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Abstract: We will briefly outline a computational theory of the first stages of human vision according
to which (a) the retinal image is fillered by a set of centre-surround receptive ficlds (of about 5
diffcrent spatial sizes) which are approximatciy bandpass in spatial frequency and (b) zcro-crossings
~are detected independently in the output of cach of these channels. Zero-crossings in each channel
- arc then a sct of discrete symbols which may be used for later processing such as contour extraction
and stercopsis. A formulation of T.ogan’s zero-crossing results is proved for the case of Fouricr poly-
nomials and an extension of Logan’s thecorem to 2-dimensional functions is also proved. Within this
framework, we shall describe an experimental and theoretical approach (developed by one of us with
M. Fahle) (o the problem of visual acuity and hyperacuity of human vision. 'The positional accuracy
achieved, for instance, in rcading a vernier is astonishingly high, corresponding to a fraction of the
spacing between adjacent photoreceptors in the fovea, Stroboscopic presentation of a moving obiect
can be interpolated by our visual system into the perception of continuous motion; and this “spatio-
temporal” intcrpolation also can be very accurate. 1t is suggested that the known spatiotemporal
propertics of the channels cnvisaged by the theory of visual processing outlined above implement an
interpolation scheme which can explain human vernier acuity for moving targets.

We consider, in particular, the problem of avoiding aliasing in the perifoveal visual field, It is
conjectured that gap junctions (or another form of coupling) between rods and cones arc needed to
avoid aliasing outside the fovea. Possible implications for machine vision and imaging devices are
briefly discussed.
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In the last secven years a new computational approach has led to promising advances in the under-
standing of visual perception. This approach, which may be relevant not only for the infonnatioh
sciences but also for the neurosciences, is mainly due to the late D. Marr and his collcagues. In this
article we will bricfly describe this computational theory for the very first stages of vision, since it
provides an uscful framework for approaching the problem of spatiotemporal acuity in human vision,

which is the main topic of the paper.!

1.1 A Computational Approach

The central tenet of this approach is that vision is primarily a complex information processing task,
with the goal of capturing and representing the various aspects of the world that are of use to us. Itis a
feature of such tasks, arising from the fact that the information processed in a machine is only loosely
constrained by the physical propertics of the machine, that they must be understood at different,
though interrclated, levels. This framevwork, formulated by Marr & Poggio (1976), was not new: H.

Simon and especially L. Harmon emphasized a similar point of view in a more general context.

In a process like vision it is useful to distinguish three levels over which one’s descriptions and
explanations of the process must range: a) computational theory, b) algorithm, ¢) implementation.
These are not hard and fast divisions. The important point is that no explanation or sct of explana-
tions is complete unless it covers this range. To avoid possible misunderstandings, we wish to stress
that this computational approach is not a substitute for the “traditional” methods and techniques
of the neurosciences to which it is in fact complementary, It is probably fair to say that most
physiologists and students of psychophysics have often approached a specific problem in visual per-
ception with their personal “computational” prejudices about the goal of the system and why it does
what it does. With few exceptions this heuristic attitude, although useful, remained at the level of
prejudices; computational analysis was not a science, nor was it appreciated in the neurosciences that

one was needed.
ISome of the material for this paper has been drawn from Poggio (1981) and Fahle and Poggio (1981).
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This state of affairs is hardly surprising. Tl;c difficultics of the vision process are often not ap-
preciated even now. Until the carly 70’s the ficld of computer science and artificial intelligence failed
to realise that problems in vision arc difficult. The reason, of course, is that we arc extremely good at
it, but in a way which cannot be subjected to carcful introspection. Today we know that the problems
are profound. “Ad hoc” methods and tricks have consistently failed. Marr realized what the message
was. A science of visua} information processing was needed to analyzce a given information processing
task and its basis in the physical world. Marr’s work, from the breadth of the approach to its rigorous

detail in the analysis of specific problems, provides a methodological lesson for this new field.

1.2 The Detection of Intensity Chaliges

In this section we will outline one of the very first stages in the processing of visual information, the
computation of zero-crossings. The basic idcas, outlined by Marr in a paper (1976), have cvolved
into a scheme (Marr & Poggio, 1977) bascd on bandpass filtering of the image through difference
of gaussians and detection of the associat.;fd zero-crossings. Marr and Hildreth (1980) have provided
a number of attractive arguments for justifying this scheme from a computational point of view,

although a complete formal theory is still lacking. We will outline here their main poiats.

The goal of the first step of vision is to detect changes in the reflectance of the physical surfaces
around the viewer or in the surface orientation and distance. On various computational grounds,
sharp changes in the image intensity turn out to be the best indicator of most physical changes in the
surface. In natural images, intensity changes can and do occur over a wide range of spatial scales, It
follows that their optimal detection requires the use of operators (that is filters) of different sizes. A
sudden intensity change like an edge gives rise to a maximum or a minimum in the first derivative
of image intensites or equivalently to a zero-crossing in the second derivative. Marr and Hildreth
(1980) argue that the desired filter should take the second derivative of the image at a particular scale.

A convenient choice for the derivative in two dimensions is the Laplacian V2 = 8%27 + 333%, and
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Figure 1. A cross-section of the circularly symmetric centre-surround receptive field
v,

the appropriate scale can be set by filtering the image with a 2-D Gaussian filter G, which optimally
satisfies specific constraints on the rcal world, particularly the fact that intensity changes arising from
physical bbjccts are spatially localized at their own scale. Since the operations of taking the derivative
and blurring an image are linecar, the overall transformation is equivalent to convolving the image
with the Laplacian of a gaussian distribution, that is with V2G. As shown by fig.1, this corresponds to
a centre-surround type of receptive field. Such a filter closely resembles the usual descriptions of the
ganglion cell receptive field and of the psychophysical channels in human vision as the difference of
two gaussians, an excitatory and an inhibitory one. Spatial filters with the centre-surround organiza-
tion shown in fig. 1, are of course bandpass in spatial frequency, although their bandwidth is not very

narrow.,

In summary, the process of finding intensity changes at a given scalc consists of filtering the image
with a centre-surround type of receptive ficld, with a size reflecting the scale at which the changes

have to be detected, and then locating the zero-crossings in the filtered image (see fig.2).

To detect changes at all scales, it is necessary only to add other channels, of different dimension,
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Figure 2. The image (a) has been convolved with a centre-surround receplive field with the shape illustrated in Fig.
1. (b) shows the convolved image: positive values are shown white and negative black: while (black) values would then
represent the activity of the corresponding on-(ofl-) centre ganglion cells “looking™ at the image. (c) the zero-crossings
profile contains rich information about the filtered image (b) as explained in the text. Similar independent filters of
smaller and larger sizes are nceded to capture the whole informatien contained in (a). From Marr and Hildreth (1980).

and carry out the same computation for each channel independently.

Zero-crossings in each channel thus form a set of discrete symbols which are used for later process-

_ ing such as stereopsis (Marr & Poggio, 1977). Marr and Hildreth, in particular, addressed the problem
of how to combine zero-crossings from different channels into primitive edge elements taking ad-
vantage of physical constraints obeyed by the visual world. These and other symbolic descriptors

then represent what Marr called the “raw primal sketch™. Instead of describing these parts of the
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theory, we shall discuss in more detail the zc;‘o-cros_sing detection process and the corresponding
physiological and psychophysical evidence. Zero-crossings in the output of centre-surround channels
represent a natural way of obtaining a discrete, symbolic representation of the image from the original
“continuous” intensity values. Some recent deep resuits in complex analysis by B.Logan (1977) scem
to support this scheme in a way which we found intriguing and fascinating from when we came across
his remarkable paper. 'His main thcorem ( see Appendix la) states that a bandpass one dimensional
signal with a bandwidth of less than 1 octave can be reconstructed completely up to a constant multi-
plication factor from its zero-crossings alone (if some relatively weak conditions are satisfied). From
the point of view of visual information plioccssing there is clearly no need to reconstruct the original
signal. But the thcorem suggests that the “discrete” symbols provided by zero-crossings are very rich
in information about the original image. Unfortunately, morc definite claims are as yet impossible,
since an extension of the theorem to images (Appendix la and especially 1b; sce also Marr et al.,
1979) does not characterize completcly the two-dimensional problem. In addition, centre-surround
receptive fields are not ideal bandpass filters, as required by Logan’s version of the theorem (see
Appendices 1a, 1b). Clearly zero-crossings alone do not contain all the information (such as absolute
intensity values), but as onc of us has found in an ecmpirical investigation, natural images filtered with
V2G operators can be reconstructed to a good approximation from their zero-crossings and slopes.
A successful extension of the I.ogan type of analysis to two-dimensional patterns may therefore repre-
sent one of the critical steps for perfecting this computational analysis of low level vision into a solid

theory.

1.3 The Line Detectors/Fourier Analysis Controversy: A New Synthesis?

The previous ideas based on Logan’s type of results not only lead to a satisfactory scheme for
the analysis of intensity changes in an imiage; they also have fascinating implications for visual

psychophysics and physiology, since they seem to account for basic properties of the first part of the
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visual pathway. In particular these ideas explain why the image is filtered early on by approximately |
bandpass centre-surround receptive ficlds; they make miore precise the notion of “edge-detectors”
for extracting a symbolic description which contains full information about the image; and they state
that this can be achicved only if the image was previously filtered with several independent bandpass
channcls — i.e. centre-surround receptive ficlds. As an immediate conscquence these ideas also
provide a solution of the long-standing controversy about cdge-detectors versus frequency channels
in the psychophysics and physiology of prinﬁatc vision. The first stage of vision would indeed be per-
formed to a good extent by “edge” detectors — actually zero-crossing detectors — and certainly not
by Fouricr analyzers; but in order for the zcro-crossing detectors to extract meaningful information
it is nceessary that they operate on the output of independent channcls, roughly bandpass in spatial

frequency.

Many results from the psychophysics and physiology of early vision can be easily interpreted in this
new framework. It is, for instance, not too unreasonable to propose that the V2@ filtering stage is
performed by ganglion cells of the retina and 1.GN, whereas a subclass of simple cells may represent
oriented zero-crossing segments. In ﬁlis C(;ntext it is not important how this is implemented in detail:
one of the several possibilities is that simple cells may read the zero-crossings profile from the fine
grid of small cells in layer 4C of the striate cortex, where a reconstruction of the filtered image, at
different scales, may be performed (via intracortical inhibition) with the goal of providing a very

accurate position of the zero-crossings (sce later).

Several gaps have still to be filled in the computational theory of zcro-crossings. For instance,
since zero-crossings do not represent the complete information about the image, it is important to
characterize the other primitives that are needed. At the other levels of explanation experimental
evidence in favour or against zero-crossings is of course highly desirable. Since the summer day in
Tubingen where D. Marr with one of us first formulated the idea of zero-crossings in the output of
independcnt, roughly bandpass filters, we cannot help feeling that its experimental validation — or

falsification — is of critical importance for further developments of our approach to low-level vision.
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2. Visual information processing: why spatiotemporal interpolation?

Any visual processor with human-level performance must be capable of analyzing time-varying im-
agery. The analysis starts with the spatio-temporal interpolation of the raw visual input. The spatial -
resolution of the photosensitive image available for processing is limited by the sampling density
of the photoscnsitive elements in the sensor and by noise. Image motion introduces the additional
problem of temporal resolution. The limiting factors are the frame rate and the integration time deter-
mined by the sensitivity of the photosensitive elements. This is of little consequence for a stationary

scene, but for moving targets it poses the problem of motion smear.

The problem of high spatiotemporal réso]ution can be partially overcome by using better sensors
with larger arrays and higher frame rate. There are, however, technological and physical limits to
the spatiotemporal resolution that can be achieved in this manner, since increasing the spatial and

~ temporal sampling rate reduces the number of photons per sensor clement per cycle. Consider that
| since tﬁe number z of photons is Poisson distributcd, o= 4 The number of distinguishable levels

was cstimated by Barlow (1981) to be roughly n = 24/z. Thus 8 bits of resolution (n = 256) requires

about 2!* = 10° photons. Note that the.light intensity of a dright surface is 10%cd/m? and this

means 104 photons per 50 msec per sensor, assuming a sensor efficiency similar to the human cones!

Fortunately, the performance of a given sensor can be improved by appropriate spatiotemporal
interpolation schemes. As we have seen, using such processes the human visual system achieves an
extremely high spatiotemporal resolution compared to the sampling density of the photoreceptors and

their integration time.

In summary then, temporal acuity, spatial acuity and motion smear are different facets of the same
general problem posed to a visual processor by time varying imagery. We turn now to examine how

the human visual processor deals with it.

2.1 Visual acuity in human vision
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Since the first measurements of vernier acuity 'in 1892 by Wuelfing in Tubingen, the extraordinary
accuracy with which the human eye can cstimate the relative positions of lines or other features in
the visual field has represented a long-standing puzzle in vision rescarch. Acuity of this type, also
called hyperacuity, can be measured in a varicty of situations. A typical example is the acuity found
in reading a vernier (sec insct of fig. 8a). This can be as fine as 5" of arc (Westheimer and McKee,
1975}, that is 0.02mm at 1 metre distance. The astonishing precision of this performance can be seen
when the optical properties of the human eye are considered. In the fovea the hexagonal grid of cones
samples the visual image with a sampling interval of no less than 25", well matched to the optical
.point spread function of the cye (its gaus:s‘ian core has a half width of about 45", corresponding to a

spatial frequency of 60 cycles/degree).

Most remarkably of all, vernier acuity is not affected by movement at constant velocity of the
tafgct in a velocity range from 0° /sec to at least 4°/sec (Westheimer & McKee, 1975). This means
that a subject can detect the relative pesition of two lines to within a fraction of a receptor diameter
(and spacing) while the whole pattern is moving across 70 receptors in 150 msec. Recently, evidence
has been accumulating which suggests that the visual system is able to perform a very precise tem-
poral interpolation as well, by reconstructing the spatial pattcrn of activity at moments intermediate
between discrete temporal presentations (Barlow, 1979). The most telling demonstration, apart from
cinematography, was introduced by D. Burr (19794, sce also Morgan, 1980) and is shown in the top
inset of fig. 8c. Vernier line segments are displayed stroboscopically at a scries of stations to portray
a moving vernier; an illusory displacement occurs if the line segments are accurately aligned in space
but are displayed with a few milliseconds delay in one sequence relative to the other. Not only do the
segments appear to move smoothly from one station to the next but also, between the strobes, they
are seen to occupy positions between those where they are actually exposcd. The accuracy of detecting

the equivalent displacement is again in the vernier acuity range, provided thaf the target moves at
2 constant speed and elicits a clear sensagion of niotion. One is forced to conclude that not only spatial

but also temporal interpolation is performed in the visual system to preserve acuity (and resolution)
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for objects in motion (see Barlow, 1979).

It is clear that the attainment of such spatiotemporal accuracy does not break any physical law (see
Westheimer,1976). As pointed out by Barlow (1979) and by Crick ¢t al. (1980), the classical sampling
theorem allows a correct reconstruction of the visual input from a set of discrete samples in space
and time sixlcc the LGN signal is bandlimited in temporal and spatial frequency by the photoreceptor
kinetics and the cye’s optics respectively. In particular, Crick et al. have suggested (similarly to
Barlow) that the fine grid of granule cells in layer Ve of the striate cortex performs an interpolation
on the output of the LGN fibres, with the goal of representing the position of zero-crossings (the
boundaries between activity in an ON and OFF ganglion cell layer) with a very high accuracy (see

also Marr and Hildreth, 1980 and Marr et al., 1979).

Although spatiotemporal intcf;ﬁo]ation can be well understood in terms of information theory,
the astonishing performance of the visual system seems to require an algorithm and corresponding
mechanisms of great ingenuity and precision. As we hinted carlier, an understanding of visual inter-
polation may also be quite interesting from a purely information processing point of view. High
resolution, smear-free real time ima;gcry éould benefit significantly from this study of human vision.
Here we investigate some properties of this spatiotemporal interpolation. In particular, we examine its

performance for a range of “sampling intervals™ in space and time,

2.2 Methods

The vernier target used in these experiments consisted of a thin vertical bar made up of two segmcnts;
The stimuli were generated on a Tektronix 604 display under the control of analog clectronics . Each
bar was intensified for 0.1 msec at At msec intervals at n successive stations horizontally displaced by
a separation Az. Each of the two segments making up the bar was 24° high and 1.5" wide intensified
to a luminance of about 50 tirﬁes detection threshold on a background of 10cd/m?. During an

experimental run, a target was presented every 3 seconds. Brief displays of n - At = 150 msec,
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Figure 3. Vernier resolution threshold of spatial offset for different scparations Ax between the stations as a function of velocity.
Fig. 3a shows the data from subject AK, fig. 3b from subject TV. The standard deviation of the data is about 25%of the threshold
value for fig. la and 20%for fig. 1b. In fig.3a the point for Az == 1 and v == 1P /sce was measured masking the beginning and
the ending of the trajectory; the same procedure did not change the threshold for the point al © == 2.6°/scc. Of the two points
at Az == 2.5 and v == 25°/se¢c in fig. 3a, the worse value has been measured under the “masking” condition way whereas the
better one was measured in the standard way. In fig. 3b also the point at Ar == 2.5 and v == 25°/scc was measured with zero
offset at the first and last station (from Fahle and Poggio, 1981).

with randomized direction of motion (terminating at the central fixation point)were used to prevent

effective pursuit eye movements (Westhcimer, 1954). The experiments measured
a) the acuity for detection of real vernicr offsets of the two scgments by §z scconds of arc

b) the acuity for detection of apparent vernier offsets produced by delaying the presentation of the

lower or upper segment, displayed at the same sequence of stations, by é¢ msec

c) the acuity for detection of mixed vernier offsets produced by a real spatial offset §z together with

a temporal delay 8t of opposite sigh.

In a forced choice task the subject was required to signal whether the bottom segment was dis-
placed to the right or to the left of the top segment by setting a binary switch. Acuity was determined
byithe standard criterion of 75% correct idcntiﬁcation. In all experiments reported here T is constant
(T =150 msec) and, as a consequence, the xiillnber of stations n is variable (n = 2 to 95), More detaiis

about the methods aré given in Fahle and Poggio (1981).
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Figure 4. Vernier resolution threshelds of temporal offset for different separations between the stations as a function of velocity.
Fig. 4a shows the data from subject AK, fig. 4b from subject TV, The standard deviation is about 20%of the threshold values for
subject AK and 18%for subject TV (from Fahle and Poggio, 1981).

2.3 'The Spatial Type of Acuity: Dependence on Velocity (v) and Scparation (Az)

The results for spatial offsets (with simultancous presentation of the two segments at each station) are
shown in figs. 3a,b. The main result is that spatial acuity is relatively independent of the separation
between the stations and of the velocity of the target up to rather large velocities. These data confirm
and extend Westheimer’s and McKee's results (1975), which showed that vernier acuity is unaffected
by rate of movement from 0°/sec up to 4°/sec. Our results imply that this type of vernier acuity is

relatively independent of At, the strobe interval.

2.4 The Temporal Type of Acuity: Dependence on v and Az

Figs. 4a,b shows the results for temporal offsets. The accuracy of detecting the equivalent displace-
ment is in the classical vernier acuity range (compare Burr, 1979a.b): the best value for observer AK
was 8" for spatial and 5" for temporal offset at comparable separations and velocities. Our main new

result is that although acuity does not break down for large separations between the stations, at least
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Figure 5. Fig. 5a shows the best vernier resolution threshold (with temporal offsel) for cach separation Az
The data are from three subjects (partly from fig. 4a and 4b). O AK: O TVi X 1IW. In fig. 5b the velocity
v for which optimal vernicr resolution is found is plotted against the separation Az. Same data as in fig. 5a.
From Fahle and Poggio (1981).

up to half a degree, it deteriorates significantly almost in proportion to Az(see fig. 5).

Vernier acuity of this temporal type is bad at low and high speed. As already clearly demonstrated
by Burr (1979a,b) apparent motion is necessary for temporal Qf‘fscts to be scen as spatial offsets. In
our experiments, deterioration of acuity at low velocities could be duc to the speed per se as well as to
the lower number of stations (because our total presentation time is constrained to 7' = 150 msec the
stimulus consisted, at the lowest velocities, of two stations). In any case, deterioration of acuity at low

velocities can be linked with a decreased sensation of motion.

A second important result isr that the range of velocities for which temporal interpolation is good
éhifts upwards for larger separations between the stations. The fact that at higher separations higher
velocities are required for good resolution suggests that a more revealing parameter is the time inter-
val At between the strobes. In fact, at any separation Az, temporal interpolation is optimal for a

temporal interval At between 20 msec and 50 msec.




PNN 14 SPATIOTEMPORAL INTERPOLATION

2.5 The Effect of Blur on Spatial and Temporal Acuity

Standard vernier acuity is known to be affected, as one would expect, by attenuation of the high
spatial frequencies of the vernier pattern (see for instance Stigmar, 1971). Is temporal interpolation -

also degraded in the same way?

We have performed some experiments to answer this question by placing a ground glass screen at
1 cm in front of the display. When a sharp linc is viewed through such a ground glass screen the
resulting light distribution has an approximately Gaussian line spread function with a width at half-
height of at least 15°, corresponding to a cutoff frequency of around 3-4 cycle /deg. Our data show
that in the experimental situation of fig. 4, blur of the pattern fmproves acuity at large scparations and
velocities. Fig. 6 compares directly for the same observer and for the same separation the effect of
bhur on sbatial and temporal interpolation. Westhecimer's type of acuity is degraded by blur, whereas
Burr’s type of acuity improves dramatically with blur {at high vclocitics). Out of five observers only in
onc casc did blur of the pattern cause a rc‘duction in temporal vernier acuity at high scparations and

velocities.

These data again show that temporal hyperacuity has different characteristics from spatial hyper-

acuity.

2.6. Spatial vs. Temporal Offset

The apparent offsct 2! produced by temporal delay 6t should follow the ideal relationship £zt =
vét. As shown by our data the sign of the offsct is indeed correctly detected. Does its size also satisfy
this relation? How faithful, in other words, is temporal interpolation? To answer this question we
measured the temporal delay 6 needed to compensate for a given real spatial offset §z for different

conditions.

Fig. 7 shows that for a separation Az == 2.5 and a velocity v = 1.1°/sec the apparent offset

§z' = vét matches rather closely the real spatial offset §z. Under these cond'itions spatiotemporal
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Figure 6. The effcct of blur on spatial and temporal interpulation as a function of

velocily for a separation betwien the station Ax == 15 Vernier resolution of a spatial

offsct is measured with () and without blur (o). Vernier resolution of 4 tc}n’lporal offset

is also shown with ( ) and without { ) blur. The screen was blutred as described in the

text, Notice that the first point for spatial ofiset is for v == (P /sce. The observer is TV.

The standard deviation is about 20%of the threshold values, From Fahle and Poggio

(1981). i ’
interpolation is indeed rather precise (compare Burr and Ross, 1979). It is not so for higher velocities
and/or larger separations (fig. 5). The temporal offset needed to compensate for a rcal spatial offset is

then much larger.

3.1. Spatiotemporal Interpolation: How is it Done?

The previous results coustrain the problem of hyperacuity tightly enough to justify a theoretical
analysis of how spatiotemporal interpolation may bc done in the visual system. The precise meaning
of interpolation in terms of our visual stimuli is a well defined question, and this is the main point to

discuss.

3.1.1. A Simple Ulustration

.

Fig. 8 illustrates a very simple scheme for achieving spatiotemporal interpolation of a visual pattern.
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Figure 7. Temporal (6z%) vs. spatial (6) offset in the compensation experiment. The

ordinate shows the temporal offsct (in equivalent spatial umils &z == v .81 nceded to

compensale the spatial offsel shown in the abscisa. e is for a scparation between the

station Az'== 2.5 and a velocity v == 1.11%/scc(Al = 3Tmscc). X is for Ar = 2.5

and v = 5.28 /scc(Al == 7.9mscc). O is for Azx = T.5 and v = 4.11%/sec(At =

30msce). Larger separations yield an even preater mismatch. The continuous diagonal

indicates the loci of perfect compensation. Subject TV, From Fahle and Poggio (1981).
The elements of this scheme could be interpreted as cells with associated receptive ficlds and temporal
impulse responses. Alternatively, Fig. 8 represents a computational scheme for spatiotemporal inter-
polation. Visual input is sampled in space by an array of cells with a sampling density high enough to
preserve the whole of the spatial information (in accordance with the sampling theorem). The input
is then reconstituted in more detail on a finer grid of cells by convolving the sampled valucs with the
function sinc z. In effect each cell of the interpolation layer weights its inputs according to a centre
surround receptive field. A variety of filters (i.e. “receptive fields”) are capable of performing a correct

interpolation, especially in two spatial dimensions (see Crick et al. 1980).

If the input intensity distribution is presented at discrete instants in time, temporal interpolation
can be achieved by suitable temporal low pass properties of each individual pathway. If the temporal
interval between presentations is small enough the effect of the filter is to reconstruct the original

continuous temporal input. Spatial interpolation can then operate at each instant of time {this scheme
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Figure 8. (2) A simple scheme for spatiotemporal interpolation. The input patiern is sampled by an array
of “cells”. Spatial interpolation is accomplished on a finer interpolation grid of cells each onc weighting the
sampled values with a sinc shaped receptive field (shown in the lower insct). Temporal interpolation i obtained
by filtering with an appropriate low-pass or band-pass filter each of the input channels (its impulse response
is shown in the upper inset). Thus a series of discrete frames of a moving pattern can be interpolated (see
Theorem 1 in Appendix 2) into a continuous temporal function in cach of the channels. The spatial input
distribution outlined here represents an intensity edge as seen by centre-surround ganglion cells. (b) The spatial
interpolation process in Fourier space. Interpolation is equivalent to filiering out the side lobes originated by
the sampling process. Temporal interpolation can be interpreted in a similar way. From Fahle and Poggio
{1981). ’ ‘

would of course operate succesfully for continuous movement of a pattern).

Fig. 8b shows the Fourier interpretation of the spatial interpolation process (interpola{ion in time
can be interpreted in a similar way). The effect of sampling is to replicate the driginal spectrum in an _
infinite number of side lobes. Spatial intcrpolation - i.e. reconstruction of the original function from
its samples - is accomplished by filtering out all side lobes but the central one - which is the original

spectrum.

This model is probably the simplest conceivable scheme. In it, interpolation in space and time are
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performed independently, since the temporal dependence of the input is not constrained in any way.

‘We now consider the conditions under which this scheme can be effective.
3.1.2 Remarks on Interpolation

Before embarking on an analysis of various interpolation schemes, it is appropriate to make a few

general points which arise from the discussion so far.

First, the process of computing intermediate values from samples does not depend on the existence
of a finer rctinotopié grid of “cells”, where the results are represented. All filtering transformations
indicated in Fig. 8 could be carried out at a rather symbolic level for only a few distinguished points.
Thus, it is important to keep separate the problem of a process from the problem of representing its

output. This paper is directly concerned only with the first issue,

Second, the goal of the interpolation process may be far more modest than a full reconstruction of
the input distribution. As suggested by Crick ct al. (1980), the aim of interpolating the ganglion cells’
activity is to provide the position of the zero-crossings (where activity switches from the on centre
to the off centre cells) with high accuracy. This can be achieved by using very simple interpolation

functions such as a normal centre-surrcund receptive ficld (Marr et al., 1980).

3.1.3 More Complex Interpolation Schemes are Required -

" The scheme of Fig. 8 can provide a correct reconstruction of a spatiotemporal input sampled at

intervals A¢ (in spacc) and A7 (in time) only when the input function is bandlimited in spatial (by
f%) and temporal (by f7) ifrcquencies insuch a way that A¢ << 1/2f5 and A7 < 1/2f5 (theorem 1in
Appendix 2). The image which reaches the retina is indeed bandlimited in spatial frequencies to less
than about 60 cycles per degree by the diffraction limited optics of the eye. Furthermore, a temporal
cutoff is imposed at the level of the photoreceptors by their limited temporal resolution. The scheme
of Fig. 8 can therefore correctly reconstruct an image sampled at intervals of less than 30” in space
(for the 2-D case see Crick et al., 1980). Temporal samples of the photorccebtor activity could be
interpolated under similar conditions (Ehough regular temporal sampling in our visual system is highly

implausible).
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Since the spacing of the photoreceptors is almost exactly matched to the eye’s optics, interpolation
in normal vision - when the image is a continuous function of time and space - can be accounted
for by simple schemes like that of Fig. 8. In particular, such models could account for the vernier
acuity measured with real continuous motion of the retinal image. When, however, motion of an
object is simulated by presenting the image at discrete positions at separate instants, the conditions of
thcorem 1 are in gencral no longer satisfied. In our experiments we present to the cye an image which
is alrcady sampled cither in time (Westheimer type of stimulus) or space (Burr type of stimulus) or
both. We enforce arbitrary sampling intervals Az and At on the system before the bandlimiting
operations of the eyc’s optics and of the receptor kinetics come into play. Under these conditions
the input function g(z, t) is not cnsured to be appropriately bandlimited before spatial or temporal
sampling occurs. The scheme of Fig. 8 should for instance perform poorly when the input function
is sampled in space at intervals Az significantly coarser than the photoreceptor array. Burr’s and our
data, however, show that under these conditions our visual system performs significantly better. We

are clearly forced therefore to consider other types of interpolation schemes.
3.2.1 The Spatiotemporal Spectrum of a Moving Vernier

Our analysis of alternative interpolation schemes begins with the description in frequency space of
the physical stimuli corresponding to Westheimer’s and Burr’s experimental situations. When a spatial
pattern g{z) moves continuously at constant speed, the resulting spatiotemporal distribution of excita-
tion on the retina has a simple representation in the Fourier space of temporal (f;) and spatial (f;)
frequencics. Its Fourier transforfn takes values only on the diagonal linc shown in fig. 9a with a slqpe
equal to the velocity (see Appendix 2). For each spatial frequency contained in the pattern, there is
a unique temporal frequency corresponding to it. Curtailing the duration of motion (in our case to
T = 150msec) spreads the Fourier transform over a large area of temporal and spatial frequencies,
changing the narrow line into a wider area. The spread (along the £ axis) is the same for all our data.
Thus the line supports shown in fig. 9 must be interpreted as bung spread along ﬁ as a sinc funcUon

For T' = 150msec the width of the spread is about 14 Hz for the central ]obc of the sinc function and
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28 Hz for the central lobe plus the first negative side ldbe on both sides. The retinal stimulus elicited
by continuous motion of a vernier at constant velocity can be described in this way (sce Appendix 2).
‘The upper and the lower segment have the same line support on the f, — f plane. Their Fourier
transforms differ at all frequencies oniy by a phase factor which mirrors the spatial offset. The correct

detection of this information underlies positional acuity.
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Figure 9. Legend

a) The support on the f, — f; plane of the Fourier spectrum associated with continuous motion
of a vernier (sce inset) at constant velocity —wv. The slope of the line is v. g( 1, i) cquals g(f.)
on that linc. Curtailing the duration of motion to T = 150 mscc., spreads the line into a bar-like
support, corresponding to a sinc function. b) The support of the Fourier spectrum associated with
Westheimer’s type of experiment. The inset indicates that displaying the vernier stroboscopically at a
sequence of imes with an interval 62 is equivalent to “looking™ at the continuous motion of a vernier
through a scries of temporal “slits”. This has the ceffect of replicating the spectrum of fig.7a along
the £ axis in an infinite number of side lobes. The distance of the lobes on +f; is 1/6t. The line
encounters the f, axis at 1/v - At = 1/Az (if Az = 1, the distance of the side lobes on f, is
60 cycle/deg). Notice that for any f;, cach lobe supports the same complex Fourier spectrum g(f,).
c) The support of the Fourier spectrum associated with Burr’s type of experiment. Displaying the
line segments of a vernier in the same position but with a slight delay is equivalent to looking at the
continuous motion of a vernier through the spatial window depicted in the insct (transparent slits in
an otherwise opaque screen.) This corresponds to replicating the spectrum of fig.8a along the £, axis.
The distance of the lobes is 1/Az, where Az is the interval between successive slits in the spatial
window. At a given f;, the Fourier spectrum g(f,) of different lobes is in general different. d) The
support of the Fourier spectrumn associated with the compensation experiment is the same as in fig.8c.
The different window corresponding to this stimulus (see inset) corresponds, however, to a different

complex Fourier spectrum (see Appendix 2). From Fahle and Poggio (1981).
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Fig. 9 summarizes the description of the two basic stimulus configurations used in this paper
according to the derivation outlined by Fahle & Poggio (1981) . Westheimer’s experimental situation
is equivalent to looking at the continuous motion of a vernier through a series of equidistant narrow
temporal slits within which the pattern is briefly visible (sce fig.9b). Burr's experimental situation
ideally corresponds to a vernicr moving behind a spatial window with a scries of cquidistant narrow
slits (sce fig.7c). The spatial or temporal windows affect differently the spectrum of the retinal input,
As indicated in fig. 9, in the Westhcimer situation the complex spatial spectrum of the pattern,
which contains amplitude and phase information, is replicated an infinite number of times along the
temporal frequency axis, whereas in the Burr case the same spectrum is replicated along the spatial
frequency axis. An important observation is that in fig.9b (Westheimer stimulus) all lobes at any
given f; support exactly the same complex spectrum g. This is not so in fig.7¢ (Burr stimulus), where,
instcad, all lobes have the same g at any given f;. We re-emphasize that fig. 9 describes the physical

properties of the different stimuli without any reference to the human visual system.
3.2.2 Computational Aspects of Interpolation: The Constant Velocity Assumption

More cffective interpolation schemes are feasible if general constraints about the nature of the visual
input are incorporated directly in the computation. The key obscrvation here is that the temporal
dependence of the visual input is usually due to movement of rigid objects, and that in everyday life
motion has a nearly constant velocity over the times and distances which are relevant to the interpola-
tion process (T < 100msec and z << 1°). The constant velocity assumption leads to a more specific
form of the sampling theorem, given in Appendix 2 (see also Crick et al., 1980), which étatcs formally
what is intuitively clear: the spatiotemporal sampling rate can become very low without losing infor-
mation. Interpolation schemes based on the constant velocity assumption exploit the equivalence of
the time and space variable (z ~ vt). From the point of view of filtering this mcans that spatial
and temporal interpolation cannot be performed independently as in the simple scheme of Fig. 8. In
the Fourier domain the constant velocity assumption constrains the spectrum of the visual input to

lic on the line support shown in Fig. 9a. In the ideal case of infinitely long motion the side lobes
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generated by sampling cither in time (Fig. 9b) or space (Fig. 9c) can always be excluded by means
of appropriate filters, if the precise value of v is known (e.g. by measurements). The recovery of
the original spectrum (Fig. 9a) corresponds to an ideal interpolation for arbitrarily large sampling
intervals (if v is known and different from zero). In the realistic case of finite duration of motion, finite
sampling intervals are enforced by the spread of the Fourier spectrum into a larger arca, but the same

basic arguments still apply.
3.2.3 Implementing the constant velocity scheme

An interpolation scheme of this type could be implemented simply by measuring the exact velocity
of movement and then reconstructing the spatiotemporal trajectory of the pattern for cither temporal
or spatial information. Another, more attractive possibility is suggested by the idea, supported by
much psychophysical evidence, that in the human visual system there exist several channels at each
eccentricity , i.e. several sets of receptive ficlds tuned to different spatial sizes and with different
temporal propertics. We imagine, following Burr (1979b) that these channels have somewhat overlap-
ping supports covering the region of t]lle (f; — f) Fouricr planc which corresponds to the sensitive
range of the visual system. “Stasis" channels are tuncd to high spatial frequencics (small receptive
ficlds) and low temporal frequencies (sustained properties); “motion” channels are tuned to low spa-
tial frequencies (large receptive ficlds) and high temporal frequencies (transient properties). Thus,
each channel is tuned to a different range of velocities, centred on the ratio between the optimal
temporal and spatial frequencies characteristic for the channel: stasis channels for instance are tuned
to low velocities whereas motion channels are tuned to high velocities. Fig.10b shows a sct of ideal-
ized “velocity channels” of this type. Since each channel has its own cutoff in temporal and spatial
frequency, interpolation may be performed independently and with different characteristics within
each channel. In the Burr type of experiment stasis channels could correctly interpolate only patterns
displayed at small separations and low velocities, whereas motion channels could be effective (but not
80 accurate) at large scparations and high velocities by filtering out the side lobes arising from the

coarse spatial sampling. The complementary argument applics for coarse time sampling. As indicated
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in Fig. 10b the stasis channels may suffer from aliasing at values of Az for which the motion channels
interpolate correctly. We assume, then, that in this scheme the wrong channels are switched off by use

of velocity information.

Fig. 10c shows a more realistic interpolation scheme of the same basic type. Instead of many
channels, each one sharply tuned to velocity and inactivated when the pattern does not move at its
characteristic velocity,.there are a few channels coarsely tuned to velocity and without any precise

velocity sensitive inactivation, apart from directional selective properties.

In the light of this analysis we turn now to a dctailed discussion of our cxperiments. Our main

question concerns of course which type of interpolation scheme is actually used by our visual system.

e 4.1 Westheimer’s Acuity: Recovery of Spatial Offset

a) In Fourier terms, the aim of the interpolation process is to filter out the side lobes, preserving only

the central lobe, as the latter represents the Fourier spectrum of a continuously moving bar.

When both the time interval At between presentations and the velocity v are small, interlacing
of the side lobes in the Fourier spectrum is negligible. Temporal low pass propertics of the visual
pathway, as in the model of fig. 10a, suffice for eliminating the side lobes and thus achieve a correct
interpolation. When Af is large, however, interlacing is considerable in the sense that, even for the

 scheme of fig.10c, there are one or more channels which mix the main lobe with at least one of the

side lobes. Because of the spread associated with the short duration of the motion sequence, actual

overlap between the lobes can be significant. It turns out, however, that this does not represent a

problem from the point of view of the spatial acuity measured in our experiments. At each f, the

complex Fourier spectrum on all side lobes is exactly the same. Thus, the spatial spectrum is correct
irrespectively of the temporal frequency and independently of the number of- side lobes contained

£ in the support of the interpolation ﬁ]tgrs. At large Az and high v, the presence of the side lobes

turns out to be even beneficial for vernier acuity; under these conditions high frequency channels,
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Figure 10. (a) The support on the Fourier plane of spatial and temporal frequencies of an interpolation
filicr corresponding to a scheme such as Fig.6. (b) The support on the Fourier plan of a set of spatiotemporal
fitters ideally tuned to different velocitics. A large number is needed to cover all velocitics of interest. The
~filters are assumed to be direction sclective, since they only operate in the Fourier quadrants corresponding
to positive v = fi/fz in glr + vt). A spaial patlern moving al constant velocity and sampled at spatial
intervals §z has on this planc the support shown by fig. 9c. To avoid aliasing. the low velocity filters can
be “switched off” by information about the velocity of the motion. (¢) A more realistic set of filters, broadly
wned to different velocities. The siasis channel is tuned to low tcmporal and high spatial frequencies and
thus 1o low velocities. The motion channel is tuned to high temporal and low spatial frcquencies and thus
to high velacities. Intermediate channels (not shown here) may also be present. The hatched areas represent
the support of such directional filters. Nondircctional filters would have also a symmetric support in the other

two quadrants. From Fahle and Poggio (1981).
which would not be stimulated by continuous motion, can obtain the correct spatial information from

the side lobes, which are an artefact of the discrete time presentations. On the whok;, and in the

absence of a sophisticated interpolation process that always excludes all side lobes (such as the scheme
of fig. 10b), one expects vefnier acuity to be rather invariant for a wide range of éepafations and
velocities. Qur ’data conform well to these expectations. Notice that the presence of side lobes at high

‘velocities and large separations corresponds to the perception not of a moving bar but of a briefly
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illuminated stationary grating - which carries however the correct spatial information. In this sense
at large Az and high v interpolation fails to retrieve the “correct” spatiotemporal pattern, but still

preserves spatial acuity (even at extremely high speeds).

b) The qualitative interpretation of our data in usual space-time variables is straightf‘orward. Spatial
interpolation, for instance by appropriate receptive ficlds, takes place correctly for cach frame (i.c. for
cach station ) even when temporal interpolation fails. Since our forced choice task measures only spa-
tial acuity, performance is in this case independent of the interpolation of the temporal dependence of

the visual input.

¢) These results suggesf that spatiotemporal interpolation is not performed by the “ideal” interpola-
tion schemie of Fig. 10b. For temporal aspects should then be retrieved correctly at all Af, while
acuity for high velocities should be exactly as bad as for continuous motion. The one channel scheme
of Fig. 10a could explain these data on positional acuity; but as pointed out by Burr (1979, 1980) the

image should then be incvitably smeared at all but very fow velocities.
4.2 Burr's Acuity: Interpolation of Temporal Offset

a) In Burr’s experiment the situation is quite different. For any given f, the side lobes contain
different parts of the original spectrum. Thus when more side lobes lie in the support of the same
channel (in fig.10a or fig.10c) there is a mixture of spatial frequencics, detrimental to acuity. One
understands, therefore, that acuity deteriorates considerably (see fig. 2) with increasing overlap among
the side lobes (large separations between the stations). At any given (large) separation, low velocities
bring about a considerable overlap between the side lobes. Higher velocities reduce the degree of
overlap at the expense of high spatial frequency information, which is filtered out by the temporal
cutoff(s) of the visual pathway (between 20 and 50 Hz, see for instance Kelly, 1979). Thus one
expects to find for each separation Az, an optimal velocity at which the side lobes just avoid overlap.
Assuming a spread of ~ 15Hz the optimal velocity (in degree/sec) should be v = 30 - Az (Az in
degrees), which is in rough agreement with the data of fig. 5b. When the velocity approaches zero the

line supports in fig. 10c all tend to lie on the £, axis (notice that, because of the finite presentation time
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T, the supports effectively overlap). In this situation information about the offsct cannot be retricved.
In the limit of very high velocity the sct of lobes approaches the line spectrum of a stationary grating
with no offsct. Notice that we assume for the scheme of fig 10c that the vernier threshold is higher

when some of the channels signal zero offset while the others still “see” the correct offset.

b) When the temporal component of the filters fails to interpolate between temporal frames motion
is perceived as discontinuous. As a conscquence the spatial interpolation process correctly signals zero
spatial offsct for cach frame. The critical strobe interval which yiclds optimal temporal interpolation
is not very different between the channels (see Fig. 5a). Though its performance may worsen at
high velocities, as for the continuous motion, it should be rather invariant with respect to Az, the
separation between the stations. Fig. 5a shows that this does not happen. The opposite conclusion
holds for the scheme of Fig. 10a. Its performance should deteriorate rapidly for separations Az
between the stations larger than the distance between photoreceptors, which is in conflict with Burr’s
and our data. An intcrpoiation scheme of the type of Fig. 10c scems consistent with these results:
while small, slow “receptive fields” would be unable to interpolate correctly at large separations (Az

large), fast receptive ficlds could perform a correct interpolation, if the velocity is appropriate.

The fact that spatial acuity is extremely good at separations up to 2.5° suggests that the interpolation

channels are direction selective.
4.3 Effect of Blur

a) The interpolation scheme outlined in fig.10c makes a rather strong prediction about the effect
of blur. In the Westheimer case blur can only degrade vernier acuity, since it eliminates the high
frequency channcls. Blur of the Burr stimulus, however, should improve acuity at least at large separa-
tions and high velocities, since it eliminates side lobes which signa! the absence of an offset . Our data
are fully consistent with this expectation. A more perceptual but equivalent description of the effect
of blur is this. At high velocites and large separations there is a strong sensatioﬁ of a grating of thin,
ﬂ unbioken lines - corresponding to the\side lobes seen by visual mechanisms tuned to low temporal

and high spatial frequencies - and a weak impression of a single moving target with a clear offset
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- corresponding to the main lobe scen by mechanisms tuned to lower spatial and higher temporal
frequencies. This ambiguity is removed, as already noticed by Burr (1979), by the blur of the screen,

which suppresses the high frequency grating.

b) In other terms, blur eliminates the contribution of the small receptive fields which are unable
to interpolate correctly at large separations and therefore signal zero offset. The large receptive fields,

however, remain largely unaffected by blur.

¢) The effectiveness of blur in improving vernier acuity at large Az shows that our visual system
does not normally have the intrinsic possibility of switching off the wrong channels as assumed in the

scheme of Fig. 10b.
4.4 Spatial vs. Temporal Compensation

a) This stimulus situation corresponds to looking at the continuous motion of a vernier through the
spatial window shown in the inset of fig. 9d. The resulting Fourier support, is again as in fig. 9c:
here, however, the main lobe signals no offsct, corresponding to precise spatiotemporal compensa-
tion, whercas the other lobes all signal the spatial offset between the upper and lower grating of
the window. In other words, exact compensation between space and time is realized only in the
main, correct lobe. Thus, the spatial offset should dominate as soon as the side lobes are “seen”
by some of the channels of fig. 10c. This is increasingly so for larger separations Az between the
stations. Correspondingly, the perception of the stationary grating carrying spatial offset information
(the broken slits in the window of fig. 9d) is expected to dominate at large scparations and velocities.
Again our data are consistent with these expectations. Even at relatively small separations between
the stations (see fig. 7) the system does not achieve a perfect interpolation - that is, removal of all
side lobes. Only in this case would the temporal offset cxactly cancel the spatial offset. As expected,
blur improves compensation, since it helps to remove the “wrong" side lobes, which carry information

only about the spatial offset.

b) This experiment combines Burr and Westheimer stimuli. Since spatial interpolation always

retrieves the spatial offset, this dominates for all cases in which the temporal component of interpola-
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tion is not fully correct.
5. Discussion

To summarize, the psychophysical experiments reported here suggest that spatiotemporal interpola- '
tion in the visual system, remarkable though it is, is far from being perfect and flawless. Ideal
interpolation is equivalent to filtering out the side lobes in the Fourier spectrum arising from the
discrete presentations. The task is casy at sifall separations but requires in principle complex filters for
large separations (sce Crick et al., 1980). As our data suggest, our visual systems do not seem to use
a very sophisticated spatiotemporal interpolation process. The side lobes are not cffectively filtered
cut under all conditions. Spatiotemporal interpolation, then, can be considered as a direct conse-
quence of the spatial and temporal propertics of carly vision, in terms of an interpolation scheme of
the type of fig.10c. The cxistence of independent channels tuned to different spatial and temporal
frequencies seems to account for the spatiotemporal interpolation revealed by our experiments. A
detailed theorctical analysis with the help of appropriate computer experiments is necessary for a

quantitative evaluation of interpolation models of this type.
5.1 Explicit or implicit interpolation?

Interpolation can be regarded as a spatiotemporal filtering of the input transmitted from the retina.
This is the point of view taken in this paper. We cannot advance any hypothesis as to where this
filtering stage may be localized in the brain on the basis of our psychophysical data alone. Throughout
this paper we have used the term “interpolation” without necessarily implying a direct reconstruction
of the pattern of visual activity, say its zero-crossing profile in the various channels, somewhere in the
visual pathway. Clearly, hyperacuity may simply rely on a specialized routine operating on a small
- region of the image to answer specific questions, like the right-left choice in a vernier task. Thus
the interpolation scheme suggested by our data may be implemented as an “implicit interpolation™,
that is, as a computational process involving manipulation of symbolic quantities; or it may depend
on an "explicit reconstruction” of a (coded) version of the array of photoreceptor activity on a fine

retinotopic grid of neurons. These extreme possibilities - and all in between - can be implemented in a




£ PNN 31 SPATIOTEMPORAL INTERPOLATION

variety of ways. For instance, activity may be reconstructed automatically on the fine topographic grid

of layer [Vc3 by an automatic, parallel process.

On the other hand, a specific, more symbolic process could read the output of retinal ganglion cells
and perform the correct interpolation for any desired position and time. In this case interpolation

would be implicit and mixed with the decision process itself,

In the first case, the decision routine (is the upper segment to the right or to the left?) would
operate on an interpolated version of the image. Thus, “reprogramming” of the vernier routine may
not be expected to affect the interpolation process but only the detection criteria, contrary to the

sccond case, in which different detection strategies may influence interpolation,
5.2 Are the Psychophysical Channels the Interpolation Filters?

Our data support interpolation schemes of the type outlined in Fig. 10c. They say, however, neither

2 how many independent channels are needed, nor what are exactly their spatiotemporal properties.
Our results seem consistent with standard characterizations of their spatial and temporal properties
{Campbell and Robson, 1968; Burr, 1979b.; sec also Marr ct al., 1980; Wilson and Giecze, 1977, Wilson
and Bergen, 1979).

These observations suggest the interesting idea that the spatial frequency tuned channels present
in early human vision may Bc the interpolation filters themselves. To be completely explicit let us
consider simple examples of how an interpolation scheme such as Fig. 10c might be implemented
in the visual system. The first possibility is that the image is filtered before interpolation through
various independent channels. Retinal or LGN ganglion cells of different sizes could represent the
image filtered at different resolutions. Later in the visual pathway each of these representations would
be independently interpolated on a finer cortical grid of cells with a receptive field very similar to
the corresponding LGN cells. Another possibility is that only two of the channels are present at the
precortical level (e.g. X and Y) and that the measured psychophysical channels n‘:present interpolation

™ filters operating on their X and Y input\ at the cortical level. In this second case one would expect only

two sizes of receptive fields - at each eccentricity - in the retina and LGN but a scatter of sizes in the
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cortex (possibly in 1Vc). Thus the same retinal channel may be interpolated in two different ways, by
small cortical receptive ficlds and by large ones, the first reconstructing the high frequency content
of the retinal channel and the second emphasizing its coarser details. Notice that as a consequence

cortical (interpolation) channels may have a narrower bandwidth than retinal ones.
5.3 A prediction; interpolation must be direction sclective

An explicit interpolation scheme of this type consists of a set of motion channels with direction selec-
tive properties, in the sensc that the spatiotemporal interpolation filter thereby implemented must
depend (in one dimension) on the sign of v (sce appendix of Fahle and Poggio, 1981). As a conse-
quence the interpolation channclé should have some type of direction selective property; furthermore,
cells of layer IVc -if they are invol»vcd at all - should show, despite their center-surround receptive

field, some non-standard direction selective property.

6. Interpolation in the perifoveal visual ficld: does aliasing occur?

In the perifoveal retina, the spacing of the ganglion cells increases, as Barlow pointed out, whereas
the optical cut-off remains approximatcely the same (for instance at 10° cccentricity; sec Weale, 1976).
The grid of ganglion cells is, however, matched to the spatial cut-off of the signal thereby represented:
in the cat, Peichl ar;d Wassle (1979) have shown that receptive field diameter and ganglion cell separa-
tion both increase towards the periphery so that sampling in the array of ganglion cells takes place at
the interval appropriate to the cut-off frequency passed by the larger receptive ficlds. Thus, the grid of

ganglion cells is likely to satisfy the sampling theorem (sec Hughes, 1981).

A more serious, and so far unsolved, problem is whether in the perifoveal visual field the signal
represented by the ganglion cells suffers from aliasing, ie., undersampling, at the level of the
photoreceptors. If only cones are involved, aliasing seems unavoidable for eccentricities larger than
about 5° — 10°. The classical sampling theorem requires that the signal is lowpass filtered before

sampling in order to avoid overlap of the sidelobes in the Fourier spectrum (i.e., aliasing). Lowpass
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filtering affer sampling cannot always avoid aliasing,

It is easy to show that ideal lowpass filtering after sampling climinates overlap of the sidelobes
only up to sampling intervals that are twice the limit set by the sampling thcorem.? Preliminary com- -
puter experiments support these conclusions for the approximately lowpass filtering performed by a
center-surround receptive field; in this case, however, effectiveness of lowpass filtering decreases more

gradually with increasing sampling intervals,

This scheme is somewhat supported by Poliak’s data showing that visual acuity threshold increase
with eccentricity more than the separation between cones. Convergence of cones on X ganglion cells

is therefore likely to increase with eccentricity.

If aliasing cannot be fully avoided, hyperacuity threshold must rise faster with cccentricity than
visual resolution thresholds, a result which has been recently established by Westheimer (1982). If the
reason for this were indeed aliasing, blur of the vernier pattern should improve vernier acuity in the
periphery, at Ieast in the absence of noise. Blur of the pattern corresponds to lowpass filtering of the
signal before sampling, as required by the sampling thcorem. Preliminary experiments performed to
test this prediction indicate, however, that blur may improve hyperacuity only slightly, if at all (Fahle

and Poggio, 1981; Westheimer, pers. comm.; Fahle, pers. comm.).

A possible explanation for this smaH effect arises, if input from rods (in addition to cones) is also
allowed. Aliasing in the periphery could then be largely avoided at all cccentricities by lowpass
filtering the image befocre sampling, by pooling together inputs from a// neighboring photoreceptors-
rods and cones-vig either gap junctions or synaptic coupling in second order neurons. If this predic-
tion were correct, the decrease of vernier acuity with eccentricity would not depend on aliasing but
would simply be a graded phenomenon due to the increasing spacing (in terms of visual angle) of
the cortical grid and on a decreasing signal to noise ratio (because of the decreasing density of cells).

The ineffectiveness of blur is consistent with this scheme. A critical test of this hypothesis may be

%This is achieved at the expense of a much more extensive loss of high spatial frequencies than in the case of lowpass
filtering before sampling. Localization of an isolated feature like a zero-crossing is, however, rather unaffected by loss
of high spatial frequencies, in the ideal case of small noise level.
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obtained by measuring vernier acuity in the pcr.iphcry under different conditions of light adaptation.
An important corollary of this prediction is that the spacc constant of the clectrical coupling should
increase proportionally to cone spacing from the fovea to the periphery (the rod network may have
interesting spatiotemporal propertics (see Detwiler et al., 1978), possibly useful for moving patterns).
Several morphological studies have demonstrated apparent connections between cones as well as be-
tween rods and concs_in the vertebrate retina (see for instance Raviola and Gilula, 1975). Nelson
(1977) has provided physiological evidence for the cat that cones have inputs from rods, probably
mediated by the rod-cone gap junctions. The above conjecture would explain why coupling of this
type is neceded alrcady at the level of Lhé photoreceptors, whercas improvement of sigﬁal-to-noise

ratio could be achieved in a simpler way with convergence of signals at a later level in the retina.
6.1 Significance for information processing and machine vision

There are various mcthbds for reconstructing the original signal at high resolution by interpolating
values measured at widely spaced intervals. The best known approach to this problem is based on
the Shannon sampling theorem and on its various extensions. For static images interpolation of this
type can provide a resolution much higher than the original sampling grid. Since in our framework
the position of zero-crossings (and not the grey level values) is important, Hildreth and Poggio have
examined the problem of interpolating the values of the V2G convolution in order to obtain precisely
the location of zero-crossings. Analytical arguments, supported by computer experiments, have shown
that the position of a zero-crossing can be interpolated precisely in terms of very simple interpolation
functions, even by linear interpolation. For time-varying images the situation is more complicated. In
the classical sampling theorem, interpolations in space and time are performed independently, since
the temporal dependence of the input is not constrained in any way. Interpolation algorithms based
on the constant velocity assumption discussed earlier could achieve higher spatio-temporal resolution
for objects in motion, as long as the constant velocity assumption is not groésly incorrect, despite
™ low spatial and temporal sampling rates. Positional acuity for the image features, e.g., the zero-

crossings, although desirable, is not the only goal of this spatiotemporal interpolation stagé. A filter
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that correctly interpolates the sampled image automatically avoids any defect in the representation of
the image since it reconstructs the “original” input. It avoids in particular motion smear; and it “fills
in" eventual gaps cither in space or time, where or when the sampled input is missing. Real time
vision machines may well nced such an interpolation stage and it will be interesting to see the form
and the performance of a computer implementation. In particular, the "gap junction” scheme for

avoiding aliasing with sparse sampling intervals may be usefully implemented in future CCD devices.
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Appendix 1a

Logan’s results apply to Boo(N) functions, i.e., the restrictions to the real line of entire functions
of exponential type N whose growth (on (R)) is less than exponential. In particular, they apply to pe- -
riodic functions with the exception of theorem 4 (Logan, 1977), which can be specialized to periodic
functions (Logan, personal communication). If we restrict ourselves to trigonometric polynomials, it is
possible to illustrate Logan’s results in a simple way. It should be stressed, however, that trigonometric
polynomials are a very special case and in general crroneous inferences can be made from their

special propertics. With this “caveat” in mind, let us consider the real band limited function

N
h(t) =D Cue™  C,=0C_, 1)
—N
which can be extended to the complex plane as

‘ N
h(2) =D Ce™
—N

h(2) is for instance bandpass with one octave bandwidth if

Comz0  |n| _gi\'z-

The complex free zeros of h(z) are the complex zeros of h(z) in common with its Hilbert transform

h(z) where

N
ﬁ(z) = 2 Ce™ Cp = —i sign(n)C, )
—N

Let us define, given h(z)
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N .
P(z) =) Cpe™™

A+1

—@A+)
N(p) = Y Cpem ©)

—N

where A is the low-frequency boundary of the spectrum of A(2) (assumed in the following bandpass).

Then the free zeros of h(z) are completely characterized by the following three equivalent formula-

tions:

The free zeros of h(2) are such 2*;

P(z*)=0 N{*) =0 (a)
h(z') =0  P@*)=0 (v)
P(z*)=0 Pz)=0 ()

Observe that if z is a zero, Z is also a zero of h(2); and if z is a zero, z 4 2k7 k an integer, is also a

ZCro.

The coefficients Cy, of A(z) may be determined by the 2N roots of h(z) as the solutions of the

system of 2N equations

2 Chei™ =0
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N
D Cre'™2N =0 @
—N

Let us now rewrite

N
h{z) = Z Cne'™
—N
as
N
h(g) = ZngnS'N &)
0
with

§= eiz’ gn = Ln_nN, R[Z] = [0, W];N =:2M

Thus the nontrivial zeros of h(z) coincide with the zeros of Z?,N gn¢™, that is, a polynomial of
order 2N. If the 2N roots ¢ would be known, it would be possible to write 2N equations in the

2N 1 real unknowns (C,,):

2N
E gng? =0
0

2N

D onghn =0 (6)
0
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with

¢ = eiz

Since the determinant of the roots is a Vandermonde determinant, it always has maximum rank if
the roots are distinct. The question is under which conditions the reai roots alone determine, apart
from a multiplicative constant, the set of C,,, i.c. h(z). Clearly, multiple zcros, in particular multiple
real zeros, cannot be allowed. Observe that if more than 2N real zero-crossings would be available (in

a basic period) thenh = 0.

Under the bandpass condition (C, = 0 for n << A) there are at least 24 real zero-crossings per
period. The real unknowns are 2b, b = N — A, that is the number of non-zero C,, between N and
A, counted twice because they are complex numbers. A sufficient condition to ensure that there are
‘enough zero-crossings, and thus equations, is A = M = % i.c., C, (for n > 0) all non-zero in [M,
2M1. Notice that [M, 2M] i.e., one octave bandwidth would not be sufficient: in this case there would
be at least 2M real roots but 2(M + 1) unknowns C,,. The matrix associated to the homogeneous

equation in the “roots”

e—i2Mt  —iA+Dh  Gi(A+D)h gi2MY
e—i12Mt:M

has rank at most 2M — 1 (since there exists C, such that 3_ C,¢*™* vanishes identically for z =

ti.. .taap) and this would just not suffice to specify the C,, modulus a multiplicative constant,

Although the less-than-1 octave condition is sufficient to ensure enough zero crossings, it is by no
means necessary. In fact, there are classes of bandpass signals with a larger bandwidth and still enough

ZeTO-Crossings.

In any case, even when there is a sufficient number of zero-crossings, the question still remains
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of whether the determinant of the matrix of the “roots” |e!™*?| has maximum rank (2M — 1) and
therefore the C,, can be determined (modulus a multiplicative constant). If the rank is less than
2M — 1 then the C,, are not uniquely determined and as a consequence h(z) is not determined by its

real roots. Logan (1977 and personal communication) has proved that
a) if a free zero exists then h{z) is not uniquely determined by its real roots and

b) if there are no free zeros, h(2), provided its bandwidth is appropriate, is determined, modulus a

multiplicative constant, by its real zero-crossings.

In the following, we will outline Logan’s main thcorems for the case of trigonometric polynomials.

Theorem 1

If h(z) has 1 or more free zeros, the rank r of the determinant of the roots isr << 2M — 1.

Proof
h(t) can be written as
h(t) = P(t) + N(t)
M—1
—_ —z2Mt{ Z O eznt} _l__ez(M—{—l)t{ Z P cmt} (8)
M—1
= g i2Mt H (ezt ‘le + HM+1) + H zt :GJ)
If € is a free zero of h(t) then we can divide A(t) by the real function
it __ giey(git _ git ithe . b—€, . ithE t-—e t—e . t—E
f(t) = (e — e*)(e** — €*) = (2ie" 2 sin 5 )(2¢e™ sin ) = Asin 5 sin—;
&)
~ with A real.

The xesultmg f(t) is still a periodic bandpass function of the form
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S R 2 S”e'tnt + aneznt (10)
6 5% v

and actually of reduced bandwidth. Multiplication of % by any arbitrary [@ — cos(t — o)],a > 1
which can be always written as C'sin 512’-'1 sin ‘—‘25 provides a periodic bandpass function with the
same bandwidth as the original h(t) but different from it despite the same real zeros. Notice that if ¢ is
not a free zero, % will no longer be a periodic bandpass function. This means that the determinant

associated with the homogencous equation 7 has at most rank r = 2M — 2.

Theorem 2

If A(t) has no multiple and no free zeros the rank of the determinant of the real “roots” is ¥ ==

2M — 1.
Proof

Clcarly r cannot be r > 2M — 1. If h; 'and hy have the same bandwidth and the same real zeros,

then

2M—1

h]hg + "11’12 = Z gnei”t (11)
0
.. 2M—1 ‘
hihy —hihp = ) Ppei™t (12)
0

as it is easy to check by substitution of equation (2). If the real zeros are 2M in number and distinct,
the Vandermonde determinant associated to the real roots of equation 12 is different from zero; thus,
the unknowns g,, are identically zero. The same argument implies that all P, arec also identically zero.

h hy __
Thus, R—p= M(t).
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Now M(t) is any function with the same zeros (real and complex) of Ay, But h; is a bandlimited
function hy(t) == ZE_NZ’ M C,.e" which is uniquely determined (apart from a multiplicative constant)
by its 4M recal and complex zeros. Thus hy and hy must coincide identically and the theorem follows,

The theorem can be generalized allowing for real zeros.

Finally, a short remark about the multiple and free zero condition. It is rather intuitive that mul-
tiple and free zeros are not generic; assume, for instance, that the polynomial Zf N C,he*™ has a
free zero. It is enough to perturb one of the cocfficients C,, to annihilate the free zero. Similarly, if
the trigonometric polynomial is a sample function of a random process, the cocfficients C,, would be
random numbers, as well as the zcros of the associated polynomial HzN(g — ¢;). The probability that

azerois free (i.e. with ¢, = p €%, ¢ is free iff L¢ is also a zero) is usually very low.

Appendix 1b

Logan’s result can be extended to the case of a two-dimensional entire function f(z, y) if it is
bandpass in z with a band-width strictly Tess than an octave and band-limited in y . In this case, the
restriction of f to a one-dimensional line [, in the z, y plane parallel to the z axis will be bandpass
with less than an octave band-width. Provided the free-zero conditior is met, I.ogan's theorem tells
us that the zeros of f along [, determine f there up to a multiplicative constant. To determine f

everywhere up to a multiplicative constant, these parallel slices must be tied together.

The following lemma shows that Logan’s theorem can be invoked for f restricted to a line ly which
is not parallel to the X axis. [y will intersect all slices I, parallel to the z axis, so determining f up to a

multiplicative constant on ly determines f up to the same constant along each of the slices ;.
Lemma

If f(z, y) is ideally bandpass with band-width strictly less than an octave in z and band-limited in y
then there is an € = 0 such that f along all slices, {p which make an angle 8 << e with the X axis, will

be bandpass with band-width less than an octave.
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Proof

The support of the Fourier transform of f is confined in w, to the intervals [} = (—2a+§, —a —
6) and I = (a + 6,2a — §) and in wy to the interval J = (—b, b) for some positive 8, a, and b.
Obscrve that the support of the Fouricer transform of a slice ! through f is confined to the projection

of the support of the Fourier transform of f onto the w; axis. The rectangles I} X J and I X J will

project into the intervals (—2a, a) and (a, 2a) on [, provided that I makes a sufficiently small angle

with the z axis.
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Appendix 2

We consider a one dimensional pattern g(z). Arbitrary, non rigid movement of this pattern produces
a spatiotemporal image g(«, t). Rigid movement of the same pattern at constant speed gives an image
g(z, t) = g(z — vt). We statc here the classical sampling theorem for the first casc and an appropriate

modification of it for the second case.
Theorem 1 (classical sampling theorem)

If a signal g(z, t) is bandlimited in spatial and temporal frequencies it can be recovered exactly by
independent interpolation in space and time of its sampled values, provided that the sampling separa-
tions A¢ and A7 are such that A¢ < 1/2fC and Ar < 1/2f¢, where f© and f¢ are the spatial and

temporal bandwidths.
Theorem 2 (Crick et al., 1981; Fahle & Poggio, 1981)

Assumc that the spatiotemporal signal g(z, t) = g{z — vt). The function g can then be reconstructed
at the desired resolution from its spatial (témporal) samples. The required sampling density can be
decreased arbitrarily by knowledge of the velocity v. If only the sign of the velocity is available the

maximum sampling distance can be twice the classical limit for stationary patterns.
Comments
a) The proof of these results can be casily obtained from diagrams in the f, — f; Fourier plane (see

Fig. 9; Crick et al, 1981).

b) Theorem 1 requires the function g(z, t) to be bandlimited before sampling takes place, since
overlap of the frequency lobes as an cffect of sampling usually leads to an irretrievable loss of infor-
mation. This condition is not needed in theorem 2. Overlap never occurs (for infinitely long motion)
even when the pattern f(z) is not bandlimited in spatial frequency. Any desired part of the original

spectrum can be recovered exactly (without aliasing) by an appropriate interpolation filter.

¢) The spatiotemporal filter implementing the interpolation depends on v. Assume, for instance, to
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cndow an interpolation scheme with direction selective properties (i.e. to use information about the
sign of v): it can be shown that the new spatiotemporal filter is obtained by adding to the spatiotem-
poral impulse response its Hilbert transform with a sign controlled by the sign of v (in the case of

Fig.8 the Hilbert transform of the spatial point spread function is an odd function).

F iy



PNN 46 _ SPATIOTEMPORAL INTERPOLATION
References
Barlow, H.B., “Reconstructing the visual image in space and time,” Nature 279 (1979), 189-190.

Barlow, H.B., “Critical limiting factors in the design of the eye and visual cortex,” Proc. Roy. Soc.

Lond. B 212 (1981), 1-34,

Burr, D.C,, and Ross, J., “How does binocular delay give information about depth?,” Vision Research

19 (1979), 523-532.
Burr, D.C., “Acuity for apparent Vernier offset,” Vision Research (1979a), 835-837.

Burr, D.C., “On the visibility and appearance of objects in motion,” Ph.d. Thesis University of

Cambridge (1979b).
Burr, D, “Motion smear,” Nature 284 (1980), 164-165.

Campbell,F. W. and Robson,J., “Application of Fourier analysis to the visibility of gratings,”

J.Physiol., Lond. 197 (1968), 551-566.

Crick, F.H.C,, Marr, D.C., Poggio, T., “An Information-Processing Approach to Understanding the
Visual Cortex.,” In: The Organization of the Cerebral Cortex, Ed. F. Schmitt M.LT. Press (1980).

Detwiler, P.B., Hodgkin A.L., McNaughton P. A, “A surprising property of electrical spread in the
network of rods in the turtle’s retina,” Nature, Lond. 274 (1978), 562-565.

Fahle, M., Poggio, T., “Visual hyperacuity: spatialtemporal interpolation in human vision,” Proc. R.

Soc. Lond. B 213 (1981), 451-477.
Hughes, A, “Cat retina and the sampling theorem,” Exp. Brain Res. 42 (1981), 196-202.

Kelly, D.H., “Motion and vision:II. Stabilized spatio-temporal threshold surface,” J.Opt.Soc. Am. 69




PNN ' 47 SPATIOTEMPORAL INTERPOLATION
(1979), 1340-1349,

Logan,B.F., “Information in the zero-crossings of band pass signals,” Bell Syst. Tech. J. 56, 487

(1977), 510.
Marr, D., “Early Processing of Visual Information,” Phil, Trans. R. Soc. Lond. B. 275 (1976), 483-524.
Marr,D. and Hildreth,E., “Theory of edge detection,” Proc.R.Soc.Lon. B. 207 (1980), 187-217.

Marr, D, Poggio, T., Hildreth, E., “Smallest channel in carly human vision,” J. Opt. Soc. Am. 70
(1980), 868-870.

Marr, D.C,, Poggio, T., “From Understanding Computation to Understanding Neural Circuitry. In:
Neuronal Mechanisms in Visual Perception,” Neurosciences Res. Prog. Bull, Eds. E. Poppel, R.

Held, J.E. Dowling 15, No. 3 (1976), 470-488.

Marr, D., Poggio, T., “A Computatiopal Theory of Human Stereo Vision,” M.IT. A.I. Memo 451
(1977). '

Marr, D., Ullman, S., Poggio, T., “Bandpass Channels, Zero-crossings, and Early Visual Information

Processing,” J. Opt. Soc. Am. 69, No. 6 (1979), 914-916.

Morgan, M.J., “Analogue modecls of motion perception,” Phil. Trans.R.Soc. Lond. B. 290 (1980), 117-
135.

Nelson, R., “Cat cones have rod input:a comparison of response properties of cones and horizontal

cell bodies in the retina of the cat,” J. Comp. Neurol. 172 (1977), 109-136.

Peichl, L., Wassle, H., “Size, scatter and coverage of ganglion cell receptive field centers in the cat

retina,” J. Physiol. Lond. 291 (1979), 117-141.

Poggio, T., “Trigger Features of Fourier Analysis in Early Vision: A New Point of View. In: “The role




PNN : 48 SPATIOTEMPORAL INTERPOLATION
of feature detectors”,” ed.P.B.Gough and S.Peters Springer (1981), in press.

Raviola, E, Gilula N.B., “Intramembrane organization of specialized contacts in the outer plexiform

layer of the retina,” J. Cell Biol, 65 (1975), 192-222.

Stigmar, G., “Blurred visual stimuli. II. The cffect of blurred visual stimuli on vernier and

stercoacuity,” Acta Ophthalm. 18 (1971), 364-379,
Wacle, R.A., “Ocular optics and evolution,” J. Opt. Soc. Am. 66, 10 (1976), 1053-1054.

Westheimer, G., “Eye movement responses to a horizontally moving visual stimulus,” Arcs. Ophthal.

52 (1954), 932-941.

Westheimer, G., “Diffraction theory and visual hyperacuity.,” Am. J. Optometry & Physiological

Optics 53, No. 7 (1976), 362-364.
Westheimer, G., “The spatial grain of the perifoveal visual field.,” Vision Res. 22 (1982), 157-162.

Westheimer, G., and McKee, S.P., “Visual acuity in the presence of retinal-image motion,” J. Opt.

Soc. Am. 65, No. 7 (1975), 847-850.

Wilson, H. and Giese,S.C., “Threshold visibility of frequency gradient patterns,” Vis. Res. 17 (1977),
1177-1190.

Wilson, H. and Bergen,J.R., “A four mechanism model for spatial vision,” Vision Res. 19 (1979), 19-

3.

Wuelfing, E.A., “Ueber den kleinsten Gesichtswinkel.,” Z. Biol. 29 (1892), 199-202.




