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Abstract: ‘The abstractions we have for serial programming arc powerful; concepts like data types, variable
binding, generalized operators, the “subroutine.” We do not yet have the same sort of powerful abstractions
for distributed computation, but | belicve that the place to leok for them is the same placc that we found
many of our abstractions for scrial computation--- in our own minds, ‘I'his rescarch extends a tradition of
distributed theorics of mind into the implementation of a distributed problem solver. In this problem solver a
number of ideas from Minsky's Society of Mind arc impicmented and are found to provide powerful
abstractions for the programming of distributed systems. I'hcse abstractions arc the cauldron, 1 mechanism
for instantiating rcasoning contexts, the frame, a way of modularly describing those contexts. and the
goal-node. a mechanism for bringing a particular context to bear on a specific task. The implementation of
both these abstractions and the distributed problem solver in which they run is described, accompanicd by
examples of their application to various domains.

This report describes rescarch done at both the MIT Artificial Intelligence laboratory and the A TARI
Systems Rescarch Division. Support for MITs artificial intclligence rescarch is provided in part by the Office
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1. Introduction

The abstractions we have for scrial programming are powerful; concepts like data types, variable
binding, gencralized operators, the “subroutine.” ‘T'hese concepts are our most powerful tools in the
development and understanding of large systems for conventional serial machines. ‘This paper presents a sct
of similar abstractions for parallel computation and describes a distributed problem solving language which

implements thern.

These abstractions are the cauldron, a mechanism for organizing inference into distinct reasoning
contexts; the frame, a way of modularly describing the components of these contexts: and the goal-node. a
mechanism for bringing a particular reasoning context to bear on a specific task. The development of these
abstractions, in addition to providing a working base for experiments in parallclism, gives a new perspective

on the role of "representation” in rcasoning systems.
1.1 Main Points
"This paper develops three mechanisms for organizing large distributed rcasoning systems:

Cauldrons -- A chunk of computational activity containing a sct of assertions and
inferential mechanisms for manipulating them.

Frames -- A way of grouping asscrtions into "chunks” of knowledge. For instance,
a frame for a particular block contains knowledge -- in the form of propositional
descriptions -- about that block.

Goal-nodes -- A mechanism for invoking a collection of frames into a particular
cauldron to perform some task.

A cauldron is a restricted problem solving context. In a cauldron, rcasoning takces place separated from

the main strcam of computation, which idcally consists only of a system of interacting cauldrons.

"The contents of a cauldron are assertions, some of which may be computationally active in the scnse that they
may producc side effects in responsc to changes or events in the cauldron. These side cffects might be new
asscrtions, remarks to the console, or the creation of other cauldrons. Pattern-invoked rules or inter-cauldron
communcation channcls arc instances of these active assertions. ‘T'he cauldron metaphor is mcant to invoke
the vision of an actively changing "brew" of rules and asscrtions intcracting and combining to form new

conclusions and results.
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A frame is a collection of assertions which may be added to a cauldron. Since these assertions may be
rules or other computationally active forms, the knowledge a frame contains may be cither procedural or
declarative.  The presence of this active knowledge allows a picce of knowledge to contain its own
interpretation. For instancc, the statement "Jack is the brother of Jill" might share a frame with the rules of

interpretation defining what it means to be a brother.

A frames’ contents may be defined by pointers to other frames as well as by its cxplicit contents, allowing a
framc to indircctly include other frames. ‘The frame describing Jack -- for instance -- might indircetly include
the rules and assertions defining "what it mecans to be a brother.” which would interpret the assertions about
brotherhood in Jack’s description.  In an identical manner, relations such as AKO can be interpreted in a
manncr specific to the reasoning context. Note that this inclusion mechanism makes no cpistemological

assumptions, but only describes contexts in which an cpistemology may be defined and interpreted.

A goal-node is a way of tying frames and cauldrons together to solve a problem.! In a responsc to an
cexplicit goal of the problem solver, a goal-node creates a cauldron to work on that goal and adds the

assertional contents of a certain set of frames to that newly created cauldron.

For instance, when trying to place one block atop another, a triggered goal node will create a cauldron which
centains frames for the blocks involved as well as a frame - or frames -- describing the technique for making
one block support another. Since the assertions in a frame may be rules, a Srame may contain the declarative

procedure for peforming some task.

'These three mechanisms provide a facility for abstraction which declarative programming languagcs.
cven distributed ones, do not generally provide. ‘The goal node makes possible the creation of reasoning
subcontexts in much the same way that the subroutine allows creation of a variable-binding context for the
cxecution of a procedure. [n an extended analogy to traditional subroutine invocation, the cauldron takes the
place of the stack frame, the frames take the place of binding cnvironments and the function definition, and

the goal-nodc takes the place of the calling mechanism.

I. "Solving a problem” is intended in its most general sense. It may refer to writing a sonnct, figuring out
what a tool does, or solving an clectrical network.
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1.2 An Example

‘This example portrays a cauldrons-based reasoning program peforming tasks in the blocks world. The
environment in which it operaces is a classical blocks world where the program performs simple blocks world

tasks, using frames and goal nodes to carry them out in a reasonably sophisticated manner.
Several important points arc illustrated in this cxample:

0 The cauldron invocation mechanism as a way of capturing the application of a
particular technique to a given problem,

0 The functionality of scparating intentions into needs which are reasoned about
and goals which are acted upon.

0 ‘The frame mechanism as a way of modularizing knowledge into contours of
relavance based on what knowledge is usciul for particular tasks.

0 ‘The frame-sharing mechanism as a way to communicate refevant information
between cauldrons.,

0 'The homogenous representation of both program and data as active or inactive
clements of frames, allowing the simple attachement of censors and critics to
arbitrary picces of knowledge or procedure.

‘These points encompass both the mechanisms which this paper presents -- cauldrons and trames and
goal-nodes == and various "stylistic” principles which make programs using these mechanisms casily

modifiable and extensible.

‘The blocks world starts out as in Figure 1. Initially, there is a single cauldron, BLOCKS-CAULDRON, to

which tasks arc given. Figure 2 presents this cauldron with its set of initial assertions, rules. framcs, etc;

The first task given to the program is the straightforward problem of placing BLOCK1 on top of
BLOCK2. A goal-node in BLOCKS-CAULDRON, triggcred by the asscrtion of this goal, crcatces a subcauldron
for fulfilling it. This subcauldron contains a rcasoning context, made up of rules and asscrtions, tailored to

the task at hand.

. In this particular casc, the cauldron contains the following clements:
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Fig. 1. 'The Blocks World
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Fig. 2. Blocks Cauldron
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0 'I'hc physical details of BLOCK1 and BLOCK2. 'Their size, shape, color, position,
and relations with adjoining blocks.

o What it "means” to be a block. This incorporates such axioms as "if a block
doesn't support anything, it is clear”, or that "if you arc looking for space for a
block (through an automated oracle connected to the blocks world simulator) you
will generally find it".

0 Techniques for interpreting new "sensory” knowledge. This is cssentially a sct
of rules for transforming between the assertions of the blocks world simulator and
the internal representations of the program.
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0 Basic techniques for the domain. 'This is knowledge which is shared by all
techniques which BLOCKS-CAULDRON might invoke; it includes knowledge about
how to know if you're finished with a task, principles for maintaining a consistent
world model between scparated cauldrons, and interlocks for unique resources
(such as hands).

o Techniques for performing the task. This is a traditional blocks-world program
which ensures preconditions, moves, grabs, moves, and lets go. 'These techniques
arc implemented as state-to-state  rule-chains which fire off of results and
preconditions to gencrate actions and new results. ‘I'he handling of unsatisfied
preconditions is demonstrated later in this cxample.

o Censors which are particular to the sort of task being performed: This is where

knowledge such as the unsuitability of pyramids as supports is stored. In the

current implementation the knowledge here is ancedotal, and does not take the

form of complex "theories of support suitablity”.
Thesc individual "picces of knowtedge,” stored as frame assertions in BLOCKS-CAULDRON, arc "activated”
into the newly created subcauldron. ‘This process is depicted in Figure 3. Activation involves running the

deduction mechanism over the new sct of assertions and rules, with reference to those rules alrcady in the

cauldron.

‘The subcauldron now contains several sorts of "how-to” knowledge: procedural knowledge in the form

of rule-chains, censor-knowledge in the form of simple condition-triggered rules, and prerequisite checkers

Kig. 3. Activation of a cauldron

Blocks
Cauidron

Doing
BLOCK1
supports
BLOCK?2
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for cnabling the procedural rule-chains. T'o begin, the prerequisite checkers, noting that BLOCK2 can be
grasped and that there is adequate space for it on BLOCK1, cnable the support-making rule chain, which
proceeds to pick up BLOCK2 and carry it over to BLOCK1, where it is relcased. The subcauldron, its goal
acheived, now updates the appropriatc frames in BLOCKS-CAULDRON (to reflect the changed state of
BLOCK1 and BLOCK2, particularty) and dissolves itsclf,

Next, the program is given the more complex task of placing BLOCK2 on top of BLOCK3: this task is
more involved because BLOCKS is alrcady on top of BLOCK3, as in Figure 4, and the program must recognize
and remove this obstruction. When the goal of making BLOCK3 support BLOCK?2 is recognized, a goal-node
creates a cauldron, just as before, to pursuc the goal. ‘T'he contents of this cauldron, as before, is determined
by the frames activated into it. ‘This arrangement is depicted in Figure 5. 'I'he cauldron - or to speak
precisely, its interpreted conients - first checks to see if it is okay to grasp BLOCK2. and sceing that it is,
checks to sce that there is space for BLOCK2 on BLOCK3, thus noting the presence of BLOCKS. Sccing the
obstacle, the cauldron generates upwards to BLOCKS-CAULDRON a need for BLOCK3 to not support BLOCKS,

including an explanation of why it is nceded.

BLOCKS-CAULDRON, rcceiving notice of this need, and noting no evidence to suggest its impropcricty,

generates the goal of satisfying it. 'This new goal starts up another cauldron, as shown in Figure 6,

with an entirely different set of expertise from the first cauldron. The contents of this NOT-SUPPORTS

Fig. 4. ‘The Blocks World after (MAKE (BLOCK1 SUPPORTS BLOCK2))
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Fig. 5. A cauldron is created to make BLOCK3 support BLOCK2
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Fig. 6. Figuring out how to satisfy a prercquisite
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cauldron -- the rules and assertions which provide its expertise and expectations -- are very different from the

contents of any MAKE-SUPPORTS cauldrons. 'I'hc procedure represented in the NOT-SUPPORTS cauldron

looks at all of the blocks and trics to find a safe place to discard BLOCK5 which wil. not disrupt any ongoing
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tasks.? ‘The NOT-SUPPORTS cauldron decides that BLOCKS can be put on top of PYRAMID1, and generates a
need for that support relation to exist. This is transformed into a goal which triggers the activation of still
another cauldron using the same general MAKE -SUPPORTS knowlcdge as the first. ‘T'his new subcauldron
proceeds to pick up BLOCKS, carry it over to PYRAMIDI1, and attempt to release it. “This arrangement of
cauldrons is shown in Figure 7: Figure 8 depicts the blocks world at this moment. Unfortunately, BLOCKS
cannot rest sccurclybon top of PYRAMID1 and this problem is reported by the blocks world simulator a

statcment about the instability of BLOCKS5 asscrted into the MAKE -SUPPORTS cauldron which attempted to

lig. 7. Satisfying the prerequisite

Blocks
Cauldron

Doing
PYRAMIDY
supports
BLOCKS

Doing
BLOCKS3
not-supports
BLOCKS

2. Inter-task interference is mediated by a prosection mechanism (as in HACKER [Sussman76]). When a
cauldron begins to manipulate a block, it adds the statement that the block is protected to the frame for the
block as well as to a rcpository BLOCK-PROTECTIONS frame in BLOCKS-CAULDRON. ‘The
NOT-SUPPORTS cauldron has this BLOCK-PROTECTIONS frame activated into it so that it can identity
conflicts with tasks currently in progress.
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Fig. 8. Trying to put BLOCKS on top of PYRAMID1
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relcasc BLOCKS on top of the pyramid. T'his assertion is recognized by the cauldron (this is the sccond
MAKE - SUPPORTS cauldron) and a report of the difficulty is percolated up to BLOCKS-CAULDRON, with two

rosults:

0 A critic is created to catch subsequent cauldrons about to attempt the same
ill-founded goal (the goal of putting BLOCKS5 on top of PYRAMID1). T'his critic is
stored in the fraines for BLOCKS and PYRAMID1, which arc both defined inside of
BLOCKS-CAULDRON.

0 An assertion describing the crror is added to the cauldrons which brought about

the crror-producing nced (thc NOT-SUPPORTS cauldron and the initial

MAKE -SUPPORTS cauldron) in the first place.
Rcacting to the crror asscrtion, the NOT-SUPPORTS cauldron looks for an alternate location for BLOCKS. and
decides to place it atop BLOCK4. This dccision generates two assertions in BLOCKS-CAULDRON: an
appropriate need for BLOCK4 to support BLOCK5 and a statement that the error of the misguided
MAKE - SUPPORTS cauldron has been "handled”. The second assertion lcads to the dissolution of the crring
MAKE -SUPPORTS cauldron, while the first gencrates a goal of having BLOCK4 support BLOCK5, which

triggers the creation of a new cauldron working on that goal, as show in Figure 9.

CThis new cauldron, sccing that BLOCKS5 is alrcady grasped, moves to BLOCK4 and drops BLOCKS on
top of it. "The blocks world is now as depicted in Figure 10. ‘The cauldron responsible for this, its task done

and having updated the appropriatc frames in BLOCKS-CAULDRON, dissolves itsclf, Similarly, the
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Fig. 9. Recovering from the crror
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Fig. 10. The blocks world after BLOCK3 has heen cleared
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NOT-SUPPORTS cauldron, sccing its goal safcly acheived, dissolves itsclf along with the others.

When a frame is changed, the cauldrons into which that frame is invoked arc updated. For instance,
when the frame for BLOCK3 is suitably changed by a cauldron affecting BLOCK3, the change is asserted into
any cauidron into which the frame for BLOCK3 has been invoked. 'Thus, when the sccond MAKE - SUPPORTS
cauldron (which tried to put BLOCKS on top of PYRAMID 1) picked up BLOCKS5 from BLOCK3. it updated the
frinc for BLOCK3 to reflect the removal.  When this fact reached the first MAKE -SUPPORTS cauldron
(becausc it contained the frame for BLOCK3), the prerequisite checkers recognized that there was now space
for BLOCK2 on BLOCK3, making it possible to move BLOCK2 as soon as the hand became free. Thus. when
BLOCKS is finally rclcased, and the program’s hand is free, the program moves over to BLOCK2, grabs it,
carrics it over to BLOCK3 and releases it. 'T'his donc, the first MAKE -SUPPORTS cauldron dissolves itselt after

updating the appropriate frames in BLOCKS-CAULDRON, Icaving the blocks world as in Figure 11,

Next we ask the program to place BLOCKS5 on top of PYRAMID1. 'I'hc program refuses, cxpliaining
(given the critic which was created carticr) that BLOCK5 would be unstable if this were attempted. 1 this goal
had been the result of one of its own dcliberations, for instance a NOT-SUPPORTS attempt, it would be able
to recognized the expected crror and try another approach or strategy. (For instance trying to find another

spacc for the block).

Fig. 11. The Blocks World after (MAKE (BLOCK3 SUPPORTS BLOCK2))

Block3 Block4
Block5

. e

[ Bock1

Table
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1.3 Learning with Frames

‘T'his example has shown goal-nodes, frames, and cauldrons in action performing a series of tasks. The
notions of frames and goal-nodes, however, support scveral powerful mechanisms for learning from

cxperience and mistakes. This section offers a few notes (without extensive examples) on these mechanisms.

‘The first, implemented in an carlicr version of the blocks world program presented here, recognized ‘error
assertions” like that produced by the misguided cauldron in the example. It then initiated a sub-cauldron to
hypothesize a rcason for the failure; this reason then became a censor applicd to MAKE-SUPPOR'T activitics
in general. Unfortunately, the hypothesis generator, as (irst coded, tended to over-generalize and --- since the
implementation contains no provisions for automatic truth maintenance --- eventually paralyzed the problem

solver by the image of disaster at every turn.

‘The second, used more extensively in reasoning about connectivity in circuits, used the idea of storing
activation patterns as a way of constructing new frames. A successful cauldron --- its goal achcived --- could
collect its contents (the results --- in terms of intermediate conclusions and primed-to-firc rules) and make
them (or add them to) frames in the cauldron above it. In particular, the circuit reasoning program computed
a lot of fanouts in the process of trying to find breaks in a represented clectric circuit. By adding these fanouts
to the frame describing the ciruit, later analysis tasks could proceed quite quickly == skipping cndless chains
of fanout specifications.  In the blocks world, where the frames for blocks change so often, this was loss
ctlective: restoring past state could seriously confuse the problem solver rather than clarifying or improving

1t progress.

A later implementation of cauldrons might make more usc of these fucilities, with powerful tools for storing,

pruning, and restoring partial states of the problem solver.
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2. Restricting and Distributing Reasoning

This section describes the cauldron mechanism as a mechanism for restricting and  distributing
rcasoning over several distinct inferential "processes”.  While not delving into the internals of an
implementation, it details the motivations for its design and contrasts it with other distributed reasoning

systems.
2.1 Cauldrons

This rescarch develops a mechanism for defining and maintaining restricted problem  solving
computations called cauldrons. Cauldrons arc explicitly defined problem solving contexts in a rcasoning
program. An individual cauldron consists of a declarative program interpreter roughly similar to AMORD
[deKleer78], a database of assertions, rules and other structures on which this interpreter acts, and control

information which it uses in interaction with other cauldrons.

The cauldrons’ "contents™ are the set of assertions on which the interpreter operates. Rules and special
constructs such as side cffect generators and inter-cauldron communication channcls are simply special cases
of asscrtions. "T'hese rules and active assertions may be examined and manipulated by other rules and active
assertions in the cauldron just as casily as they manipulate the assertions and incrences of some particular

domain.?

One fundamental assumption of this rescarch has been the active role of knowledge in the reasoning
process. ‘The concept of apple has far more "attached™ to it than merely color, shape, size, or flavor. [t carrics
the knowledge that you perhaps shouldn’t cat it when green, that you can cut out its soft spots with a knifc,
and that planting its sccds can make you feel exceptionally naturc-loving. The view of knowledge as mercly a
collection of statements to be examined is impoverished because it excludes a vast array of censor-knowledge,
procedure-knowledge and “contextual interpretation” knowledge. Casting knowledge as a passive "accessed”
clement of the rcasoning process sterilizes a representation, draining it of expressibility. This is a fate which

this research has tried to avoid by discarding the idca of "databasc access” as a distinct opcration. Cauldrons

3. Kornfeld's Ether [Kornfcld82] lacks this featurc; Rules, as sprites. arc not normally looked at by other
rules or sprites-- there is a clear separation between assertions and rules in Ether, somcthing which cripplcs
attempts at retlection or self modification.  If a rule must determine what other rule led to some action or

“conclusion -- in order to cither disable it for similar situations or gencralize it to other situations -- the ability
to examine rules with other rules is ncccessary.
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arc not a database from which "facts” are fetched, they are a melting pot of techniques and knowledge into

which "facts"* arc activated. Rules, cffectors, and cxaminers hence become only especially "active”

asscrtions.

A given cauldron is able to manipulate other cauldrons through these "active™ assertions. Through this
mechanism, a cauldron can cither create new cauldrons or make assertions in existing cauldrons. This ability
of cauldrons to create other cauldrons defines a hicrarchy of cauldron invocation. 'T'he arcs of this hicrarchy
describe a parent-child relation, where the cauldron created is referred to as the child of its creator parent
cauldron. This hicrarchy is intimately ticd to the frame and goal-node abstraction presented in this paper.
Generally the goal-nodes and frames which contribute to a given cauldron are present -- as single FRAME or
GOAL -NODE asscrtions -- in their parent cauldron. Converscly of course, the frames and goal-nodes existing

as asscrtions in a cauldron arc generally used to instantiate and define its children.

While the primitive mechanisms for cauldron creation and activation are available to the rules and
assertions of cach cauldron, programs gencerally usc the goal-node and frame abstractions sketched in the
introduction.’® ‘The goal-node/frame mechanism supports a uscful abstraction over the bare cauldrons

implementation, providing a protocol for organizing knowledge and method.
2.2 Distinctions from other Distributed Reasoning Systems

This section will try to motivate some of the features described in the previous section by comparision

with other schemes for distributed reasoning.

‘The Conniver [McDermott74] ctxt mechanism may be considered a subset of cauldrons, as it creates
ncw subdomains by "layering” new assertions onto the databasc so that they can be "pushed” -- defining a
ncw layer of context -- and "popped” -- returning to a previous layer. But the use of layered contexts, while
gaining the "computational instantiation” aspect of cauldrons, fails as a restriction mechanism. Its problem

lics in dragging the entire ancestor context into the computational arena.® This is cumbersome in most cascs,

4. Wherce a fact may as casily be "how to paint a block” as "the block is red".

5. The goal-node and frame mechanisms  were initially implemented  using  these  explicit
cauldron-manipulation primitives, and only after those explicit implementations had evolved were they wired
into the implementation.

6. You can get around this problem by adding things to an empty context, but this usurps the hicrarchy
defined by context-creation, which is still important from a control standpoint.
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but may sometimes be necessary-- a cauldron instantiation docs have the option of copying the entirc present
cauldron into the new onc. Conniver's layered context incchanism may be viewed as creating a hierarchy of
assumption with new context layers being new branches from & single tree of deduction, while the cauldron
mechanism defines a hierarchy of invocation.” ‘The hicrarchy of invocation reflects both representational
abstraction and mncta-knowledge between levels: a cauldron is “superior” to another if it interprets and uses its
results. An inferior cauldron will usually know more about certain things than the superior cauldron which
invoked it (such as how to perform its wisk), but will in turn know fess about other things (such as why it was
invoked in the first place). ‘I'he cauldron hicrarchy is determined not by accumulated layers of conclusions,
but by invocation, with cach invocation guided by knowledge about the purpose and performance of levels

below it,

‘This design inherently reflects a philosophy for the control of parallel rcasoning processes. While it is
possibic to implement a layered context mechanisim in a cauldron system, the genceral philosophy is that
usually this is the wrong thing to do. 'The design of cauldrons stresses a hicrarchy of invocation control over a

hicrarchy of accumulated assumptions.

TMS systems such as Doyle's [Doyle78] may be viewed as a systematic dissolution of the Conniver tree
of cumulative assertions. Using a TMS both gets around the costs of instantiating new contexts for cach push
and, more importantly, permits the removal of an individual "pushed” assertions in a long chain of "pushes”
withouit having to regencrate the entire chain. It does this by keeping track of the "local causes” of cach push
and further by making cach assertion be a push. ‘Thus the tree of pushes is broken into a collection of the
local interactions (dependencices) for cach push. The problem with this dissolution is that the Conniver
hicrarchy of assumption also contains control information and results of considerations which the 'I'MS may
well remove. The solution to this in AMORD[dcKlcer78] is to cxplicitly define certain types of asscrtions to be
sancrosanct as far as the TMS is concerned. 1 arguc that it is preferable to retain an cxplicit hicrarchy of
control -- storing control information and results at different levels in the cauldron invocation hicrarchy --
while performing maintenance of hypotheticals throught explicitly accessible mechanisms on cach level

(within cach individual cauldron).

7. Cauldrons actually supports a heterarchy of invocation, allowing a cauldron to have more than one parent.
While I can casily imagine schemes in which this would be usctul, I have yet to actually use such a featuic in
any slightly real domain. Such a "godparent” relation might be useful when a number of separate cauldrons
arc interested in the results of a given computation: cach interested cauldron can be a "godparent” to a single
cauldron performing the computation.
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‘The ACTORS paradigm [Hewitt76] differs from cauldrons in two distinct ways: the size of the agents

involved and the existence of a clear control structurc between agents at different levels and tasks.

I imagine a cauldron as far larger than an actor in terms of both memory and computational activity. In
general, T envision a cauldron to contain on the order of one hundred rules and perhaps three to six times that
many assertions which arc not rules. ("Rule” here refers to any sort of "active” asscrtion.) 'This number -- an
off the cuff calculation based on when the current implementation becomes unwicldy in terms of cfficicney or
accessibility to debugging -- refers to cach cauldron's ultimate size, rather than to the size of the kernel which

crealtes it,

Computation on a cauldron-level resembles the actor model. with cach cauldron as a message passing
entity, but most of the real computation in a cauldrons based reasoner goes on inside of the individual
cauldrons, in an environment of rules and assertions. ‘I'his distinction catches on a commonly recognized flaw
in the scientific community metaphor, a recent explication of the actor model. ''he scientific community docs
not produce theories, scientists do. ‘T'hus, if the "actors” arc scicntists, cach scicntist must have cnough
computational power (in terms of knowledge as well as cycles) to generate a theory. The theory docs not
necessarily have to be good, but it must have the internal structure, in terms of dependencics and motivations,
of'a complcte theory. ‘I'he difficulty is that on the computational sidc of the scientific community metaphor,
there is no chunk of computational mechanism sufficiently large to serve as a scientist.® 1 view the cauldron as
a "chunk of mechanism™ large cnough to both devcelop conclusions and to motivate those conclusions. ‘I'he

typical actor is not sufficiently complex to satisfy this requirement.

For instance, in the blocks world cxample of Section 1.3, a subcauldron issucs a need for some relation
to cxist, and cxplains that nced. 1f a cauldron needs to choose between the multiple nceds of its children, this
explanatory justification is necessary to making correct judgements. But the subcauldrons can only provide
this information if they arc complex enough to realize that:

Prerequisite = => Action becomes possible = => Goal may be achieved

The typical actor or spritc or rule is much too simple and small to posscss such complex knowledge. ‘This

8. The flaws described here arc not flaws with the actor model, but with the characterization of a community
of simple actors as a scientific community. ‘I'he actor mechanism -- like the lambda calculus - provides a
battery of powerful terms and concepts for describing computation.  For many purposes, it is uscful o
describe the rules in a given cauldron as simple actors: but it is not similarly useful to describe such simple
rules or actors as scientists in a rescarch community.
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suggests that the spritc or actor level is not the right level of abstraction for talking about intclligent
interactions of concurrent agents. [f multiple agents are to interact intclligently, they have to be complex
cnough to recognize WHY they nced to interact.  In simpler schemes, like schemas [Drescher86] or
c-lines [Minsky77], there is no claim to "intelligent interaction” so that this problem does not arise. But when
the agents of a model are deigned to be cven slightly more complex, the problem of knowing "why"

communication is necessary becomes critical.

Another important difference between actor schemes and cauldrons is that cauldrons-based reasoners
have a more explicit control structure than typical actor-based systems. ‘The application of a cauldrons-based
rcasoner to a problem is far more dirccted than the application of an actors-based system to the same
problem. In a cauldrons-bascd reasoner, there is a clear notion of computational hicrarchy, encompassing the
relations between controllers and controlled. A cauldron is typically invoked by an executive rather than bya

co-worker.

Kornfeld's Kther [Kornfeld82] is a system very similar in design to cauldrons: it is a problem solving
language which distributes computation over a collection of computational entitics. In Ether, those entitics

arc viewpoints,” while in my language, those entitics arc cauldrons.

While there arc technical details of the Ether implementation that [ have doubts about, such as its
monotonicity or its separation of sprites (rules) and assertions. there arc only two explicit differences between
kther and cauldrons which | would arguc for:'® onc of these is a difference of intent; another is what [

perceive as a scrious problem with Ether's approach.

Cauldrons cvolved from a collection of ideas about how the mind might work into a sct of abstractions
for building nctworks of "littlc minds" which perform reasoning tasks. As a result of this evolution, neither
my implementation nor my theorics contain notions like "computational power,” since [ cannot envison

(possibly my own failing) a thcory of mind which would support such a mechanism. Hewitt and Kornfeld in

9. Ether activities arc the way that computation is divided. but viewpoints arc the way knowledge is
apportioned. Activities are used to parcel computational power, a mechanism | have chosen not to usc. while
viewpoints arc used to parcel and restrict knowledge, which is the intent of cauldrons.

10. 'This mcans they were conscious decisions made in the development of both theories and
implementation. :
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[Hewitt80] define a difference between their approach, “the scientific society” approach, and Minsky's
"society of the mind/cognitive modeling” approach. ‘T'he difference in intent between my work and Ether is

essentiaily the same.

The onc aspect of Ether which [ have grave donbts about is the way in which programs in Ether arc
written. ‘The standard way to solve a problem in Ether is to write a program which combines 1.ISP code
calling Fther primitives and Ether code calling 1.ISP.  Kornfeld stresses, in fact, that "Lisp should not be
considered an ‘escape mechanism’ in Ether.” My primc misgiving about this is that if a program must
understand or be able to modify itsclf, having this mix of Lisp and Ether will make sclf modification very
difficult.' "I'his failing is demonstrated in Ether's separation of rules (sprites) and assertions: Fther sprites are
written in Ether (a Lisp-like language), while Fther assertions are written in the language of the domain, with
sprites only triggering off of assertions, not off of other sprites.  While Ether is an cxcellent language for
writing programs to solve any particular problem, when programs must modify cither themselves or their
approach to a problem, the difficultics of understanding the 1.ISP code, and even worse, the interaction or the

LISP and Ether code, will be hard to overcome.

Davis’ meta-rules [Davis79], initiatcd much of my thought about strategies for restricting computations,
‘The essence of meta-rules -- of having heuristics for heuristic selection - is important in any situation where
decisions about about the relevance of knowledge or methodologics arc made. A range of issucs that | have
only tentatively explored revolves around this-- preciscly, how do you choose which techniques to apply in
solving a particular problem. It is likcly that Doyle's [Doyle80] ideas about policy and intention will be an
excellent starting point for systems which choose between multiplc mcthods or approaches. ‘The need
mechanism in the example in the introduction is a first step in that dircction. Another issuc of interest is the
means by which such meta-heuristics arc acquired. (I.cnat's recent work into heurctics [l.cnat82) cxplores

theorics, models, and heuristics for thinking about heuristics).

An issuc which mcta-rules docs not address is the issue of maintaining multiple instantiations of a

rcasoning program, where cach uscs different techniques and different knowledge. Davis's more recent work

[1. ‘While the implementation of a problem solving language may best be done in ISP (or some other
traditional languagce), the inhomogencity of mixing LISP and a problem solving language often cripples its
reflexive flexibility, possibly leading it into the pitfall of "skill acquisition by DEFUN".
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with Smith on contract-nets [Davis81a]., does address this issuc. but their approach differs from mince in the
same way the as Ether's-- it sccks interesting and uscful ways of distributing computation, rather than finding
and testing theories which explain how the mind docs things. Contract nets do capture the important concept
of distributed functionality; a contract is an arrangement between different processes which arc performing
different tasks with different expertise.  Further, Davis' latest work on multi-agent planning [Davis§1b]
considers the difficultics of multiple agents dealing with limited or unique resources in a coordinated way.
‘These arc issues which need far closer examination if distributed mechanisins are to be applied to real-world

interactive problems,

‘The Hearsay systems [1.esser77] are architecturally similar to cauldrons. Cauldrons implement layers of
abstraction in a reasoning program which can be compared to the levels of hypothesis blackboards in Hearsay.
However, the locus of computation in cauldrons is different from that in Hearsay. In Hearsay, computation is
performed by knowledge sources (KS's) which generate hypotheses on a given level of abstraction by
cxamining adjacent levels.  In cauldrons, the computation is centered in the cauldron rather than in the

intcraction between cauldrons. A cauldron, unlike a blackboard, computes as well as collects.

Within cach cauldron, gencrated hypotheses and plans arc debugged and criticized by local procedures
and knowledge, before being propagated up or down the abstraction hicrarchy. "This serves to hamper the
propagation of bogus hypotheses between "blackboard levels”. Additionally, the activities at any onc level of
the cauldron hicrarchy are not homogencous. ‘The subcauldrons of a given cauldron apply a range of
expertise and techniques to its subproblems or sublevels. Within a cauldron network, a range of "pockets of
cxpertise” arc dynamically created and destroyed as the system dcals with new information or new

hypotheses.

Many theories of distributed computation work with cven smaller agents than actors. Schemes like the
semantic nctwork machines, constraints, or rclaxation algorithms work with an agent size far smaller than
cauldrons. The internal workings of a cauldron, with its interacting rules and assertions, may well be of
comparable "grain size" to schemes like constraints or relaxation algorithms. [t is on this level, and not in
higher level parallelism, that | suspect the important cfficiency gains will be made. | view higher level

schemes like cauldrons as mechanisms for improving abstractions; lower level techniques like constraint
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propagation or marker passing [ view as methods for improving cfficiency.'?

2.3 Static Cauldrons: A Note

The notion of cauldrons and frames described above arose from carlier work in fearning and reasoning
in highly parallel semantic networks. ‘This work was begun in 1979 under Chuck Rieger at the University of
Maryland and continued at MI'T in 1980 and 1981. ‘This work. unreported. began with a subsct of Scott
Fahlman's NETL [IFahlman79] (a highly paralicl scmantic network implementation) and cxtended the
‘existence bit” of NETI. o an ‘existence word' for describing multiple belief or reasoning contexts. It then
provided an ‘implication link’ for connecling statements (representational links in the semantic nctwork).
‘These implication links also had ‘existence words’ which affected the existence words they were able to

propogate.

‘The static network so defined could entertain several states at once and cach state (cach bit of the
allocated cxistence words) was called a ‘cauldron.’ As cxistence bits flicked to and fro throughout the
network, the activity of the program proceeded along many lines or through many paths at once. ‘The
implementation of this nctwork never got past a primitive simulation stage and eventually becamc (with the

influence of other idcas at MI'T) the set of idcas described here.,

‘The implication links of the static implementaticn were used to activate patterns of ‘rules’” and
‘assertions’ in the network, and became the notion of frames (and of goal nodes) in the current
i:ﬁplcmcnuuion. Once novel component of this activation notion was a selective version of the automatic
‘frame creation’ described at the end of the last chapter. New patterns of activation could be defined by
capturing current patterns of activation, in particular by tracking the ‘dependencics’ for the current pattern of
activation. All the activated nodes in the network, and the nodes which activated them, were used to specify a
pattern of reactivation which could become a new ‘framc’ (in the parlance of the current implementation).
Since rcasoning was divided into levels by cauldrons, by constraining this rccording to a single cauldron (a

single bit in the propogated ‘cxistence word’) only immediately ‘relevant’ nodes would be recorded.

In retrospect (from 1986), those idcas scem worth returning to. In fact, promising systems like AFL.

12. But of course, improving ciTicicncy makes it possible to think about reasoning technologics which could
never be seriously considered before.
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[Blclloch86] seem to echo many of the ideas of this implementation.  Furthermore, Agre's work on routine
behaviour [Agre85] adopts the notion of inverting dependencies into activation paiterns, though with a far

more complete implementation.
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3. Representation as Restriction

‘This scction takes a teleological view of representation systems, working from the insistence that
knowing what is usefit/ is just as important as knowing what is rrue. A representation system does not mercly
provide a structure for making valid assumptions (defaults), it also provides a structure for determining what

knowledge might be uscful to a certain goal, in a certain situation, or for a particular inference.

‘The question of what knowledge is uscful becomes relevant to the Al rescarcher only when one can
choose what information ones program looks at when making inferences: precisely, when one has a
mechanism for restricting consideration.  Asscrtion based inference mechanisms without cxplicit control of

focus and reference cannot offer a framework for establishing relevance-based representation schemes,
3.1 Knowledge Representation

This section describes a representation scheme working from the intuition that any knowledge
representation is a paradigm for restriction of consideration. ‘I'aking this intuition. the solution of the
representation problem becomes the space of solutions to the restriction problem. This gives a knowlcdge
representation the clear design goal of defining knowledge necessary for a particular performance. 'I'his frame
implementation is a incchanism for defining chunks of knowledge (collections of "active™ rules and "inactive”

statements) which may be mixed and merged to create tailored reasoning contexts,

‘The active and procedural nature of this tilored knowledge allows "meaning” to become an
interpretation'® of the computational context (the cauldron and the "chunks” of knowledge which define it)
rather than any absolute definition. Making the knowledge an active part of the reasoning process lends
power to these chunks of knowledge, allowing the knowledge representation to implement an cpistemology,

rather than mercly fulfilling onc.

13. Ina very real sense of "interpret.”
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‘The basic unit of the representation is the frame, an assertion consisting of three parts:

0 A tag, which is an identificr for the frame.

0 A sct of inclusions, cach of which is the reg of another frame in the same
cauldron. A frame is said to "virtually include” the frames attached to its
inclusions.

0 A sct of features, each of which is cither a frame or an arbitrary object in the
languuage of the problem solver.

There arc three basic operations on a frame:

o leature alteration. "The addition or removal of an object (or frame) to or from
the features of the frame.

0 Inclusion alteration. "The addition or removal of a frame-tag to or from the
inclusions of the frame.

o Frame Invocation. ‘The "activation” of the frame into a problem solving
context (cauldron). When a frame is "activated” into a cauldron, its fearures arc
asserted into the cauldron and cach of its inclusions arc activated, recursively, into
the same cauldron,

A frame is defined as a set of arbitrary asscrtions (features) which may include, virtually, the assertions
of any collection of other frames. Spreading activation through these inclusions then determines the set of
asscrtions which are eventually added to the cauldron a frame is invoked into. ‘These Sfeatures (which may be
rules, censors, arbitrary statements, or other frames) interact with other similarly activated features in the
cauldron to perform tasks, complete inferences, or organize cxisting knowledge into new structures. ‘The
current implementation of this system has the bug that features arc given precedence over inclusions by the
mechanism of asserting the contents of inclusions before the features, allowing thc immediate features to
“clobber” clements of the inclusions. The cxact problem is that since there is no implicit dependency
maintcnance accompanying non-monotonic modifications to the cauldron, "clobbering” docs not always have
the complete and correct effect. Onc way that this has been patched is to define rules -- in some particulur

rcasoning contexts -- which keep track of the addition and deletion of assertions in a cauldron.

A key feature of this implementation is that it Icaves all epistemological issucs, such as the mcanings of
A-Kind-0f or Part-0f, to be implemented in the representation rather than being defined by he

representation. It provides only a facility for defining chunks of knowledge to be applied and used by a
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program, lcaving all issues of meaning and cpistemology to interpretive structures implemented within the

facility.
For instance, A=K ind-0f could be implemented as below; '

Frame
Name: Class
Inclusions: None
Features:
If  {class HAS-QUALITY CLASS}
{instance 1S-A-KIND-OF class}
Then:
If {class some-relation some-quality}
NOT {instance some-relation another-qualily}
Then:
{instance some-relation some-quality}

so.that if there is a frame for carburctor:

Frame
Name: Carburetor
Inclusions: None
Features:
{Carburetor HAS-COLOR Black}
{Carburetor HAS-PART Foobar-Valve-Part}

14. The "code” given here is a pretty prirted form of the actual assertions and rules in the current
implementation. A frame has its parts clcarly labeled; An IF form asserts those assertions after its THEN for
cach sct of assertions matching the patterns before the THEN. ltalicized words correspond to variables which
will match anything and bold italicized variables refer to variables which have alrcady been matched (and
thus have values constrained by iheir carlier appearance). ‘T'he first picee of code implements inheritance of
defaults along AKO links. ‘T'he frame CL.ASS contains a rule which says:

"If an instance is a kind of some class class, and cluss has a relation relation to some value which
the instance does not explicitly have, then the instarice has the same relation w the same value.”



Haase -25- Cauldrons

it is then possible to construct a frame for carburctor class:

Frame
Name: Carburetor-class
Inclusions: Carburetor, Class
Features:
{Carburetor HAS-QUALITY Class}

and for a particular carburctor:

Frame
Name: Carburetor-1
Inclusions: Carburetor-class
Features:
{Carburetor-1 AKO Carburetor}
{Carburetor-1 HAS-COLOR Silver}

which will have a Foobar-Valve-Part and would be black if it weren't clearly silver. ‘The definition of
Carburetor-class could also complain if some of the features of a given carburctor were undefined or

inconsistent. For instance, if we could expand the definition of Carburetor-class to be:

Frame
Name: Carburetor-class
Inclusions: Carburetor, Class
Features:
{Carburetor HAS-QUALITY Class}

If {instance AKO Carburetor}
{instance HAS-COLOR Black}
Then:
{instance HAS-AGE 01d}
If (instance HAS-AGE New}
Then:
Error{A Carburetors age docsn’'t match its appearance.}

so that an "error report” would be generated (and presumably noticed) if a carburctors apparent condition

did not match its given age.
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We can also define variant forms of inheritance from classes or between instances (for there is much

beyond AKOQ). For example, consider this definition of HAS-PART:

Frame
Name: Part
Inclusions: None
Features:
If {part HAS-QUALITY PART)
{super-purt HAS-PART part)
{part HAS-PART sub-part}
Then:
{super-part HAS-PART sub-part}

If {whole HAS-PART part}
Then:
{purt IS-CONTAINED-IN whole)

Using the detinition of part, it is possible to construct a frame for carburetor-part;

Frame
Name: Carburetor-part
Inclusions: Carburetorclass, Part
Features:
{Carburetor HAS-QUALITY Part}

and for Carburetor-1:

Frame
Name: Carburetori
Inclusions: Carburetor-part
Features:
{Carburetor-1 AKO Carburetor}
{Carburetor-1 HAS-COLOR Silver}
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such that we may define this frame for Engine:

Frame
Name: Engine
Inclusions: Class, Carburctorl

Features:
{Engine HAS-COLOR Blue}
{Engine HAS-PART Carburetor-1}

which has a number of interesting features, including possession of a Foobar-Valve-Part inherited from
the carburctor via Carburetor-1. But this inheritance is filtered inheritance since other features of the
carburctor, such as its color, arc not inherited. ‘This definition of HAS-PART is certainly weak and

incomplete, but its definition reveals two powerful capabilitics of this approach:

Arbitrary defaulting or inheritance mechanisms may be detined explicitly and
extensibly. These defaulting mechanisms need not merely default by inheriting
through some hicrarchy or heterarchy, but can refer to any clements of the current
reasoning context.

The semantics of a representation -- the way attributes are defaulted and

constrained -- may be globally or locally redefined for a given reasoning context or

a collection of reasoning contexts sharing a common frame.
[f the language of the problem solver -- in which the contents of frames are written - has assertions which can
override or inhibit other assertions, (i.c. is non-monotonic) it becomes possible to wholly replace a definition
of AKO or HAS-PART for a given frame. ‘I'his permits the meaning of AKO or HAS-PART to vary depending

on context, so that being A-Kind-0f "hacker” may usc a very different interpretation of A-Kind-0f than

being A-Kind-0f "hcavy object”.'®

15. ‘The introspective realization that hearing "Clyde is an clephant” immediatcly conveys a great deal of
information about Clyde suggests that AKO is indeed special in some deep way. But the description "Clyde
is clephant-shaped™ invokes a large number of facts just as quickly. but leaves behind, Silters, a great deal of
non-shape information. Qur recegnition of this sort of simple analogical description (Clydc is shaped like an
clephant) scem just as quick and natural as our recognition of instance-class descriptions, suggesting that
AKOQ is not especially primordial.
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3.2 Representation as Restriction: Other Approaches

The approach of implementing representational mechanisms like AKO in a general declarative
language is in essence the same approach presented in [Hayes77] and [Nilsson80]. Both of these presentations
describe skeletal frame implementations implemented in FOPC. In [Hayes77] Hayes further recognizes the
utitity of filtered inheritunce -- described above -- as secing as. for instance, secing Thomas Jefferson as a
scientist, rather than as a politician or as a slaveowner. But while simply cmbedding FRI. or KR1. in FOPC is
interesting in itsclf, the result provides little of the real functionality in these languages. An FRI. in FOPC
may tell you what is rrue,'® but it does little in the direction of tetling you what is useful. Because cauldrons
implement a notion of focal knowledge, the measure of a rule or assertion’s relevance suddenty gains mceaning
and importance.  ‘The frame implementation presented above organizes knowledge into  contours of
relevance.” {ulfilling the requirement that a representation classify what is "useful” with the same facility that

it classifics what is "true".

‘The chunking of knowledge into contours of relevance bears similarity to the use of the theory construct
of Weyrauch’s FOL. [Weyrauch78] and its close descendant SDI. (Structure Description Language) [Doyle80].
Both of these systems implement the concepts of structure and model defined for first order logic. A theory
in FOIL. or SDL. consists of three clements: a language defining the syntax of statements in the theory; a sct of
axioms which can gencrate valid statements in the theory; and a simulation structure which conncets
statements in the ticory to some process which allows the statements to be interpreted and simplified. As
with the frames containing a definition of AKO above, a theory is a collection of statements accompanicd by a

description of their syntax and semantics.!’

‘The theory of FOL. or SDIL. and the frame of my representation both provide mechanisms for chunking
knowledge into contours of relevance, a feature lacking in Hayes and Nilssons cxamples.  But all these
schemes define only incomplete chunks of knowledge, and any rcasoning process will consist of the

interaction and intermixing of many such chunks. "The mechanisms by which this intermixing is performed

16. Barring the monotonicity problems which keep FOPC distinguishing what was was once true from what
is true.  Doyle [Doyle80] discusses a flaw in default handling, the family resemblance problem, which arises
from this monotonicity.

17. "The simulation structure is used to give a theory meaning, a link between the thcory as a representation
and that which it is representing. In order for the sentence "s=1/2*a*t+2" to have mcaning, its clements
{sat2,172.* 1, = } must be attached to cither arithmetic primitives or better, to a theory of cquations in the
reals.
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arc as important as the organization of the chunks themselves.

In FOL,, the primary mechanism for theory interaction is reflection. Reflection allows statements in one
theory to talk about thcoremhood in another theory, Thus, if a meta-thcory M tulks about some theory T,
and we wish to prove some thcorem in T, we may be able to immediately gencrate the theory by performing
some simple transformation in M. In IFOL, reflection is invoked via the REFLECT command, which applics
sone principle from the meta-theory of the current theory to a set of statements in the current theory. One
shortcoming with this mechanism is that though a theory can refer to its meta-theory, the mceta-theory cannot
refer to the component theories it describes.  For instance, while a theory of peano arithmetic may reflect to
the theory of reals which contains a summary of it, the same theory of reals cannot refer to peano arithmetic

to justify new principles or axioms.

By contrast, in a cauldron hicrarchy, higher levels invoke lower level activities to satisfy their plans and
goals in addition to resolving conflicts and difficultics at the behest of lower levels. “Fhus the link between an

active theory (cauldron) and the active theory which uscs that theory (its parent) works both ways.

Doyle’s SDL. replaces reflection with a mechanism allowing semantic attachment to other theories as
well as to implementation primitives. Thus, a theory can refer to another theory. Attachment to theorics is

used in concert with two other mechanisms, virrual copies and typed parts.

Virtual copies arc a mechanism for inhcriting assertions between theories. {f a theory 1 copics a theory C, all
the statements of C become included in 1. "Vhis is identical to the frame inclusion mechanism used with
cauldrons. Class instantiation is performed using virtual copics, by copying the theory of the class into the
theory of the instance, and then attaching a constant in the instance to the global name of the thecory of the
class. In a cauldrons-based frame representation, the mechanism for instantiation is similar, but with the
latter step, attachment, performed by cxplicit rules and axioms implementing some instantiation mechanism.

‘T'hus certain objects or techniques may perform this attachment in a completely different manner.

Typed parts arc similar to virtual copics in that they copy another theory into the current thcory. The
difference is that the constants of the copicd theory are replaced by pathnames, allowing a thcory to have
several distinct parts which instantiate the same theory. [ arguc that this typed part mechanism is misguided
in haphavardly colliding sub-thcorics within their super theory. The point here is the subtle but important
difference between referral and containment. A theory of real numbers may refer to a thcory of pecano
arithmetic, but it will not contain that theory. ‘I'he difference is that referenced sub-theorics are instantiated

separately from the theories which use them for justification or motivation. Cauldrons serve as a mechanism
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for instantiation which allows the separate instantiation of connected theorics. A cauldron rcasoning about a

bicycle will generally invoke another cauldron to reason about the ball bearings in onic of its wheels.

Agre and Chapman [Agre&Chapmang3] replace Doyle's typed part mechanism with a mechanism called
virtual inclusion. Virtual inclusion is esseatially an extension of Doyle's virtual copy mechanism which allows
the axioms of a copicd theory (o have their clements renamed to references in the theery being copicd into.
As with the typed part mechanism, this violates the modularity of knowledge -- the contours of relevance --

which the theory construct provides.

Since FOL. is put forth as an intcractive proof checker, there is little chance to "see it in action” with
traditional Al tasks involving planning or reasoned deliberation. Weyrauch does not present cases where
FOL. chooses to use a particular theory, or decides to apply onc theory in tavor on another. FOI, also avoids
the problems of mixing theorics (outside of the meta-thcory attachments outlined above) with one and other
by not attempting to implement any sort of inclusion or thcory-copying mechanism. As described above,
SDi. attempts to broach these issucs with a virtual copy mechanism, but needs to push the mechanism too
far'® due to the lack, I argue, of a way to explicitly usc onc theory from another theory without violating the

principles of abstraction and modularity which separate theories from cach other.

Regardless, given these tools for theory interaction, SIL. attempts to attack more general Al issues, but
its presentation in [Doylc80] is weak because Doyle uses essentially the same examples which Weyrauch
presented in [Weyrauch78). While Doyle speaks of rcasoning about plans and sequences of actions (where
actions arc presumably attached to cither other plan-theories or physical or mental acts), he never presents
working cxamples which detail that reasoning in action. 'T'his may be because Doyle’s definition of "mental
acts” is no clearer than his specification of "physical acts,” duc to the absence of any "attention mechanism”
with which to perform mental acts. Doyle does make a large number of important points about reasoning
about rcasoning, approaching such issucs as how to decide which theory to deliberate with, how to modify a
theory with respect to its success or failure, or whether to bother deliberating at all.  Unfortunately, Doyle

fails to ground this rcasoning about rcasoning to any real picces of rcasoning technology.

18. ‘t'his is a common pitfall of representation systems. T'he AKO link in FRI. [Roberts77] has the identical
failure mode. inheriting all sorts of things and being uscd for a range of relations it had no business trying to
CXPICSS.
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FOL. and SDL arc far more cleanly and preciscly defined than cauldrons, but they lcave cnough
questions unanswered to beg their sufficiency. Eventually, | can imagine cauldrons maturing into something
as preciscly defined as FOI., but currently the issucs which cauldrons attempts to deal with, such as explicit

attention control or "contours of relevance,” are still too imprecise to be clearly and formally defined.

From the standpoint of 1986, we can note the development of SPHERE [IFillman83] as a version of
1FOl. with more extensive multiple context reasoning facilitics. We also see the extensive work of Genesereth
and his collcaguces [Genesereth82] as following the lines of explicitly describing how assertions and statements

should be interepreted and implemented.

3.3 Frames and K-Lines

Minsky's Sacicty of the Mind offers a number of attractive mechanisins for restricting the computation
involved in resolving of any particular task. ‘The Socicty of the Mind ofters a view of the mind as a collection
of computationally simple agents communicating by channels called c-/ines [Minsky77]. ‘T'he composite of all
the agents states, cxpressed as the states of their ¢-lines, defines the Society’s, and hence the mind's, "mental

statc.” Similarly, a partial mental state is the state of a subsct of the minds c-linc communication channcls.

In [Minsky79]. Minsky proposes that the mechanism of memory is onc of reactivating partial mental

states. When recalling an cvent, a fact, or a techniquc, a sct of agents and c-lines arc "activated” to interact
with the current mental state.  Minsky proposes that a partial mental state is stored by connccting the
clements of the state (the c-line connections) (o a goal-node by a sct of k-lines. "I'his connection is arranged so
that if the goal-nodc is cver activated, the "activation” propagates through the k-lines to reactivate a stored
partial mental state. A powerful addition to this cnables k-lines to attach goal-nodes to other goal-nodes as
well as to individual c-lincs, thus creating a network which reflects a "hicrarchy of activation”. This hicrarchy
serves as a simple abstraction mechanism which can be expanded into representations for knowledge which

may be logical, frame-like, or procedural.

K-Lincs are constructed by goal-satisfaction; when a goal is satisfied, the the agents active on its
satisfaction arc recorded as an activation pattern. The links of this activation pattern --- from goal to agent ---
arc called k-lincs. When a partial state of agents is reactivated through stored k-lines, the activation brings (o
bear the same agents, attitudes, and knowledge that were previously available when the goal was satisticd.
Onc way of illustrating this idca is with the following image:

Imagine a lurge workshop with a wide variety of different tools cusily available. The task of a worknian
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10 fix a broken bicycle. which is brought in and placed on a workbench draped with cloth. The workman
begins working on the bicycle. using tools from around the workroom--- he is not too expericnced with
bicycle repair, so much of his work is trial and error. perhaps mixed the general ideas and principles

concerning "the right way to do things."
[f u tools fits and does its job, it is dropped on the clot draped 1able.
If it fails to work it is tossed away.

Linally, the bicycle is repaired (the workman can notice this). He takes it down, puts it away. and picks up
the tool-covered cloth on the worktable, wrapping it into a bundle. He ags this bundle with a ribbon
maked "BICYCLE REPAIR” and places it on a shelf. The next time a bicycle needs repair, this bundle is
unfolded onto the work table. All the tools are tehre. and work proceeds, without the neccessity for trial

and error as before.

If the tols are actually magic and intelligent screwdrivers, wrenches. efc;: i.e. agents which work by
themselves and interact to repair the bicycle, then the worknian becomes part of the tols. and all that need

be done is to dump the bundle of "tools"” onto the table with the bicycle.

''he frames implementation described above derives much of its inspiration from the intuition ot "knowledge
as reactivation” which k-lines provides. 1 have simply repliced parts of the ¢-line network and hicrarchy by
the arbitrary objects of a problem solving language (asscrtions, rules, ctc). The generally hicrarchical structure
of a nctwork of cauldrons parallels the c-line control hicrarchy'® described in [Minsky77].  ‘The most
prominent feature of this is that it allows an analoguc to Minsky's level-hand-principle. which confincs spccitic

“lcarning cvents"??

to a tight range of levels of the abstraction hicrarchy; thus lcarning a new technique for
doing proofs docsn’t gencerally affect the way one holds a pencil. As in any sort of programming, prescrving
layers of abstraction makes debugging (as well as understanding!) far casier. Cauldrons implement these

“layers of abstraction” in a declarative programming language.

Minsky calls the elements which trigger the k-lines "goal nodes,” a regrettable misnomer, for whilc they

have a good dcal to do with reacting to cxplicit goals, they arc also a powerful mechanism for structuring

19. This was the "BUILDER-WRECKER" hicrarchy. In the cauldron system, cach level of abstraction
influences and "inspires™ (as opposed to "controls™) the level below it.
20. Preciscly, k-linc attachments.
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knewledge of the worid. Hence, having taken the "activation™” parts of the k-lines theory and lumping them

into the frame mechanism described above, 1 simplify the notion of goal-node to be somcthing which is

triggered by the presence of a particular class of goals.

I retain the term goal-node becausc it fits so well, defining a structure which tics together the frames
relevant to achicving a particular goal. The functionality of the goal-nodes described here is far simpler than
the functionality of the goal-nodes described in [Minsky79]. My goal-nodes do not implement memory, they

implement the application of memory to a problem.

‘The goal-node used with cauldrons consists of two parts: a trigger-patiern and a sct of associated frames.
When a goal appears which fires off the trigger-pattern, a cauldron is started trying to achicve that goal, and
the associated frames of the goal-node are "activated” into the cauldron, The goal-node thus serves as the

mechanism by which a computation is begun and its direction and arca of consideration defined.
For instance, in the blocks-world. the goal-node for making one block support another looks like:

Goal-node
Trigger-pattern: {B/.OCKA Supports BLOCKA}
Activated-frames:
DEFAULT-MAKE-SUPPORT-TECHNIQUE iHow 1o do it

BLOCKA ;s Details of one block.
BLOCKRB ; Details of the other.
BLOCK-PROTECTIONS ; Censors.

‘The goal node triggers chunks of knowledge relevant to a given problem. This triggered knowlcdge might

range from actual techniques to accumulated censors to knowledge about the particular blocks involved.

Goal-nodes serve to define a reasoning context tor a particular task. "This context contains knowledge
about the detils of the situation (for instance traits of individual blocks), general constraints of the larger
current rcasoning context (for instance blocks which are protected and untouchable), as well as knowlcdge

about how to achicve oncs goals.
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4. Conclusions

This paper has described and demonstrated a collection of abstraction mechnanisms for distributed
reasoning systems. In conclusion, | will outline the approach which motivated these mechanisms and then

criticize both the approach and the mechanisms it engendered.
4.1 Philosophy of Minds

Cauldrons arc an implementation of distributed problem solving developed in parallel with an cmerging
theory of distributed cognition. [ have approached the issuc of distributed computation in an unusual way;
instead of starting with multiple processes and then figuring out how to distribute computation among them
to perform tasks in an "intelligent” or "efficient” manner, I begin by looking at mechanisms of thought and
then use the technology of distributed processing to model those mechanisms. 'T'he difference between these
two approaches is one of intent: | am interested in how minds work, and am using computation as a
touchstone for my theories. Instcad of thinking in terms of a "distributed theory of computation,” [ am trying

to begin the definition of a distributed theory of mind.

T'his theory views the mind as a collection of interacting computational processes which gencerate the

surface phenomeron of rational and irrational thought. These processes have the following features:

0 ‘They are restricted.
0 They arc dynamically created.

0 'T'hey communicate with onc and other.

Restriction of processes is a requirement that no process have a global viewpoint, A given "picce of
knowledge™ interacts only with those picces of knowledge local to it. Picces of knowledge may react to or
produce other picces of knowledge, but they may only react to or immmediately cffect the knowledge
involved in the same process. ‘This notion of restricted consideration is fundamental to the definition of a

"process”.

Artifical Intclligence is often criticized for succeeding only by restricting the domain of rcasoning to a single
"micro-world” or "expert-domain™; the flaw in these criticisms is the assumption that the processes of human
rcasoning arc not similarly constrained. Human beings restrict the domains of their problem solving in much

the same manner as Al rescarchers restrict the domains of their programs problem solving. When the mind is
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cxamining a play of Shakespeare, it is not at the same time considering some aspect of the integral of natural
log. This restriction of consideration plays a critical role in the problem solving process. The restriction of
reasoning processes provides the technology of contexts of consideration as well as a closed world assumption

for the reflexive examination of thosc processes.

These restricted reasoning processes are dynamically constructed and discarded, at need. as the reasoner
cncounters new problems, new situations or new distractions. 'The process structure this creates is not a fixed
picce of rcasoning hardware, but constantly changes as rcasoning proceeds. ‘I'his notion of restricted mental

processes appeals to folk-psychological notions of "focus” or "context”.

[tis in the dynamic creation of these processes that large picces of knowledge are mobilized into the pursuit of
tasks and goals. Thus the constraint of restriction is implemented in this mobilization, making sure that the
picces of knowledge and procedure present in a process are precisely relevant to its function. An activity is

thus instantiated with most of the knowledge, both procedural and declarative, neccessary to its performance.

Communication allows onc process to influcnce the cvents in another process. ‘The constraint of
restriction demands that this communication be limited, and we accede to this by allowing communication
only through cxplicit channcls and gencrally using thosc channels solely for the communication of control

information.?

‘The greatest failing of any restriction scheme is the uncxpected-- if a restricted reasoning process runs inio
uniorseen interference, unsatisfied prerequisites, or internal inconsistencics, it is generally unable to act
because of its narrow focus. Communication allows a recourse from these situations, permitting a process to
request that some other process remove interferences, satisfy prerequistes or even debug the troubled process!
‘These requests may be cither resolved directly by an cxisting process or may instantiate a new process with

the expertise for resolving the specific quandry.

The characterization of reasoning processes described above is reflected in the abstractions this papcr
has presented. The notion of restriction is implemented by the cauldron, as a restricted arena for deduction

and inference. ‘The dynamic creation of reasoning processcs is embodicd in the ability of a cauldron to create

21. Requests and replics as opposed to techniques or factual details. (A reply may of course be a "factual”
detail, but we constrain replics of this nature to be "expected” in the sense that some mechanism exists within
the process for handling them,)
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other cauldrons, and particularly, in the goal-node mechanism. And finally, the necessity of communication
between reasoning processes is provided by the frame mechanism, permitting cauldrons to communicate and
share information between themsclves. "This communication is not merely between concurrent processes, but

between processes separated by time, speaking through the channels of memory.
4.2 Failings and Futures

‘This rescarch, like any rescarch in a new arca, has obvious failings. Primanly, these failings lic in the
realm of unanswered questions and unmotivated assumptions. 1This scction will attempt -- in bricf -- to both

motivate some basic assumptions and to describe future rescarch on the many questions that still remain,

Why does one even want parallelism?

Parallclism is a way of keeping things small.  Having conventions for making parts of an Al system
scparate and parallel (with only a few clearly defined dependencices between them) provides "fissure points”
for making big problems smaller. An carlicr version of this paper had a whole section motivating -- with folk
psychological arguments -- such mechanisms in the mind. Its main argument evolved around the inability of
the human mind to function well on problems which demanded large arbitrarily connected collections of
knowledge. "This obscrvation, coupled with obscrvations of Al programs which scemed to lounder in scarch

problems, led to the principles of the previous section.

Is it "casier” (o program in cauldrons than in other languages?

Sadly, no-- the organization of programs and the extension of programs alrcady written seems casicr in
cauldrons than in other declarative languages. 'This is possible because one can refer to whole approaches and
mcchanisms as single chunks of rules or assertions. Unfortunately, the language in which onec writes these
chunks -- a sort of poor man's AMORI) -- is clumsy to usc. 'The language has no 'I'MS or arbitiation
mechanism and as a result over half of ones code is making surc that the other half doesn't fire off

uncxpcectedly and cleans up after itsclf when done.

Shouldn’t there be more complex interactions between cauldrons?
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‘This rescarch has failed to broach this question in more than cursory detail. Cauldrons should be able
to argue, conspire, and commune with cach other. Mectaphors about scientific communitics and legislative
bodics may well be uscful at this level of detail. The only control or resolution structurc this paper has
motivated has been little different from classical subroutine invocation-- the complexitics and interactions
within a given cauldron may well be as complicated as the political and social interactions within a given

group of humans.

Is the notion of "a collection of scif interpreting assertions” presented here as a frame cquivalent to the

traditional notion of frame?

The traditional notion of frames -- of objects with properties -- has a notion of identity, of the required
propogation of side-cffects, which is absent from the scheme presented here. | originally believed that this
notion of identity was yet anotchr epistemological notion to be implemented explicitly by rules in individual
cauldrons. A large protion of the rules written for cauldrons handled the propogation of frame modification
from cauldron to cauldron. The utility and apparent universality of these mechanisms have brought me to
belicve that a notion of identity -- absent from the mechanism | have propsed --is neccessary in a
represctnation.  Frames are attractive because they correspond to the introspective notion of distinct objects
of thought. "The frames of today's Al rescarchers are akin to the ideas and impressions of modern (read: the
last 300 years) philosophers. "They are the objects of thought and perception to which we attribute propertics

and rcfer to by other propertics.

What about parallel implementations?

As | mentioned before, | primarily consider cauldrons to be a mechanism for abstraction rather than
problem distribution. However | have put some thought into possible schemes for pa‘rullclizing cauldrons.
Cauldrons scem to fall on a level of concurrency somewhat below supercomputers like the Conncction
Machine [Hillis81]. I scc cauldrons bceing best implemented on a collection of medium sized typical

von-Ncumann connected by a fast bus -- or in a pinch, a fast nctwork.

The individual processors of this machine could range in scale from a fast 6800 to a current generation Lisp
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Machine.?* Each processor would probably contain between one and five cauldrons interacting largely -- if at

all -- locally. In fact, most processors may contain just one cauldron with five connected cauldrons below it.

22. Such as a Symbolics 3600 or a Xcrox Dorado.
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