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ABSTRACT. Human vision is adept at inferring the shape of a surface from the image of curves lying across
the surface. The strongest impression of 3-D shape derives from parallcl (but not necessarily equally spaced)
contours. In [Stevens 1981a] the computational problem of inferring 3D shape from image configurations is
cxamined, and a theory is given for how the visual system constrains the problem by certain assumptions.
‘The assumptions arc three: that neither the viewpoint nor the placement of the physical curves on the surface
is misleading, and that the physical curves arc lincs of curvature across the surface. These assumptions imply
that parallel image contours correspond to parallel curves lying across an approximately cylindrical surface,
Morcover, lines of curvature on a cylinder are geodesic and planar. These properties provide strong
constraint on the local surface orientation. We describe a computational mcthod embodying these geometric
constraints that is able to determine the surface orientation even in placcs where locally it is very weakly
constrained, by cxtrapolating from places where it is strongly constrained. This computation has been
implemented, and predicts local surface orientation that closely matches the apparent orientation.
Experiments with the implementation support the theory that our visual interpretation of surface shape from
contour assumes the image contours correspond to lines of curvature.

Acknowledgements This report describes research done at the Artificial Intclligence Laboratory of the
Massachusetts Institute of '] ‘echnology. Support for the laboratory’s artificial intelligence research is provxdcd
in part by the Advanced Research Projects Agency of the Department of Defense under Office of Naval
Research contract N00G14-80-C-0505 and in part by the AFOSR and NSF grant 79-23110MCS.

1. Now at the Department of Computer and Information Science, University of Oregon, Eugene, Oregon 97403.

® MASSACHUSETTS INSTITUTE OF TECHNOLQGY 1982,



—h



Stevens -2- Surface shape from contours

8

1. Introduction

The human visual system is adept at inferring the shape of a surface from an image consisting only of
contours presumed to correspond to physical curves lying on the surface. In figure 1, for cxample, we
perceive a rippled surface. The contours that comprise this figure arc interpreted as arrayed in 3-D on a
smooth but otherwiscvinvisible surface. _

Several questions are posed by figure 1. Most immediately, why do we take a 3-1) interpretation instead of
the (literal) interpretation of figure 1 as sinusoids on the planc of the printed page? The 2-D) interpretation is
almost impossible to hold, the tendency to sce depth in the figure is so strong. Morcover, our 3-D
interpretation is of a particular surface shape. Except for the expected depth reversal in figure 1 (which
changes the apparent orientation of the surface), different observers sce much the same rippled surface. What .
then determines the specific 3-D interpretation that we take? Clearly we incorporate geometric constraints
strong enough to force a particular 3-D shape. What are they?

This article starts with a review of a theory [Stevens 1981a] regarding the specific geometric constraints
underlying the interpretation of surface contours. As we shall see, a few constraints are sufficicnt to allow the
determination of local surface shape from paral]cl2 contours and certain related image configurations. Can we
find evidence that our visual interpretation incorporates these particular geometric constraints? The intent of
this article is largely empirical, and centers on cxperiments that compare human performance with the 3-D
shape computed by an implementation of the theory. The observed similarity supports the theory,

2. Review of a theory of constraints on surface contour

2.1 Surface contours and their physical counterparts
A given contour in a natural image corresponds to perhaps an object edge, a creasc, a shadow, or some surface

e .

Figure 1. A set of parallc] contours that are interpreted in 3-D as lying on a smooth cylindrical surface. The surface shape is vivid and
one can judge with confidence the local surface orientation. This suggests that specific geometric constraints are imposed on the 3D
interpretation. Assuming that the contours are lines of greatest curvature on the surface plus weaker ancillary assumptions provides
sufficient constraint on the prablem of inferring local surface orientation from such configurations. :

2. Recall that two arbitrary curves are parallel if one can be superimposed upon the other simply by a translation.
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pigmentation marking. Each image contour has a specific physical cause. In this treatment, however, we will
consider a surface contour only geometrically, as a curve in 2-D that corresponds to some curve in 3-D,
without regard for what the physical curve may be. Of course, knowledge of the physical curve would be
expected to simplify the interpretation task, but human vision does not rely on knowing this information: we
infer a definite 3-1) shape from purely abstract configurations of curves, as figure 1 demonstrates. (In the
absence of information about the corresponding physical curves, we might take some default assumptions
about them, but it is difficult to surmisc a priori what thosc assumptions are.) ,

Not only do we infer surface shape from abstract lines, but the lines need not even be continuous in the
image. In figure 2b the contours are defined by dots, and in figure 2¢ the contours are "subjective contours™
defined by line terminations. The three surfaces scen in figure 2 arc very similar. Thus we conclude that
surface shape is inferred from a rather general representation of contour.

2.2 Terminology , _
The subsequent discussions largely concern the ' geometric properties of a pafticular type of contour (the line
of curvature) lying across a particular class of surface (the cylinder). A brief discussion of these concepts is
given below (sce also e.g. [Hilbert & Cohn-Vossen 1952)). '
Consider a smooth patch of surface and a plane that intersects the surface perpendicularly. That is, the
surface normal lies in the plance. The intersection of the surface and the plane defines a curve whose
curvature is called normal curvature. Supposc the plane is rotated, with the surface normal the axis of
rotation. Depending on the surface in question, the normal curvature at the given point will vary between a
‘minimum and maximum, called the principal curvatures. ‘The tangent to the curve when the curvature is

Tigure 2. In a a ribbon-like surface is suggested merely by parallel lines. The same surface is suggested by dotted linesin b, and in ¢
by line terminations. Various processes of contour construction precede the interpretation of surface shape from contour.
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cither maximum or minimum will point in one or the other of two principal directions, and for points on
smooth surfaces the principal directions are mutually perpendicular. Thus each point on a smooth surface has
two distinguished dircctions (except where the surface patch is planar or spherical, in which case the normal
curvature is constant in all directions; such points arc called umbilic).

'The lines of curvature are curves across a given surface that follow one or the other principal directions.
Specifically, the tangent at each point along a line of greatest (or least) curvature aligns with the dircction of
greatest (or least) normal curvature. Since the two principal directions, where defined, arc mutually
perpendicular, the lines of greatest and least curvature form an orthogonal net.

Of particular interest to us will be surfaces for which the lines of least curvature ar¢ straight lines, the
so-called singly-curved or developable surfaces. Such surfaces correspond to the configurations that one can
make with a sheet of paper, allowing bending and twisting but no tcaring or creasing. On a singly-curved
surface the tangent to a line of greatest curvature points in the direction in which the surface bends most
rapidly. and for a linc of least curvature the tangent points in the direction of zero normal curvature.

A cylinder is a restriction on the singly-curved surfaces wherein twisting is disallowed. That mcans the
fines of least curvature (also called rulings) are all parallel. The cylinder corresponds to a rolled or rippled
sheet of paper or a hanging curtain. The lines of greatest curvature, lying perpendicular to the direction of the
ripples, are sometimes called cross sections.

The lines of curvature on a cylinder have two important propertics: they are planar and geodesic. Being
geodesic, the principal normal to the linc of greatest curvature is identically the surface normal at that point.
And since the curve is planar, the surface normal along that path is restricted to rotating in the plane
containing the curve (the osculating plane). '

2.3 Surface contours are distinct from texture éontours and carry différcnt 3-D information

An important distinction cxists between the contours we will examine here and those that comprise image
texture. While both correspond to physical curves across surfaces in 3-D and both contribute surface shape
information, they differ in the way they "encode” that information.

Surface texture is foreshortencd when the surface is slanted relative to the line of sight. The amount and
direction of the foreshortening carrics local information about the amount and direction of the surface slant.
Thus local surface orientation can be estimated from texture foreshortening, provided the foreshortening can
be quantified in the image, and provided certain physical restrictions in the physical texture are met. Early
proposals for quantifying texture foreshortening (reviewed in [Flock 1964]) were in terms of the
height-to-width ratio, which varies with the cosine of the slant angle in the ideal case of circular and
flush-lying surface featurcs. Recently, Witkin [1981] has shown that surface orientation can be estimated from
focal statistics of texture contour. A representative example of where contour foreshortening carries
information about surface shape is given by the mottled pattern of sunlight and shadows cast on the ground
below a tree. Instead of examining the height-to-width ratio of the individual patterns of light and dark, the
method examines the contours that follow the boundaries between light and dark. The contour curvature
varies in a statistical but systematic manner with tangent direction and surface orientation [Witkin 1981}
Hence from measurements of these statistics the local surface orientation can be estimated. The accuracy of
the cstimate depends on several factors. First, the physical texture must lie flush (as do mottled shadows on
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the smooth g‘round) so that they foreshorten according to slant angle in the expected manner (see [Stevens
1981b] for further discussion). Sccond, the curvature statistics of the physical texture must be isotropic,
otherwise the texture anisotropy would resemble forcshortening and misleadingly appear slanted. Third,
since the method is statistical, the surface must be roughly planar in cach region over which the statistics are
gathered, otherwise surface curvature would confound the foreshortening interpretation. Witkin [1981]
demonstrates this computational method on slanted planar outlines and observes that if applicd along the
contour of an cllipse, the method estimates the spatial orientation of the corresponding circular disk.

Some method for inferring surface orientation from contour foreshortening similar to [Witkin 1981] is
likely incorporated in human vision, and is applied to image configurations in which the contours appear
foreshortened on a planar surface, provided there is not better evidence to the contrary. Figure 3 is an
example: the pattern resembles a sheet of plywood or waves lapping at a beach. That is not the only 3-D
interpretation available in this pattern, however. Like figurc 1, figure 3 may also be seen as an undulating
surface, but because of the amplitude of the curves, the surface dips dramatically from crest to trough,

Figure 3 is rotatcd by 90°, relative to figure 1, to bias its interpretation as a planar surface over that of an
undulating surface.3 While we strongly prefer the planar interpretation in figure 3, one can also interpret it as
a deeply convoluted surface (as noted, view it so that the peaks and troughs would be oriented as in figure 1).
As the amplitude of the sinsuoid pattern increases the planar-surface interpretation tends to dominate over
the undulating-surface intcrprctatibn, however there is a rather broad intermediate range for which the two
interpretations arc strongly rivalrous. In this range the interpretation taken depends strongly on the
orientation of the figure.

The two cases have a neat geometric interpretation in tcrms of the physical curves. In the planar-surface
case the physical curves are cssentially asymptotic lines; in the undulating-surface case thcy are geodesic (as
will be discussed). . Asymptotic lines have zero normal curvature, all of their curvature fies in the tangent
plane. In contrast, geodesic lines have zero curvature in the tangent plane, all of their curvature is normal
curvature. Thus the two interpretations will be appreciated as being the two extremes of a continbum, We
will use the terms "texture contours™ and “surface contours” to di,stinguish the two cases.

2.4 Surface shape is described by local surface orientation

It is proposed that surface orientation is the primary form of 3-I) shape information derived from contours
such as those in figure 1. Several factors support this prop(isal: it is feasibly computed,‘sufﬁci(cnt for deriving
more global shape descriptions, and the apparent surface orientation is closely predicted by the theory of

3. Itis well known that in most natural scenes distance increases as one scans from the bottom to the top of the visual ficld, a simple
consequence of our conventional viewpoint of objects on the horizontal ground. In 1erms of surface orientation, this tendency is reflected
“in a bias to choosing an upward pointing surface normal. For illustration, consider viewing an eflipse with horizontal major axis: if
interpreted as a circular disk on the ground the normal would point vertically upward. But if the cllipse's major axis is vertical, so that
the normal would point to either the left or right, I have observed no apparent bias to oné interpretation aver the other. The result is that
when the apparent surface normal points vertically the depth reversals are less frequent than when it points horizontally. This biascs can
be demonstrated for a wide range of stimulus surfaces, and is uscd to advantage in figure 3. The practical consequence js that th
planar-surface intérpretation in figure 3 is strongest when the apparent surface is horizontal. Observe that by rotating figure 3 by 9%° the
undulating-surface nterpretation is easier 10 achieve and the planar-surface interpretation, when achieved, is less stable because of depth
reversals. Similarly, rolating figure 1 so that the normals point roughly horizontally, rather than vertically, results in more {requent depth
- -reversals.
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Figure 3. 'The curves tend to be interpreted as lying on a planar surface, although they may also be scen to lie across a dramatically
undulating surface. The relative strength of the two spatial interpretations varies with the oricentation of the figure (see text).

inferring surface orientation from contours. The compuytational feasibility will be reviewed momentarily;
simply stated, local surface orientation is rather immediately encoded in the image while distance information
is not. Surface orientation also provides a sufficient basis from which other surface shape descriptions can be
subsequently derived such as distance (up to an additive constant and an overall multiplicative scalar), surface
curvature, and topographical featurcs such as ridges and troughs. The close match between apparent surface '
orientation and that predicted by the theory will be demonstrated later. ‘

Surface oricntation, having two degrees of frecdom, can be regarded as a vector quantity having magnitude
and direction. The magnitude component is the familiar variable slant, the angle o between the line of sight
-and the local surface normal. Slant varics over a range from 0° (where the surface patch is perpendicular to
the line of sight) to 90°. The other degree of freedom concerns the direction of slant, called #lf [Stevens
1979]. The tilt 7 is the dircction in which the surface normal would project in the image, and also corresponds
to the direction of the gradient of distance from the viewer to the surface. Slant and tilt will be used to
quantify orientation for our purposes.

The apparent surfaces suggested by contours in these ﬁgurés are subject to the familiar "depth” reversals
usually associated with the Necker cube. These reversals are expected, and correspond straightforwardly to
ambiguity in the tilt direction. That is, the orientation of the surface can be recovered only to within a
reflection in depth about the image plane, or equivalently, to within a 180° reversal in the direction the
surface normal would point locally. Each choice of direction indicates the direction of the gradient of
distance. While the subjective impressions of depth and of surface shape may change dramatically with these
reversals, it amounts to only a reversal in the tilt component, the slant angle is unchanged. (It is worthwhile
examining the tilt ambiguity in the various illustrations of this article, in order to convince oneself that when
the apparent depth reverses, the tilt component of the surface orientation for any given patch reverses
direction.) In light of this ambiguity, we expect to be able to compute surface tilt only to within a 180°
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reversal.

2.5 The computational problem

The perceptual task we accomplish so effortiessly when viewing these figures can be described as a
computational problem (in the sense of [Marr & Poggio 1977, Marr 1982)) as follows. We arc presented with
a sct of contours {C} in an image, assumed to correspond to a sct of physical curves {I'} across a surface .
The task is to determine the local surface oricntation of the visible patches of Z, where surface oricntation
relative to the viewer is quantitifed by slant and tilt.

1In studying how we accomplish this task, our approach will be to concentrate first on the case where the
contours arc parallel in the image, as in figure 1, then show how this problem extends naturally. to certain
other configurations, ) .

Our tendency to take one specific 3-D interpretation in viewing figure 1 is so strong, we tust be reminded
that the problem is highly underconstrained. There arc infinitely many 3-1D surfaces that consistent with the
given 2-D projection, including the surface of the page on which it is printed. What constrains the particular
interpretation that we take? We have no expectations of viewing any specific surface shape, and no
expectations for viewpoint relative to the surface. The central theoretical issue that emerges, then, is
discovering what constraints arc incorporated in the method adopted by the human visual system in "solving”
this problem of 3-1J perception.

Observe that figure 1 evokes the impression of viewing a continuous but transparent, or invisible, surface.
One has a strong sense for the surface shape in the spaces between the contours as well as along them. We
will be concerned primarily with determining orientation only for those surface points along a given physical
curve T, In the intervening regions (where there is no surface information available) the orientation is
presumably determined by interpolation. In the case of cylindrical surfaces, which are important here, the

interpolation will be scen to be trivial. The more general case of interpolating doubly-curved surfaces is

beyond the scope of this article.

- 2.6 Constraining the 3-13 interpretation

In [Stevens 1981a] it is proposed that our interpretation is constrained primarily by assuming that the contours
correspond to lines of curvature on the surface. That strong assumption, plus two assumptions to the effect
that neither the viewpoint nor the particular placement of the physical curves on the surface is misleading,
leads to an effective method for determining surface orientation from certain configurations.

2.6.1 General position of viewpoint: The surface 2 and the physical curves across = are assumed to be seen

from a representative viewpoint, Le. the image projection that results from this viewpoint is similar to the
which would result from a slightly different viewpoint. By assuming this, we may exclude the following
degencrate cases of projection: i) a planar curve projecting as a straight line, i) two non-collinear lines
projecting as collinear, and #ii) two non-parallel curves projecting as parallel. Thus if a curve is straight in the
2-D image it is straight in 3-D, and likewise for two collinear or parallel lines in 2-D and their 3-D
counterparts. | | ’

The a priori probability of encountering any of the above three dcgéneracies is small. It is particularly

-,
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difficult for multiple, non-parallel curves appear parallel in the image. As the complexity of the projected
curves increases it becomes increasingly improbable that two different and thus non-parallel curves would be
placed fortuitously relative to cach other and relative to the viewer so that their projections would differ only
by a translation in the image. The other two degenerate cascs, we recall, are: §) a straight line in the image that'
is actually the projection of a planar curve, and i) two collinear lines in the image that are the projection of
two lines that lic in the same plane but are non-collincar. Both are coincidental for the same reason: the line
of sight happens to lic in the planc containing the planar curve or the two lines,

2.6.2 General position of contour: 'The surface geometry in the vicinity of the physical curve is assumed to be
similar to that directly under the curve. Consider figure 1, where the surface between contours is invisible.
An interpretation that we do not take is that the surface varics substantially between the contours. Instead,
our interpretation is that the particular placement of the curves on the surface is not critical or fortuitous, so
that if they were shifted laterally the image would appear substantially the same.

This assumption, plus the carlicr assumption that the viewpoint is representative, allows one to conclude
that in the vicinity of parallel physical contours the underlying surface patches are approximately cylinderical
(see below). General position of contour is related to Grimson’s [1981] observation that significant changes in
surface geometry arc usually reflected by intensity changes in the image. That is, if the surface deviates
significantly from cylindricality between a given pair of parallel contours, it would usually be apparent in the
image. Thus in the absence of cvidence to the contrary, cylindricality can be assumed. This assumption
seems a priori reasonable in the restricted context of parallel curves: in most instances where parallel curves
lic on a surface, the surface in the vicinity is cylindrical.

2.6.3 The line of curvature assumption: The physical curve T is assumed to be a line of curvature across Z, ie.,
the tangent to T everywhere coincides with one of the principal directions on the surface. In the case of
parallel contours, since the surface in the vicinity is a cylinder, it follows immediately that T is also planar and
geodesic.

The a priori justification of assuming surface contours are lines of curvature is rather difficult. But as
observed in [Stevens 1981a], it is interesting that the vast majority of curves across the surfaces of synthetic
objects of all sorts are lines of curvature. The reasons for this are many, and include the following: most
manufactured objects are composed of surfaces of revolution or cylinders, if they arc not planar, and the
markings piaccd on these surfaces of revolution and cylinders almost invariably follow the cross sections,
meridians, and rulings - all of which are intrinsically lines of curvature. Not only are markings across the
surface usually lines of curvature, but the seams, creascs, and edges are as well. Even in cases where the
surface geometry is more complex, such as metal castings and plastic injection-moldings, the scams are usually
planar, normal sections, and lines of curvature (although this is sometimes not as immediately obvious by
inspection as are the meridians ont a surface of revolution or the cross sections of a cylinder).

In the same vein, the contours that arise in biological forms are very often lines of curvature, The joints in
a bamboo stalk are cross sections and the markings that run lengthwise along the stalk are rulings -- both of
which are lines of curvature. Stripes and linear markings on vegetation for various reasons, are often aligned
with the principal directions on the surface. In fact, wrinkles in skin accompanied with flexure at joints or
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compression duc to underlying muscles tend to follow lines of curvature. A final observation should suffice:
on specular surfaces, either inherently glossy or mercly wet, the highlights either appear pointlike or
extended. In the case of extended specular reflections, if they appear as straight in the image, the surface is
locally a cylinder, and the path on the surface corresponding to the specularity is a line of least curvature (sce
[Stevens 1981a]). v

The difficulty of this sort of 'argument,v of course, is that while one may discover many physical curves that
arc lines of curvature, another might find many other curves that are not. The a priori justification for
assuming that physical curves are lines of curvature docs not follow by such argument. In the S’yntheticvworld
that argument is rather compelling, but not so in the natural world. The likclihood of being correct in
assuming a given lmagc contour corresponds to a line of curvature is significantly improved, howevcr if one
explicitly excludes from consideration certain classes of image contours that are likely not to be lines of
curvature. One class of contours to disregard are those that exhibit systematic cvidence of fprcshortmmg,
such as do the texture contours discussed carlier. That is, the characteristic evidence of foreshortening
associated with the projection of random curves across approximately planar surfaces can be used both as a
"triggering condition” for cstimating surfz{cc orientation from foreshortening, and simultaneously, as a
condition for excluding them from consideration as lines of curvature.

2.6.4 Discussion: The line of rcasoning just given can {)e casily summarized as follows. Suppose one is
presented with parallel contours in an image, as in figurc 1. They almost certainly éorrcspond to parallel
contours in 3-) by general position of viewpoint. The chance is negligible of viewing two differently shaped
(thus non-parallel) contours from a pcrspcc:tivc which causes their projections to be identical and to differ
only by a translation in the image plane. Moreover, without evidence to the contrary, one can assume that the
physical placement of the contours does not conspirc with the underlying surface geometry to mislead the
viewer. The precise p]aécmcut of the contours on the surface is assumed not to be critical; they could be
displaced and appear very similar. It follows that the surface is a cylindef in the vicinity of the physical
contours. (Intuitively, that means that onc can slide one curve along a straight line on the surface, without
dips or rises, until it superimposes over the other.) Parallel image contours therefore imply cylindricality.
Now, since the contours are also assumed to correspond to lines of curvature across the surface, it follows that
they are planar sections and gcodesics. The parallel curves correspond to parallel planar, normal sections of
the cylinder. ' '

Note that we start with only three assumptions: i) general position of viewpoint, i) general position of
contour, and i) the line of curvature assumption. These assumptions logically entail the geometric
constraints of planarity, geodesic, perpendicular intersection, and cylindricality. | Thus, if the three
assumptions are incorporated in human vision, the geometric constraints follow as cdnsequcnces and need not
be independently motivated. Next we discuss how the constraints allow surface orientation to be determined.

2.7 Inferring surface orientation

With reference to figure 4, consider the case of mulnple parallel surface contours. We assume
general position of viewpoint . )
general position of contour | ()
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Figure 4. Parallel surface contours () are interpreted as paratlel in 3- and as lying on a cylindrical surface. At two points along one
contour the rulings are shown to intersect. Note that the rulings are paralle! straight lines. Each intersection is the oblique projection
of a right angle on the surface, and this fact constrains the range of possible orientations for the normal, as shown in 5. Note that
where the angle of intersection is large the surface oricnlation is strongly constrained, and the bisector becomes an increasingly good
estimate of the surface tilt. Provided the surface orientation is solved at one point along the curve it can be solved everwhere, see text.

I is a line of (greatest) curvature 3)
where T is the physical curve corresponding to a given contour C in the image. We will represent the physical
curve I' parametrically by x. = X (s) and define

t (s) as the tangent vecter of T

- n(s) as the principal normal vector of T
-p(s) as the normal to X at points along T

Consider two contours C and Cj corresponding to physical curves T, and I‘j across the surface Z. From (1) we

have
' CIC = T, - )
and (2) and (4) yields
Z cylindrical. . (5)

That is, parallel curves imply a cylindrical surface, provided gencral position of both viewpoint and contour
placement. From (3) and (5) it also follows that _ ‘
I is geodesic (6)
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T is planar, lying in some plane I1 o (N |
1t follows, therefore, that the surface normal » lics in the plan'c I1 and is perpendicular to T. As the next step
in deriving » we examine the straight lines on the cylinder, the rulings.

The rulings, recall, are lines of least curvature on a cylinder, and since T is a line of grcatést’éurvature, all

rulings are perpendicular to I'. Morcover, on a cylinder all rulings are parallel, as noted carlier. Hence, if we

refer to a ruling as A, we have that

A is straight - ' ®
ALT | , (9)
ANA Vij. S (10)

Smce all the rulings on a cylmdcr are straight and parallel, they share the same tangent vector t,.
The tangent t, to the ruling A is perpendicular to 1, the planc containing . Thatis
t, LTI . ' 11
To see this, observe that T is geodesic (6) and planar (7) hence the plane IT is pcrpcndlculdr to the tangent
planc to the surface: . Since the ruling A lics in the tangent planc and is perpendicular to T, it is also
pcrbcndicular to J1. (Conscquently the tangent to the ruling is cquivalently the binormal to T, and the
tangent, principal normal, and binormal to T are mutually orthogonal at each point along the curve.)

Thus we now may relate the surface normal #(s) along the curve T in a simple manner to the tangents to
the curve and the ruling | | '

v(s) =n(s) =t A(s) X tr(s). : (12)
Thus if the path of the curve T were determined in 3-D, the surface oricntation along that path could be
computed straightforwardly. In fact determining the path of I' in 3-D reduces to the problém of determining
the planie TI containing T (since T is simply the orthographic projection of C onto TI). Provided TT can be
determined, the surface normal is computable cither from the principal normal to T, or from the cross
product relation in (12). ' | ,

One possible strategy for solving for the surface orientation, therefore, would involve inferring the spatial
orientétion of the plane containing T'. We shall show later, however, that the human visual system probably
does not use this strategy. One that is more likely used is described by the following. .

Consider the intersection of the line of greatest curvature I and the linc of least curvature, or ruling, A. In
the image I" projects as the contour C, and the ruling A projects as the straight line R. Figure 4a shows two
rulings, which appear as parallel straight lines, each intersecting the contour C at somie angle 8. The rulings,
while not visible in figure 1, can be reconstructed by a simple geometric construction that follows from (8-10),
i.e. the rulings on.the surface are parallel straight lines that intersect each line of greatest curvature at a
constant (right) angle. Consequently the projection of a ruling would be a straight line that intersects
successive image contours at a constant angle B, and all rulings would be parallel in orthographic projection.
Thus it is sufficient to identify points on successive contours having parallel tangents, and to connect those
points with straight lines that are themselves parallel. The correspondence between patallel lines can be
determined by a simple local computation; see [Stevens 1981a] for more detail.

We impose a Cartesian coordinate frame whose x-y plane lies paralle] to the 1mage and whose x-axis is
aligned with R. Construct tangent vectors to I' and A scaled such that they project as unit vectors in the
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image plane:

t(s)=1{1,0,4}

tl\(so) = {cos/io, sinﬁo, b}
where ,BO is the angle of intersection at the given point. The quantities @ and b are the unknown components
along the z-axis (perpendicular to the image planc). The surface normal v is their cross product:

”(So) = {-a sinf8, a cosﬁ0 - b, sin,BO} 13)
and the tilt  and slant ¢ are:

v v
T = tan'l;x; o = cos’ Z (14)

2 2 3172
X (ux + vy +v,)
where »,, v, and v, are the three components of the normal vector.
The expression for the normal in (13) carrics two unknowns. This reflects the two degrees of freedom of
surface orientation when no restrictions are imposed. Now, given (9),
tI‘(SO). . tA(SO) =0
from which we have

a
Substituting b into (13) gives
Nt :
v(s,) = {-asinf, P cosfl,, sinf }. (15)

and therefore the surface orientation is determined up to only one unknown, a. Thus perpendicularity
~ between the lines of greatest and least curvature removes one degree of freedom of surface orientation.

The magnitude of this constraint depends on the angle of intersection 8. For any angle of interscction the
tilt is constrained to lic- within the perpendiculars to R and C, and the slant is constrained accordingly. As 8
approaches 180° the tilt approaches the bisector of the angle and the slant approaches 90°. The restriction on
the range of possible tilts becomes appreciable as 8 becomes large:

B = 135°: o = 77.75+12.25° = the bisector £22.5°,
B = 150" o = 82.25%7.75° 7 = the bisector £15.0°
B =170 o = 87.49%251° 7 = the bisector £5.0°.

Hence the bisector of the angle of intersection becomes an incfcasingly good estimate of the surface tilt.
(Incidentally, for any obtuse 8 the bisector choice for the tilt corresponds to the surface orientation with the
least slant.) :

Returning to figure 4a, observe that the angle of intersection varies along the curve; B is greatest at the
intersection shown on the right (call that point 0) and least at the intersection on the left (point 1). Thus at
point 0 the surface orientation is most strongly constrained by the perpendicularity. Specifically for figure 4,
B = 167.1° at point 0, and the tilt is 128.5+:6.5°. The biscctor of the angle of intersection therefore is a good
estimate of the local surface tilt at point 0.

At point 1, on the other hand, 8 = 102.9° and the tilt is only constrained to 96.4+38.6°. Nonetheless,
having determined the orientation at point 0 will allow the tilt to be solved here and at all other points,
(Intuitively, since the T is both geodesic and planar, the surface normal is constrained to rotate in the
osculating plane, and once it is known at one point on the curve, it rotates in a predictable manner along the
curve,)
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Point 1 is defined as x = x(sl'), and the tangents to the curve and the ruling are
t(s) =110, a}
t(s) = {cosﬁl, sinf, c}
where B is the angle of intersection at that pomt Observe that since the rulings are parallel, ¢ (s)) = t, (s)
The surface normal is, again, the cross product of the two tangent vectors:

v(s) = {-asinB, acosp, - c, sinf } B o (16)
where | N | o
cosp,
: - aB . - : (}’7)

Note that the one remaining variable at this point, ¢, is related to a. But observe also that a is simply related to

T.

s N
7= tan? NJ = tan?! (-cotB, “z;{ 1).

. X
Thus a can be solved in terms of the known tilt 7 and the obtuse angle 8,

RPN SRV :
a= (mnftanﬂ + 1) ) : ' (18)

Finally, substituting a into (17) and (16) completcly determines the surface orientation.

Figure 4¢ shows the biscctor estimate for the tilt at point 0 (r = 128.5°, ¢ = 83.5%), and thc surface
oricntation sotved for point 1 (v = 69. 8°, ¢ = 47.4°). This was determined simply by the computation just
described. As a first demonstration of the implementation, figure 4d shows how circles would appear if lying
on the surface along the path of the curve, demonstrating that the oricntation can be determined for all points
along the curve. _ '

To review, the surface orientation is strong]y constrained in places where T mtersccts a rulmg at a very
large obtusc angle. Knowing the oricntation at that point means that the onentatlon is known cverywhere
along the curve, This might be described as extrapolation of the solution from places where it is strongly
constrained. But note that the solution at any point is locally determined given one global parameter (which
we defined as the variable a). ' »

Before examining further demonstrations of this method, it is instructive to éxamine, rather informally,
whether our 3-D interpretations scem coﬁsistcnt with the underlying geometric constraints, namely, that the
contour is planar, geodesic and a line of‘curyaturc, and that the surface is cylindrical.

3. Qualitative chservations

3.1 Smooth curves generally appear planar in 3-D

A solitary curve in monocular presentation usually appears planar and in 3-D. The curve in figure Sq, for
example, seems to lie in a different plane than the plane of the page. (Itis suggcstcd that this and subsequent
figures be viewed monocularly with sufficient viewing time allowed for depth impressions to develop.) In fact
it is quite difficult to perceive the torsion of a solitary twisting curve from a single orthographic projection -
figure 5b is the projection of a helix, although it is difficult to see it as such. The interpretation as a twisting
space curve is easier to achieve if the curve projects as a self- “intersecting image curve. The helix in ﬁgure S¢,
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Figure 5. A smooth curve is usually seen as planar (a). (Observe this and subsequent figures monocularly, and allow sufficient
viewing time for depth impressions to develop.) It is quite difficult to perceive the torsion of a solitary twisting curve from 4 single
image unless, sy, it is sel-intersecting. Compare & and ¢, both of which are are helices.

for example, is more obviously twisting in space.4

3.2 Iutersections are generally seen as right angle intersections in 3-D
A simple oblique intersection appears to be the image of a right-angle intersection in space (figure 6). The
literal interpretation of cither intersection in figure 6 as an oblique (non-right angle) intersection in the plane

Figure 6. Example of simple intersections that are strongly interpreted as right-angle intersections in 3-D. o

¥

4, Incidentally, planarity seems to be applied only piecewise along extended contours. An image curve without inflection points in
curvature or discontinuities in tangent is usually scen as a single planar curve. But at such points the curve miglhit appear to twist
abruptly. As a result, the overall curve appears to be composed of piecewise-planar arcs in 3-D. In large part the spatial orientation of
each individual are seems to be independently determined. The reader is invited to draw various isolated curves to further examine the
tendency for planarity and the instances where curves are seen as piccewise planar or to have torsion.




Stevens -15- Surface shape from contours

of the pagé is very difficult to achieve in monocular or cven binocular presentation. This tendency to take a
right-angle interpretation has been observed in various contexts, including illusions (see e.g. [Luckicsh 1965;
Robinson 1972]), and in conjuction with 3- D interpretations of geometric figures [Attneave & Frost 1969;
Attneave 1972; Perkins 1972; Finch 1975; Shepard 1979; Stevens 1982}, Further instances of perceived
right-angles occur in other figures in this article,

3.3 Intersections generate apparent surfaces in 3-D

A simple curve having only a weak 3-D interpretation (figure 7a) suddenly provides a strong impression of a
surface when intersected by a line segment. The apparent surface shape is substantially independent of
whether the line intersects an endpoint (figure 7b, ¢, £ and g) or some interior point (figure 7d and ¢). Note
further, by comparing figures 75, d and f'with figures 7c, e and g, that the curve can be interpreted cither as a
physical boundary or an interior marking without substantially affecting the apparent surface shape. In either
case the surface appears to be cylindrical. (In figure 7 all intersecting lines have the same orientation; the
mtcrscntmn angle critically affects the apparent surface -- sce later.)

3.4 Parallel curves appear to lic on cylmdnc.ll surfaces

Two arbitrary smooth curves that are ])dlﬂ“C] (i.e. differ only by a translatmn) are sufﬁucnt to clicit a 3-1>
interpretation. The curves are scen as the two edges of a ribbon-like surface (figure 8a). Note that additional
parallei curves enhances the impression of a surface but the apparent surface shape is substantially unchungcd'
(figure 8b). Note further that the spacing between curves is immaterial. In figure 9 the curves are preciscly
parallcl but the spacing between curves is random. Under carcful inspection figure 9 defines the same
cylindrical surface as seen in figure 8.

The random spacing between the parallel contours, however, produccs an illusion of shading, which in
turn may purturb the |mprcss1on of viewing a cylmdncal surface. First consider figure 8h, where the line
density varies across the pattern, There is a diagonal swath across the figure where the curves nearly touch,
which appears shaded in parafoveal vision. The shading suggests surface curvature along that diagonal, which
likely enhances the impression of surface shape. (Shading due to variations in line density probably
contributcs to the impression of three- -dimensionality in these patterns, but as figure 2 demonstrates, shading
is not wholly responsible.) Returning to figure 9, besides the shading along the diagonal, the random spacing
of the parallel lines produces additional shading that suggests slight ripples running perpendicular to the
major troughs and crests of the surfgxcé. When the surface shape is examined closely, however, these shading
cffects largely vanish. «

Finally, consider figure 10, in which straight line segments intersect a given curve. If the lines segments are
parallel the surface appears cyhndncal (figure 10g). If they diverge slightly (figure 10b) we attribute the
divergence to perspective. Thus the same surface is seen in each case, one in orthographic projection, the
other in perspective (i.e. from close by). Itis much more difficult to take the alternative interpretation that the
surface is developable but twisted, as if a sheet of paper werc twisted into a helicoid. (Incidentally, observe
that the parallel rulings in figure 10a might actually appear to converge in 3-D.)
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Figure 7. In a the simple curve has only a weak 3-ID interpretation. But the addition of lines that intersect it, in B-g, cause us to sce a
surface that resembles a gently curved sheet of paper. To demonstrate that the cusve can be interpreted as cither a physical boundary
or an interior marking, without changing the apparent suiface shape, compare b-c, d-eand fg To demonstrate that lhc location of the
intersection along the arc is not critical, compare b-d-f, and compare ¢-e-g.

3.5 Parallel curves appear to be lines of greatest curvature on cylindrical surfaces

Referring back to all preceding figures, the general impression is of curves that follow the greatest curvature
across the surface. This is supported particularly in figures 4, 7, and 10, where the étraight lines (that follow
the direction of least curvature across the surface) appear to be perpendicular to the curves. Also supporting
this is the following: the curves appcar to be planar normal sections of cylinders and all planar normal
sections of a cylinder are lines of curvature.

Morcover, consider the cylindrical surfaces depicted in figure 11. The curves appear to follow the dxrcctxon
of greatest curvature on the surface. Informally, they resemble flow lines over a waterfall, or sections of an
airfoil. In cach case they appear as planar normal scctions, and as just mentioned, it therefore follows that
they are lines of greatest curvature on the cylinder. ‘

Figure 11 also demonstrates an important point regarding how the curves themselves are seen in 3-D.
Each curve in figure 11 is an arc of an ellipse. Usually, an isolated arc of an cllipse assumes the 3-D
orientation corresponding to an arc of a slanted circle, just as a complete ellipse is seen as a slanted circle in
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Figure 8. Two smooth: curves that are parallel suggest 3 ribbon-like, cylindrical surface (a). The impression of a surface is enhanced
but the apparent surface shape is unchanged when additional parallel curves are added (b). '

Figure 9. Randomly-spaced parallcl contours generate the same apparent surface shape as scen in figure 85, where the contous are
spaced equally.

3-D.5 (Hence an ellipse or a section of an cllipse appears as a section of a constant-curvature cutve in 3-D.)
But when the ellipse sections are arrayed in parallel fashion, as in figure 11, the dominant impression is of

5. To some cxtent this can be observed by scrutinizing the bottom-most ellipse of each surface in figure 11. But note that the other
ellipses assume a different orientation in 3-D. - :
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Figure 11. These cylindrical surfaces appear to be scored with lines of greatest curvature. Note that the curves appear planar and to
be normal sections of the surface. It is significant that the 3-D curves do not appear to have constant curvature despite the fact that
they are drawn as arcs of ellipscs - see text. : : '
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curves lying on a surface such that the normal curvature is not constant along the curve. The spatial
orientation of the osculating planc of each curve is apparently not dominated by the shape of the individual

projected curve. (This suggests that the human visual system does not first determine the orientation of the

plane containing the curve, then use that to determine the surface orientation, as mentioned carlicr.) The

bottom left surface in figure 11 presents a particularly clear demonstration since the drawn curves are, in fact, -

arcs of circles.  Rather than appear to lie in planes parallel to the printed page, they appcar to be cross
scctions seen from an oblique vicwpoint.

Figure 12 demonstrates that parallel copies of virtually any curve can induce the iinprcssion of a cylindrical
surface. Here, rather than precise sinusoids br arcs of cllipses, the repeating curve is a spline that was drawn
through some points that were chosen arbitrarily. These parallel lines appear to lie on a surface that is
precisely cylindrical (a straight line placed on the surface paraliel to the troughs and ridges would touch the

- surface at all points along its length).8

Finally, observe in figure 13 that the global surface shape is not restricted to being strictly cylindrical. This
surface appears doubly curved, and resembles concentric ripples on a pool. The curves are locally, but not
globally, parallel. It is conjectured that doubly-curved surfaces such as that depicted by figure 13 are
perceived by the same processes that derive the 3-1) shape of cylindrical surfaces from parallel contours. That

‘is, the method involves a local correspondence between parallel segments of contours (to estimate the angle B,

Figure 12. The irregular cylindrical surface is suggested by multiple paraflel copies of a smooth spline drawn  through
arbitrarily-chosen points. The curves are interpreted as normal sections of the cylinder, and the ridges and troughs run perpendicular
to the curves, thercby following the lines of least curvature or rulings of the surface.

6. Except along some ridges where the surface may appears to dip slightly between the contours. This effect, cutiously, seems associated
only with apparent ridges. Therefore when the the figure reverses in depth so that what were seen 4s (convex) ridges now appear as
(concave) troughs, the surface along the trough appears precisely cylindrical. The depth reversal can be induced most easily by simply
inverting the figure (since we tend to interpret distance as increasing as one scans from bottom to Lop on the figure, this biases the depth
interpretation in these figures). Where the apparent surface undulates as one scans along a ridge, the contours secm (o be interpreted as
bounding (or sithouctte) contours [Marr 1977] of slight peaks. The impression is enhanced by obscuring all but a single ridge and its
flanking stopes on either side: each individual curve may appear to be the outline of a small conical hill. Again, when the figure is
inverled, this strip looks like a culvert (i e. cylindrical); it is quite difficult to interpret it as an inverted view of a row of small conical hills.
This curious phenomenon seems independent of the tendency to interpret parallel contours as lying on a cylindrical surface.
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Figurc 13. 'The doubly-curved surféce'-rescmbliﬁg ripples ona pool arise froni szmrsmd—s—ha;mg a gradually-varying phase shift. The
curves are locally, but not globally, parallel.  Arbitrary doubly-curved surfaces are amenablc to a local approximation by cylinders
provided the contours are sufficiently closely spaced.

elc., as discussed insection 2.7) and this method is tolerant of gradual variations in the correspondence across
the surface. Thus, provided the contours are sufficiently closcly spaced, arbitrary surfaces can be analyzed by
this method.

4. Demonstration of the implementation

Informal observation suggests that we interpret parallel curves as planar, geodesic and as lines of curvature
across cylindrical surfaccs. These observations arc consistent with the hypothesis that the human visual
system incorporates assumptions (1-3). Stronger support is provided by a computer implementation of the
method defined by (14-18). The surface oricntation predicted by this method is in close agreément with the
apparent surface orientation.

The implementation computes the surface normal at points along a curve from image configurations such
as we have examined. The biscctor of the angle # is used as an estimate of the surface tilt 7 at the point where
B is largest. The tilt estimate allows the variable a to-be computed from (18). Given g, the normal at that
point is completely specified, so the slant can also be determined from (14). (Note that the bisector solution is
but one of several independent means for estimating the orientation at a point, from which g may be
determined.) For any other point along the contour, the value of ¢ may be computed from (17) given a and
the measured value of b at that point. Given ¢ at that point, the surface normal (16) is also determined, so that
the tilt and slant at that point can also be computed from (14). The computation of surface orientation at any
- point is thercfore a simple function of the local parameter 8 and the global parameter a.

The surface orientation computed by this method can be graphically depicted by superimposing a directed
line segment that repi'csents the local surface normal (figure 4c¢) or, say, by computing how a small circle lying
on the surface would project onto the image plane, (figure 4d). The local surface orientation predicted by this
method would seem in close correspondence with that perceived by the human observer if the superimposed
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line segments appear perpendicular to the surface or the superimposed ellipses appear to be circles that lie in
the tangent plane of the surface. A demonstration of both schemes is given in figure 14. Figure 14a shows a
curve intersected by parallel straight line segments. The implementation computed the surface normals
shown in figure 14b, and the cquivalent foreshortened circles in figure 14¢. Onc may compare the apparent
surface oricntation in figure 14a with the predictions below it. (The figure should be viewed monocularly,
-oriented pcrpcnd}cular to the line of sight, and studied for a few seconds in order to develop a strong
impression of three-dimensionality.) ,

While the depiction of a surface nvo‘rmal by a short line scgment is an excellent means for indicating local
surface tilt, the slant, indicated by the length of the line segment, is much harder to judge from the displayed
line. While we arc sensitive to the length of the depicted surface normals (because they appear obviously
incorrect when all arc displayed as with cqual length rather than foreshortened by the sine of the slant angle)
it is difficult to make subtle judgments of slant from variations in the projected line lcngths.7 Furthermore,
the linc scgmehts.that réprescnt surface normals may influence the apparent surface shape. In figure 14c, the
addition of short line segments to the simple éonﬁguration of figure 14a brings a complicating factor. As
noted ecarlier, we have a tendency to interpret intersecting straight lines segments as perpendicular and
cqual-length in 3-D. Hence the added line segments in figurc 14¢ have a strong potential for influencing the
spatial interpretation of the basic figurc. (There scems to be less interaction when the depicted surface normal

c

Figure 14. The configurations in a appear in 3-D. Compare the spatial orientation at each intersection point \mh that predicted by the
implementation, Orientation is depicted in b by the projection of a unit surface normal, and in ¢ by the prejection of a circle lying
flush on the surface. ’ ‘ I

7. When one considers what inferring local slant by this means would entail, this observation is not surprising. Note how little the line
fengths vary in figure 14¢ compared to the differences in foreshortening to the corresponding ellipses in figure 14b. -
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Tigure 15. The shape and orieniation of the ellipses in a are.predicted by the theory and appear as circular disks, each lying in the
o
tangent plane to the surface at that point. In b the cllipses arc systematically rotated 10  counterclockwise relative to the

-] o .
corresponding disks in ¢ Similarly, in ¢ and d the cllipses are rotated 10 and 20 clockwise. Obscrve that when the oricntation of
the ellipsc is inappropriate the interpretation is cither of a circular disk touching the surface at only one point on its perimeter, or of
an ellipse drawn on the surface.

is presented only bricfly while continuously viewing the stimulus figure [Stevens 1982].)

Consider now the use of ellipses to depict the surface orientation predicted by the implementation. An
cllipse of given shape and orientation is very effective in suggésting a circular disk of the corresponding
surface orientation. Superimposed on the image of a surface, an ellipse is interpreted as a disk that contacts
the apparent surface, and if oriented appropriately, the disk appears to lie in the tangeﬁt plane to the surface
at that point. The ellipse may be used as a probe of apparent surface orientation, since cllipses of
inappropriate orientation or shapé will not appear to lie on the surface. To demonstrate, figure 15a shows a
row of ellipses, each of which appears, to most observers, to lie flush on the surface. In figure 155 the ellipses
are systematically rotated 10° counterclockwise relative to the corresponding ellipses in figure 15a. Similarly,
in figures 15¢ and 154 the cllipses are rotated 10° and 20° clockwise. Observe that when the orientation of the
ellipse is inappropriate the interpretation is either of a circular disk touching the surface at only one point on
its perimcter, or of an ellipse drawn on the surface. In ﬂguré 15 the apparent tilt of the disks was varied,
holding slant constant. Figure 16 varics the slant while holding tilt constant. Figure 16a (which is identical to
figure 15a) shows ellipses that appear to be circles on the surface, while the ellipses in figure 165 correspond
to disks that are systematically slanted and additional 10°, and in figures 16¢ and 164 the disks are slanted by -
10° and 20° less than the corresponding disks in 16a. Note that when the disks are inappropriately slanted
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Figure 16, In a (whnch is identical to figure 15a) the elhpm appcar tobe c:mlm on the mrfaee The elhpscs in b correspond to disks
that are systematically slanted and additional 10 and in ¢ and d the disks are slanted by 10° and 20° tess than the comresponding
disks in . Notc the apparent slcp-hkc discontinuity in the surface in ¢ and d (in a, on the other hand, lhe surface appears smooth and
continuous across the row of disks). .

relative to the surface theky tend to introduce an apparent step-like diséontinuity in the surface (see ﬁgurcs 16¢
and 16d). In figure 164, on the other hand, the surface appears smooth and continuous across the row of
disks. As these figures demonstrate, we are sensitive to “errors” in the orientation and shape of the
superimposed cllipses, which correspond to discrepancics of (somewhat less than) 10° in tilt and slant relative
to the apparent oricntation of the underlying surface. | ‘

The local surface oricntation predicted by the theory is demonstrated, using elhpscs in figures 17, 18, and
19. Observe that in each instance the cllipses appear as disks lying on-the surface, even when the figure
reverses in depth. Figure 17 shows variations in appérent surface shape with changing the amplitude of the
sinusoids. Likewise, in figure 18 the phase between adjacent sinusoids is varied. Finally, figure 19 shows the
implementation applied to the cylinders of figure 11, with similar results. ' ’

5. Discussion

The implementation supports the hypothesis that ‘our visual intcrpretation is constrained by treating the
image curves as projections of lines of curvature assuming both the viewpoint and contour placement are
representative. Morcover, the specific method of estimating surface tilt at the point of greatest constraint by
the bisector, while not critical to the overall theory, scems well supported by the implementation. The
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Tigure 17. Sinusoid patterns of differing amplitude. In each case one sinusoid is replaced with a scries of ellipses that appear to lie

flush on the subjective surface. Note that they continue to appear appropriate when the figure suddenly reverses in depth or as one
rotates the figure,

implementation was intended only to examine these two points; it was not otherwise meant as a model of the
corresponding visual process in human vision. ‘

A common geometry is shared by the configurations consisting of parallel curves (figure 1), a single curve
intersected by parallel straight lines (figure .10a) and the rather "minimal” case of a single curve intersected by
a single straight (figure 7). All visually suggest cylindrical surfaces, where the curves correspond to lines of
greatest curvature and the straight lines correspond to rulings. We saw a geometric argument for why parallel
curves imply that the surface is cyl'fndrical in section 2.7. The same argument can be adapted to the case of a
single curve intersected by parallel straivghtv lines -- that geometry also implies cylindricality. The only curious
case is why a single curve intersected by a straight line also looks like a cylinder. At most, if the line segmént ,
corresponds to a ruling, one could conclude that the surface is developable but not necessarily cylindrical.
(Since there is only one ruling visible, one can determine from this configuration whether or not the surface
normal twists along the curve.) ' S

Let C be the image of a given line of curvature I" and R that of a given ruling A. Since the surface is a
cylinder, all rulings are mere translations of one another, and all liries of curvature are likewise translations of
one another. Thus one can reconstruct how all rulings and lines of curvature would appear in the image by




Stevens -25- Surface shape from contours

] \M/\/\\’/\\

/—-—\\___———”” o
/\”‘/ e ——. ]
/-\/‘ /\
’-‘—‘_—_—_\\_—_——’/
——————— T ——
000900000006656600000 yao&* OO\_OOooo
,/—_\\\—__————/ —’/\\\
/—\\—_—/ \
/\J /\_—/
/\‘/‘
T — e N
/—-—\.—_———/ /———\/
———
a b
c d

’d¢OOOOoOO ’yaoacao
O, 2? - S -

Figure 18. Sinusoid patterns of dlﬂ‘cfmg phaqe thﬁ comlant amphtude Note that the em;)ses appear appropnate in each case, even
when depth reverses and as the figure is rotated.

translating C in either direction along R, and by translating R in cither direction along C. This would
reconstruct the orthographic projection of an orthogonal net or grid across the surface. Thus although one
starts with a simple configuration of a few parallcl curves or a curve intersected by one or two straight lines,
one can effectively reconstruct how a dense grid across the surface would appear. By this means the surface
orientation can be determined for arbitrary points along a cylinder. The interpolation of surface orientation is
conceivably applied to doubly-curved surfaces (such as figure 13) provided they may be approximated locally
by cylinders. 1t remains to be determined how well a simple grid interpolation accounts for the apparent
surface orientation in those cases. . '

To summarize, three assumptions (line of curvature and general position of viewpoint and contour) atlow
one to conclude that the underlying surface is cylindrical when presented with parallel contours and certain
other configurations. It is possible to reconstruct the projection of an orthogonal net across the surface, and
provided that the surface orientation is determined at one point on the surface it can be solved everywhere

“else. (The bisector is one of several methods that may be used to determine orientation at certain points in
order to sced the computation.) Thus the computation of surface orientation from the image configurations

we have examined is, at least in principle, amenable to a very simple local algorithm requiring but one global
parameter. ' '
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Figure 19. The cylinders in figure 11 are reproduced here with ellipses drawn by the implementation. Note that in each case they
appear appropriate. )
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