MASSACHUSETTS INSTITUTE OF TECHNOLOGY

ARTIFICIAL INTELLIGENCE LABORATORY

A.lMemo No.677 May, 1982

PARSING AND GENERATING ENGLISH
USING COMMUTATIVE TRANSFORMATIONS

Boris Katz and Patrick H. Winston

ABSTRACT: This paper is about an implemented natural language interface that translates from English

into semantic net relations and from semantic net refations back into English. The parser and companion

generator were implemented for two reasons: (a) to cnable experimental work in support of a theory of
lcarning by analogy; (b) to demonstrate the viability of a theory of parsing and gencration built on
commutative transformations. The learning theory was shaped to a great degree by experiments that would

have been extraordinarily tedious to perform without the English interface with which the experimental

data base was prepared, revised, and revised again. Inasmuch as cusrent work on the learning theory is

moving toward a tenfold increase in data-base size, the English interface is moving from a facilitating role to

an cnabling one. The parsing and generation theory has two particularly important features: (a) the same

grammar is used for both parsing and genceration; (b) the transformations of the grammar are commutative.

The language generation procedure converts a semantic network fragment into kernel frames, chooscs the

sct of transformations that should be performed upon cach frame, exccutes the specified transformations,

combines the altered kernels into a sentence, performs a pronominalization process, and finally produces

the appropriate English word string. Parsing is essentially the reverse of generation. The first step in the

~ parsing process is splitting a given scntence into a sct of kernel clauses along with a description of how those

clauses are hicrarchically related to cach other. The clauses are used to produce matrix and embedded

kernel frames, which in turn supply arguments to relation-creating functions. The evaluaiion of the

relation-creating functions results in the construction of the semantic net fragments.

This rescarch was done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the Laboratory’s artifictal intelligence rescarch is provided in part by the
Advanced Rescarch Projects Agency of the Department of Defense under Office of Naval Rescarch contract

NO0014-80-C-0505. @ MASSACHUSETTS INSTITUTE OF TECHNOLOGY 1982

Katz & Winston _ -2- Introduction

Iitroduction

This paper presents an implemented natural language interface that translates from
English into semantic net relations and from semantic net relations back into English. At
present, the system cnables natural language interaction at the Massachusetts Institute of
Technology with Winston's learning system [Winston 1981] and at Stanford University with
Binford's ACRONYM vision system [Binford 1982, Winston et al, 1982].

To illustrate the parsing and generating abilities of the interface, let us consider the

following English sentence: "Othello did not want to kill Desdemona because he loved
her." The parser translates this sentence into the following semantic network fragment:

CAUSED-BY-l/\ LOVE-1
KILL-1 a

OTHELLO > DESDEMONA

IS5-1

FALSE

FIGURE 1. A semantic network fragment produced by the system after parsing the sentence "Othello did
not want to kill Desdemona because he loved her.”

Conversely, the language generation procedure, operating on CAUSED-BY-1 (see
Figure 1), produces the original sentence.!

1. This examplc shows that the natural language system is invertible. However, no claim is being made that
in gencral there should be a one-to-one correspondence between the semantic network fragment and the
English cutput produced by the language generation procedure. For instance, .there might be optional
planning decisions depending on the values of certain discourse paramcters. These questions will not be
addressed in the present paper.

Katz & Winston : -3- Purpose

Purpose
The parser and companion generator were implemented for two reasons:
o To enable experimental work in support of a theory of learning by analogy;

o To demonstrate the viability of a theory of parsing and generation built on
commutative transformations,

* The learning theory is that of P. Winston [1980, 1981]. The theory was shaped to a
great degree by experiments that would have been extraordinarily tedious to perform
without the English interface by means of which the experimental data base was prepared,
revised, and revised again. Inasmuch as current work on the learning theory is moving
toward a tenfold increase in data-base size, the English interface is moving from a
facilitating role to an enabling one. This marriage of work on learning with work on
language is an example of the following trend:

o0 As researchers in Artificial Intelligence progress beyond toy-world domains, it
becomes obvious that data bases prepared and accessed using English are necessary
for research, not simply for research presentation.

The parsing and generation theory is that of B. Katz [1980]. The parsing and
generation programs based on the theory have two particularly important features:

0 Thesame grammar is used for both parsing and generation;
o In the generation process, the transformations of the grammar are commutative.

The paper is divided into two parts. First, we discuss how the language generation
procedure converts network fragments into English sentences, establish the vocabulary
relevant to the grammar, and give the necessary definitions. In the second part of the paper
we describe the parsing process.

Representation

A semantic net is the common internal representation used for all three interacting
subsystems: the parser, the learning system, and the generator. Each relation in the net is
implemented as a frame, a slot in the frame, and a value in the slot. In such a structure, the
Jrame position is occupied either by a noun or by an embedded relation; the sfot is usually
filled by a verb or a preposition; and the value can be filled by a noun, an adjective, or an
embedded relation. Nodes and relations in the net are created using the function

Katz & Winston -4 - Representation

RELATION. Consider, for instance, the following use of RELATION:

(RELATION OTHELLO
WANT
(RELATION OTHELLO KILL DESDEMONA))

Exccuting this expression causes the following list structures to be created:
(WANT-1 (FRAME (OTHELLO)) (SLOT (WANT)) (VALUE (KILL-1)))
(KILL-1 (FRAME (OTHELLO)) (SLOT (KILL)) (VALUE (DESDEMONA)))

In addition, a supplementary description node, a comment frame, is attached to the
frame-slot-value combination and is used for identification and cross-referencing of
relations:

(OTHELLO (KILL (DESDEMONA (KILL-1)))
(WANT (KILL-1 (WANT-1))))

Generation Converts Network Fragments into Sentences

A network fragment becomes an English sentence in several steps. First, the
fragment is divided into elements, taking into account the depth of embedding and certain
values of the nodes. We will refer to these elements as kernel clements. Each of the kernel
clements will ultimately be transformed into a matrix or an embedded clause in the
resulting English sentence. In order to achieve this goal, we move into the next level in the
internal representation of the natural language interface, the level of kernel frames. Thus,
each kernel element of the semantic network is turned into a corresponding kernel frame.

A kernel frame is constructed from three types of instantiated templates:
noun-template, verb-template, and adverb-template. The constituent structure of the
templates is shown below:2

noun-template (NT) (prep* det» adj* noun)

verb-template (VT) (auxl aux2 aux3 verb)

adverb-template (AT) = (mod adverb)

2. The template structures also provide information about the order of the constituents, and, therefore, act -
like phrase structure rules. Here prep, det, adj, aux, mod are, respectively, abbreviations for preposition,
determiner, adjective, auxiliary, and modifier. The superscript * indicates that a string of one or more
symbols or their conjunction is allowed.

Katz & Winston _ -5- Generation

Each template is implemented as an ordercd list of pairs. The first element of the
pair is the name of the constituent, the second is its value. All constituents are optional. If
any constituent is absent, its value in the template is nil. Given below are some sample
templates: ' |

NT = ((prep nil) (det a) (adj (young pretty)) (noun lady)) "a young preity lady"

NT = ({prep (from out of)) (det the) (adj nil) (noun darkness)) "from out of the darkness”
VT = ((auxl could) (aux2 have) (aux3 nil) (verb noticed)) "could have noticed”

AT = ((mod very) (adverb well)) , "very well”

The following two operations on templates are allowed:

1. Concatenation: CONC (X1 X2) ---> X1 X2
2. Conjunction: CONJ (X1 X2) ---> X1 conj X2

where X1 and X2 are two templates of the same type, and conj is a conjunction such as and,
or, etc. For instance, the noun-template representing the noun phrase "Othello and
Desdemona" involves an application of the conjunction operation:

NT = ((prep nil) (det nil) (adj nil) (noun Othello) (conj and)
(prep nil) (det nil) (adj nil) (noun Desdemona))

This template is also an example of a so called prepositionless noun-template, a
noun-template that does not begin with a preposition.

Notice that in our grammar the noun-templates are used for constructing both
- noun phrases and prepositional phrases. The idea of having a prepositional constituent
within a noun-template is not as far-fetched as it may seem. In languages with nominal
case marking (like Russian), the case marking of noun phrases serves a semantic function
similar to that of prepositions in English. A noun-template in such a language would have
to incorporate a slot for recording the case of the noun phrase in order for its semantic role
to be determined. Therefore, case marked noun phrases in many languages are used as
counterparts of prepositional phrases in English. The decision to include the prepositional
constituent into a noun-template reflects this linguistic generalization.

Fach prepositionless noun-template in a sentence has a particular semantic role
associated with it: agent, goal, or theme. This semantic role indicates how the noun phrase
participates in the action denoted by the verb.

Agent is an entity that causcs the action to occur.
Goal is the recipient or the beneficiary of the action.
Theme is an entity that undergoes a change of state or position.

Katz & Winston -6- Generation

The instantiated templates are combined to form a kernel frame with the following general
structure: '

NTinilial NTagenl VT NTgoal NTtheme NTﬁnal

Here NT®" NT® and NT"™™ are noun-templates that play, respectively, the roles of
agent, goal, or theme in a sentence. NT™® and NT™ are noun-templates that will be
transformed later into the sentence initial and final prepositional phrases. In addition,
adverb-template constituents can appear in a number of places: in the beginning, in the
middle, or in the end of the kernel frame.> Most of the elements in the frame are optional.

For the network fragment anchored by IS-1 in Figure 1 (constructed from "Othello
did not want to kill Desdemona™), the division process discovers two kernel elements:
WANT-1 and KILL-1.

(WANT-1 (FRAME (OTHELLO)) (SLOT (WANT)) (VALUE (KILL-1)))
(KILL-1 (FRAME (OTHELLO)) (SLOT (KILL)) (VALUE (DESDEMONA)))

The instantiated templates that will make up the kernel frames in this case are
simple, since most of the possible slots are unfilled:

NT = ((prep nil) (det nil) (adj nil) (noun Othello))
NT = ((prep nil) (det nil) (adj nil) (noun Desdemona))
VT = ((aux1 nil) (aux2 nil) (aux3 nil) (verb wanted))
VT = ((aux1 nil) (aux2 nil) (aux3 nil) (verb kill))

These templates are combined to form two kernel frames: a matrix kernel frame’ (MKF)
and an embedded kernel frame (EKF). In order to construct sentences with embedded
clauses, it is necessary that the matrix frame indicate the position where an embedded
frame will be inserted. This position, the joining point, is marked by the word ir.

MKF = ((NT2%" ((PREP nil) (DET nil) (ADJ nil) (NOUN Othello)))
(VT ((AUX1 nil) (AUX2 nil) (AUX3 nil) (VERB wanted)))
(NTtheme ((PREP nil) (DET nil) (ADJ nil) (NOUN it))))

EKF = ((NT2€t ((PREP nil) (DET nil) (ADJ nil) (NOUN Othello)))

(VT ((AUX1 nil) (AUX2 nil) (AUX3 nil) (VERB kill}))
(NTtheme ((PREP ni1) (DET nil) (ADJ nil) (NOUN Desdemona))))

Once kernel frames are constructed, they are converted into transformation frames
in preparation for the application of transformations. This involves conversion of the

3. The adverb-templates will be ignored in the rest of this paper.

™

Katz & Winston , -7- Generation

noun-templates into word strings, separation of each auxiliary verb from its affix, and the
insertion of certain dummy slots that will be used by certain transformations.

The noun phrases of the transformation frame are derived from the
noun-templates of the kernel frame. FEach noun phrase indicates one of three fixed
positions in the transformation frame: NP -position, NP, S-position, or NP,-position. Each

noun phrase is associated with one of the prepositionless noun-templates NT?&™, NT#oa!,
or NT'"™ in the kernel frame. We will assume that the noun phrases NP}, NP, and NP,

initially obtain their values from the templates NT®™, NT and NT"e™¢ respectively.?
If only two noun-templates NT®*™ and NT'™™ are present in the kernel frame the
corresponding transformation frame will have only two NP-positions: NP, and NP2.5

A special procedure, affix stripping, is performed on the auxiliary elements of the
verb-template to separate each auxiliary verb from its associated affix. The affixes of the
auxiliaries Modal, HAVE, and BE are, respectively, 0, -en, and -ing. The notation reflects
the fact that, in an English sentence, the auxiliary determines the form of the following
verb: an infinitive follows a modal, the past participle follows HAVE, and the progressive
form of the verb follows BE. If the sentence has no auxiliary verbs in it, the auxiliary do
(without an affix) is inserted as a value of the AUXI. '

Several dummy elements are inserted into the transformation structure. These are
left unspecified until the appropriate transformation activates them and assigns the
necessary values. The elements NEG1 and NEG2 that are used for the contracted and full
forms of English negatives are inserted after the first auxiliary verb. The dummy element
COMP is inserted at the beginning of the structure and the clement INFL, before the first
auxiliary verb.® They will be used in constructing different embedded clauses. In our
example, the matrix transformation frame (MTF) and the embedded transformation frame
(ETF) have the following form:

MTF = ((COMP comp) (NP1 (Othello)) (TENSE past) (INFL inf1)
(AUX1 do) (NEG1 negl) (NEG2 neg2) (VERB want) (NP2 (it)))

4. By values we mean the actual word string derived from a noun template plus the information about its
semantic role. ‘

5. This is the reason for choosing the obscure indices 1, 1.5, and 2 for the noun phrases.

6. Inthe implementation, the values of unspecified elements NEG1, NEG2, COMP, and INFL are names of
those elements.

Katz & Winston ' -8- Generation

ETF = ((COMP comp) (NP1 (Othello)) (TENSE past) (INFL inf1)
(AUX1 do) (NEG1 negl) (NEG2 neg2) (VERB kill) (NP2 (Desdemona)))

The network fragment also determines which transformations should be applied.
Once the transformation frames are prepared, transformations are applied. In the current
implementation, there are 21 possible transformations. Some of these, the connective
transformations,’ prepare a matrix transformation frame and an embedded transformation
frame for combination, while other transformations, such as negation, passivization, or
there insertion, apply to only one frame.

In the example, the transformation NOT is applied to the matrix frame, along with
a connective transformation, 0-0-TQ, which is applied to the embedded frame. This
particular choice of connective transformation was made by taking into account the type of
verb in the matrix clause, the kind of branching, and the identity of subject noun phrases in
the main clause and in the embedded clause. Here are the altered transformation frames:

((COMP comp) (NP1 (Othello)) (TENSE past) (INFL inf1)

MTF =
(AUX1 do) (NEG1 negl) (NEG2 not) (VERB want) (NP2 (it)))
ETF = ((COMP 0) (NP1 nil) (TENSE past) (NEG1 negl) (NEG2 neg2)

(INFL to) (AUX1 do) (VERB kill) (NP2 (Desdemona)))

Once all transformations have been applied, the altered transformation frames are
~ attacked by four obligatory adjustment operations:

1. Garbage-deletion removes all unspecified elements;
2. Do-deletion deletes the auxiliary do when it immediately precedes a verb;
3. Affix-hopping recognizes situations in which verbs need affixes attached;
- 4. N’t-hopping recognizes situations in which auxiliary verbs need nt attached.

It was shown in [Katz 1980] that the following two constraints must be imposed on
the adjustment operations to generate a correct English sentence.

Separation Constraint: The adjustments must be executed only after all the
transformations have been applied.

£ . 7. Theconnective transformations are described in the next section.

Katz & Winston : -9- Generation

Ordering Constraint. The adjustments must be applied in the order in which
they are listed above,

In our example, all of the adjustments except N’t-hopping have an effect,
producing the following result:

MTF = ((NP1 (Othello)) (AUX1 did) (NEG2 not) (VERB want) (NP2 (it)))

ETF

((INFL to) (VERB kill) (NP2 (Desdemona)))

Reading off the values in the adjusted transformation frames and substituting the
embedded frame ETF at the joining point indicated by ir in the matrix frame MTF, we
have the final English form, "Othello did not want to kill Desdemona."”

Thus, we have introduced two different classes of operations on the transformation
frame: the optional transformations and the obligatory, intrinsically ordered adjustments,
which are always activated after the last transformation has been applied in order to obtain
the necessary English output. In contrast to adjustments, transformations are part of a
planning vocabulary, that is, a decision must be made each time about the application of
any of the transformations. Adjustments are meaning-preserving, purely syntactical
operations on the transformation frame. Transformations, on the contrary, help determine
the meaning or focus the emphasis of a kernel sentence. This separation of all syntactical
operations into two distinct classes (transformations and adjustments) plays an important
role in constructing our system. It isolates the semantically empty component of the
generation process and clears the way for making the semantically relevant part of the
system commuitative. -

By the commutativity of a set of transformations, we mean that any two
transformations can be applied in either order, and both orderings produce the same
result.® Commutativity makes system implementation and maintenance easier because no
attention needs to be paid to transformation ordering and interaction.

Modularity is an important feature of the generation system. The production of
kernel frames and the list of transformations to be applied are determined from the
semantic network alone. This is completely independent of the production of
transformation frames and the transformation process itself. Therefore, the bulk of the
system is useful in other applications.

8. We assume here that all the sentences involved belong to the domain of definition of the corresponding

- transformations (see [Katz 1980] for details).

Katz & Winston -10- l Generation

To see some of the real power of the generator, we will illustrate the effect of
applying particular transformations. Suppose that the transformations were specified for
the kernel and embedded transformation frames which correspond to the following kernel
sentences:

This man asked it.
Othello killed Desdemona.

Given these kernels, the program can apply different sets of transformations sequentially to
alter the individual sentences or combine them. Among the possible outputs are:’

1.After 0-NP,-TOy: This man asked Othello to kill Desdemona.

2.After QUESTION: Did this man ask Othello to kill Desdemona?

3.After NOT,: Did this man ask Othello not to kill Desdemona?

4 After PASSIVE: Was Othello asked by this man not to kill Desdemona?

5.After N'T: - Wasn’'t Otheilo asked by this man not to kill Desdemona?

Connective Transformations

Connective transformations are used to construct sentences with embedded clauses.
In order to form such sentences, the system needs two kernels as input. Let us denote the
corresponding transformation frames as MTF and ETF. They will be used as the basis for
the matrix and the embedded clauses. The application of a connective transformation to

the ETF produces an altered frame ETF*, which is in the form appropriate for an

embedded clause. Other transformations may change the frame MTF into MTF* After
all the transformations have been dpphed the two altered frames are combined by
substituting the embedded frame ETF at the joining point it in the matrix frame MTF

A connective transformation is defined by three parameters, each referring to a position in
the embedded transformation frame: the complementizer COMP, the first noun phrase
NP, and the complementizer INFL. COMP indicates the element that introduces the

embedded clause. It can receive one of the following values: {PQOSS, THAT, FOR, O}.m

9. For convenience, we append "1" to the name of a transformation that will be applied to an embedded

clause, and "2" to a transformation that will be applied to a relative clause. Nothing is appended to the matrix
clause. The significance of the names of transformations, such as O-NPI-TO, will be explained below.

10. 0 means that there is no overt affix in this position.

oo

Katz & Winston ' -11- Conncctive Transformations

The parameter NP, takes on one of two values: {NP, 0} indicating whether or not the first
NP of the embedded clause is present in the resulting sentence. These values encode
whether the subject of the matrix clause is coreferent with the subject of the embedded
clause. INFL is considered to be an affix specifying how the verb in the embedded clause
should be inflected. It can have one of four values: {ING, INF, TO, 0}. Since a particular
set of values of the three parameters COMP, NP, and INFL is sufficient to determine the
form of the embedded clause completely, we will use them to form the names of the
Connective Transformations. Each name is represented as a triple consisting of the current
values of the parameters in the following order: COMP-NP -INFL. A general description
of the action of a connective transformation can be stated as follows:

(a) Current values of the parameters COMP and INFL are inserted into the
transformation frame; :
(b) If the value of the parameter NPl is 0, the element NP, is removed from the

structure,
(c) If the value of INFL is not 0, elements NEG1 and NEG?2 are moved before
TENSE.

An example of the application of each of ten different connective transformations is given
in Table 1, below: 1 /

TABLE 1
Transformation Matrix Clause Embedded Clause Sentence

THAT-NP1-0 Itangered Jago Othello ignored the letter That Othello ignored the letter angered Iago

THAT-NPl-INF lago suggests it Cassio is silent Tago suggests that Cassio be silent
O-NPI-INF lago watched it Othello read the letter lago watched Othello read the letter
O-NP1-0 Tago knows it Othello ignored the letter lago knows Othello ignored the letter

F OR-NPl-TO It angered Iago Othello ignored the letter For Othello to ignore the letter angered lago
O-NPl-TO Cassio asked it lago wrote the letter Cassio asked Iago to write the letter

0-0-TO lagoclaimsit . Tago has written the letter Iago claims to have written the letter
POSS-N Pl-ING It shocked Tago Othello ignored the letter Othello’s ignoring the letter shocked Tago
O-NPl-ING Tago saw it Othello read the letter lago saw Othello reading the letter

0-0-ING It angered Othello Othello read the letter Reading the Ietter angered Othello

11. The computer output does not always adhere to historical reality.

Katz & Winston -12 - Connective Transformations

The main verb of the matrix clause determines which kind of clause may be
embedded under it, and, therefore, the kind of connective transformation that may be
applied in each particular case. Consequently, the dictionary entry for any verb which may
appear in a matrix clause must contain a list of permissible transformations.

A family of ten transformations for generating embedded clauses was introduced
in this section. This family is completely defined by the values of three parameters COMP,
NP, and INFL and, therefore, can be considered a single connective transformation whose
surface manifestation has several different forms depending on the values of these
parameters. :

In summary, the language generation procedure converts a network fragment into
kernel frames, chooses the set of transformations that should be performed on each frame,
and then executes the specified transformations, combines the altered kernels into a
sentence, performs a pronominalization proce'ss,12 and finally produces the appropriate
English word string.

Parsing is the Reverse of Generation

The first step in the parsing process involves splitting a given sentence into a set of
kernel clauses along with a description of how those clauses are hierarchically related to
each other. For instance, identifying the type of the verb and the values of
complementizers COMP and INFL in the sentence appears to be sufficient for
reconstructing the kernels (matrix clause and embedded clause) which form every complex
sentence in Table 1. ‘

Consider again the sentence "Othello did not want to kill Desdemona because he
loved her." In this example, the because-clause is detached first. Now, since the remaining
sentence consists of a matrix clause and an embedded clause, the problem is to determine
the connective transformation involved and the position of the joining point. This position
is determined through an examination of the branching structure of the sentence. The
analysis of the "want to kill" construction leads to the conclusion that a right-branching
connective transformation 0-0-TO (see Table 1) is involved. As a result, the parser
produces the following kernel clauses:

12. Both the parser and the generator include the pronominalization process (sec Appendix for examples).
Pronominalization, however, will not be discussed in this paper.

Katz & Winston -13- | Parsing

Othello did not want it.
Othello kill Desdemona.
Othello loved Desdemona.

The parser analyzes every word in the input kernel sentence, scanning it from left
to right and mapping the appropriate pieces of the word string onto the corresponding
noun-template, verb-template, or adverb-template. The templates must be filled out from
left to right. If any element in the template is left unspecificd, the parser inserts #i/ as the
value of this element. When all the elements of the template are filled, the parser,
depending on the next word and its place in the sentence, either begins to fill out the
elements of another template or continues the construction of the current complex template
using one of the operations of concatenation or conjunction. The procedure described
converts the kernel clauses in the example into the matrix and embedded kernel frames
below: '

((NTagent ((PREP nil) (DET nil) (ADJ nil) (NOUN Othello)))

(VT ((AUX1 did) (NEG not) (AUX2 nil) (AUX3 nil) (VERB want)))
(NTtheme ((PREP nil) (DET nil) (ADJ nil) (NOUN it))))

MKF1

it

f

EKF1 = ((NTagent ((PREP nil) (DET nil) (ADJ nil) (NOUN Othello)))
. (VT ((AUX1 nil) (AUX2 nil) (AUX3 nil) (VERB kill))) g

(NTtheme ((PREP nil) (DET nil) (ADJ nil) (NOUN Desdemona))))

MKF2

n

((NTagent ((PREP nil) (DET nil) (ADJ nil) (NQUN Othello)))
(VT ((AUX1 nil) (AUX2 nil) (AUX3 nil) (VERB loved)))
(NTtheme ((PREP nil) (DET nil) (ADJ nil) (NOUN Decsdemona))))

, These kernel frames supply arguments to instances of RELATION, the
relation-creating function mentioned earlier. In the case of a simple transitive sentence like
"Othello kills Desdemona”, the nouns and the verb of the kernel frame provide the values
for the arguments:13

(RELATION OTHELLO KILL DESDEMONA)

If a connective transformation is involved, as in the sentence "Othello wants to kill
Desdemona”, the function RELATION must be applied again using the embedded
relation (RELATION OTHELLO KILL DESDEMONA) as its argument;

(RELATION OTHELLO
WANT
(RELATION OTHELLO KILL DESDEMONA))

13. Tense information, supplied by the parser, is not carried into the semantic network representation.
Currently, the learning program experiments do not use time.

Katz & Winston _ -14 - Parsing

The position of the embedded relation is determined by the type of branching found in the
structure. Here the embedded relation is used as the third argument to the function
RELATION because the first step of the parsing process determines that the sentence has a
right-branching structure. In the case of a left-branching sentence, "That Othello killed
Desdemona is terrible,” the embedded relation will be the first argument:

(RELATION (RELATION OTHELLO KILL DESDEMONA)
IS
TERRIBLE)

For our first sample sentence, "Othello did not want to kill Desdemona because he loved
her," the parser produces the following output:

(RELATION (RELATION (RELATION OTHELLO
WANT
(RELATION OTHELLO KILL DESDEMONA))
IS
FALSE)
CAUSED-BY
(RELATION OTHELLO LOVE DESDEMONA))

The evaluation of this expression results in the construction of the semantic net fragment
shown at the beginning of the paper in Figure 1.

To demonstrate the parser’s capabilities, a number of English sentences
successfully analyzed by the parser are listed in the Appendix, together with the system’s
output in the form of relation-creating functions. The examples include a variety of
syntactic constructions. Among them are sentences with multiple-embedding, conjoined
noun phrases, possessive noun phrases, negation, prepositional phrases, relative clauses,
raising, cleft-sentences, passive sentences, and other syntactic constructions.

Summary

Stages in language generation and parsing, as exhibited by an implemented system,
have been shown. Parsing is essentially the reverse of generation. Most of the system is
independent of the semantic network representation involved in the examples, facilitating
its use in other applications. This independence is important because the system was built
with a view toward producing an interface enabling other research efforts, rather than
strictly for its own sake.

Acknowledgments

This paper was improved substantially by comments from* Beth Levin, Robert
Berwick, and Randy Davis. '

Katz & Winston : -15- Appendix

Appendix
Example 1:

One application of the natural language system is to prepare semantic networks
from abstracts for use in information-retrieval experiments. This summary of Macbeth is a
typical abstract:

MA is a story about Macbeth, Lady-macbeth, Duncan, and Macduff. Macbeth
is an evil noble. Lady-macbeth is a greedy ambitious woman. Duncan is a king.
Macduff is a prince. Lady-macbeth persuades Macbeth to want to be king
because she is greedy. She is able to influence him because he is married to her
and because he is weak. Macbeth murders Duncan with a knife. Macbeth
murders Duncan because Macbeth wants to be king and because Macbeth is
evil. Lady-macbeth kills herself. Macduff is angry. Macduff kills Macbeth
because Macbeth murdered Duncan and because MacdufT is loyal to Duncan.
Remember MA. |

Macbeth is retrieved when the system is asked to find a situation similar to the following:

~ Let E be an exercise. E is a story about a weak noble, a greedy lady, a loyal
prince, and a king. The lady is able to influence the noble because he is married
to her. The noble murders the king because the noble wants to be king. The
prince kills the noble because the prince is loyal to the king.

The actual terminal interaction for the example above, highlighting the system’s generation
ability, is as follows:

==> find a situation similar to exercise-1i.

You asked for a situation similar to EXERCISE-1. MA is similar to
EXERCISE-1 because:

IN MA THERE IS A WOMAN, LADY-MACBETH, WHO IS ABLE TO INFLUENCE MACBETH
BECAUSE HE IS MARRIED TO HER. THERE IS A PRINCE, MACDUFF, WHO KILLS
HIM BECAUSE MACDUFF IS LOYAL TO DUNCAN. MACBETH MURDERS DUNCAN BECAUSE
MACBETH WANTS TO BE KING.

Example 2:
The generator is also used to describe if-then rules produced in learning

experiments. For instance, one experiment produces an if-then rule that is represented
~ internally in gobbledygook like this:

Katz & Winston _ -16 - ‘ Appendix

(RULE-2 (AKO (RULE (AK0-62)))
(PART (MAN-10 (PART-18)))
(THEN (AKO-64 (THEN-3)))
(IF-PLAUSIBLE (AKO-64 (IF-PLAUSIBLE-1))
(1S-47 (IF-PLAUSIBLE-2))
(T0-8 (IF-PLAUSIBLE-3)))
(IF (IS-49 (IF-3)) (AKO-65 (IF-4)) (AKO-63 (IF-5)))
(CASE (STORY-1 (CASE-1))))

Translated into English, the same rule becomes transparent:

Rule-2 concerns a man. If the man is not married and he is an adult, then he is
a bachelor, assuming he is expected to be married and he is able to be married.

Example 3:

In another application, the system is used to prepare semantic network in for
learning experiments. Some of these experiments involve functional descriptions of
objects:

Let X be a story. X is a story about a person, an object, and some soup. The
object is a spoon because the person uses it to drink the soup, which is food.
The person can use the object to eat the soup because the object is graspable
and because it holds the soup. The spoon is graspable because it has a long and
thin handle. The spoon holds the soup because the spoon’s end is an open
cavity. ‘

Example 4:

Finally, here are the results of parsing an assortment of sentences. The function
{(GET-INSTANCE MAN) creates and returns MAN-1 if there are no men yet in the current story;
otherwise (GET-INSTANCE MAN) returns the man most recently mentioned in the story.

The man wasn’t expected to help the woman with a loan.

(RELATION (RELATION (RELATION (RELATION (GET-INSTANCE MAN)
HELP
(GET-INSTANCE WOMAN))
WITH
(GET-INSTANCE LOAN))
IS
EXPECTED)
- IS
FALSE)

Katz & Winston _ -17 -

Appendix

It has been shown using an analogy that a man who Mary loved did not want

to help Bill because Bill was loyal to her.

(RELATION MARY LOVE (GET-INSTANCE MAN))

(RELATION :
(RELATION (RELATION (RELATION (RELATION (GET-INSTANCE MAN)
WANT
(RELATION (GET-INSTANCE MAN)
HELP
BILL))
IS
FALSE)
CAUSED-BY
(RELATION (RELATION BILL IS LOYAL)
T0
, MARY))
IS
SHOWN)
USING

(GET-INSTANCE ANALOGY))
John knew about the man’s desire to find the woman.

{RELATION JOHN

KNOW : ,
(RELATION (GET-INSTANCE MAN)

DESIRE

(RELATION (GET-INSTANGE MAN)

FIND
(GET-INSTANCE WOMAN))))

Tom and Bill kn_ew that it has been proved that John found her.

(RELATION TOM

KNOW

(RELATION (RELATION JOHN FIND (GET-INSTANCE WOMAN))
IS ,
PROVED))

(RELATION BILL

KNOW

(RELATION (RELATION JOHN FIND (GET-INSTANCE WOMAN))
18
PROVED))

Katz & Winston v -18 - . Appendix

The man’'s love for the woman forced him to find her.

(RELATION (RELATION (GET-INSTANCE MAN)
LOVE
(GET-INSTANCE WOMAN))
FORCE
(RELATION (GET-INSTANCE MAN) FIND (GET-INSTANCE WOMAN)))

John was known by Mary to have helped Bill's friend.

(RELATION (GET-INSTANCE FRIEND BILL)
RELATED-TO
BILL)

(RELATION (RELATION (RELATION JOHN HELP (GET-INSTANCE FRIEND BILL)
IS
KNOWN)
BY
MARY)

Referenceé

Binford, Thomas O., "Survey of Model-based Image Analysis Systems,” Robotics Research,
vol. 1, no. 1, Spring, 1982.

Katz, Bons "A Three-Step Procedure for Language Generation,”" M.I.T. Amf' cial
Intelligence Laboratory Memo No. 599, December 1980.

Winston, Patrick Henry, "Learning and Reasoning by Analogy,” CACM, vol. 23, no. 12,
December, 1980.

Winston, Patrick Henry, "Learning New Principles from Precedents and Exercises: the
Details,” M.LI.T. Artificial Intelligence Laboratory Memo No. 632, May 1981.

Winston, Patrick Henry, Thomas O. Binford, Boris Katz, and Michael Lowry, "Learning
Physical Descriptions from Functional Definitions, Fxamples, and Precedents,” M.IT.
~Artificial Intelligence Laboratory Memo No. 679, May 1982,

