function followed by a list of arguments. Thus a particular qucue entry item can be "run" by

evaluating:
(apply (car item) (cdr item))
fifo-empty? (queue)
- Thus predicate is non-nil just in case the given queue is not empty.
run-queuces (qucue-list)

This function takes a list of queues and empties them by "running” the items on the

queucs. This function iteratively takes the next item of the first non-empty queue in the given
e list of queues and runs that item. Mote that in running one item more items may be queued.

Thus a queuc which was empty at one iteration may not be empty on the next iteration. On each
iteration this function takes the first item off the first non-empty queue. The function terminates
when all queues are empty.

The order of the queues in the given list of queues imposes a "priority" on the queues.
Ttems on the second queue will only be run in environments in which the first queuc is empty.
Thus if there is some invariant associated with the first qucue items on the second queue will
only be run in an environment in which that invariant is in force.

*basic-queues* variable

This variable is bound to a list of queues and can be passed as an argument to
multi-fifo-empty. The default value of this variable is:

(list *equality-invariants* *rup-top-level* *backtracking-invariant*)

The variables *equality-invariants¥*, *rup-top-level*, and *backtracking-invariant* are all
set to queues in the default RUP environment.
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3.2. Nodes and Clauses

There are two basic data structures used in the TMS: TMS-nodes and clauses.

3.2.1 TMS NODES

TiMS-node structure

(defstruct (tms-node (:type :named-array))
assertion
(truth *':unknown)
support
true-noticers
false-noticers
change-noticers
neg-clauses
pos-clauses
default
default-cert
certainty
(node-plist (ncons nil))
(node-extension (funcall *make-node-extension*)))

The slots of tms-nodcs is described below:

assertion A tms-node is intended to represent a proposition or assertion of some form. The
assertion slot is not used by the TMS directly but is intended to hold the name of the assertion.
In RUP the assertion slot holds the term whose print name is the name of the assertion. Terms

are described in the scction on the equality system.
truth This slot always contains one of the atoms :unknown, :true and :false.

support This slot is cither nil or contains a clause which is the justification for the truth of this
node. Only nodes whose truth is either :true or :false have non-nil support slots. This slot is
described in more detail in the section on TMS invariants.

truc-noticers, false-noticers, and change-noticers These slots contain demons which are queued
when certain events occur in the TMS. These slots are described in more detail in the section on
tms noticers.

neg-clauses For any TMS node n the neg-clauses of n is a list of all those clauses ¢ such that the
pair (n . :false) is a member of the clause-list of c. (See the description of clauses.)

pos-clauses For any TMS node # the pos-clauses of n is a list of all those clauses ¢ such that the -
pair (n. :true) is a member of the clause-list of ¢. (See the description of clauses.)
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default This slot is only used in the TMS with the semi-automatic premise controller. This slot
is either nil or contains a default truth value which is cither :true or :false. This slot is described

in more detail in the scction on TMS invariants.

default-cert  This slot is only used in the TMS with the semi-automatic premisc controller. If the
default slot is non-nil then this slot contains an integer between the values of the special
variables *min-cert* and *max-cert* inclusive. This slot is discussed further in the section on
TMS invariants.

certainty This slot is only used in the TMS with the semi-automatic premise controller. If the
truth of the node is not :unknown then this slot contains the minimum certainty of the premises

which underly the truth of the node.

node-plist This slot contains a disembodicd property list (LISP Machine manual pp. 71-72) and
is initialized to (ncons nil). This allows the user to define propertics which are not already
structure slots. A new "slot” for TMS nodes can be defined as follows:

(defmacro new-slot (node)
‘(get (node-plist ,node) 'new-slot))

Since the node-plist slot is uscd internally in RUP it is important that the user not violate the
conventions for property lists in using this slot.

node-extension This slot is not used internally in RUP and is available for use by the user. The
value of this slot is initialized to (funcall *make-node-extension*®) so that the user can control the
initial value. *make-node-extension* is initialized to a function which always returns nil. It is
intended that the user define his own structure which extends the node data structure’ and
initialized this slot to that structure which could be done as follows:
(defstruct (node-extension)
2
o))

(defun extension-maker ()
(make-node-extension))

(setq *make-node-extension* (fsymeval ’extension-maker))
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3.2.2 CLAUSES -

A clause is a data structure which represents a logical disjunction. A clause should be thought of as
representing a constraint which says that at least one of a particular collection of items must be true. The
details of this data structure are described below.

clause structure

(defstruct (clause (:type :named-array))
clause-list
psat)

clause-list This slot contains a list of pairs such that the car of cach pair is a tms-node and the
cdr of cach pair is cither the atom :true or the atom :false. A given pair is said to be true if the
truth of its car is the same as its cdr. Similarly a pair is said to be false if the truth its car is the
opposite of its edr. For example if the truth of a node # is :false then the pair (n. :false) is said
to be truc while the pair (n. :true) is said to be false. Since the truth of a TMS node can be
:unknown it can be the case that a given pair in the clause list is neither true or false. A clause
should be thought of as a disjunction which says that not all of the pairs in its clause-list can be
false.

psat This slot always contains a number which is the number of pairs in the clause list which
arc not falsc. Any clause whose psat is 0 is called a.contradiction. A clause whose psat is 1 can be
uscd as a justification er assigning a truth valuc to the node waich is the car of the pair in the
clause-list which is not false.
3.2.3 SOME CONVENIENT MACROS
The following macros are convenient for testing the truth of a node:
true? (node)
The form (true? node) macroexpands to {eq *:true (truth node)).
false? (node)
(false? node) = => (eq ":false (truth node))
unknown? (node)

(unknown? node) = => (eq ’:unknown (truth node))
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3.3. The TMS Invariants

There are three groups of invariants concerning the TMS data structurcs which are maintained by the
TMS. The first group of invariants, the justification invariants, ensure that every deductions has a well
fouanded justification (i.e. that the deduction performed by the system is sound). The sccond group of
invariants, the deduction invariants, guarantee that deduction is closed under a simple deduction rule (which
is equivalent to unit clause resolution). A final backtracking invariant can be used to ensure that the set of
premises in the system is "consistent” in that no contradiction can be deduced using the TMS’s deduction
machinery. Some of the justification and deduction invariants only apply to the TMS with the semi-automatic
premisc controller. Only the backtracking invariant involves a user visible queue.

3.3.1 THE JUSTIFICATION INVARIANTS

Only nodes whosc truth slot is either :true or :false can have non-null support slots and when such a
support slot is non-null it contains a clause which is the justification for the truth value of the supported node.
Each clause should be thought of as a disjunction (sec the above description of the clause data structure). The
basic idea behind justifications is that truth value of the justified node (the value of its truth slot) follows
logically from the justifying clause and the truth values of the other nodes in that clause. All clauses are
interpreted by the system as logical tautologics, thus while the truth values assigned to nodes can be retracted,
clauses cannot be removed. Similarly, in gencrating explanations the system will list assignments of truth
values to nodes but will not mention the existence of clauses. The interpretation of clauses as tautologies is
described in more detail in [McAllester 80b]. A TMS node whose truth is cither :true or :false (i.e. not
:unknown) but which does not have any supporting clause (i.c. its support slot is nil) will be called a premise.

Local Support Invariant: This invariant states that the truth value which has been assigned to a
supported node n follows logically from the clause which is the support of # and the truth values
which have becn assigned to the other nodes appearing in the clause. Specifically let 1 be any
TMS node whose truth is cither :true or :false and whose support is not nil. The supporf of n
must contain a clause ¢ such that the psat of ¢ is 1 (there is exactly onc pair in the clause list of ¢ '
which is not falsc) and such that the pair in ¢ which is not false contains » (the supported node).

Well Founded Support Invariant: This invariant states that support trees are acyclic, i.e. that no
node is a support node of itsclf. Specifically let » be any TMS node whose truth is either :true
or :false and whose support is some clause ¢. The nodes other than n which appear in the.clause
list of ¢ will be called the immediate support nodes of n (a premise has no immediate support
nodes). A node m will be called a support node of # if it is either an immediate support node of
n or it is an immediate support node of some node which is a support node of » (thus the
support nodes of n are those nodes appearing in the support tree of 7). The premises which are
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support nodes of n will be called the support premises of n.

Certainty Justification Invariants: These are two invariants which apply only to the TMS with
the semi-automatic premise controller. To define the first certainty justification invariant let n be
any premise. 'The truth of 7 must be the same as the default of # (which must not be nil) and the
certainty of # must be the same as the default-certainty of # (which must also not be nil). In
other words any premise must be a premise by virtue of the fact that it has a default value and
the certainty of the premise is the default certainty. To define the sccond certainty justification
invariant let # be any nodc whose truth is ¢ither :true or :false and whose support is some clause
c. The certainty of 1 must be the minimum of the certainties of all of »'s immediate support
nodes. This together with the well founded support invariant implics that the certainty of 1 is
the minimum of the certainties of all of the support premises of .

3.3.2 THE DEDUCTION INVARIANTS

The TMS performs simple propositional deduction from clauses and the truth values which have been
assigned to nodes. The deduction pcrfonﬁcd is not complete (i.c. there are valid deductions which are not
madc). However the deduction processing is incremental and is guaranteed to terminate in linear time in the
rumber of clauses in the system. The basic deduction invariant is that all deductions which can be made from
a single clause and assignments of truth values to nodes have been made.

Main Deduction Invadiant:  Let ¢ be any clause whose psat is 1 (any clause such that there is
only one pair in its clause list which is not false). Let p be the pair in ¢ which is not false and let
n be the node which is the car of p. The main deduction invariant is that the truth of n is the
same as the cdr of p. If the truth of 1 was :unknown then the clause ¢ could be used to deduce
that » must be assigned the truth value which is associated with it in p. The main deduction
invariant says that all such deductions have been made.

Default Value Invariant:  This invariant applies only to the TMS with the semi-automatic
premise controller. It ensures that any node which has a default truth value and which cannot
be proven to have the opposite of its default value does in fact take on its default value.
Specifically let n be any node whose default is not nil (i.e. any node with a default truth value).
The default value invariant is that the truth of n must be either :true or :false and that the
certainty of »n must be at least as large as the default-cert of »n (which must not be nil).
Furthermore if the truth of n equals the default of n and the certainty of n equals the default-cert
of n then the support of n must be nil (the node n must be a premise).
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Deduction Certainty Invariant: This invariant applics only to the TMS with the semi-automatic
premise controller. It says that each node is given the strongest (most certain) justification which
can be found via the propositional deduction mechanisms used by the TMS. Specifically let ¢ be
any clause whose psat is 1, Iet p be the pair in ¢ which is not false, and let 1 be the node which is
the car of p. The deduction certainty invariant is that the certainty of » is not smaller than the
minimum of the certaintics of the nodes in the false pairs of ¢. To better understand this
invariant consider the relationship between the clause ¢ and the node #. By the main deduction
invariant # must be assigned the truth value which is the edr of p. However the support of n
need not be the clause c¢. If ¢ is not the support of # then ¢ may provide an alternative method of
deducing the truth value of n (the only problem would be if using ¢ for the support of n vould
introduce a circular justification violating the well founded support invariant). If the certainty of
n were less than the certainty which would result from using ¢ as the support of » then ¢
provides a "stronger” argument for the truth value assigned n and the support for # could be
strengthened by setting it to ¢ (it can be shown that such "strengthening” never introduces
circularities). The deduction certainty invariant says that all such possible strengthenings have
been done.

3.3.3 THE BACKTRACKING INVARIANT

Any clause whose psat is 0 is called a contradiction. Since each clause is interpretcd‘ as a tautological
disjunction, if all pairs in a clause ¢ are false then the truth values which have been assigned to the nodes in
those pairs are mutually contradictory.

The backtracking invariant: This invariant is that for each contradictory clause ¢ there is a list b
on the queuc *backtracking-invariant* such that the car of & is the function which is the value of
the variable *backtracker* and the cdr of b is a one element list containing ¢. Thus "running” b
is equivalent to evaluating: (funcall *backtracker* c).

*hacktracker* variable

The value of this variable is a backtracking function which is used to construct the item
placed on the queue *backtracking-invariant* when a contradiction arises. The default value of
this variable is backtracker-default which is described below. '

*backtracking-invariant* variable

The value of this variable is the queue associated with the backtracking invariant.
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3.4. Major TMS Functions

This section describes the TMS functions which might be of interest to the user. It also describes some
paramecters of the TMS which can be sct by the user.

add-clause (clausc-list)

The clause-list must be a list of pairs cach of which associates a TMS node with cither :true
or :false. This function crcates a clause with the given clause list and ensures all of the TMS
invariants by performing whatever deductions the clause allows and by qucueing the
backtracking of any resulting contradictions.

nede-add-clause (pos-nodes neg-nodes)

The pos-nodes and neg-nodes arguments must both be lists of TMS nodes. This function
first constructs a clausc list by associating all the nodes in pos-nodes with :true and all of the
nodes in neg-nodes with :false. It then adds a clause with this clause list by calling add-clause.

implies (nodes node)

A call to this function of the form (impiics nodesnode) is equivalent to
(node-add-clause (list nodce) nodes). It adds a clause which represents the assertion that if all of
the TMS nodes in the nodes argument are true then node should also be true.

contradictory (nodes)

A call to this function is cquivalent to (node-add-clause nil nodes). It adds a clause which
says that one of the nodes must be false.

clause-cert (clause)

This function is only defined in the TMS with the premise controller. This function takes a
clause and returns the minimum certainty of the TMS nodes in the false pairs of that clause. The
justification certainty invariant says that the certainty of a supported node equals the clause-cert
of the support of that node.

make-premise (node truth-value)

This function is only defined in the TMS without the premise control mechanism. This
function forces the truth of the given node to be the given truth value which is required to be
cither :true or :false. If th¢ given node was previously assigned the opposite value then
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retraction is done before the new assignment is made. This function guarantees that all TMS

invariants arc maintained.
*min-cert®*, *max-cert* variables

These are variables which may be sct by the user. All certainties must be between the
values of *min-cert* and *max-cert* inclusive. The default values of *min-cert* and *max-cert¥®

are 1 and 5 respectively.
sct-default (node valuc certainty)

This function is defined only in the TMS with the premise control mechanism. This
function scts the default of the given node to value and the default-cert of the given node to the
given certainty. This function guarantees that all TMS invariants arc maintaincd by performing
whatever truth assignments, retraction, deduction, and backtrack qucucing that is neccessary.
Thus if the truth of the given node was unknown before the call then the truth of the gnven node

will be sct to the given value (which must be :true or :false).
retract-premise (node)

™ This function is only defined in the TMS without the premise controller. This function sets
the truth of the given node to :unknown and guarantees the maintenance of all TMS invariants.
(Maintenance of the ‘nvariants requires a retraction phase in which all nodes which depended
on the retracted node are retracted and a deduction phase in which all nodes which were
retracted are checked to sce if some alternative support is available. To avoid circular
dependencics it is important that the retraction phase completes before the deduction phase
begins. To achicve this there is an internal queuc associated with the deduction invariants.)

remove-default (node)

This function is only defined in the TMS with the premise control mechanism. This
function sets both the default and the default-cert of the given node to nil and maintains all TMS
invariants. Thus the given node will not be a premise after this function exits.

*yiew-node* variable

This variable is bound to a function which when applied to a TMS node returns a "name"
for that node. The default value for *view-node* is the function view-node-default which assumes
that the assertion of the node is a term (described in the section on the equality system) and
returns the expression which that term represents.
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view-clause (clause)

This function returns an "imag:" of the clause list of the clause in which each node has
been replaced by the "name” of the node as given by the value of *view-node*.

ncde-why (node)

This function gencrates an explenation for the truth value assigned the node. If the trath of
the given node is :unknown then a simple statement to that cffect is generated. If truth of the
given node is :true or :false and its support is not nil then the gencrated cxplanation gives a
numbered list of the immediately support nodes and their truths. The argurient to node-why
may be a number in which case an explanation is generated for the support node corresponding
to that number in the previous explanation. If the argument 0 is given then the explanation stack
is "popped". The following scenario demonstrates the use of this function.-

(setq *view-node* '(lambda (node) (assertion node)))

(defun symbol-node (sym) )
(let ((n (make-tms-node)))
(set sym n)
(setf (assertion n) sym)
sym))

(symbol-node 'p)

(;&ﬁbo1-node 'q)

(é&ﬁboT-node 1> poa)l)
(implies (1ist [(:=> p )| p) Q)
(ﬁége-premise [(:=> p q)| ':true)

(make-premise p ':true)

(node-why q)

"q is :true from"

"1 |(:=> p g)| is :true”
"2 p is :true”

t

(node-why 1)
_"|(:-> p q)} is :true as a premise"

(node-why 0)

"q is :true from"

"1 J(:=> p q)] is :true”
"2 p is :true"

t

(node-why 2)
"p is :true as a premise"
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The node-why function allows the user to walk around the support tree of a node
investigating various support paths.

backtracker-default (clause)

This is the default value of the variable *backtracker* which is used in constructing
backtracking forms to place on the qucuc *backtracking-invariant® (sce the section on the
backtracking invariants). This function takes a clause and if the clause is not a contradiction it
doces nothing. Otherwise it first constructs a list of all the support premises of all the nodes in the
clause (all of the premiscs underlying the contradiction). In the TMS with th: semi-automatic
premise controller this list is then filtered so that only those premiscs which have the least
certainty remain. One premise from the candidate premises is then chooses for retraction. If
there is only onc candidate premisc then this is the one chosen. If there is more than one
candidate premise then the value of *premise-selector* is applied to the list of candidate
premises and the premise returned is the one chosen for retraction. (The fact that the value of
*premise-selector® may be called even in the TMS with the premise controller is the reason for
calling this premise controller semi-automatic rather than automatic.) The premise chosen for
retraction is retracted and then the negation of that premise is deduced from the other premises
and the fact that the premises arc mutually contradictory.

*premise-selector*  variable .

The value of this variable must be a function which takes a list of nodes and returns one of
them. This function is only called on lists of nodes where the current truth values of the nodes in
that list are mutually contradictory. The default value of *premise-selector* is
premise-selector-default which types the list of nodes at the terminal and asks the user to select
one.

premises (clause-list)

' This fun&ion returns a.list of al@ the nodes which are premises which either appear directly
in false pairs in the clause-list or are support premises of a node in a false pair in clause-list. This
function can be applied to the clause list of a contradiction to get the set of premises underlying |
the contradiction or it can be applied the clause-list of the support of a node to get the set of
premises supporting that node.

reverse-truth (node contradiction)

This function can be used to write backtracking functions. The given contradiction must
be a clause whose psat is 0 (a contradiction) and the given node must be a premise underlying
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¢ that contradiction. This function forces truth of node to be set to the opposite of the value it has
when the functioh is called. All TMS invariants arc maintained. Note that in the TMS with the
premise controller a call to reverse-truth normally results in the other nodes underlying the
contradiction being the premises supporting the reversed value of the given node and therefore
the certainty of the node ends up being the minimum of the certainty of these premiscs.
However if the given node has a default strength which is greater than the minimum strength of
the other premises underlying this contradiction, a problem arises. Specifically the default value
invariant says that the certainty of a node with a default value can not be less than the default
certainty. If such a problematic reversal is attempted it simply will not "stick” and the system
will end up in much the same state that it started in.

node-try-to-show (node value &optional refutation-queucs split-nodes (certainty *min-cert*))

This function uses a refutation mechanism to extend the deductive power of the TMS. In
the TMS without the premise controller the given node must be a TMS node whose truth is
:unknown. In the TMS with the premise controller either the truth of the given node must be
:unknown or the ccrtamty of the nodc must be less than the gwcn certamty ‘This function
attempts to prove from the premises alrcady in the TMS that the given node must be assigned
the given truth value. In the TMS with the premise controller this function attempts to prove
that the given node must be assigned the given value using only the premises of of certainty
greater than or equal to the given certainty. Thﬁs this function can be used to scarch for a
stronger proof of a trth value assignment which is already in force.

~ The function node-try-to-show works by assuming the negation of the thing to be proven
and scarching for a contradiction. It takes an optional list of refutation queues which are queues
to be emptied after the negation has been assumed. The assumption of the negation may trjgger
demons which are placed on queues. Running those demons may lead to the deduction of a
contradiction based on the assumption which would otherwise not have been found. The
function multi-fifo-empty is used to empty the queucs once the assumption has been made.

The function node-try-tb-show also takes an optional list of split nodes. If split nodes are
provided then an attempt is made to prove that all assignments of truth values to the split nodes
imply the desired truth value and therefore that this value holds independent of the truth of the
split nodes. This is done by actually assigning all possible combinations of truth values to the
split nodes and for each such assignment using the refutation mechanism and the rqueues to try
to show that the negation of desired truth value leads to a contradiction.

‘The following scenario provides an example of the use of this function. The fu_nc_tions uséd
in this scenario are defined elsewhere in this manual. For the following example it is important

~ to note that if there is a constraint in the TMS which says that either p or g must be true, and p is
made false, then g will be deduced to be true. This is important when pis used as split node.
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(notice (:true (p ?x)) 'sdhe-queue‘
(Tconst (:=> (p ?x) (r ?x))))

(&giice (:true (g ?x)) *some-queue*
(lconst (:-> (g 7x) (r Zx))))

(aééert "(:or (p a) (g a)))
(why "(r a))
"I DON'T KNOW WHETHER OR NOT (R A) IS :TRUE"

(node-try-to-show (virt-tms-node (term '(r a)))
‘itrue
(1ist *some-queue*)
(1ist (virt-tms-nods (term '(p a)))))

(why *(r a))

"(R A) IS :TRUE FROM:"

"1 (:-> (P A) (R A)) IS :TRUE"
"2 (:-> (Q A) (R A)) IS :TRUE"
"3 (:0R (P A) (R A)) IS :TRUE"

3.5. TMS Noticers

Each node has three noticer slots, true-noticers, false-noticers, and change-noticers, cach of which
contains a list of "noticers". A noticer is a cons ccll whose car is a queue and whose cdr contains an item to be
placed on that qucue when the noticer "triggers”. Under certain conditions all of the noticers in a given
noticer slot will be triggered and the noticer slot will be set to nil. Thus a given noticer in a given slot will only
be triggered once. True noticers (the célls in the true-noticers slot) are triggered whenever the node becomes
true. False noticers are triggered whenever the node, becomes false and change noticers are triggered
whenever any change is made cither to the truth or the certainty of the node. ‘

It is often desirable to have a certain demon run whenever a node becomes true rather than just the first
time that node becomes true. There is a straightforward way of doing this which is exemplified by the
fellowing scenario. When the below function notice-problem is applied to a queuc and a node it first checks to
see if the node is true and if so it applies a special handler to that node. Independent of whether or not the
node is true however it places a true noticer on the node using the given queue. This noticer is such that if the
node is ever set to true in the future then this function will be called again with the same arguments.

(defun notice-problem (queue problem-node)
(if (eq ':true (truth problem-node))
(problem-handier probliem-node))
(push (cons queue (1ist 'notice-problem queue problem-nods))

{(true-noticers problem-node)))

(notice-problem *some-queue* n)
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4. THE EQUALITY SYSTEM

The equality system is a collection of utilitics for handling the substitution of equals for cqlials. The
description of the equality system given here is divided into three parts. The first describes terms and the
interning of terms. Terms are analogous to a LISP atoms in that they are interned so that one can guarantee
that there are no two distinct terms with the same print name. Unlike LISP atoms however terms can be
cither atomic or can contain subterms which can be substituted for in the cquality system. The second part of
this section describes the cquality and equivalence class data structures and the equality invariants which
specify the substitution computations. The final part of this section describes simplification utilities which
allow the user to define a somewhat arbitrary simplicity order on terms and then computes the simplest term
which can be equated with any given term via the substitution of equals for equals.

4.1. Terms and Interning

Terms are defined as follows:

(defstruct (term (:type :named-array))
(term-hash (hash-count))
subterms
parents
eqs
next-canonical
eq-next-canonical-eqs
class-data
term-tms-node
user-referenced?
(term-plist (ncons nil))
(term-extension (funcall *make-term-extension*)))

The various slots of this data structure are described below.

term-hash  This is an integer which is unique to this term. This integer is used as a hash value

for the term.

subterms This slot holds two basically different kinds of information depending on the k'ind of
term involved. If the term is a composite term then this slot holds a list of the subterms of the
term (a list of term data structures). For example a term whose print name is (f a b) would have
subterms whose print names are f, a, and b respectively. If the term is "atomic™ then it has no
subterms and the subterms slot contains the print name of the term. There are three different
kinds of atomic terms. First of all there are symbols whose subterms slot is simply a LISP
symbol. Second there are numbers whose subterm slot is a LISP number. Finally th.ere are
quotations whose subterms slot contains a LISP expression whose car is the symbol quote.
Numbers and quotations are self-referential terms. This means that these terms are interpreted
as denoting themselves. Specifically the term whose print name is the number 1 is taken to
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denote the number 1 and the term whose print name is the expression (quote (f a)) is taken to
denote the expression (fa). Seclf referential terms play an important role in the equality

invariants.

parents This slot contains a list of all those terms which contain this term as an immediate
subterm (i.c. all those terms which contain this term in their subterms slot). This is used in the
equality algorithms described in the next part of this section.

cqs This is a list of all the equality data structures which equate this term with some other term.
This slot is maintained by the function make-eq described elsewhere.

next-canonical  This slot is cither nil or contains a "more canonical" term. The function e
described below takes a term t and returns its "canonicalization” which is t if the next-canonical
of t is nil and otherwise it is the canonicalization of the next-canonical of t. Two terms are
cquivalent just in casc they have the same canonicalization.

. eq-next-canonical-eqs The cq-néxt-canonical of a term t is not nil just in case the next-canonical
of t is not nil in which case the eq-next-canonical-eqs of t contains a list of cquality data
structures which together imply that t is cqual to the next-canonical of t.

class-data  The class-data slot of a term t is not nil whenever there is some term s whose
next-canonical is t. If the class-data of a term t is not nil then it is a class-data data structure
which describes the set of terms whose next-canonical is t The class-data data structure is
described in section 3.2.

term-tms-node  This slot is cither nil or contains a TMS node representing this term. If a, TMS
node is present then the term represents an assertion. The function virt-tms-node described
below takes a term and always returns a TMS node representing that term. For the equality

" invariants to be maintained it is important that all TMS nodes representing terms be created via
virt-tms-node.

user-referenced? This slot is a flag which is non-nil just in case this term has been returned as a
value of the function term or the function term-hashcons. This is needed because the equality
system creates internal terms via the substitution of equals for equals and it is not desirable to
run demons on these terms. Specifically the value of the variable *new-term* (described
elsewhere) is only applied to terms which are returned from term or term-hashcons.

‘term-plist This slot is perfectly ana]ogbus to the nodc-i)list slot

term-extension This is perfectly analogous to the node-extension slot of TMS nodes.
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The following functions and variables are relevant to terms and interning.
virt-tins-node (tcrm)

This function returns a TMS node that has been associated with the term. In order to
maintain certain TMS-Equality interface invariants it is important that this be the only way in
which the term-tms-node slot of term:s is set.

atomic? (term)

This predicaté is true of a term just in case the term is a symbol, a number, or a quot..tion.
scif-referential? (term)

This predicate is true of a term just in case the term is a number or a quotation.
term-tree (term)

This function returns the print name of the term. Curried functions are treated spccially
(the print form is uncurried) as is described in the scction on curried functions.

term (expression)

This is the basic function for interning expressions as te:.ns. The cxpression argument can
-either be a number, a symbol, a term, or an arbitrary expression built out of numbers symbols
and terms. If the expression is a term then the expression is simply returned. The expression is
said to be atomic if it is a number or a symbol or the car of the expression is the symbol quote. If
the expression is not atomic then this function first recursively computes the list of subterms
which is the value of (mapcar’term cxpression). It then returns the result of applying
term-hashcons (described below) to this list of subterms. If the expression is atomic then if there
is already a term whosc print name is the expression then that term is returned. If there is not
already such a term then one is created and returned. The value of the variable *new-term* is
applied to all terms created in this way. This function maintains all of the cquality invariants
described later.

term-hashcons (subterms)

. .This function takes a list of subterms and returns a term correspondmg to that list of

: qubterms ThlS functlon first apphes the value of the variable *mtem-canomcahze* (described

' below) to the hst of subtcrms The value of *intern- canomcahze* must be a function which

g
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returns either a term or a list of subterms. Ifa term is returned then that term is simply returned
from term-hashcons. If a list of subterms is returned then this function looks for an alrcady
existing term which has this list of subterms in its subterms slot (a hash table is used here for
cfficiency). If such a term exists it is returned. If no such term exists onc is created and returned.
The value of the variable *new-term* is applied to all terms created in this way. This function

maintains all cquality invariants.
*intern-canonicalize* variable

This variable must be bound to a function which takes a list of terms and returns either a
term or a list of terms. This is used to map different expressions for the same thing into identical
term structures directly in the interning process. For example if a function f is known a-priori to
be an a commutative function then the expression (fa b) must denote the same thing as the
expression (fb a). The default value of *intern-canonicalize* is intern-canonicalize-default which

is described below.
intern-canonicalize-default (subterms)

Terms representing functions of two arguments can be marked as being either associative,

example the term whose print name is + is marked as both associative and commutative. T‘hé ;_'.';_';
function intern-canonicalize-default takes a list"of subterms the first of which is a te‘rh'l' “
representing an operator (function or predicate). If the operator term is not marked as being
either associative or commutative then the list of subterms is simply returned by
intern-canonicalize-default. If the operator term is marked as associative then the argument
subterms are searched for an application of that same operator and if one is found the
arguments in that application are promoted to top level arguments. For example if f is marked as
an associative operator then (fa (fbc)) is converted to (fabc). Since fis binary (only binary
functions should be marked as associative or commutétive) the term (fa b c) is interpreted by
convention as (f (fa b) ¢). After the promotion of "internal” arguments for associative operators
this function checks to sec if the operator is marked as commutative. If so then the arguments
are sorted by their term-hash slots. Finally the resulting list of subterms (including the operator
term) is returned from intern-canonicalize-default.
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associative? (op-term)

This is a macro which expands as follows:

(associative? op-term) = => (get (term-plist op-term) "associative?)
To mark an operator term as associative one simply evaluates:
(setf (associative? op-term) t)

commutative? (op-term)

This macro is just like associative?.
*new-term* variable

The value of this variable must be a function which is applied cxactly once to every term
which is ever returned from term or term-hashcons. The default value of this variable is
new-term-default. For the symbols =, ->, and, or, ctc. to be given the proper interpretations in
the top level RUP cnvironment the function new-term-default should be called on all terms
returned from term-hasheens. Thus any function which the user assigns to *new-term should
call new-term-default on its argument if the standard interpretation of the above symbols is
desired.

new-term-default (new-term)

This is the default value of the variable *new-term*. The function new-term-default queues
applications of hashcons noticers. Hashcons noticers are functions which are associated with an
operator term and a qucue. When new-term-default is applied to a term u it checks the first
subterm of u (u’s operator) to sce if there are any hashcons noticers associated with that operator
(if the given new-term is atomic then new-term-default does nothing). For each such noticer an
application of that noticer to u is placed on the queue associated with the noticer. Noticers are
stored on the hashcons-noticer property of operator terms. Whenever new-term-default is
applicd to a non-atomic term u the term u is added to the applications property of the operator
of u.
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add-hashcons-noticer (op-term noticer queue)

This function associates the given noticer (which must be a function of one argument) with
the given op-term and the given queue. This function queucs applications of the given noticer to

all currently existing applications of the given op-term.
h:shcons-noticers (op-term)
This is a macro which expands as follows:
(hashcons-noticers op-term) = => (get (‘crm-plist op-term) "hashcons-noticers)
applications
This is a macro which expands as follows:

(applications op-term) = => (get (term-plist op-tcrm) *applications)

4.2. Equalities, Equivalence Classes, and the Equality Invariants

The equality system maintains a congrucnce relation on terms. The following function can be used to
determine whether or not two terms are congruent under this relation.

e (term)

This function is-defined as follows:

(defun e (term)
(if (next-canonical term)
(e (next-canonical term))
term))

Two terms are congruent just in case they have the same image under e.

The following defines one of the basic data types in the equality system.

(defstruct (equality (:type :named-array))
terml
term2
dependents
eqg-node)

The slots of the equality data structure are described below.

terml, term2 These slots contain the terms equated by the equality.
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dependents  This slot contains the list of all terms which contain the equality in their
eg-next-canonical-egs slot. -
eq-node This slot holds the tms node which represents the equality.

The equality system is driven by changes in the truth values of the TMS nodes associated with cqualities.
Therefore the only interesting top level functions for the equality system are for querying the data structures

involved.
make-eq (term1 term2 tms-node)

This function should be used uniformly instead of the make-equality macro constructed by
defstruct. This function creates an equality data structure and sets the terml, term2, and eg-node
slots of that structure to the arguments provided. It also updates the egs slot of both terms.
Finally it places a change noticer on the given tms-node which will are needed to ensure the

cquality invariants.
true-eq? (cquality)
This macro cxpands as follqws:‘
(true-eq? equality) ==> (cq ’:trye (truth (eg-node cquality)))
equated-support (terml term?2)

If terml and term?2 are not in the same equivalence class then this function returns nil. If
term] and term2 arc in the same cquivalence class then this function returns a list of TMS nodes
which represent equalitics implying the equivalence of term1 and term?2.

same-image? (term1 term?2)

This predicate is non-nil just in case terml and term?2 have the same number of subterms -

and those subterms are equivalent in pairs.
class-members (term)

This function returns a list of all terms which are congruent to the given term (all interned
terms that is).
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eqaivalents (term)

This function returns a list of terms in the equivalence class of term such that no two terms
in that class have the same image (i.c. their subterms are equivalent in pairs). Thus the list of

terms returned is the set of "independent” terms equivalent to term,

A term u is said to poini fo a term t just in case either t is the next-canonical of u or in case the
next-canonical of u points to t. A class-data data structure ¢ is always contained ia the class-data slot of
exactly one term t called the owner of c. If ¢ is the class-data of t then ¢ describes the set of terms which point .
to t. This data structure is defined as follows:

(defstruct (class-data)
members
member-referents

(size 1)
(class-plist (ncons nil)))

The slots of these structures have the following functions:

members  The members slot of ¢ is a list of terms whosc next-canonical is the owning term t of c.
Note that this is a subset of all the terms which point to t.

rg"’\ member-referents  The member-referents slot of ¢ contains a list of all self referential terms

which point to the owner of c.
size 'The size of ¢ is one plus the number of terms which point to the owner ofc.

class-plist This slot is analogous to the node-plist slot of TMS nodes and the term-plist slot of
terms.

The following are the Equality Invariants. These invariants are associated with the queue
*equality-invariants* and are only guaranteed in environments in which this queue has been emptied.

Equality Justification Invariant: For any term t with a non-null next-canonical slot the set of
equalitics in the eq-next-canonical-egs slot of t are all truc equalities (the truth of their eg-nodes
is :true) and this set of equalitics implies that the u is equal to the next-canonical of u.

Congruence Deduction Invariant: For any term t let subterm-image(t) be the term which results
from replacing each subterm u of t by e(u) (if t is atomic then subterm-image(t) is just t). The
congruence invariant is that for every term t, subterm-image(t) is an interned term which is in
the equivalence class of t. This invariant implies that any two terms whose subterms are
— equivalent in pairs are themselves cquivalent. It also implies that any twc terms which can be
shown equivalent via the substitution of equals for equals are in fact equivalent. For efficiency
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reasons this invariant is not maintained on terms which are applications of =, or, ->, and, not,
and iff. Instead the TMS can be used in conjunction with refutation to show any derivable
logical equivalences between these terms.

True Equality Deduction Invariant:  The terms of any true equality are both in the same
cquivalence class.

Derived Equality Deduction Invariant: Let e be any equality such that the terms of e are both in
the same cquivalence class. There is a clause in the TMS which states that some éet_ of true
cqualitics imply c. Thus if ¢ is :false there is a contradiction in the TMS, and if ¢ is not :false it
must be :true (as opposed to unknown).

Assertional Term Invariant; I.ctt be any assertional term (a term with a term-tms-node). If t has
a next-canonical then the next-canonical of t is also an assertional term and there are clauses in
the TMS which state that the eg-next-canonical-eqs of t imply the equivalence of the
term-tms-node of t and the term-tms-node of the next-canonical of t. This invariant ensures that
any two asscrtional terms which are in the same equivalence class arc constrained to be logically

cquivalent.
~ *oquate-state* variable

This variable is sct to a new value cach time the congruence relation on terms is changed.
This is useful for memoizing computations which depend on the congruence relations, A
memoized value is valid as long as *equate-state* has the same value that it had when the
memoization was done.

4.3. Simplification

The functions described here allow the user to define a simplicity order on terms and then efficiently
“simplify terms. Specifically let u be some term. The functions described compute a term which is at least as
simple under the user defined order as any term which can be equated with u via the substitution of equals for
equals based on the premise equalities. For example suppose one has the function symbol + which is to be
interpreted as standard addition over the integers and consider a term of the form (+ (+ x y) z). If this term
could with a term composed entirely of numerals and the function symbol + then that term could be
"evaluated" to yield a numeral equivalent to the original term. The problem of finding an expression for a
given term in terms of some subset of "allowed"” terms can be solved by defining a simplicity order in which

terms containing only allowed symbols are simpler than terms containing symbols which are not allowed.

Y Y : A simplicity order is defined by setung the following three variables to appropriate functions.
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*atomic-level* variable bound to function with argument list: (atomic-term)

This variable must be bound to a function which takes an atomic term and returns a
"level”. Levels can be any data structures so long as they are consistent with the values of the
next two variables. The default value of this function is atomic-level-default described below.

The default levels are integers.
*subterm-level* variable bound to function vith argument list: (subterm-levels)

This variable must be bound to a function which takes a list of levels and returns a level
which is the level of any term whose subterms have the corresponding levels. The default value
of this variable is subterm-level-default which simply computes the maximum of the subterm
levels.

*smaller?* (Ievell level2)

This variable must be bound to a predicate which takes two levels and returns a non-nil
valuc just in casc the first level is "smaller” (i.c. simpler) than the second. The default value of
this function is the lisp less than function <.

The termination and correctness of the simplification procedures depend on some assumptions about
the simplicity order. These assumptions are as follows:

Well Foundedness Assumption: There can be no infinitely decreasing chains of levels.

Monotonicity Assumption: Icts and t be any two terms with the same number of subterms
such that s is simpler than t (has a smaller level). There must be some pair of corresponding
subterms s’ and ¢ of s and t respectively such that s' is simpler that t. In other words the
function bound to *subterm-level must be non-decreasing in cach sublevel argument.

Subterm Simplicity Assumption: No term can be simpler than a term it contains as a subterm.

Pseudo Total Order Assumption Let Iy and 1, be any two levels such that 1; is less than 12. No
third level 13 can be unrelated to both Iy and I (ie. 13 must be cither smaller or greater than
either 1y or 12).

new-simplification-state ()

This function of no arguments must be called each time the user changes the simplification
order. -
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atomic-level-default (atomic-term)

This function is the default value of *atomic-level*. It takes an atomic term and returns a
non-negative integer. If the term has an atomic-level property then the value of this property is
returned. Otherwise the number returned is 0 for sclf referential terims and 1000 for all other
atomic terms, o

atomic-level-prop (term)
This is a macro with the following expansion property:
(atomic-level-prop term) = => (get (term-plist term) "atomic-level)
Thus to sct the atomic level of a term one simply evaluates:
(setf (atomic-level-prop term) n)
However whenever this is done the function new-simplification-state should be called.
sbound (term)

This function takes a term and rcturns an expression which is the print name of a term (not
necessarily an interned term) which is at least as simple as any term which can be equated with

the argument via the substitution of cquals for equals using the premise cqualities.
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5. THE TOP LEVEL RUP ENVIRONMENT

The top level RUP environment provides several convenient user level functions such as assert, retract,
and why each of which takes expressions and converts them to assertional terms. Demons which trigger on the
creation of terms are used to provide automatic interpretations for the logical operators, =, :->, :and, :or, :not,
and :iff. There is also a macro which converts logical constraints represented as a sentence of propositional
logic and converts it to an equivalent set of applications of add-clause. There are alsc mechanisms for saving
partial RUP environments so that one can return to a known state during debugging.

5.1. Top Level Functions
assert (cxp &optional (certainty *max-cert*))

This function first computes the term whose print name is exp and then calls virt-tms-node
to get a TMS node associated with this term. If the TMS without the premise controller is being
uscd then the function make-premise is called on the TMS node and the truth value :true. If the
TMS with the premise controller is being used then the function set-default is called on the

" node, the truth value :true and the the certainty argument to assert (note that the default
certainty is *max-cert*). Finally this function applics multi-fifo-empty to the value of

*hasic-queues®,
retract (exp)

This function first finds the TMS node associated with the term whose print name is exp. It
then ecither calls retract-premise or remove-default on that node depending on which TMS is
being used. This function applics multi-fifo-empty to the value of *basic-queues*. ,

=-poticer (eq-term) noticer for = on queue *equality-invariants*

This function is an intern noticer for applications of =. Since eq-term is an application of
= the second and third subterms of eq-term are the equated terms. The function virt-tms-node
is called to get a TMS node representing eq-term and the function make-equality is applied to
the equated terms and the TMS node.

->noticer (implication-term) noticer for :-> on queue *rup-top-level*

This function is an intern noticer for applications of :->. This function adds clauses to the
TMS which ensure that the symbol :-> is interpreted as logical implication. For each
implication of the form (:-> p q) the following clauses are added: (each of the below clauses is
written as a list of disjuncts.
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(((:->p q) . :false) (p . :fa1se)'(q . :ttrue))
((p . :true) ((:->p q) . :trua))
((g . :false) ((:=> p q) . :true))
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Thesc clauses relate three TMS nodes: the node representing an implication (:-> p q), the

node representing the antecedent p, and the node representing the consequent q. The best way

to think about these clauses is thet they force the TMS to make all possible deductions

concerning these three nodes. For example if the implication and the antecedent are true then

the consequent will be deduced via ihe first of the above clauses. If the antecedent is true and

the conscquent is false then that same clause is used to deduce that the implication must be

falsc. If the antecedent is false thien the sccond clause can be used to deduce that the

implication, and so on.

not-noticer (negation-term) noticer for not on qucue *rup-top-level*

This function is an intern noticer for applications of not. For each negation of the form

(:not p) the following clauses arc added:

. ttrue) (p . :false))

(((:not p)
(((:not p) . :false) (p . :true))

or-noticer (disjunction-term) noticer for or on qucuc *rup-top-level*

This function is an intern noticer for applications of or. A disjunction term can have an

arbitrary number of disjuncts. For cach disjunction of the form (:or p q ...) the following clauses

are added:
(((:or pg ...} . :false) (p . :true) (q . :true) ...)
(((:or pg ...) . :true) (p . :false))
(((tcorpg ...) . :true) (q . :false))

and-noticer (conjunction-term) noticer for and on queue *rup-top-level*

For each conjunction of the form (:and p q ...) the following clauses are added:

so.) . itrue) (p . :false) (g . :false) ...)

(((:and p g
(((rand p q ...) . :false) (p . :true))
(((:and p g ...) . :false) (q . :true))
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~ iff-noticer (log-eq-term) noticer for iff on qucue *rup-top-level*
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This function is an intern noticer for applications of iff. This function adds clauses to the

TMS which constrain the truth of the TMS node associated with the logical equivalence term to

be the appropriate function of the truth values of the TMS nodes associated with the

equivalenced terms. For each logical equivalence of the form (:iff p ) the following clauses are

added:
(((:iff p q) . :false) (p . :false) (q .
(((:iff p g) . :false) (p . :true) {(q .
(((:4iff p q) . :true) (p . :true) (q .
(((:iff p g) . :true) (p . :false) (q .

why (exp)

ttrue))
:false))
ttrue))
:false))

If exp is a number then this function simply calls node-why on that number. Otherwise this

function gets the TMS node associated with the term whose print name is exp, then applies

multi-fifo-empty to *basic-queues, then calls node-why on that node. The following is a typical

top level RUP scenario.

(assert '(:-> p q))
™ (éééert (iv> g r))

(assert 'p)
(why 'r)
"R IS :TRUE FROM:"

"1 Q IS :TRUE"
"2 (:=> Q R) IS :TRUE"

(why 1)

"Q IS :TRUE FROM:"

"1 P IS :TRUE"

"2 (:-> P Q) IS :TRUE"

(why 1)
"P IS :TRUE AS A PREMISE"

(why 0)

"Q IS :TRUE FROM:"

"1 P IS :TRUE"

"2 (:-> P Q) IS :TRUE"

(why 0)

"R IS :TRUE FROM:"

"1 Q IS :TRUE"

"2 (:~> Q R) IS :TRUE"

(why 2)
"(:=> Q R) IS :TRUE AS A PREMISE"
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™ try-to-show (exp &optional rqueucs snodes (certainty *min-cert*))
A call to this function is equivalent to:
(node-try-to-show (virt-tms-node (term cxp)) ‘:true rqueues snodes certainty)

The following scenario uses this function.

(assert '(:-> p r))

(assert '(:-> g r))

(assert '(:or p q))

(why 'r)

"I DON'T KNOW WHETHER OR NOT R IS TRUE"
(try-to-show 'r)

(why 'r)

"R IS :TRUE FROM:"

"1 (:-> P R) IS :TRUE"

"2 (:=> Q R) IS :TRUE"
"3 (:OR P Q) IS :TRUE"

what-is (exp)

This function is defined as follows:

(defun what-is (cxp)
(sbound (term exp)))

why-is (exp)

This function is defined as follows:

(defun why-is (exp)
(why *(= ,exp ,(sbound (term exp)))))

termq (exp)

This macro is very much like backquote in LISP. If exp contains no “special” symbols
then this macro takes an expression and macroexpand to a form which will cvaluate to the term
whose print name is that expression. Special symbols are those which start with either "?" or "!".
It is assumed that symbols starting with "?" will be bound to terms at eval time and that symbols
starting with "!" will be bound to lists of terms. The following are examples of macroexpansions
of this form:
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(terhq (f a)) ==> (term '(f'a))
(termg (fA?a)) ==> (term-hashcons (1ist (term 'f) ?a))'

(termq (g . largs)) ==> (term-hashcons (cons (term 'g) Iargs))
Iconst (exp)

This is a very useful macro fer adding clauses in the TMS. This macro takes a logical |
expression and macroexpands to a set of add-clauscs representing that expression. This macro
treats symbols starting with "?" or "!" in much the same as docs termq. The following is a list of
sample macroexpansions: ‘

(Tconst (:-> (:and pl p2 p3) r))

==>(add-clause (1ist (cons (virt-tms-node (term 'p1)) ':false)
(cons (virt-tms-node (term ’'p2)) ':false)
(cons (virt-tms-node (term 'p3)) ':false)
(cons (virt-tms-node (term 'r)) ':true)))

(1const (:-> (:and (forall (x) (:-> (p x) (g x)))
(p 7a))
(9 7a)))

==>(add-clause (1ist (cons (virt-tms-node

(term '(forall (x) (:-> (p x) (q x)))))
':false) :

(cons (virt-tms-node
(term-hashcons (list (term 'p) ?7a)))
':false)

(cons (virt-tms-node .
(term-hashcons (list (term 'g) 7a)))
‘itrue)))

(Tconst (:iff p q))
==>(progn
* (add-clause (1ist (cons (virt-tms-node (term 'p)) ':false)
(cons (virt-tms-node (term 'g)) ’:true)))

(add-clause (1list (cons (virt-tms-node (term 'p)) ':true)
(cons (virt-tms-node (term 'g)) ':false))))

Note that (Iconst (:-> p q)) is different from (assert (:-> p q)) in that the former does not
create a term or a tms node representing (:-> p q) but instead simply installs a clause in the TMS,l
while the latter creates a term and a TMS node representing (:-> p q) and then asserts that that
TMS node is true. -

assertq, retractq, whyq, try-to-showq, what-isq, why-isq

These macros are just like assert, retract, etc. except that they use termgq to quote there
arguments. Thus (assertq p) is just like (assert (termq p)).
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5.2. Initialization

When trying to debug code which interacts with the utilities in RUP it is casy to become confused about
the current state of the RUP environment. It would be nice to be able to save the state of the RUP
environment at some point and be able to rcturn to that state at some latter point. This section describes some
features of RUP which approximate this behavior.

term-init ()

This function of no arguments flushes all existing terms so that any term which is
subsequently returned from cither the function term or the function term-hasheons is a
completely new data structure. This has scrious ramifications for the RUP environment. It
means that there are no longer any noticers attached to any accessible operator terms (since
those terms arc new structures and have no noticers attached). It means that the simplification
properties attached to terms have been cffectively flushed. It means that the commutative and
associative properties of operator terms have been flushed.

*nerm-init-forms* variable

This variable is bound to a list of LISP expressions which get evaluated when RUP is
initializcd and thus the forms on this list determine the statc of RUP which results from an
initialization. This is the mechanism provided by RUP for "saving" or "defining" RUP
environments. The default value of *perm-init-forms* is a list of forms which restore the default
RUP environment. The forms in *perm-init-forms get evaluated in the reverse of the order in
which they appear. Thus the last thing pushed onto the list is the last thing cevaluated during
initialization. It is important that any forms which change the intern canonicalization process
are evaluated before the interning of any term affected by that change. For example it is
important that the term for = be marked as commutative before any applications of that term
are interned.

*temp-init-forms* variable

This variable is just like ¥perm-init-forms* except that its default value is nil. The intended
use of this variable is described in the below documentation of the functions fix-temps and
rup-init.
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fix-temps ()

This function of no arguments is defined as follows:

(defun fix-temps ()
(setq *perm-init-forms* (append *temp-init-forms* *perm-init-forms*))
(setq *temp-init-forms* nil))
The basic philosophy behind this function is that as one develops a RUJ environment one
can push forms onto *temp-init-forms* which will to some extent recreate the environment
being developed. Then when one wishes to store that environment so that it will be

reconstructed after an initialization one calls the function fix-temps.
rup-init (&optional save-flag)

This function calls term-init, and cvaluates the forms in *perm-init-forms* in the reverse of
the order in which they appear on the list (i.c. the forms are evaluated in the order in which they
were placed on the list). Finally if the save-flag argument is not nil it evaluates the forms on
*temp-init-forms™* in reverse order. If the save flag is nil then it scts *temp-init-forms* to nil.
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6. THE NOTICE MACRO

This section describes a macro which is used to define demons which trigger on certain cvents in the
RUP environment.

natice ((event pattern) queue &rest body-forms)

The notice macro defines demons which are queued when certain evenis take place in the
RUP environment. The event arguinent must be one of several meaningful keywords and the
pattern argument is an expression which may contain "variables” which are symbols starting
with cither "7" or "!". The queuc argument must be a form which evaluates to a queue and the
body-forms can be any’ lisp expressions to be evaluated when the demon runs (i.c. they are the
body of the demon). The details of the notice macro are best described through examples.
Initially only the keyword :intern will be considered.

6.1. Creating Intern Noticers

When an application of netice is macroexpanded two function definitions are created by side effect and
the notice form macrocxpands'to an application of add-hashcons-noticer. The function definitions must be
explicitly evaluated using the macro include-end-forms. Consider the following example:

(notice (:intern (p 7a)) *user-queue*
(Tconst (-> (p ?a) (g 7a))))

(include-end-forms)

This macroexpands to:

(progn (add-hashcons-noticer (term 'p) '|(P ?A)-UNIFIER] *user-queue*)
(push '(add-hashcons-noticer (term 'p) ’|[(P ?A)-UNIFIER| *user-queue*)
*temp-init-forms*))

(progn 'compile

(defun | (P ?A)-UNIFIER| (term)
(et ((args (cdr (subterms term))))
(if args
(let ((?a (car args)))
(if (null (cdr args))
(1(P ?7A)-BODY| ?a))))))

(defun |(P 7TA)-BODY| (?a)
(add-clause (list (cons (virt-tms-node
(term-hashcons (1ist (term ’p) ?a)))
*:false)
(cons (virt-tms-node
(term-hashcons (1ist (term 'q) ?a)))
'itrue)))))
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In the above expansion the notice form mz.icrocxpands into a progn which both installs a symbol as a
noticer and pushes a form onto *temp-init-forms* (*temp-init-forms* can be used to re-create a RUP
environment during initialization as is described clsewhere). Because the demons created by notice are
implemented as intern noticers associated with operator terms it is important that the car of the pattern not
coatain variables to be bound during the triggering process. The form (include-end-forms) macrocxpands into
a list of function definitions. The first function defined in the above example takes the term and performs the
urification of the term and the pattern. The second function takes the bindings derived from this unification
ard exccutes the body of the noticer. The need for two functions (as opposed to a sinzle function which does
both unification and exccutes the body) invelves keywords other than :intern. The need for include-end-forms
should be clear from the following more complex example involving embedded demons.

(notice (:intern (function-from ?f ?domain ?7range)) *user-queue*
(notice (:intern (?7f 7x)) *user-queue*
(1const (-> (and (function-from ?f ?domain ?range)
(7domain ?x))
(Trange (7T 7x))))))

(include-end-forms)

The above macroexpands to:

(progn (add-hashcons-noticer (term 'function-from)
"] (FUNCTION-FROM ?F ?DOMAIN ?RANGE)-UNIFIER|
*user-queue*)
(push "(add-hashcons-nuticer (term *function-from)
'|(FUNCTION-FROM 7F 7DOMAIN ?RANGE) -UNIFIER]
*user-queue*)
*temp-init-forms*)) :

(progn ‘compile
(defun |[(FUNCTION-FROM ?F. 7DOMAIN ?RANGE)-UNIFIER| (term)
(let ((args (cdr (subterms term))))
(if args
(let ((?f (car args)))
(if (cdr args)
(let ((7domain (cadr args)))
(if (cddr args)
(1et ((?range (caddr args)))
(if (null (cdddr args))
(|(FUNCTION-FROM ?F 7DOMAIN ?RANGE)-BODY|
7f ?domain Trange))))))))))

(defun |(FUNCTION-FROM ?F ?DOMAIN ?7RANGE)-BODY| (?f ?domain ?range)
(add-hashcons-noticer 7f
‘(lambda (term)
(1(?F ?X)-UNIFIER| term ',?f ', ?domain ',?range))
*user-queue*))

(defun [(?F ?X)-UNIFIER] (term ?f ?domain ?range)
(Tet ((args (cdr (subterms term))))
(if args
(let ((?x (car args)))
(if (null (cdr args))
(1(?F ?X)-BODY| ?x ?f ?domain ?range))))))
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(defun [(?F ?X)-BODY| (?x ?f 7domain ?range)
(add-clause (1ist (cons (virt-tms-node
(term-hashcons
(1ist (term 'function-from)
7f ?domain ?range)))
':false)
(cons (virt-tms--node
(term-hashcons (1ist ?domain ?x)))
‘:false)
(cons (virt-tms-node
(term-hashcons
(1ist ?range
(term-hashcons (1ist ?f ?7x)))))
"itrue)))))

The embedding of the notice macro in the above example is very similar to embedding of PLANNER or
AMORD derions. The variables in the inner demon inherit their bindings from the outer demon. In any use
of notice the car of the pattern must not contain variables to be bound during triggering. However the car of
the pattern may contain variables which are bound outside the notice construct. Notc that the internal notice
form macrocxpands to an application of add-hashcons-noticer involving the function |(?F ?X)| (the variable
*temp-init-forms* is not cffected by the inner noticer). Without the macro include-end-forms it would be very

hard for the internal notice form to define functions in such a way that they could be compiled.
6.2. Naming Conventions for Noticer Functions

Two functions are defined by side effect cach time an application of notice is macroexpanded. Each
function is given a name which is a symbol interned in the RUP package (or simply an interned symbol in
MACLISP). The names of the functions are derived from the pattern in the notice form (as shown in the
above cxamples). However special care has been taken to allow for more than one demon with the same

pattern. For example the following

(notice (:intern (p ?x)) ...)
(notice (:intern (p ?x)) ...)
(notice (:intern (p 7x)) ...)

(inciude-end-forms)

macroexpand to:

progn (add-hashcons-noticer (ierm 'p) 'I(P ?X)-UNIFIER| ...)
Y
(push ’(add-hashcons-noticer ...)
*temp-init-forms*))

(progn (add-hashcons-noticer (term 'p) '|(P ?X)-2-UNIFIER| ...)
(push '(add-hashcons-noticer ...)
*temp-init-forms*))

(progn (add-hashcons-noticer (term 'p) ’'|(P ?X)-3-UNIFIER| ...)
(push ’(add-hashcons-noticer ...)
*temp-init-forms*))
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(phogn ‘compile :
(defun |(P ?X)-UNIFIER| (term)

(defun | (P ?X)-BODY| (?7x)
(defun [(P ?X)-2-UNIFIER| (term)
(defun |(P ?X)-2-BODY| (7x)
(defun |(P 7X)-3-UNIFIER| (term)

(defun | (P ?X)-3-BODY| (7x) .
)

In spite of the function naming convention exemplified above naming conflicts can occur when two
demon defining files share a trigger pattern and at least one of the files is compiled. Specifically when a
compiled file is loaded the names of the functions defined by that file arc the names given at compile time
rather the names which would have been generated had the demon definitions been macroexpanded at load
time. Consider a compiled file containing a definition for the function |(P 7X)-BODY]|. If such a file is loaded
into a RUP environment which already has a definition for [(P 7X)-BODY| a naming conflict will occur. Tt is
also important to note that since loading a compiled file docs not induce macro expansions it also does not
cffect the names gencrated by later macro cxpansions. The best policy is to make sure that no two files share
noticer patterns.,

6.3. Events

There are several meaningful cvent keywords other than :intern. These event keywords are described
below.

:true

Demons defined using this keyword are triggered whenever the TMS node associated with
a term matching the given pattern becomes true. The following example demonstrates the use
of this function.

(notice (:true (p 7x)) *user-queue*
(Tconst (-> (p ?x) (g ?x))))

(include-end-forms)

This macroexpands to:
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(progn (add-hashcons-noticer (term"p) "|(P ?X)-UNIFIER] *user-queue*)
(push '(add-hashcons-noticer (term 'p) ’|(P ?X)-UNIFIER| *user-queue*)
*temp-init-forms*))

(progn ’compile
(defun |(P ?X)-UNIFIER| (term)
(let ((args (cdr subterms)))
(if args
(Tet ((?x (car args)))
(if (null (cdr args))
(1(P ?X)-BODY] terin 7x))))))

(defun |(P 7X)-BODY| (term 7x)
(if (not (eq ':true (truth (virt-tms-node term))))
(push (cons *user-queue*
"(J(P ?X)-BODY| ,term ,?x))
(true-noticers (virt-tms-node term)))
(add-clause (1ist (cons (virt-tms-node
(term-hashcons (1list (term °'p) ?x)))
':false)
“(cons (virt-tms-node

(term-hashcons (1ist (term 'q) ?x)))
"itrue))))))
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Note that the code for |(P 7X)-BODY] first checks to sce if the tms node associated with
triggering term is true. If it is not then a call to [(P 7X)-BODY] is placed on the true-noticers of

the node associated with the triggering term. Note that since a node can become truc and then

unknown before its true-noticers arc run [(P 7X)-BODY| might be run scveral times before it is

run in an environment in which the node associated with the triggering term is true.

:false

This keyword is just like :true cxcept that the demon is queued when the node associated

with the triggering term becomes false rather than true.

:change

This keyword causes the demon to be queued the first time the truth of the node associated

with the triggering term changes.

:whenever-true

This keyword causes the body of the demon to be run whenever the node associated with

the triggering term becomes true. For example the following

(notice (:whenever-true (trouble 7x)) *user-queue*
(trouble-fixer 7x))

(include-end~-forms)

~Gives rise to the following definition:
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(defun |(TROUBLE 7X)-BODY| (term ?x)
(push (cons *user-queue*
*(](TROUBLE ?X)-BODY| ,term ,7x))
(true-noticers (virt-tms-node term)))
(if (eq ':true (truth (virt-tms-node term)))
(trouble-fixer 7x)))

:whenever-false
This is the dual of :whenever-true,
:whenever-change

This causes the body of the demon to be run every time the tms node associated with the
triggering term changes its truth state.

6.4. List Variables

It is often desirable to be able to write demons which trigger on terms with an arbitrary number of top
level arguments. A mechanism for doing this exists and is exemplified by the following definition of a noticer
for list.

(notice (:intern (1ist . largs)) *user-queue*
(et ((?7first (car largs)))
(lconst (-> list-definition
(= (first (1dist . largs)) ?first))))
(if (cdr largs)
(let ((lrest (cdr largs)))

(lconst (-> Tist-definition
(= (tail (1ist . largs)) (list . lrest)))))))

A Symbol starting with "!" is interpreted as a variable in a noticer trigger pattern and differs from a
symbol starting with "?" only in that it is bound to a list of terms rather than a single term. An error is

triggered if either "?" or "!1" variables are used in a syntactically incorrect manner.
6.5. Some Usefui Macros

This section describes some macros wh'ich can be used in conjunction with notice.
nlet

The macro nlet is just like the macro let except that it expands notice forms which appear
in its body and allows those notice forms to inherit variables bound by the nlet. notice forms can
only inherit variables bound by surrounding notice and nlet contexts. The following is an

example of the use of nlet:
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(notice (:intern (f . largs)) *user-queue*
(nlet ((?first (car largs)))
(notice (:true (r ?first ?other-thing)) *user-queue*
(let ((lother-args (cons 7other-thing (cdr targs))))
(1const (-> (r ?first ?other-thing)

(= (f . largs) (f . lother-args))))))))

self

This macro of no arguments is used inside the body of a notice form. An application of self
macroexpands to a form which evaluates to a form which can be placed on a queue and is in fact
the current invocation of the body of the innermost demon. Consider the following example:

(notice (:true (p 7x)) *user-queue*
(nlet ((nl1 (virt-tms-node (termq (p ?x)))))
(notice (:true (g ?x)) *user-queue*
(if (not (true? nl))
(push (cons *user-queue* (self))
(true-noticers n1))
(1et ((n2 virt-tms-node (termg (p ?x))))
(if (not (true? n2))
(push (cons *user-queue* (self))
(true-noticers n2))
(print “((p ,(term-tree 7x))

and '(q ,(term-tree 7x))
are both true))))))))

Note that the print statement will only be reached in an RUP cnvironment where both the
nodes associated with the triggering terms are truc. If the body of the inner noticer is rn in an
environment where the node associated with the first triggering term is false (which can happen)
then an exccution of the body is requeucd. The macro self creates a new invocation of the
innermost notice body with the current binding environment. During subsequent invocations of
this body either node may be false and the body continues to requeue itself until it is invoked
when both nodes are true.

this-noticer

The macro this-noticer of no arguments macroexpands to a form which evaluates to the
intern noticer placed on an operator term by the innermost notice form containing this macro.
This allows one to get access to the noticer and remove it once it has fired. Consider the
following example:

(notice (:true (p ?x)) *user-queue*
(notice (:true (r ?x ?y)) *user-queue*
(setf (intern-noticers (term 'r))

(delete (this-noticer) (intern-noticers (term 'r))))

+e))

The above code might be used when it is known that for any ?x there is at most one 7y such
that (r 7x 7y). Thus when a term triggers the inner demon the intern noticer placed on r can be
removed thus saving a unification attempts each time some new application of r is interned.
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There are cleaner ways to gain cfficiency than removing noticers. The scction on currying
is important for anyone worried about cfficiency in demonic triggering.

maipfetch ((var pattern) &rest body-forms)

This macro allows onc to access exactly those currently interned terms which match a given
pattern. For cach such term the body forms are evaluated sequentially in ar environment in
which the variable var is bound to the matching term and all of the variables in the pattern are
bound to the terms resulting from the match. mapfetch returns a list of the values given by the
last body form. The fact that the pattern is known at macroexpansion time allows the unification
process to be open coded as it is in the functions created by notice. Consider the following
example;

(mapfetch (uterm (p ?x (f ?y)))
(cons uterm
(Tist (cons "?x 7x) (cons '?y ?y))))

This evaluates to a list of pairs cach of which is a pair of a term and a binding list where
cach binding list is a list of pairs of a variable and its associated value. mapfetch can inherit

variable bindings from surrounding notice and nlet forms as is shown in the following example.

(notice (:true (p ?x)) *user-rueue*
(putprop (term-plist 7x)
(mapfetch (uterm (r ?x ?y))
7y)
‘r-relations))

The body function defined by th_is noticer would be as follows:

(defun (P ?X)-BODY| (7x)
(putprop (term-plist 7x)
(de1-if 'null
(mapcar '(lambda (uterm)
(let ((args (cdr (subterms uterm))))
(if args
(if (eq ?x (car args))
(if (cdr args)
(et ((?y (cadr args)))
(if (null (cddr args))
: , ¥))N))
(applications (term 'r))))
‘r-relations))
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An alternative to the above is: -

(defmacro r-relations (term)
(get (term-plist term) ’'r-relations))

(notice (:true (p ?x)) *r-queue*
(notice (:whenever-change (r 7x ?y)) *r-queue*
(if (true? (virt-tms-node (termq (r 7x ?y))))
(if (not (memg ?y (r-relations ?x)))
(push ?y (r-relations ?x)))
(setf (r-relations 7x)
(delete 7y (r-relaticns ?x))))))

The above code ensures that if *r-queuc* is empty the for each ?x such that (p 7x) is true
(r-rclations ?x) is a list of exactly thosc terms %y such that (r 7x %y) is true.

6.6. Currying

This section describes a technique for writing more cfficient demons. The basic idea is that when one
has a trigger pattern of the form (p t1 ?x t2) where % is a variable and t1 and 2 are known terms one can
replace that trigger pattern by a pattern of the form (op 7x) where op is a known term incorporating p, t1, and
t2. In this way the unification function is not applied to all applications of p but is instead only applied to a
sclect set of terms which contain the known subterms tl and 2.

There are some conventions adopted in RUP for making this type of transformation more convenient.
Specifically there is a special higher order operator called curry which takes any number of arguinents the first
of which is always an operator and the remainder of which are either the number 1 or the number 2. Each of
the numeric arguments to curry corresponds to an argument of the operator argument to curry. The best way
to describe curry is with some examples. For any binary operator r, three place operator 7f, and terms 7x 7y
and 7z we have the following equivalences:

(?r 7x ?y) = (((curry 7r 1 2) ?x) ?y)
= (((curry ?r 2 1) ?y) 7x)
(7f ?x ?y ?z) = (((curry ?f 1 1 2) ?x ?y) ?z)

= (((curry ?2f 1 2 1) 7x ?2z) ?y)
= (((curry ?f 2 1 1) ?y ?2) 7x)
= (((curry ?f 1 2 2) 7x) 7y 72)
= (((curry 7f 2 1 2) ?y) ?x ?z)
= (((curry 7 2 2 1) ?2) ?x ?y)

The above equivalences are enforced by a collection of demons which could have been defined using
notice as follows: ‘
(notice (:intern (curry 7f 2 1 2)) *rup-top-level*
(notice (:intern (?f ?x ?y ?z)) *rup-top-level*

(Tconst (= (?f ?x 7y 7z)
(((curry ?2f 2 1 2) 2y) 7x ?72)))))

These demons are only triggered when curry is used so there is no overhead for users who do not use
-currying. However if currying is ever used in writing efficient noticers the above demons ensure that the

correctly curried versions of the appropriate assertions are always created. The curry demons are hand coded
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for maximal cfficiency.
The following example illustrates the usc of currying for efficiency.
(notice (:true (transitive ?r)) *rup-top-level*
(notice (:intern (?r 7x ?y)) *rup-top-level*
(notice (:intern (((curry ?r 1 2) ?y) 7z)) *rup-top-level*.
(Tconst (-> (and (transitive 7r)
(7r ?x ?y)

(((curry ?2r 1 2) ?y) ?2))
(((curry 70 1 2) ?x) ?72))))))

Note that while alt uncurried forms aie equated with their curried equivalents the curried forms are not
necessarily equated with their uncurried cquivalents. Thus interning the term (ra b) will trigger an intern
demon whose pattern is (((curry r 1 2) 2x) ?y) but interaing the term (((curry r 1 2) ?x) 2y) will not trigger an
intern demon whose trigger pattern is (r ?x ?y). This fact can be important to writing efficient demons (and is
in fact important in the above example).

The function term-tree recognizes curried forms and uncurries them which makes them much more
rcadable.

6.7. Redundancy and Completeness

There are some problcms with the pattern directed demonic invocation mechanisms described in this
scction. These problems relate both to the redundant triggering of demons (triggering a demon more often
than need be) and to the completeness of triggering (not triggering demons when they should be triggered).
Consider the following demon for pair.

(notice (:intern (pair ?a (list . lIrest))) *user-queue*
(lconst (-> list-definition

(= (pair ?a (1ist . lrest))
(1ist ta . Irest))))

Suppose the term (pair a (list b ¢)) has been interned and that the above demon has been friggercd on
this term. Further suppose that the equality (= a’nil) is true. Some process may create the term
(pair ’nil (list b ¢)) as the result of substituting 'nil for a in (pair a (list b ¢)). If the above demon has been
triggered on ‘(pair a (list b c)) then there is no reason to trigger it on (pair 'nil (list b c)) since these two terms
can be equated by substitution. However when the latter term is interned the above intern demon would be
triggered. '

The result of matching a demon pattern against a particular term is a binding environment e which maps
the variables in the pattern to terms. In general two binding environments ¢y and e, will be called variants of
each other if they are defined on the same domain of variables and for each variable ?x in that domain el(?x)
and ey(?x) are in the same RUP equivalence class. In general a specific invocation of a demon under a binding

“environment e will be called redundant if that demon has already been run under a binding environment

which is a variant of e. RUP attempts to avoid executing redundant demon invocations by not triggering

‘demons with terms which are generated internally via the substitution of equals for cquals. Unforwnately

there are cases in which it is useful to run redundant invocations of a demon. For example consider the
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following:

(notice (:intern (cons ?a ?b)) *user-queue*
(if (and (eg 'gquote (car (subterms 7a)))
(eq 'quote (car (subterms ?b))))
(et ((?qterm (term '(quote ,(cons (cadr (subterms ?a))
(cadr (subterms ?7b)))))))
(lconst (-> cons-definition
(= (cons ?7a ?b) ?qterm))))))

Clearly the demon has an important ¢ffect when run under a binding environment e which binds the
variables to quotations even if the demon has previously been run on a variant of e which did not bind the
variables to quotations. The reason the redundant invocation is useful in this case is that the body of the
demon tests for syntactic propertics of the terms to which the variables arc bound. If the body of a demon
only uses variables in "semantic" ways then this problem would not arise. A variable is used in a semantic
way when it does not matter what term the variable is bound to as long as that term refers to the proper thing.

One possible extension to the existing demonic mechanisms which might solve the problems related to
redundant triggering is to introduce a new kind of variable into the patterns of demons which would only
bind to sclf-referential terms. This would allow the syntactic tests made in the above demon to be
incorporated into the pattern match and thus one might be able to automatically control demonic invocation
in a way that avoids redundant invocations yet still invokes syntactic demons with the proper binding
cnvironments. . ]

In addition to having problems with redundant invocations RUP has a problem in that the demonic
invocation mechanism is not complete. Consider the following demon:

(notice (:intern (f (g 7x))) *user-queue*

(Tconst (-> f-g-definitions

(= (f (g ™x)) ?x))))

Supposc that the term (f'b) has been interned and that b and (g ¢) are in the same equivalence class. By
substitution it would be possible to generate the term (f (g ¢)) and the above demon could trigger on this term.
However since such substitutions are not performed automatically the above demon would not be triggered in
this case.

For any expression p containing variables (i.e. any trigger pattern) and any substitution e for the
variables in p let e(p) denote the result of replacing each variable in p by its image under e. Let T be any
collection of terms and p be any trigger pattern. A substitution ¢ will be said to map p into T just in case e(p)
is equivalent (can be equated via substitution of equals for equals) to some term in T. Let {p;} be a collection
of trigger patterns each of which is associated with a body b;. A particular demonic invocation mechanism will
be said to be complete with respect to {pi} and T just in case for every p; and every binding context ¢ which
maps p; into T the body b; gets called under some binding context which is a variant of . »

It should be possible to extend the demonic invocation mechanism in RUP so that it is complete with
respect to the intern demons and the interned terms, the true demons and the true terms, etc. If the demonic
invocation mechanism were also careful not to perform redundant invocaticns such an extension to
completeness would probably not generate an unreasonable number of demon invocations.
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The problem of gencrating a complete unification mechanism has been studied in detail by people
working on resolution theorem proving. The problem is defined precisely by Huet and Oppen in a survey of
results on equations and rewrite rules [Huet & Oppen 79).

6.8. Transitive Relations

There are true noticers defined in the default RUP environment which recognize applications of the
sccond order predicates transitive, reflexive, antisymmetric and strictly-antisymmeiric. Assuming that the
queucs *equality-invariants®, *rup-top-level*, and *backtracking-invariant* have all been cmptied the
following conditions hold with regard to these predicates:

(1) If an assertional term of the form (transitive r) is true then all applications of r which can be deduced
from transitivity and known applications of r have been deduced.

(2) If an assertion of the form (reflexive r) is true then for cach interned term of the form (r x y) if x and y are
in the same cquivalence class then (r x y) is true.

(3) Ifan assertion of the form (antisymmetric r) is true then for each pair of true assertions {r x y) and (r y x)
the assertion (= x y) is true.

(4) If an asscrtion of the form (strictly-antisymmetric 1) is true then for each true assertion (rx y) the
assertion (r y x) is false.
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