MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 680a FFebruary 1983

LetS

An Expressional Loop Notation
by

Richard C. Waters

ABSTRACT

Many loops can be more casily understood and manipulated if they are vicwed as being
built up out of operations on sequences of values. A notation is introduced which makes this
viewpoint explicit. Using it, loops can be represented as compositions of functions operating
on sequences of values. A library of standard scquence functions is provided along with
facilitics for defining additional ones.

The notation is not intended to be applicable to every kind of loop. Rather, it has been
simplified whercver possible so that straightforward loops can be represented extremely
casily. The expressional form of the notation makes it possible to construct and modify such
loops rapidly and accurately. The implementation of the notation does not actually use
sequences but rather compiles loop expressions into iterative loop code. As a result, using the
notation lcads to no reduction in run time cfficiency.

This report describes research done at the Artificial Intelligence Laboratory of the Massachusetts Institute of
Technology. Support for the laboratory’s artificial intelligence rescarch has been provided in part by the
Advanced Research Projects Agency of the Departinent of Defense under Office of Naval Research contract
N00014-30-C-0505, and in part by National Science Foundation grant MCS-7912179.

The viev:s and conclusions contained in this paper are those of the author, and should not be interpreted as
necessarily representing the official policies, cither expressed or implied, of the Department of Defense, or the
United States Government.

Waters -1- I.etS

Introduction

This paper presents an expressional Toop notation based on the ideas described in [16,17]. The notation
makes it possible to represent loops as compositions of functions applied to sequences of values. The
principal benefit of the notation is that it brings the powerful metaphor of expressions and decomposability to
bear on the domain of loops. Wherever this metaphor can be applied. it makes algorithmns much easier to
construct, understand, and modify.

"The paper is divided into five parts. The first part discusses what it means to view a loop as an expression
composed of functions operating on sequences of values. It then presents the major features of the notation
in terms of the expressional metaphor. 1t concludes with a large example which shows the way the notation is
intended to be used.

The most straightforward way to implement the expressional notation would be to simply implernent
sequences as concrete data objects and then operate on them with ordinary functions. Unfortunately, this
approach entails unacceptable time and space overheads which would render the notation impractical to use.
In order to provide for efficient exccution, the notation has been carefully designed so that a macro
preprocessor can convert loop expressions into highly cff ficient iterative loop code. This conversion process is
summarized in the second part of the paper, and discussed in detail in Appendix A.

The iterative loops which result from the conversion process operate on the sequences in a loop expression
in parallel, computing cach onc an clement at a time. As is discussed in the third part of the paper, this
clement at a time metaphor is made an explicit part of the expressional loop notation for two reasons. First,
the user must be aware of the exccution order which will be uscd when a loop is evaluated in order to be able
to understand the results of side-cffect producing operations such as input/output. Sccond, the clement at a
time metaphor is in itsclf a very convenient way to think about many loops. Its explicit introduction into the
notation increases the range of loops which can be conveniently represented.

The third part of the paper concludes with a discussion of the limits of the applicability of the notation.
The expressional loop notation is not intended to be applicable to every kind of loop. Rather, it is designed to
make it particularly casy to represent and manipulate the kind of straightforward loops which appear most
commonly in programs. By focusing on the main concept and resisting the temptation to add
embellishments, the notation is rendered semantically clean, and casy to understand.

The expressional loop notation has been implemented as a LispMachine [18]}/MacL.isp [9] macro package
LETS ("let ess”). (Note that several of the macros described in this paper end in the letter "S". This "S"
stands for "sequence”, and in all cases it is pronounced separately.) This paper discusses the notation in the
context of this particular implementation and the examples arc all couched in terms of Lisp. However, none
of the basic concepts behind the notation have anything to do with the Lisp language per se.

The fourth part of the paper summarizes the basic features of the notation and argues that the notation
could be implemented as a logical extension to almost any language. As a specific example, introduction of
the notation as an extension to the language Ada [1] is discussed.

The fifth and final part of the paper presents a comprehensive comparison between the expressional
notation and other looping constructs. The concept of expressional loops presented here was motivated by
observing regularitics in the kinds of straightforward loops which appear in programs most often [16}. Over
the years, many language designers have also noticed various aspects of these regularitics and therefore many
of the koy features of the expressional notation appear in one form or another in currently existing looping
constructs. The constructs which are most similar appear in the languages APL[10], Hibol [13], and
Model [11]. The advantage of the notation prescnted here is that it distills these concepts into a semantically
complete whole which is casy to understand, casy to execute cfficicntly, and casy to add as an extension to
current languages.

‘The Expressional Mctaphor -2- Waters

| - The Expressional Metaphor

The key property of expressions which makes them particularly casy to construct, manipulate,” and
understand is decomposability. Given an cxipression, it is casy to decompose it into scparate parts cach of
which (in the absence of side-cffects) can be completely understood in isolation from all of the other parts.
Further, the behavior of the expression as a whale is mercly the composition of the behaviors of its parts.

Consider the expression "(SIN (SQRT X))". Its two parts can be understood in isolation. For example, s

you can understand what the SQRT does (i.c., compute the squarce root of its input) without having to think
about where its input comes from, where its output will be used, or about anything clse that is going on in the
expression. The only interaction between the two functions is the data flow between them. In order to

understand what the expression as a whole does, (i.c., compute the sine of the square root of its input) you

merely have to compose your understandings of the two functions.

Viewing Loops as Expressions Involving Sequences

In order to represent loops as expressions, the concepts of sequences and sequence functions which operate
on them are introduced. In this context, all other data structures are referred to as unitary. A scquence is an
ordered (possibly infinite) one dimensional series of slots containing unitary data objects. A sequence
function is a function which produces one or more sequences as outputs and/or consumes one or more
sequences as inputs. Loops are represented as expressions built out of sequence function applications.

For reasons of cfficiency, sequences arc not represented as actual data structures at run time. Rather,
expressions involving sequences are compiled into iterative loops in which the existence of the sequences is
only implicit. This is analogous to the way in which many program constructs arc handled by compilers. For
example, references to components of a record structure in a program typically appear to pass indirectly
through the structure as a whole. However, for efficiency, such references are generally compiled into direct
accesses on the components as if they were atomic objects. The existence of the structure. as an identifiable
unit is only implicit in the compiled code.

Sequences and scquence functions exist as explanatory devices. The point is that thinking of loops as -
compositions of functions opcrating on sequences makes them casier to understand. The fact that the-

compiled ©rm. is very different is in general of no import. (The third part of this paper discusses situations
where the user does have to be cognizant of the compiled form.)

Consider the program SUM-POSITIVE-EXPRESSIONAL below. Its body is a sequence expression which
sums up the positive elements of a one dimensional array. Given an array containing <0 1 -1 2 -2 the
program would produce the result 3.

{(defun sum-positive-expressional (vector)
(Rsum (Fpositive (Evector vector))))

The sequence function EVECTOR ("ee vecfor”) takes in a one dimensional array and enumerates a sequence
of the data items in the array (c.g., producing the sequence [0 1 -1 2 -27]). (Note that most of the names
of the built-in sequence functions begin with prefix letters. These letters indicate the type of operation

performed by the sequence function, The letter "E™ stands for enumerate, "6” stands for generate, "F" stands

for filter, and "R" stands for reduce. In cach case, these prefix letters are pronounced scparately.)

The sequence function FPOSITIVE ("ef positive) takes in a sequence and filters it producing a sequence
containing only the positive clements in the input sequence (e.g., producing [_ 1 _ 2 _]). In order to make
it possible to compile a filter cfficiently, its action is encoded by Jeaving some of the slots in the output

sequence be empty (symbolized by "_") rather than by creating a sequence of reduced length. -In order to
make this work, everything is set up so that empty slots arc ignored in subsequent computations.

Waters -3- The Expressional Metaphor

The sequence function RSUM ("ar sum™) takes in a sequence of integers and teduccs it to a unitary object
containing their sum (e.g.. 3). The scquence expression above is casy to understand because the actions of the
sequence functions can be understood in isolation from cach other, and the action of the expression as a
whole (i.c.. to sum the positive clements of a vector) is simply the composition of these actions. Further. it is
as casy to modify as any other expression.

Simple Examples of Sequence Functions

This section presents a number of built-in sequence functions which are used in examples in the rest of
this papar. The complete set of built-in sequence functions provided as part of the LETS macro package is
presented in Appendix B. There are three basic kinds of sequence functions: wunitary»sequence,
sequencesunitary, and sequencessequence. The most common kind of unitary»sequence function takes some
aggregate data object and creates a sequence of its components.

Elist list
Takes in a list and creates a sequence of its elements.
c.g. (ETist '(123))=>[123]

Esubliusts list
Takes in a list and creates a sequence of its successive sublists.
c.g., (Esublists '(123)) =>[(123)(23) (3)]

Evector veclor&optional (first0) (last (1- (array-length vector)))
Takes in a one dimensional array and creates a sequence of its elements.
e.g., (Evector<123>)=>[123]

Efile file-name
Creates a sequence of values by reading all of the objects out of a file.
g, (Efile "data.lisp") => [123]
if the file "data.lisp"” contains 123"

Another family of unitary>sequence functions computes a sequence of values according to some formula:

Erange first last &optional (siep-size 1)
Creates a scquence of integers by counting from first to last by the positive increment step-size.
¢.g.. (Erange 482) =>[468]

Gsequence object
Gencrates an infinite sequence all of whose clements are object.
¢.g., (Gsequence 'A) => [AAA...]

The most common kind of sequence~unitary function takes in a scquence and combines the clements in it
together into an aggregate data structure.

R1ist &sequence sequence
CINSes the non-empty valucs in a sequence into a list.
cg., (R1ist[12_3])=>(123)

The Expressional Mctaphor -4- Waters |

Rvector veclor&sequence sequence &unitary &optional (first0) (last (1- (array-length veclor)))
Stores the non-empty valucs in a sequence into successive slots of a one dimensional array.
c.g., (Rvector <ABCD>[12_3])=><123D>

Rfile file-name &sequence sequence
Writes the non-empty values in a sequence into the indicated file.
c.g., (Rfile "data.lisp" [12_3])=>71 '
"<er>1<cr>2<cr>3 " isprinted in "data.lisp”

Another kind of sequence~unitary function computes a summary value based on a sequence.

Rsum &sequence /nlegers
Computes the sum of the non-empty integer values in a sequence.
eg., (Rsum[12_3])=>6

Rcount &sequence sequence
Counts the number of non-cmpty slots in a sequence.
e.g., (Rcount [AB_C])=>3

Rlast &sequence sequence &unitary &optional (default NIL)
Returns the last non-empty clement (if any) of the scquence as its value; otherwise returns default.
e.g., (Rlast[ABC_])=>C

Sequencessequence functions take in a sequence of values and compute some related sequence. They tend
to be much more idiosyncratic than other kinds of sequence functions and very few arc predefined.

Fpositive &sequence numbers
Selects the positive non-empty clements of a sequence of integers.
cg., (Fpositive[-10_1])=>[___1]

The programs below give a number of examples of loops built up out of the sequence functions described
above. COPY-LIST copics a list by enumerating the items in the list and then CONSing them up into a new list.
LAST enumer: tes all of the sublists in a list and then returns the last one. SUM-FIRST-N adds up the first N
integers by enumerating these integers and then summing the resulting sequence of values.

(defun copy-tist (1ist)
(R1ist (Elist Tist)))

(defun tast (1ist)
(Rlast (Esublists Tist)))

(defun sum-first-n (n)
(Rsum (Erange 1 n)))

Waters -5- The Expressional Metaphor

s ‘ FILE-LENGTH computes the number of objects in a file by cnumerating them and then counting the items
in this sequence. DUMP-VECTOR prints the elements of a vector into a file. ZERO-VECTOR initializes a vector
by setting the elements to zero. 1t uses GSEQUENCE in order to gencerate a sequence of zeros to use.

(defun file-length {(file-name)
(Recount (Efile file-name)))

(defun dump-vector (file-name vector)
(Rfile file-name (Evector vector)))

(d3fun zero-vector (vector)
(Rvector vector (Gsequence 0)))

MapS
The most fundamental and often used sequence function is MAPS which is a generalization of the Lisp
function MAP. ’

map$ function &rest &sequence args
Creates a sequence by applying finction to the elements of one or more input sequences.
28, (mapS#'+[1_3][4567])=>[5_9]

The number of sequences provided must be compatible with the number of arguments required by
function. The nth clement of the output sequence is computed by applying function to the nth elements of
the input sequences. However, if the nth clement of any of the input sequences is empty then function is not

Fan applied and the nth element of the output is empty. The length of the output sequence is the same as the
length of the shortest input sequence.

The usc of MAPS is illustrated by the following two functions. The program PAIRWISE-MAX takes in two
lists and creates a list where cach clement is the maximum of the corresponding elements in the two input
lists. The program TIMES-N multiplics cvery clement in a list by a parameter N. (Note that if a functional
argument to a sequence function is a quoted LAMBDA cxpression, then it is compiled inline. As a result, it can
refer to local variables (such as N) without having to declare them special.)

(defun pairwise-max (1istl 1ist2) :
(R1ist (mapS #'max (Elist 1istl) (Elist tist2)}))))

(defun times-n (1ist n)
(R1ist (mapS #'(lambda (x) (* x n)) (EVist 1ist))))

The use of MAPS in loop expressions is so common that a syntactic sugaring has been introduced to make
this easier. Whenever a unitary expression is applied to scquences or appears in an environment where a
Y sequence value is cxpected then the entire expression down to, but not including, any components which
create sequences is separated out as a LAMBDA cxpression and MAPSed. This is illustrated by the following
alternaic definitions for the functions used as examples above.

(cefun pairwise-max-implicit (1istl 1ist2)
(R1ist (max (Elist 1istl) (Elist 1ist2))})

(cefun times-n-implicit (1ist n)
(R1ist (* (Elist 1list) n)))

L Duc to the requirements of efficient exccution, sequences are not actually implemented as concrete data
objects, and therefore ordinary lisp functions cannot in any casce be applied to them as whole entitics. The
implicit introduction of MAPS gives a useful meaning to expressions which would otherwise be meaningless.

"The Fxpressional Metaphor S -6- , Waters

LetS*

In an ordinary cxpression, if you want to use the value of a subexpression in two places, you have to bind
this value to a variable. The prototypical way to do this in Lisp is with the macro LET. "The macro LETS«
(which is analogous to LET=) makes it possible to create variables which have scquences as their values. As
shown below. the macro consists of a list of variable/valuc pairs and a body which consists of onc or more
Joop expressions. Each initializing value must be a sequence. LETSx cannot be used o bind a variable to a
unitary value. (However, using GSEQUENCE, you can bind a sequence variable to an infinite sequence of a .
unitary value, which will usually be sufficient.)

(1etSx ((variable value) ...)
loop-expression .. .)

The expressions in the body of a LETS+ can refer to the sequences bound to the sequence variables, and
can result in cither sequence or unitary values. The value of the last form must be unitary and is returned as
the result of the LETS#. An important feature of LETS» is that all of the loop expressions in it arc combined
together into a single loop. This will be discussed in more detail in the section on the element at a time
mctaphor.

The use of LETS» is illustrated by the function SQUARE-ALIST (bclow) which takes in an alist of keys and
integers and creates a new alist with cach integer squared. Note that the value of ENTRY is used when
computing (using implicit MAPSing) the value for SQUARE.

(defun square-alist (alist)
(1etS* ((entry (Elist alist))
(square (* (cdr entry) (cdr entry))))
(R1ist (1ist (car entry) square}))) :

The macro LETSx supports destructuring as shown in the program SQUARE-ALIST-DESTRUCTURING. This
program also illustrates the fact that you can use SETQS and other assigning forms (c.g., PSETQ, MULTIPLE-
VALUE, etc.) in the body of a LETS« in order to assign sequence values to sequence variables. In addition,
SETOs and other assigning forms can be uscd to assign to any number of free (unitary) variables in the body of
a LETS«. This s often useful for passing information out of a loop.

(defun square-alist-destructuring (alist)
(tetS* (((key . i) (Elist alist)))
(setq 1 (» 1 1)) .
(R1ist (1ist key 1))))

DefunS

The macro DEFUNS makes it possible for a user to created new sequence functions which he can then use
in loop expressions. These sequence functions are actually macros which arc compiled inline by the LETS
macro package. However, in the context of the expressional notation, they arc intended to be thought of as
functions just like any other function.

(defunS name lambda-list
body)

The macro DEFUNS is analogous to DEFUN. Tt has two basic parts: a lambda-list and a body. The
lambda-list is a list of variable names and keywords. In addition to the standard keywords &0PTIONAL,
&REST, and &AUX it supports two new keywords &UNITARY and &SEQUENCE. These two new keywords are
used to specify whether a particular parameter is a sequence Or an ordinary unitary object. Each of the

L3

Waters -7 - The Expressional Mctaphor

keywords is sticky and specifics the type of all of the parameters which follow it until another keyword
changes the type. By default, the parameters are initially unitary.

The body of a DEFUNS is the same as the body of a LETS« except that the last form is not reguired to yicld
a unitary valuc. The value of the fast form, be it unitary or sequence, is returned as the value of the sequence
function being created. Note, that DEFUNS is completely different from LETS» in that it creates a sequence
function which can later be combined together with other sequence functions while LETS« creates an actual
loop.

The following examples illustrate the use of DEFUNS. RALIST takes in a sequence of keys and a sequence
of values and CONScs them up into an alist. Note that ELIST and EVECTOR return scquences while RALIST
returns & unitary value. EVECTOR takes in two optional arguments which specify a region of the vector to
enumerate,

(defunS Ralist (&sequence key value)
(Rlist (cons key value)))

(defunS ETlist (1ist)
(car (Esublists 1ist)))

(defunS Evector (vector &optional (start 0) (end (1- (array- 1ength vector))))
(aref vector (Erange start end)))

The following definition for MAPS is meta-circular in that it uses implicit introduction of MAPS in order to
define MAPS. However, it illustrates the use of functional and &REST arguments in a sequence function. It
should be noted that the LETS macro package uses special knowledge of APPLY and FUNCALL in order to
compilc uses of functional arguments into highly cfficient inlinc code as long as the arguments supplicd are
quoted function names or LAMBDA expressions.

(defunS mapS (function &rest &sequence args)
(apply function args))

The ability for the user to conveniently define his own named sequence functions is a particularly
important part of the expressional loop notation. It makes it possible for him to extend the notation to deal
with the particular data abstractions he creates. A detailed example of this is given in a later section.

Seven Basic Sequence Functions

The expressional loop notation provides seven basic sequence functions which embody the basic
operations supported by the notation. Every other sequence function is defined in terms of these basic ones.
The most fundamental sequence function (MAPS) has already been discussed. Three sequence functions are
available for specifying computation to be performed before and after the execution of a loop.

at-start function&rest args
Applies finction to args in the initialization code before the loop begins.

at-end finction &rest args
Applies function to args in the cpilog code after the loop ends. -

at-unwind function&rest args
Applies function to args in an UNWIND-PROTECT wrapped around the loop.

The key difference between AT-END and AT-UNWIND is that AT-UNWIND operations will be performed no
matter how a loop is exited, while AT-END opcrations wm not be performed if a loop is terminated in some
extraordinary way (c.g., by a THROW).

The Expressional Metaphor -8- Waters

The following definition of the sequence function RFILE illustrates the usc of the thrcci%c‘mxcncc functions
above. AT-START is used to open the file before processing starts. AT-END is used to sct a flag which indicates ,
that processing has terminated normaily, and to specify that the unitary value 1 should be returned as the
valuc of the sequence function as a whole. AT-UNWIND is used to insure that the file will be properly closed no
matter how the loop is terminated. ‘

(defunS Rfile (name &sequence items &aux 8unitary filte (finished nil))
(at-start #'(lambda () (without-interrupts (setq file (open name ‘out)))))
(let (prinievel prinlength)

(print items file))
(at-unwind #'(lambda ()
(cond (finished (close file})
((null file) nil)
((y-or-n-p "delete partial output file")
(send file ':close ':abort))
(T (close file)))))
(at-end #'(lambda () (setq finished T))))

The purpose of defining a sequence function is to group together into a single unit a standard fragment of
looping algorithm. AT-START, AT-END, and AT-UNWIND make it possible to include initializing and epilog
computation as part of an individual sequence function. ‘This extends the range of loop computation
fragments which can be expressed as sequence functions. For example, RFILE would be conceptually much
less useful if it did not encapsulate the relatively complex actions needed in order to open and close the file in
a completely reliable way into the same unit with printing out the objects.

Often, uscs of AT-START and AT-END are implicit in loop expressions. For example, the unitary inputs of
a sequence function must be available before a loop can begin. -As a result, the calls on MAKE-ARRAY and
ARRAY-LENGTH in the program COPY-VECTOR (below) are computed at the beginning of the loop even though
AT-START is not used explicitly. Similarly, the unitary outputs of sequence functions are not available until
after the loop terminates. As a result, the SORT in RLIST-SORTED is computed in the epilog code at the end of
the loop even though AT-END is not used explicitly. It should be noted that the explicit use of AT-START and
AT-END is actually very scldom necessary.

(defun ropy-vector (vector)
(ivector (make-array (array-length vector)) (Evector vector)))

(defunS R1ist-sorted (&sequence symbols)
(sort (R1ist symbols) #'alphalessp})
"The basic idea of filtering a scquence to produce a restricted scquence is supported by the scquence
function FILTERS.

filterS function &sequencesource &rest args
Selects the elements of source corresponding to non-NIL values of function applied to the inputs.
cg., (filterS#'>[1_234][00_0]=>[1__4]

The clements of the output sequence of FILTERS arc computed as follows. If the result of applying
function to the nth clements of the input scquences (the source and args) is non-NIL then the nth element of
the source is used as the nth clement of the output; otherwise the nth output clement is empty. However, if
the nth clement of any of the input sequences is empty then function is not applied and the nth element of the
output is empty.

Note that the output sequence is exactly the same length as the shortest input sequence; however, some of
the output sequence slots may be empty. The idea of empty slots is the foundation for the notion of filtering
being presented here. In order to make empty slots work correctly, all of the basic sequence functions are

Waters -9- The Expressional Metaphor

restricted so that the empty slots in their inputs arc propagated to their outputs. The use of FILTERS is
illustrated by the following definition of FPOSITIVE,

(defunS Fpositive (&sequence integers)
(filterS #'plusp integers))

The basic capability of truncating the length of a sequence is embodied in the sequence function
TERMINATES. It takes in one or more sequences and produces a sequence which is potentially shorter than
any of them. Every other basic sequence function which computes sequences from sequences produccs an
output which is the same length as the minimum length of its inputs. As will be discussed below, the primary
use for TRUNCATES is to reduce infinite scquences to finite length.

truncateS function&sequence source &rest args
Truncates source at the first point where the value of fiunction applied to the inputs is non-NIL.
.8, (truncateS#'<[1_23][00_4])=>[1__]
8., (truncateS#'>[1_23][00_4])=>[]

In order to compute the output of TRUNCATES, finction is applied to successive groups of corresponding
elements of the input sequences. The output sequence is composed of the clements of the source up to but
not including the first clement corresponding to a non-NIL evaluation of fiunction. As with the other sequence
- functiors, if any of the nth clements of the input sequences are empty then function is not applied and the nth
output clement is empty.

The seventh basic sequence function (PREVIOUS) makes it possible to access sequence values from the
previous cycle of aloop.

previou$ inil function &sequence &rest args
Creates a sequence (whose first value is inif) by applying finction to the previous values of the inputs.
¢.g., (previouS NIL #'ncons [ABC]) => [ni) (A) (B)]
¢.g., (previouSNIL #'ncons [_A_BC])=>[_nil_(A) (B)]

If there are no empty slots in any of the input sequences, then the first element of the output of PREVIOUS
is the value init and the nth element of the output is computed by applying finction to the (n-1)th elements of
the input sequences. 1f there are empty slots then this is generalized as follows. The nth slot of the output is
empty if and only if the nth slot of any input is empty. The first non-empty slot of the output contains init.
after that cach non-empty slot is computed by applying finction to the previous group of non-empty input
values. The length of the output sequence is the same as the length of the shortest input sequence. (Note that
Junction is applied to the last values of the input sequences cven though the result is not part of the output.)

The primary use of PREVIOUS is to define sequence functions which have feedback between cycles of a
loop. Three sequence functions are defined which embody this feature. The sequence function REDUCES
(shown below) is a generalized sequencesunitary function. It has an internal state variable. The nth value of
the statc is computed by applying function to the (n-1)th value of the state (accessed by a call on PREVIOUS
which uses seed as an initial seed valuc for the state) and the nth clement of the input. However, if the nth
element of the input sequence is empty then function is not applied and the state is not changed. When the
input sc:juence is exhausted, the final value of the state variable is returned as the (unitary) result. If there are
no non-empty clements in the input sequence then the value seed will be returned. The use of REDUCES is
illustrated by the following definition of RLIST.

The Expressional Metaphor -10- Waters .

(defunS reduceS (fn seed &sequence sequence &aux state)
(setq state (mapS fn (previouS seed #'(lambda (x) x) state) sequence))
(R1ast state seed)) ' v

(defunS Rlist (&sequence items)
(nreverse (reduceS #'xcons gil items)))

The sequence function GENERATES is a generalized unitary>sequence function. It takes in a function and a
sced value which is used to initialize an internal state variable. The nth value of the state is computed by
applying function to the (n-1)th value of the state. The output sequence is composed of the successive values
of the state starting with the initial value seed. Note that the sequence produced is infinite in extent.

(defunS generatesS (fn seed &aux &sequence state)
(setq state (previouS seed fn state)))

(defunS Gsequence {object)
(generateS #'(1ambda (x) x) object))

A loop expression which contains only a generator will never terminate because it operates on an infinite
sequence. However, if a loop cxpression is working on several sequences some of which are finite and some
of which are not, it will terminate as soon as the shortest finite sequence has been exhausted. This is discussed
further in the section on termination below.

Generators are typically used in loop expressions in conjunction with finite sequences of unknown length.
For example, the program DIGIT S-TO-NUMBER takes in a vector of one digit numbers (ordered least
significant digit first) and computes the corresponding integer (c.g., <3 2 1> becomes 123). The loop
expression works with two basic sequences. It enumerates the digits in the vector. It also creates an
unbounded sequence of scale factors consisting of the successive powers of ten. The result is computed by
summing up the product of cach digit Wi.g] the appropriate scale factor. The loop terminates when the digits
run out.

(defun digits-to-number (v)
(Rsum (* (Evector v) (generateS #'(lambda (x) (* x 10.)) 1))))

The sequence function ENUMERATES combines GENERATES and TRUNCATES. It is the preferred way to
definc enumerators such as ELIST.

(defunS enumeratesS (trunc-fn gen-fn seed)
(truncateS trunc-fn (generateS gen-fn seed)))

(defunS Elist (Vist)
(car (enumerateS #'null #'cdr list)))

Conversions and Coercions

Two sequence functions are available for converting between unitary values and sequences: GSEQUENCE
which converts an object into an infinite sequence of that object, and RLAST which converts a sequence intoa
unitary object by taking its last element. The use of GSEQUENCE is illustrated in the program VECTOR-NCONS
which fills a vector with an NCONS of NIL. Note that the sequence MAPS can also be used to create a sequence
of objects by specifying the repeated cxecution of a function of no arguments as in the function VECTOR-
NCONSES. However, MAPS is very different from GSEQUENCE in that it calls for repeated exccution of the
function. As a result, VECTOR-NCONSES fills each slot of the vector with a diffcrent CONS cell while VECTOR~
NCONS fills cach slot with the same CONS cell.

Watcrs -11- The Expressional Mctaphor

(defun vector-ncons (vector)
(Rvector vector (Gsequence {ncons nil))))

(defun vector-nconses (vector)
(Rvector vector (mapS #'(lambda () (ncons nil)))))
%

In order to make things more convenient for the uscr, automatic type coercions are applied between
sammm%amimﬂmw»mum.Tmnmmﬁmpmtmtummmnhmah&ﬂybwndﬁamwd Whenever a unitary
expression is applied to sequences or placed where a sequence value is required, MAPS is automatically
introduce in order to convert it into a sequence cxpression. Note that GSEQUENCE is never automatically
introduced and thercfore VECTOR-NCONSES-IMPLICIT is cquivalent to VECTOR-NCONSES, and not to
VECTOR-HCONS.

(devun vector-nconses-implicit (vector)
(Rvector vector (ncons nil)))

In the reverse direction, whenever a sequence expression is placed where a unitary value is required,
RLAST is automatically introduced to convert it into a unitary value producing expression. The places where
unitary values are required are the last expression in the body of a LETS* and the value of loop expressions
whkhappmﬂinBohﬁmlm(w&nawquauMC.Exmnmesamshownbdow.

Some of the other features of the expressional notation could also be looked at as coercions, for example,
the automatic introduction of AT-START and AT-END discussed in the beginning of the last section. Taken
together, these coercions have no semantic import -- they do not make it possible to express anything which
could not be expressed without them. However, they do make it significantly more convenient to specify
many kinds of loops.

Nested Loops #

Like any looping notation, the expressional notation can be used to express nested loops. Consider the
program SUM-VECTORS-IN-LIST-MAPS. It takes in a list of vectors of integers (e.g., (<1 2> <3 4>)) and
returns a list of the sums of these vectors (e.g., (3 7)). The outer loop enumerates the vectors of numbers in
the list supplied as the input to the function as a whole. The inner loop adds up the numbers in these vectors.
The outer loop then CONSes these sums up into a list to be returned.

(defun sum-vectors-in-1ist-map$ (1ist-of-vectors)
(letS* ((vector (Elist list-of-vectors))
(sum (mapS #'(lambda (1) (Rsum (Evector 1))) vector)))
(R1ist sum)})

In the program, MAPS is used to apply the inner loop to cach list of numbers in turn. The LAMBDA used
with the MAPS delincates the boundary of the inner loop. This could also be donc by wrapping a LETS#
around the inner loop (which would then be implicitly MAPScd) as in SUM-VECTORS-IN-LIST-LETS.

(defun sum-vectors-in-1ist-1etS (list-of-vectors)
{(1etS* ((vector (Elist list-of-vectors))

(sum (1etS+* () (Rsum (Evector vector)))))
(R1ist sum)))

Though relatively clear, both of the above programs arc somewhat cumbersome in appearance. If the
(RSUM (EVECTOR ...)) were in isolation, there would be no need to wrap it in cither a MAPS or LETSs.

One might therefore assume that one could right the program as in SUM-VECTORS~IN-LIST-BUGGY;
however, this is not the case.

'The Expressional Mctaphor -12- Waters

(defun sum-vectors-in-list-buggy (1ist-of-vectors)
(1etS* ((vector (Elist list-of-vectors))
(sum (Rsum (Evector vector))))
(R1ist sum)))

Note that, there are obvious type conflicts in the program SUM-LIST-IN-VECTORS-BUGGY. The unitary
value of RSUM is assigned to the sequence variable SUM and VECTOR is used where EVECTOR cxpects a unitary
value. An carly experimental version of the LETS macro package resolved this kind of type conflict by -
automatically introducing loop nesting. However, experimentation indicated that this was not a good idea.
The key problem is that the implicit introduction of nesting can have large unobvious cffects on a loop
expression. This is particularly true if the type conflicts in a loop expression are do to error rather than intent.
In addition, the potential for automatic error detection is markedly reduced by the fact that almost any loop
expression (no matter how crroncous) can be given some interpretation in terms of implicitly nested loops.

It should be noted in passing that in programs like SUM-COPY-0F-LIST below, there are no type conflicts
and no nesting of loops. Rather, the program simply specifics that one loop (RLIST (ELIST LIST))isto be
exccuted in order to compute the initial value used by the second loop (RSUM (ELIST ...)).

(defun sum-copy-of-1ist (list)
(Rsum (Elist (Riist (Elist 1ist)))))

A Large Example

To conclude the description of the features of the expressional loop notation, this section presents a large
example. The example is a data abstraction which implements sets of symbols as bit vectors. The abstraction
not only makes available some ordinary functions for operating on these scis, but some sequence functions as
well.

Sets are represented as bits packed into a single integer. The size of the sets is limited by the number of
bits in an integer (c.g., 24 bits on the lLispMachine). The global variable *BSET-DOMAIN+ stores the
correspondence between potential set clements and bit positions. This mapping is represented by a vector of
CONScs. The index of a CONS in the vector indicates the bit position which is being described. The CAR of the
CONS holds the symbol which corresponds to the bit position. The CDR of the CONS holds the representation
for a set which has only that one symbol in it (i.c., an integer with only the one corresponding bit on). The
variable *BSET-DOMAIN« is initialized to a vector of CONSes of NIL and the appropriate single clemetit sets.
Note that the unit sets are created by a special generator which starts with an integer with a 1 in bit position 0
and then rotates this bit around from position to position.

(defvar *bset-domain#
(Rvector (make-array 24) (cons nil (generateS #' (1ambda (x) (rot x 1}) 1)))
"The bset domain element mapping.")

The global variable *BSET-INDEX+ keeps track of the largest bit position used so far. The number -1 is
used to represent the fact that no bit positions have been used yet.

(defvar sbset-index* -1 "The largest bit position used so far.")

The function BSET-RESET is used to reinitialize these variables. It MAPSes over the vector in «BSET-
DOMAIN« setting the CAR of cach CONS cell to NIL, and sets «BSET-INDEXs to -1.

iz

Waters -13- The Expressional Mctaphor

(defun bset-reset ()
(TetS* ((item (Evector *bset-domains)))
(setf (car item) nil))
{setq *bset-index* -1))

The function BSET-UNITSET takes in a symbol and returns the unit set corresponding to it. Tt issues an
error if the symbol is not representable as a unit sct (i.c., if it is not in the vector *BSET-DOMAIN%). It uses
ROR-FAST (which computes the OR of the items in a sequence, stopping as soon as a non-NIL item is
encountered) in order to look for the symbol in «BSET-DOMAIN= returning the corresponding unit set as soon
asitis foand. Note that the COND in the ROR-FAST is implicitly MAPSed.

(defun bset-unitset (symbol)
(or (TetS* ((item (Evector =*bset-domain* 0 xbset~-index+*)))
(Ror-fast (cond ((eq (car item) symbol) (cdr item)))))
(ferror "The symbol ~A is not in the bset domain" symbol)))
The function BSET-ADD-DOMAIN-ELEMENT takes a symbol and enters it in *BSET-DOMAIN« so that it can
be used in the bit vector scts. If the symbol is not already in the domain, and if there is an available bit
position, then the program increments «BSET-INDEX* and stores the symbol in the appropriate CONS cell in

*BSET-COMAIN=

(defun bset-add-domain-element (symbol)
(cond ((Ror-fast (eq symbol (car (Evector *bset-domain« 0 sbset-index*)))))
((> *bset-index* 22) (ferror "bset domain size exceeded"))
(T (incf «bset-index*)
(setf (car (aref xbset-domain* »bset-index*)) symbol))))
As examples of the kind of ordinary functions which would be implemented as part of the data abstraction
consider the following four. The first three are cxamples of the operations for which the bit vector
implementation is particularly efficient. Intersection, union, and the test for equality between two sets can all

be implemented as single operations independent of how many symbols are in the sets operated on

(defun bset-intersect (bsetl bset2)
(togand bsetl bset2))

{(defun bset-union (bsetl bset2)
{(logior bsetl bset2))

{(defun bset-equal (bsetl bset2)
(= bsetl bset2))

(defun bset-mem (symbol bset)
(not (zerop (bset-intersect (bset-unitset symbol) bset))))

The next four definitions arc examples of the kind of sequence functions which would be provided as part
of the data abstraction. The first two implement reducers which can be used to take the intersection and
union of sequences of bit vector sets. The third (EBSET) takes in a bit vector set and creates a sequence of the
symbols in that set. The last (RBSET) performs the inverse operation, taking in a sequence of symbols and
creating 1sct by taking the union of the corresponding unit sets.

(defunS Rbset-intersect (&sequence bset)
(reduceS #'(lambda (x) (bset-intersect x bset)) -1))

(defunS Rbset-union (&sequence bset) ‘
(reduceS #'(lambda (x) (bset-union x bset)) 0))

The Fxpressional Metaphor -14- Waters

(defunS Ebset (bset) :
(car (filterS #'(lambda (x) (not (zerop (bset-intersect (cdr x) bset))))

(Evector sbset-domainx 0 xbset-index*))))

(defunS Rbset (&sequence symbo1) _
(Rbset-union {bset-unitset symbol)})

uﬂygoodoncinthuthshowsthccxpmsﬁona]nuunkn1bdnglmcd

The example in this section is a particul
1hmismcamﬂkmkm1berd1mcn0mﬁonhas1

u)mpmmntawwmw(ﬁhxmswhkhamsnwﬂandﬁmph.

been specifically designed.

Waters -15- Efficient Fxecution

I1 - Efficient Exegution

There are many different ways in which the cxpressional notation could be exccuted. The most
straightforward way would be to implement sequences as normal data objects and the sequence functions as
normal functions. Loop cxpressions could then be evaluated just like any other expressions. This direct
exccution approach is taken by APL[9]. At the other extreme, a compilation process can be used to convert
loop expressions into ordinary iterative loops which operate in an clement at a time fashion. This conversion
approach is uscd by the languages Hibol [11,12] and Model [10]. ~

The 1nain advantage of direct exccution is that it is casy to implement. In particular, it is very easy to sce
how it cirectly supports the cxpressional metaphor. The main disadvantage of direct exccution is that, in
comparison with ordinary iterative loops, it imposes very large time and space overheads.

The main advantage of the conversion approach is that it is capable of creating very efficient code. In fact
there is no reason why there has to be any time or spacc overhead at all. There is however a major drawback
to this approach. The notation has to be significantly restricted in order to guarantee that conversion will
always be possible. (This will be discussed further in the next part of the paper.)

Therz has been a lot of interesting work which trics to chart a middle course between the simplicity of the
direct e ccution approach and the efficiency of the conversion approach. One way in which this has been
done is oy representing sequences explicitly, but without trying to compute the clements in them until they
are actually needed. This can be done explicitly through coroutines[7], or implicitly through lazy
evaluation [4,6]. One unfortunate problem with this approach is that it leaves the exccution order only weakly
constrained. In fact the actual exccution order may well depend on the actual data processed during a
particular exccution of a loop. As a result, it can be very difficult to predict the interaction between
side-effect producing operations (e.g., input/output).

Also, although delayed evaluation is more efficient (particularly in space) than direct exccution in many
situations it is still much less efficient than complete conversion. Several rescarchers have pursued an
interesting mixed mode approach which provides an interpreted implementation where scquences are
represented explicitly and, in addition, provides a compiler which performs conversions to climinate
intermediate sequences whenever possible.

The premier example of this has been the work on compilers for APIL [2,5]. Optimizing APL. compilers
attempt to locate array expressions where the arrays are being used merely as intermediate scquences, and
then climinate the actual computation of these arrays. When an cxpression corresponding to the kind of
simple loop representable by the expressional notation is located, then it is easy to climinate the intermediate
arrays. Wadler’s Listless Transformer [14] pursucs a similar approach for compiling a Lisp-like language. It
takes programs where finite intermediate scquences are represented as lists, and converts them into programs
where these intermediate lists do not actually have to be created. The resulting programs can then be
efficiently compiled by normal means,

Unfcrtunately, there arc several inherent problems with the partial conversion approach. First, the only
reason {o pursue partial conversion is that the notation supports features which cannot be practically
converted. Unfortunately this raises a whole new problem -- identifying what parts of what loops can be
convertcd. In addition, steps have to be taken to interface loop expressions which have been converted with
those wt ich have not.

A sccond and much more serious problem is that in the presence of side-cffects, conversion is not a
correctnass preserving process. The reason for this is that it entails a radical change in execution order from
computing cach scquence as a unit to processing several sequences in parallel an clement at a time. To deal
with this you have to refrain from converting any loop containing side-effects (including input/output).

Lfficient Execution - 16 - Waters

When designing the expressional notation it was felt that the issuc of efficiency could not be ignored. Asa
rosulL. the notation was designed from the beginning with conversion in mind. This had three major cffects
on the design. First, the element at a time metaphor was introduced as an explicit part of the notation so that
the user would be aware of the cxecution order introduced by the conversion process. Second. the notation
was restricted wherever necessary in order to insure that conversion would always be possible. Third it was
possible to introduce generators creating infinitc sequences into the notation. These arc convenient in many
situations, but difficult to implement if direct execution is used. It should be noted that the languages Hibol
and Model support somewhat similar notations (described in last part of the paper) which arc also suitable for
complete conversion.

The Compilation Process

This section gives a brief outline of the compilation process used in the Lisp implementation of the
cxpressional loop notation. 'The process is described in detail in Appendix A. The following cxample
illustrates the result of the compilation process. The iterative loop which results is composed of a number of
separate pieces which are specified by the sequence functions in the loop expression.

(macroexpand ‘'(Rsum (Fpositive (Evector vector)))))

yields: (prog T (sum2 element10 index6 f4 last7)

(setq last7 (1- (array-length vector)))
(setg index6 0)
(setq sum2 0)

L0 (cond ((> index6 last7) (go E0)))
(setq element10 (aref vector index6))
(setq f4 (plusp elementi0)) ‘
(cond (f4 (setq sum2 (+ sum2 element10))))
(setq indexB (1+ dindex8))
(go L0O)

E0 (return-from T sum2))

When a loop expression is encountered, it is first parsed in order to locate all of the sequence functions in
it. As part of the parsing process, implicit MAPS introduction and other coercion are performed. The loop
expression is then compiled by combining all of the sequence functions in it together.

Interna.y, cach sequence function is represented by a data structure specifying some initialization
computation to perform before the loop begins, some inside computation to perform repetitively on each
cycle of the loop, and some epilog computation to perform after the loop terminates.

A composition of two sequence functions "(A (B...))" is compiled by combining their parts together
into a new compound sequence function. The resulting initialization, insides, and cpilog are derived by
concatenating the corresponding parts of B and A. The data flow from B to A is implemented by data flow

from the inside part of B to the inside part of A in the new compound inside part.

Waters -17 - ‘The Element at a Time Mctaphor

II1 - The Element at a Time Metaphor

In addition to the expressional metaphor, the loop notation described here supports a second element at a
time computational metaphor. ‘The expressional metaphor is based on the idea that a sequence is a logical
unit which is created in its entircty by one sequence function and then consumed by another sequence
function. The clement at a time metaphor is based on the idea that the computation involving all of the
scquences in a single Joop proceeds in parallel and that the loop expression is essentially describing what
happens on a typical step in this process. .

The clement at a time metaphor is included as a basis for the proposed notation for three reasons. First, it
makes the exact exccution order in a loop expression explicit. This makes it possible for users to understand
the interaction of side-effect producing operations. Second, the element at a time metaphor makes it possible
to conveniently state the restrictions on the notation which are needed in order to guarantee that compilation
into cfficient code will always be possible. Third, it is an independent metaphor which is often a more
convenicnt way to think about a loop than the expressional metaphor.

The program INVENTORY-REPORT below shows a typical example of a loop expression which is strongly
based or: the element at a time metaphor. The program reads in a file of inventory rccords and prints out a
report. Each record is a list of four fields: the name of the inventory item, the quantity on hand, the
minimum acceptable quantity on hand, and the unit price. For cach item the report prints out its name, how
many are on hand, and the valuation of these items bascd on the specificd price. The last line of the output
reports the total valuation of all of the items. In addition to the above, the report prints out a notification in
front of cach item which is understocked, indicating how many should be ordered.

Sémple Inventory File Contents

("Widget" 8. 8. 20.5)
("Frob" 2. 9. 9.68)
("Thingy" 312. 40. 19.65)
("Dingus" 0. 20. 8.25)
("Whatsit" 3. 7. 5.87)

Resulting Printout
Inventory Report

Order? Name On Hand Valuation
Widget 8 $164.00
Order: 7 Frob 2 $19.36
Thingy 312 $6130.80
Order: 20 Dingus 0 $0.00
Order: 4 Whatsit 3 $17.01

Total Valuation: §$6331.17

Looking at the loop in the program, note the use of destructuring and sequential assignment in the bound
variable value pairs. In the first line of the LETS«, the sequence variable NAME is bound to a sequence of the
first fielc of each record, the variable QUANTITY is bound to a sequence of the second field of cach record, etc.
The varinble VALUATION is bound to a sequence of products of PRICE and QUANTITY.

The Flement at a Time Metaphor -18- Waters

(defun inventory-report)

(with-open-file (report "inventory.report" ':out)
(format report "~10X Inventory Report~2%")
(format report "Order? Name On Hand Valuation~%")

(1etS* (((name quantity minimum price) (Efile "inventory.data"))
(valuation (*$ price (float gquantity})))
(cond ((>= quantity minimum) (format report "~10X"))
(T (format report "Order: ~3D" (- minimum quantity)}))
(format report " X~10A~4D~2X~10<$~$~>~%" name quantity valuation)
(format report "~%~10X Total valuation:~10<$~$~>" (Rsum$ valuation)))))

The body of the LETS# prints the main part of the actual report. The first form prints the ordering
notifications. 1t compares the quantity in stock with the minimum required and prints out the number to be
ordered if the quantity is less than the minimum. The second form prints the main information about each
inventory item. (Notc that the FORMAT function is a Lisp function for creating formatted output. Like the
FmvwcmmmwﬁﬁsmmmkdmmnhmmmmMMCmnamwmmm)Bmhdﬂwﬁmnwommmmﬂmbmw
arc implicitly MAPSed. The third form prints out the summary line at the end of the report. It is only
exccuted once at the end of the loop because it uses the unitary output of the reducer RSUMS$ (floating point
sum).

Two aspects of LETS exist primarily in order to support the element at a time metaphor. First, a key
feature of LETS is that it specifies that all of the expressions in it are to be combined into a single loop. From
memmuﬁWWuﬁmcwmmmmmmawhnmsdmm%mﬂemymmmmw.Hmwwnkmmmmmmm
order to delincate the exact group of actions which occur on a typical loop cycle.

&mmimemkﬁanmnmUmManﬁMMSEcmmmwbymaaummwemm$mnmaLHS*MH
be implicitly MAPSed even if it does not refer to any sequences. (The only time that this is not possible is if the
cxpression refers to values which are not available until the end of the loop. In this situation the expression is
executed AT-END.) This extension is made so that, as much as possible, all of the lines in a LETS* describe
typical actions and not just single actions.

It is interesting to consider the way that the LETS« mixes together the expressional and element at a time
metaphors. For the most part, the body specifies the computation to be performed by describing the
operations to be performed on a typical inventory record (i.e., for each record get the four fields, compute the
valuation, print the number to order if any, and then print the name, quantity, and valuation). However, the
LETS» also uses the standard sequence functions EFILE and RSUM. Since these sequence functions operate on
sequences as whole entities they make much more sense when looked at from the point of view of the
expressional metaphor.

Another interesting aspect of the program INVENTORY-REPORT is that although the process of actually
printing out the report (i.e., opening the file, printing some initial lines, printing a group of internal lines,
printing a final line, and then closing the file) is clearly a logically identifiable loop fragment, it is not
represented as a sequence function. The problem is that, unlike the simpler actions represented by RFILE,
there arc so many ways in which the items to be printed, and the format for printing them, can vary that there
is very little constant structure which could be captured in a sequence function. Basically, the only thing
which is common between different instances of this fragment is opening and closing the file which is already
captured in the form WITH-OPEN-FILE.

A key aspect of LETS# is that cven though the operations of actually printing the report are not
represented as a sequence function, LETS» makes it possible for them to be conveniently expressed. This is
done in basically the same way that it would be done in an ordinary looping notation i.c., by distributing the
parts of the computation into places where they will be exccuted in the correct situations. Note that the

wra,

Waters -19 - The Element at & Time Metaphor

sequence variables exist as real variables at run time. On a given cycle of the loop, these variables contain the
individual sequence elements corresponding to that cycle. If you declare a sequence variable to he special you
can refer to it outside of the lexical context of the LETS+,

It must be said that since the report production fragment is distributed throughout the loop, it is no casier
to understand than it would be in an ordinary looping notation. However, the loop as a whole is more
understandable because much of the computation is represented concisely in terms of sequence functions.
The ability to mix computations which are not specified as sequence functions into a loop expression 18
another important capability which is facilitated by the element at a time metaphor.

The expressional and clement-at-a-time metaphors are really very separate ideas. One could casily decide
to support just onc of them. For example, the language APIL [10] supports much of the expressional
metaphcr and almost none of the element-at-a-time metaphor, while the language Hibol [13] docs the
opposite. Experience with the Lisp implementation of the expressional notation has shown that it is beneficial
to blend these two ideas together.

Registration

The fundamental restriction which the element at a time metaphor places on the expressional loop
notation is that every sequence function is required to have the property of registration. As discussed above, a
sequenc: is an ordered series of slots containing values. The registration property requires that the nth
clement in the sequence produced by a sequence function must be computed from the nth clements of the
input sequences to that function. The computation can also involve state variables internal to the sequence
function and therefore can have implicit access to prior input values. However, it cannot refer to future
* clements in the inputs. The fact that the registration property is universally satisfied insures that it makes
sense to talk about the interaction between the nth values in all of the sequences in a loop expression as fypical
because they are computed from each other.

The process of combining sequence functions together preserves registration and the only way to create
new sequence functions is by combining the basic sequence functions. As a result, the fact that cach of the
basic sequence function is designed so that it satisfics the registration property insures that the registration
property will always be satisfied. ,

The registration property makes loop expressions casy to understand and compile; however, it is
significantly restrictive. The key limitation is that there are a number of quite logical operations on sequences
which cannot be supported. In particular, operations which disturb the ordering of the slots are prohibited.
For example, merging sequences, concatenating sequences, changing the order in a sequence (e.g., reversing
it), etc. Such complex operations arc not supported because the overhead associated with supporting them is
not warranted by the rather infrequent need for them. When they are needed, other loop notations should be
used.

Filters and Expressions Involving Multiple Sequences

The only sequence functions where there is any logical difficulty in satisfying the registration property are
filters. It would be perfectly reasonable to say that a filter takes in a sequence and produces a shorter
sequencs containing only selected elements of the input sequence. From the point of view of the expressional
metaphor there is nothing wrong with this definition, and there would be no difficulty in understanding a
program like SUM-POSITIVE-EXPRESSIONAL based on this definition.

However, if filters produced shortened sequences, they would not satisfy the registration property. In
order to satisfy this property, a filter is defined as producing a sequence which has exactly the same number of
slots as its input with the selectivity of the filter encoded in the fact that some of the output slots are empty.

The Element at a Time Metaphor -20- Waters

* The sclected values remain in the sume slots as in the input sequence. In order to make this work, loop
expressions are defined as simply not operating on empty slots. 'This can be seen in the definitions of the
basic sequence functions presented above. The following genceral statement can be madc a given loop
subexpression is only executed on those cycles of the loop when values are available for all of the sequences it
refers to.

In order to appreciate the full impact of the definition of how filters operate, one must consider loop
expressions involving several sequences. Consider the program LIST-EVEN-SQUARES. [t takes in a list and °
returns a list. The output list contains an entry corresponding to each even number in the input. Each entry
consists of the number followed by its square. For example when passed the argument (1 2 3 4) the
program will produce the output ((2 4) (4 16)).

(defun list-even-squares (list)
(tetS* ((integers (Elist 1ist)))

(R1ist (1ist (filterS #'evenp integers)
(* integers integers)))))

In the program, the function LIST is implicitly MAPSed over two sequences. The first is generated by
enumerating the elements in the input and selecting the even elements (e.g., [~ 2 47). The second is
generated by squaring all of the clements in the list (e.g., [1 4 9 16]). The registration between the two
sequences is maintained by the fact that the missing elements in the filtered sequence are represented as
cmpty slots. The function LIST is only executed when valucs are available in both sequences i.e., only for
even elements of the list. The output of the implicit MAPS is a sequence which has values in it corresponding
to the times when LIST was executed (e.g., [(2 4) _ (4 16)]). When RLIST reduces this sequence to a
list it ignores the empty slots.

Termination

There is one place where the expressional metaphor and the clement at a time metaphor are antagonistic -
the question of termination. From the point of view of the pure expressional metaphor, termination is not
really an issue any more than it is in ordinary expressions. Each sequence function is logically executed
separately and as long as cach onc terminates in and of itself, the whole expression will terrninate. However,
in order tw fit in with the element at a time metaphor, termination has to be treated in a somewhat more
complex way which reflects the reality of the way loop expressions arc compiled.

The termination of a loop cxpression is controlled by the length of the sequences in it. The loop
expression terminates as soon as the shortest sequence in it is exhausted. This definition of termination is an
example of action at a distance which makes it impossible to understand the various parts of a loop expression
completely in isolation from each other. As a result, it violates the basic decomposability property of the
expressional metaphor.

Consider again the program DIGITS-TO-NUMBER (reproduced below). There are several questions about
the sequence functions in this program which cannot be answered completely locally. For cxample, although
it is convenient to describe the generator as creating an infinite sequence of powers of 10, it cannot actually do
that. The gencrator will cventually halt with an error due to arithmetic overflow unless some other sequence
function terminates the loop before then. On the other hand, in order to be sure that the EVECTOR will
succeed in enumerating all of the digits, one must check that no other sequence function will terminate the
loop before the end of the vector of digits is reached. Because of these problems, you cannot just composc an
understanding of its parts in order to understand the loop expression as a whole.

Waters -21- ‘The Element at a Time Metaphor

(defun digits-to-number (v)
(Rsum (* (Evector v) (generateS #'(lambda (x) (* x 10.)) 1))))

Fortunately, there is a middle ground with regard to the property of decomposability. As discussed in [16],
as long as you make no statements which depend on a specific minimum length for any sequence, any
statement which is true about a sequence function in isolation will be true when it is composed with other
functions in a loop cxpression. For example, you can say that the generator creates a sequence of powers of
10 beginning with 1. However, you cannot make any statement about whether it will or will not get arithmetic
overflow in the process. Similarly, you can say that EVECTOR enumerates successive elements of a vector
starting with the first one. You can even say that it will produce a sequence no longer than the vector.
Howeve-, you cannot make any claim about any minimum number of vector elements which definitely will
be enumerated. '

Given the kind of statements you can dependably make, you can determine a great deal about a loop by
using straight composition. For example, in DIGITS-TO-NUMBER it is casy to tell that the values in the
sequence created by the gencrator correspond to successive powers of 10, and that the sequence created by the
EVECTO! correspond to successive digits with the least significant digit first. In addition, it is clear that the
program multiplies each digit by the appropriate power of 10 and that these results are summed up.

In order to go beyond this and make statements about termination, you must do more global reasoning.
In this case, there is only one basic finite scquence involved (the one created by EVECTOR), and it clearly
dominates the computation. As a result, the program clearly processes all of the digits and terminates
computing the correct number.

Note that all of the basic sequence functions (with the exception of TRUNCATES) are carefully restricted so
that the lengths of their output sequences (if any) are the same as the minimum of the lengths of their input
sequences (if any). This is done so that truncators (and the enumerators which are built out of them) will be
the only sequence functions which cver trigger termination. As a result, reasoning about termination can
focus solely on the truncators and enumerators in a loop.

The two step reasoning process outlined above is usually very satisfactory for the kind of straightforward
loops the expressional notation is designed to represent. In particular, the global reasoning about termination
is usually not at all difficult. '

Done

In addition to using the basic sequence function TRUNCATES to limit the length of a sequence, a loop can .
also be terminated by exccuting the special form DONE. Consider the program SUM-INITIAL. It takes in a list
and adds up any initial group of numbers (c.g., (SUM-INITIAL '(1 2 A 4)) rcturns 3). The program
works by cnumerating the elements in the list and summing them up, but terminating the loop as soon as a
non-number is encountered. The form (DONE) causes the immediately enclosing loop to terminate normatly
-- any AT-END loop computation which has been specified is performed, and the return value which is
specifiec by the last line is returned (here the sum),

(defun sum-initial (1dist)
(letS« ((x (Elist list)))
(cond ({not (numberp x)) (done)))
(Rsum x)))

DONE can also be called with an argument. In this case the loop is immediately terminated and the
specified value is returned. When DONE is used in this way, it overrides the outputs specified in the last line of
the LETS+ and any AT-END computations arc not performed. An ¢xample of this use of DONE is shown in the

‘The Element at a Time Metaphor -22- Waters |

program FIND-POSITIVE which returns the first positive number in a list.

(defun find-positive (1ist)
(letS* ((x (Elist 1ist)))
(cond ((plusp x) (done x))¥))

The use of DONE is also illustrated by the following sequence functions. 'The scquence function ROR
computes the OR of a scquence in the obvious way by successively ORing cach value into a state variable. The
first non-NIL value encountered is returned. The sequence function ROR-FAST also returns the first non-NIL
value encountered: however, it causes the loop as a whole to terminate as soon as this value is found. Note
the way the DONE overrides the NIL which is returned AT-END if no non-NIL items are found.

(defunS Ror (&sequence item)
(reduceS #'or nil item))

(defunS Ror-fast (&seguence item)
(cond (item (done item)))
(at-end #'(lambda () nil)))

In general, ROR-FAST is more efficient than ROR: however, when you use it you must consider the effect
that it will have on the rest of the loop it is used in. For example, becausc its operation is peremptorily
terminated by the ROR-FAST, the program PRINT-LIST-OR-BUGGY neither prints out all of the clements in
the list, nor prints out the summary line AT-END. In order to operate as intended, it nceds to use ROR instead
of ROR-FAST.

(defun print-1ist-or-buggy (1ist)
(format T "~%Elements: ")
(1etS* ((x (Elist 1ist)))

(format T "~A " x)
(format T "~%Their Or: ~D~%" (Ror-fast x))))

The output produced by (print-Tist-or-buggy "(NIL A NIL B))
Elements: NIL A

It should be noted that in many ways DONE clashes with the rest of the expressional notation. By causing
sudden termination of a loop it creates action at a distance which violates the decomposability property of the
expressional metaphor. If given an argument, it violates the integrity of the individual sequence functions by
preventing the execution of AT-END computation. As shown by the example above, these problematical
effects arc particularly apparent in a sequence function like ROR-FAST. DONE is included in the notation
because though it is scmantically awkward it is simply too useful to be omitted.

You can cause the premature termination of a loop in other ways which are outside the scope of the LETS
macro package. For example, you can wrap the loop in a PROG and then do a RETURN or GO from inside the
loop to outside the loop. (Note that the loop expression itself is implemented by means of a PROG. In the
LispMachine version (but not the MacLisp version), this PROG is named T in order to climinate interference
with user specified RETURNs.) Similarly, you can do a THROW from inside the loop to some CATCH outside the
loop. An important aspect of these kinds of exits is that they do not cause normal termination of the loop. No
AT-END loop computation will be run, and the return value is directly specified by the RETURN or THROW.

e

Waters -23- The Element at a Time Metaphor

Side-Effects

The behavior of side-effect producing operations (such as input/output) in a loop expression can only be
understood from the point of view of the clement at a time metaphor. 'The compilation process is constrained
so that the order of exccution in the loop produced is exactly the same as the lexical order of cxpressions in
the original loop expression. As a result, it is relatively casy to predict the consequences of side-cffects as long
as you bear in mind the fact that processing is occurring an clement at a time so that the side-cffect operations
are interleaved and that cach one is executed many times. Consider the program INVENTORY-REPORT above.
The two main output statements are each exccuted once on each cycle of the loop. The final output statement
is executed only once after the loop terminates.

Note that the requirement that every unitary expression in a LETS» be MAPSed (if possible) even if it does
not refer to any sequences makes it much casier to understand side-cffect operations. One might have chosen
to say thar an expression which neither uses nor produces sequence values sheuld not be MAPSed since its
value cannot change on different cycles of the loop. However, this would be missing the fact that if it has a
side-cffect (such as output to a file) this effect is probably desired on every cycle of the loop. A programmer
can use AT-START in order to specify that something should only be exccuted once.

Most side-effects interact with the expressional notation in straightforward ways and can easily be
understood as outlined above. However, there are some situations where things are not so clear.

Side-Effects and Termination

In order to understand how side-cffects interact with termination, one has to be aware of exactly when
termination will occur. For cxample, consider the program PRINT-LIST below. This function prints all of
the items in a list preceding cach one with an index of its position in the list. (Note that the first FORMAT is
executed on each cycle of the loop even though it does not refer to any sequences.)

(defun print-list (1ist)
(1etS» ((i (generateS #'1+ 1))
(x (Elist 1ist)))
(format T "~%Item ")
(format T "~D:" 1)
(format T " ~A" x)))

The output produced by (print-1ist '(A B C)):

Item 1; A
Item 2: B
Item 3: C

There is one potential pitfall which the user must be aware of. A loop is terminated immediately upon
discovering that one of the sequences has been exhausted. As a result of this, unless the termination test
happened to be the first thing executed on that cycle of the loop, some things will get exccuted on that last
cycle, an others will not. In particular, all and only those expressions which lexically precede the termination
will be erecuted. For example, consider the program PRINT-LIST-BUGGY. (Note that although no sequence
variables arc bound, a LETS# is required in this program in order to specify that the three FORMATS should be
executed in a single loop instead of in three separate loops. The LETS also specifies that the FORMATSs should
be MAPScd.)

The Flement at a Time Mctaphor -24- Waters

(defun print-Tist-buggy (1ist)
(1etS* ()
(format T "~%Item ")
(format T "~D:" (generateS #'1+ 1))
(format T " ~A" (Elist 1ist))))

The output produced by (print-Tist-buggy '(A B C)):

Item 1: A

Item 2: B

Item 3: C
- Item 4.

This program does not produce the same output as PRINT-LIST. The problem is that it does not discover
that the list has been exhausted until after the first two FORMATs have been exccuted on the last cycle of the
loop. Note that this problem cannot be avoided by any straightforward change to the definition of LETS#.,
You could not say that nothing in a cycle will be executed if any termination is triggered because some of the
computation may be necessary in order to compute whether to terminate. On the other hand, you could not
say that everything will be executed on the cycle where termination occurs, because typically some (or all) of
the computation after the termination test will be in crror if the test is true.

The programmer is capable of exercising control over this problem because, in the loop code which is
produced, everything is evaluated in the order in which it appears in the original loop expression. As a result,
it is always possible for him to get the termination tests to occur at the places he wants by correctly ordering
the forms in the LETS#. For example, the ELIST is merely placed before the first FORMAT in PRINT-LIST. As
a result, this is not really a severe problem; however, it is one to which the user must be sensitized.

On a deeper level, the real problem with PRINT-LIST-BUGGY is that neither it (nor for that matter PRINT-
LIST) makes the logical relationship between the three FORMATs explicit. The correct thing to do is to group
them together into a single form as in the function PRINT-LIST-BEST.

(defun print-1ist-best (1ist)

(1etS* ()
(format T "~%Item ~D: ~A" (generateS #'1+ 1) (Elist Tist))))

Side-Effects Between Sequence Functions

As mentioned above, the expressional notation attempts to maintain the property of decomposability of
loop expressions whenever possible. An important feature of this is that any internal state variables of a
sequence function are hidden from view and cannot be modified by SETQs, or the like, in a loop expression.
Unfortunately, side-effect producing functions such as RPLACD are capable of modifying the values of state
variables without having to actually refer to the variables themselves. If such side-effect functions are being
used, then the programmer must take care that this kind of problem does not arise.

The problem is illustrated by the program DASH-LIST-BUGGY. The purpose of this program is to takein a
list (c.g., (A B C))and put a dash after each entry in it (c.g., to produce (A - B - C -)). It attempts to do
this by side-effect as follows. It cnumcrates cach of the sublists in the original list (eg.,
[(A B C) (BC) (C)]) and splices in a dash after the first element of each sublist (e.g., producing

[(A-8C)(B-C)(C)D

(defun dash-list-buggy (1ist)
(1etS* ((sublist (Esublists list)))
(rplacd sublist (cons '- (cdr sublist))))
¢ Tlist)

Waters -25- The Element at a Time Mctaphor

Particularly from the point of view of the expressional metaphor, the above algorithm sounds very
plausible: however, it doesn’t work. What actually happens is that thc'program goes into an infinite loop
splicing in dashes after the first item in the input list. 1f the loop starts with the list (A B C) then the first
sublist is (A B C). The RPLACD altcrs this sublist to (A - B) and thercfore the list itself to (A - B C).
So far this is ali as intended. Unfortunately, an internal variable in ESUBLISTS has a pointer into the list in
order to keep track of what sublist to enumerate. ‘The list is altered before the second sublist is actually
enumerated and as a result (- B C) gets enumerated as the sccond sublist instead of (B C).

It is possible to construct a loop expression for this algorithm which will work more or less as intended.
For exaniple, the program DASH-LIST1 combines cverything into one enumerator which enumerates the next
sublist bafore the RPLACD operation. Alternatively, DASH-LIST2 uses a modificd enumerator which makes
allowances for the actions of the RPLACD.

(defun dash-1istl (1list)
(letS* ()
(enumerateS #'null
#'(lambda (1) (progl (cdr 1) (rplacd 1 {cons '- (cdr 1}))))
list))
Tist)

(defun dash-1ist2 (list)
{1etS* ((sublist (enumerateS #'null #'cddr Tist)))
(rptacd sublist (cons '- (cdr sublist}))))
1ist)
However, due to the antagonistic interaction between the RPLACD and the enumerator, there is no acsthetic
way to express the stated algorithm using the expressional notation.

Domain of Applicability

The cxpressional loop notation is oriented towards the kinds of straightforward loops which are most
common. In order to make it casier to express these loops, it deliberately sacrifices more general applicability.
As a result, there are a number of situations where the cxpressional notation is not appropriate.

The basic approach of the notation is to express a loop as a composition of fragments of looping behavior
represented as sequence functions. There are two main situations in which this approach is ineffective: when
a loop cannot be separated into multiple fragments, and when the notation is not capable of expressing the
required fragments as sequence functions. :

It is quite possiblc that even a large loop will not be decomposable into fragments. In order to break a
loop down into two fragments A and B, it must be the case that A and B are both self contained units. In
particular this means that there can be no interaction between A and B other than data flow from A to B. Note
that therz cannot be any data flow from B to A. In some loops, all of the computation is linked together in a
tight net of data flow. In this case it cannot be decomposed. For example, consider the program BINARY-MEM
which teats whether a given integer is in a sorted vector of integers by doing a binary search.

'The Flement at a Time Metaphor -26- .) Waters

(defun binary-mem (integer vector)
(prog (left mid right item)
(setqg left 0)
(setq right (1- (array-iength vector)))
L (cond ((> left right) (return nil}))

(setq mid (// (+ left right) 2))

(setq item (aref vector mid)) _

(cond ((> item integer) (setqg right (1- mid}))
((< item integer) (setq left (1+ mid)))
(T (return T)))

(go 1))

This program cannot be decomposed into a composition of fragments because cach part affects every
other part. The values of LEFT and RIGHT are used to computc MID which is used to compute ITEM which is
used in a test which determines the next values of LEFT and RIGHT. Because it cannot be decomposed, there
is no way to write the program more clearly using the expressional notation. The best that could be done
would be to write the program as onc huge sequence function.

Thewpm$mnMKmpanMHEakommmdhumckmdoﬂom)m@mmnSWMdHUmnmpmmnt1hme
are a number of sources of limitation. Perhaps the biggest limitation is the requirement for registration.
Another limitation is the fact that the only facilities available for creating (as opposed to combining) sequence
operations arc the seven basic sequence functions. Experience has shown that these are capable of creating a
wide range of useful fragments. However, there are a variety of plausible fragments which cannot be created.
For example, TRUNCATES performs the truncation test at the start of each cycle of the loop. It is not possible
to create a fragment where the truncation test is performed at the end of each cycle.

Another reason why the expressional loop notation may not be appropriate in a given situation is that
some other paradigm may be more appropriate. For example, consider the function GCD. Writing it as a
recursive program makes it very casy to understand because the structure of the program mirrors the structure
of the standard proof of correctness for the algorithm. No iterative rendition would be as clear.

(defun gecd (x y)

(cond ((< x y) (psetq x y y x)))
(let ((r (remainder x y)))

7 ornd ((zerop r) y)
(T (ged y r)))))
In addition, it should be noted that, unlike some looping notations, the expressional notation does not
handle anything but simple loops. For example, it does not support multiple entry points nor exits to
multiple points. - '

P

Waters -27- l.anguage Independence

IV - Language Independence

The above presentation of the expressional loop notation is couched in terms of Lisp. However, none of
the ideas behind the notation are inherently dependent on any specific language. As a result, there is no
reason why the expressional notation could not be implemented as an extension to almost any language.

Consider what the basic ideas behind the notation arc. To start with, there are three themes which
underlic the notation.

The Expressional Metaphor - The idea that loops can be expressed as compositions of fragments of
looping behavior is the fundamental motivation behind the notation.

The Ilement at a Time Metaphor - The additional metaphor that a loop can be conveniently specified
as a sct of operations on typical elements also underlies the notation as a whole.

Efficient Compilation - From the beginning, it was decided that it had to be possible to compile the
notation into cfficient looping code. This effected many of the design decisions.

There are six basic features of the notation which together support these themes,

Sequence Functions - These embody the fundamental notion of a fragment of looping behavior. The
fact that they look and can be reasoned about essentially just like ordinary functions supports the
crpressional metaphor. Restrictions on the kinds of scquence functions allowed (c.g., the
requirement for registration between elements of their inputs and outputs) support the clement at a
time metaphor and efficient compilation.

Sequences - These are the mode of communication between sequence functions. The fact that they
look like and can be reasoned about much of the time just like ordinary aggregate data objects
supports the expressional metaphor. The fact that they are defined to be one dimensional series of
slots containing unitary values where cach slot corresponds to one cycle of the loop which will
eventually be produced is the fundamental underpinning for the clement at a time metaphor and is
essential for efficient compilation.

Basic Sequence [Functions-The seven basic scquence functions cmbody the fundamental
computational capabilities supported by the notation. New sequence operations can be created by
composing the basic sequence functions together. The fact that this is the only way in which new
operations can be created guarantecs that restrictions such as registration will always be satisfied.

User Definition of Sequence Functions - The fact that the user can define his own sequence functions in
analogy with the definition of ordinary functions greatly extends the utility of the notation.

Loop Expression Blocks- Calls on LETS# scrve two basic purposes: delincating groups of loop
expressions which are to be combined into a single loop, and supporting the notion of variables
which have sequences as their values. The body of such a block is the place where the clement at a
time metaphor is most prominent,

Cuoercions - The existence of coercions such as the automatic introduction of MAPS is an important
underpinning for the element at a time metaphor. Other coercions such as automatic conversions
batween sequences and unitary valucs exist mercly as a convenience for the user. Note that in order
tc make cocrcions practical, variables containing sequences have to be readily identifiable as such.

It is casy to extend a language in order to support the cxpressional loop notation syntactically as long as
the language has aggregate data structures, functions, user function definition facilitics and block structure.
The semantic support for the notation can be implemented as cither an extension to the compiler or a separate
preprocessor as in the Lisp implementation.

For example, you could add the expressional loop notation to the language Ada[1] by supporting the six
basic features of the notation as follows:

I.anguage Independence -28- Waters |

Sequence Lunctions- As in the Lisp implementation, calls on sequence functions would look
Synlaétically exactly like calls on other functions; however, they would be handled like macros by a
preprocessor in order to crcate loops as described above. A sct of built-in sequence functions would
be provided as part of the standard environment. '

Sequences - A new data type sequence of would be added. 'This could be used to specify the data
types of variables and of the arguments to scquence functions.

Basic Sequence Functions - The same seven basic sequence functions would be provided. Since these
sequence functions take functional arguments they are analogous to generic functions in Ada. It is
suggested, however, that a syntactic sugaring be introduced so that these seven functions can appear
syntactically to be ordinary functions which take functional arguments.

User Definition of Sequence Functions- A new kind of function declaration function on sequences
would be added. Using this, sequence functions would be defined exactly like ordinary functions.
These would be the only functions allowed to have parameters and/or return valucs of type
sequence. Similarly, procedure on sequences would be used to define procedures operating on
sequences.

Loop Expression Blocks- A new keyword begin computation on sequences would be introduced.
This could be used in place of begin in begin blocks, subprogram bodics etc. Only these blocks
would be allowed to have variables of type sequence. Fach such block would be compiled into a
single loop.

Coercions - Given that the sequence data type would be used to identify all of the variables which carry
‘sequences, various coercions could be supported by the preprocessor in exactly the same way as in
the Lisp implementation.

The following examples show what loop expressions would look like in Ada. The first is a version of the
program DIGITS-TO-NUMBER which takes in a vector of digits (least significant digit first) and computes the
corresponding integer. The second program illustrates the definition of a sequence function.

type VECTOR is array (INTEGER range <>) of INTEGER;
type INTEGER_SEQUENCE is sequence of INTEGER;

function DIGITS_TO_NUMBER_ADA(DIGITS: VECTOR) return INTEGER is
fur-%9sn TIMES_TEN(X: INTEGER) return INTEGER 1is
begin return X*10; end;
DIGIT, SCALE: INTEGER_SEQUENCE;
begin computation on sequences
DIGIT := EVECTOR(DIGITS);
SCALE := GENERATES(TIMES_TEN, 1);
“return RSUM(DIGIT*SCALE);
end;

function on sequences RSUM(INTEGERS: INTEGER_SEQUENCE) return INTEGER 1is
begin computation on sequences
return REDUCES(+, 0, INTEGERS);
end;
Duc to the type information which has to be specified and the fact that there is no compact representation
for literal functions, the above programs are somewhat more lengthy than their Lisp counterparts; however,
they are identical in basic structure.

Waters -29- Comparison With Other Loop Notations

V - Comparison With Other Loop Notations

Consider the program SUM-POSITIVE-EXPRESSIONAL (reproduced below) which was used as an cxample
in the beginning of this paper. There are many different computationally cquivalent ways to represent any
given loop. All of these representations are capable of expressing the same basic looping algorithm. 1n order
to cvaluate the uscfulness of these representations, we must look at other characteristics beyond
expressivencss,

(defun sum-positive-expressional (vector)
(Rsum (Fpositive (Evector vector))))

The paramount property required of a looping representation is understandability i.e., how easy is it to
look at & loop and determine what the loop is computing. Two closely related properties are also of great
importar.ce. The first is constructibility i.c., given a specification, how easy is it to build up a loop which
satisfies the specification. The second is modifiability i.c., given a loop, how easy is it to change it in
accordance with a change in its specification.

The key idea behind the expressional loop notation is that most looping algorithms are built up out of
stercotyped fragments of looping behavior and therefore loop programs are casier to understand, construct,
and modify if these fragments are expressed as casily identifiable syntactic units. In the cxpressional notation,
loop fragments are represented by sequence functions. Many other looping notations have methods for
representing at least some loop fragments. Discussion of these methods is the major theme of the
comparisons below.

Two things act as the focus for the following sections. The first is the loop in the program SUM-
POSITIVE-EXPRESSIONAL. Each scction shows how the loop notation being discussed could be used to
express this algorithm. The second focus is the six basic features of the expressional notation. The sections
are ordered from simple constructs which have very few of these features to languages like APL and Hibol
which embody most of them.

PROG and GO

The program SUM-POSITIVE-GO shows how our example loop could be implemented using a PROG and
GO. The program is not very casy to understand because PROG and GO suggests a particularly unfortunate way
to think about the loop, namely that it is basically a straight line picce of code which is converted into a loop
by the addition of a 0. This notation embodies none of the basic features of the expressional notation. The
key idea which is being missed by this way of thinking is that straightforward loops like this one are built up
out of standard fragments of loops and not out of standard straight line fragments.

(defun sum-positive-go (vector)

{prog (sum i end)
(setg sum 0)
(setqg i 0)
(setqg end (1- (array-length vector)))

L (cond ((> i end) (return sum)))
(cond ((plusp (aref vector i))
(setg sum (+ sum (aref vector i)))))

(setg 1 (1+ 1))
(go L)))

Instead of highlighting the loop fragments, the program breaks them up into picces and then mixes the
pieces together. For example, the enumerator is broken up into three picces: an initialization which sets the
starting value for I, a termination test that terminates the loop after the last index is produced, and a repetitive
step which increments I cach time around the loop.

Comparison With Other Loop Notations -30- Waters

[is just as difficult to see how the fragments interact as it is to identify the fragments themsclves. The
enumerator and the filter interact by sharing the variable I. In contrast, the interaction between the fitter and
the reducer is represented by embedding part of the reducer inside of the filter COND. ‘T'his is particularly
confusing because the COND Jooks like it is implementing an ordinary straight linc conditional fragment. One
has to look carcfully at the surrounding context in order to sce that this is not the case.

Although the above points have been presented primarily as problems of understandability, they cause
just as much trouble with regard to constructibility and modifiability. In particular, the fact that the -
fragments are not localized means that neither the construction nor modification processes can be localized.
This greatly complicates both tasks. Another problem is that since the various fragments are just mixed
together, there is no support for keeping them semantically separate. One must be particularly careful that
introducing a new fragment will not disturb one of the other fragments.

Another kind of problem with PROG and GO as a notation for straightforward loops is that it supports a
number of features which are needed only in complex situations and which obscure simple loops by cluttering
them up. T'wo examples of these are: the fact that PROG supports multiple tags, 6Os and RETURNs; and the fact
that it allows multiple assignments to the key variables involved. These features are particularly problematical
because even when they are not being used, you have to look very closely in order to determine that they are
in fact not being used. In the example, you have to verify that there is only one tag, one G0, and onc RETURN
and that there is only one assignment to cach of the critical variables in the loop before you can have any
confidence in what is going on.

There are algorithms for which a PROG and GOs are particularly appropriate. For example, if a program
implements a finite statc automaton, GOs can be used to directly model the transitions. GOs can also be used to
implement various exotic multiple entry and multiple exit loops. However, it is generally recognized that GOs
are never the best way to implement simple loops.

Tail Recursive Style

The program SUM-POSITIVE-RECURSIVE is written in tail recursive style. Though it looks very different
from SUM-POSITIVE-GO it specifics essentially exactly the same algorithm. A compiler which knew about tail
recursion could produce the same object code for the two programs. SUM-POSITIVE-RECURSIVE is
somewhat vasicr to understand because much of the verbiage is removed. There is no fonger any possibility
of multiple tags, G0s, or RETURNs. As a result, the reader does not have to worry about them. In addition, the
fact that cach value changes only once on cach cycle of the loop is easy to see.

(defun sum-positive-recursive (vector)
(sum-positive-recursivel vector 0 0 (1- (array-length vector))))

(defun sum-positive-recursivel (vector sum i end)
(cond ((> i end) sum)
(T (sum-positive-recursivel vector
(cond ((plusp (aref vector 1))
(+ sum (aref vector 1i)))
(T sum))
(1+ 1)
end))))

Like PROG, the tail recursive style suggests a particular way of looking at a loop. Namely, that we should
generalize the task at hand into a problem that can be recursively reduced a step at a time to a problem that is
trivial to solve. In this case the trivial problem is adding up the positive clements of a sub-vector of length
zero. The generalized problem is adding up the positive clements of a sub-vector and adding this to an initial
partial sum. The recursive step involves adding one e¢lement into the partial sum, and reducing the size of the

Waters -31- Comparison With Other LLoop Notations

sub-vector,

There are loops which can be best understood by looking at them from the recursive viewpoint. lowever,
this program is not onc of them. The problem is that the tail recursive style is no better than a PROG at
highlighting the fragments that the loop is composed of. As above, the fragments are broken up and mixed
together. In addition, the way the fragments interact is still unclear. I<or example, part of the reducer is still
nested in the filter. The "(T SUM)" clause which has to be added into the filter COND makes that interaction
even less clear than in the PROG above. Like PROG and 6O, the tail recursive style does not support any of the
features of the expressional notation.

FOR

The rext few scctions describe notations which begin to support the idea of a sequence function (i.e.,
fragments of looping behavior as identifiable units). They do not however support any of the other features
of the expressional notation.

Most algorithmic languages have looping constructs which facilitate the construction of simple loops. A
typical evample of these is the Ada FOR construct [1]. The Ada program SUM_POSITIVE_FOR illustrates the
use of this construct. One benefit of FOR is that like the tail recursive style, it clearly delimits the extent of the
loop and makes it clear that there is no exotic control flow going on in conjunction with the loop.
Unfortunately, it is less helpful with regard to the data flow. There is no casy indication that each of the
critical variables is only modified once.

type int_vector is array (integer range <>) of integer;

function sum_positive_for(vector: int_vector) returns integer is
sum: integer;
begin
sum := 0;
for i1 1in vector'range loop
if vector(i)>0 then
sum := sum+vector(i);
end if;
end loop;
return sum;
end;

A much more intercsting aspect of FOR is that it explicitly represents one of the fragments -- the
enumerator of integers over the range of the array. This explicit representation of the fragment is particularly
useful because (unlike the FOR constructs in most other languages) the Ada FOR construct protects the
semantic integrity of the fragment by prohibiting the loop counter from being modified inside the loop. As a

“result, this particular fragment is easy to understand, construct, and modify.

Unfortunately, FOR is only capable of supporting this one kind of enumerator. There is no support at all
for any of the other fragments in the loop. They are represented using straight linc code in exactly the same
way as ir. SUM-POSITIVE-GO. As a result, FOR is not an improvement over GO with regard to these other
fragment:.

Comparison With Other Loop Notations -32- Waters

{terators in CLU

The Janguage CLU [8] has cxtended the concept behind the FOR construct so that it can represent other
enumerators besides integer enumeration. In CLU you can define a program called an irerator which takes in
some unitary arguments and creates a sequence of objects. The iterator can then be used in a FGR in order to
enumerate a sequence of elements to be processed in the body of the FOR. Cl.U provides a number of
standard iterators including one corresponding to EVECTOR. As an illustration, the first program below shows
how EVECTOR could be defined if it did not already exist. The program SUM_POSITIVE_CLU then shows how ‘
the iterator could be used.

Evector = iter(a: array[int]) yields(int)
j: dint := array[int]$low(a)

end: int := array[int]$high(a)
while i <= end do

ywe1d(a[1])
iz i +1
end

end Evector

sum_positive_clu = proc(a: array[int]) returns(int)

sum: int := 0
for e: int 1in Evector(a) do
if e > 0 then sum := sum + e end
end
return{sum)

end sum_positive_clu

Because there are no restrictions on the form that the body of an iterator can take (for example there is no
rccjuirement that it even be a loop), itcrators are more general than the enumecrators presented here.
However, this power has drawbacks. For example, it would be difficult to treat iterators like macros and
compile them inline in the loops which use them. The current CI.U compiler implements iterators as separate
procedures which return one element of the sequence every time they are called.

From the standpoint of understandability, an important aspect of iterators is that their semantic mtegrlty is
protected by the fact that they encapsulate their own state. In fact, iterators embody the logical concept of
enumerati~ 1 fally as well as the enumerators presented here. (It should be noted that the language
Alphard [14] has a similar construct called a generator.y Unfortunately, neither of these languages provided
any support for any fragments other than enumerators. As a result, cach of these constructs is only a limited
(though significant) improvement over simple FOR in the direction of supporting fragments.

Lisp DO

Another variant on FOR is the Lisp DO construct. This construct is interesting because it recognizes the
existence of loop fragments other than enumerators and attempts to group their parts more closely together.
Each of the forms in the first part of a DO is capable of representing a loop fragment. For example, the
initialization and repetitive step of the range enumerator are combined together in the first line of the DO in
the program SUM-POSITIVE-DO.

i

Waters , -33- Comparison With Other Loop Notations

(defun sum-positive-do (vector)
(do ((i 0 (1+ 1))
(end (1- (array-length vector)))
(sum 0))
({> i end) sum)
(cond ((plusp (aref vector 1))
{setg sum (+ sum (aref vector i)))))))

Unfortunately, DO is very restrictive in the way it can represent fragments. For example, the termination
test of the enumerator has to be specificd separately, causing the enumerator to be less conveniently
represenced than in a FOR. In addition, there is no good way to represent a filter at all. Going beyond this, the
interactions betwecen the fragments have to be represented in the same clumsy ways as in the programs above.
For example, a COND still has to be used to express the interaction between the filter and the reducer.

At a nore fundamental level, although DO makes it casier to write loop fragments as identifiable units, it
docs not enforce their semantic integrity. For example, you could ecasily put an assignment to I in the body of
the DO. If you did this the computation involving I would no longer be an range cnumeration. This would be
particularly confusing because the first line of the DO would still look like an ordinary range enumeration.

All ir all, it is clear that the various FOR and DO constructs are quite beneficial because they make it easier
to locate a simple loop, and to verify that it is indeed simple. However, although these constructs point in the
direction of explicitly supporting loop fragments they do not do this in either a very thorough way or a very
semantically strong way. As a result, they are only a modest help in the understzinding, construction, and
maodification of loops.

The Lisp Map Functions

The Lisp MAP functions are very restricted in what they can do. For example, they cannot be used to
express the algorithm used in the examples above. However, when they can be used they are very compact
and casy to understand. Each of the six MAP functions is an abbreviation for a particular combination of loop
fragments. The example below illustrates the fragments corrcsponding to MAPCAR.

(defun mapcar (fn list)
(R1ist (mapS fn (Elist list))}))

Each MAP function embodies a certain set of fragments and protects their semantic integrity. If these
fragments arc appropriate to the algorithm at hand, then the use of the MAP function leads to a program which
is casy to understand, construct, and modify. The expressional loop notation is designed to extend the basic
idea embodied in the MAP functions to a much wider domain of programming,

The Lisp Macro LOOP

The Lisp macro LOOP [3] is a significant improvement over the constructs presented above because it
recognizes loop fragments of all kinds as full fledged constituents. Consider the program SUM-POSITIVE-
LOOP. In this program, the enumerator, filter, and reducer are cach represented on a scparate line in the loop.
This gives a program which is much easier to undcerstand, construct, and modify than the ones above. A
number of standard loop fragments are supplied as part of the macro.

Comparison With Other Loop Notations -34- _ Waters

(defun sum-positive-Toop (vect r) 8
(loop for item being each vector-element of vector
when (plusp item)
sum item))

o

In addition to supporting relatively gencral fragments and their combination, LOOP supports the creation
of user defined fragments of all kinds. The example below shows how one could define VECTOR-ELEMENT OF
which is the equivalent of the sequence function EVECTOR.

(define-loop-path vector-element Evector (of))

(defun Evector (ignore variable ignore phrases ignore ignore ignore)
(sublis (1ist (cons 'expr (cadar phrases))
(cons 'variable variable)
(cons 'vector (gensym))
(cons 'i (gensym))
(cons 'end (gensym)))
“(((vector) (i 0) (end))
((setq vector expr) :
(setq end (1- (array-length vector))))

(> 1 end)

(variable (aref vector 1))

nil ’

(1 (1+ 1)))))

Unfortunately, LOOP neither develops the concept of a sequence, nor the analogy of treating loop
fragments as functions. This prevents it from expressing loops as sequence expressions in analogy with
ordinary unitary expressions. Instead, LOOP supports a keyword-based syntax which specifies both the
fragments to be used, and how they are combined. The way fragments can be combined is rather restricted
because it is tied up with the keyword parsing algorithm.

In addition, the LOOP macro has a body part (not used in the example above) just like the body of a DO.
This body can contain arbitrary computation -- there is no attempt to protect the semantic integrity of the
individual fragments in the initial part of the LOOP.

Another problem with LOOP is that the facilities it provides for defining the cquivalent of new sequence
functions ;. ruther cumbersome. Unlike the expressional notation, there is nothing corresponding to the
basic sequence functions. The user has to define a function which can deal with parsing parts of the LOOP
syntax and which returns a list of six picces which are put in different places in the loop being constructed.
Acting together, these pieces have to perform the actions of the desired sequence function. At the most basic
level, this is quite similar to what happens in the expressional notation. However, it seems better if the user

does not have to interact with the system at this low a level.

APL

There are several programming languages which support what are essentially expressional loop notations.
The oldest of these is APL[10]. Itis interesting to note that there is no reason to believe that the developers of
APL had anything like the expressional loop notation in mind. Rather, they were just sceking to provide a set
of very useful operations on arrays. However, a style of writing APL has evolved where sequences are
implemented as arrays.

The implementation of sequences as bona fide data objects automatically supports four of the six features
of the expressional notation (i.e., sequences, sequence functions, user definition of sequence functions, and
loop expression blocks). As illustrated below, both sequence functions and the vector summing algorithm can
be very compactly represented in APL. Note that since sequences arc directly represented as vectors, there is

. Waters -35- Comparison With Other Loop Notations

no need for the function EVECTOR.

V RESULT«FPOSITIVE VECTOR
(1] RESULT<«(VECTOR>0)/VECTOR
)

V RESULT«RSUM VECTOR
[1) RESULT<+/VECTOR
v

V SUM<«SUMPOSITIVEAPL VECTOR
(1] v SUM«RSUM(FPOSITIVE(VECTOR))

APL also has operators similar to the basic sequence functions. For example, "function/value" is the same
as (REDUCES function init value). (Note that the init is automatically chosen to be the identity element under
SJunction) Unfortunately, user defined functions cannot be used with these operators, so cach one only
actually corresponds to a small number of built-in sequence functions. APL supports the notion of a filter in
a morc general way than it supports REDUCES. "(fiunction(value))/value" is the same as
(FILTEES function value). This operator (the two argument form of /), which is called compression, takes in
two vectors and creates a vector of elements from the second vector which correspond to non-zero elements of
the first vector. Any arbitrary function can be used to create the first vector. A binary function rather than a

- unary one is used in the example. (Note that compression makes a shorter vector, rather than introducing
empty elements.) ,

APL has no operators corresponding to the sequence functions GENERATES, ENUMERATES, or TRUNCATES.
Since sequences are represented as arrays, there does not have to be any cquivalent of the sequence functions
EVECTOR and RVECTOR. Further, since arrays are the only composite data structure supported by APL, there
do not have to be any enumerators or reducers which deal with other data structures. Since all arrays are
finite, there need not be any generators or truncators. API. does have an operator (the index generator "1N")
corresponding to (ERANGE 1 N). Note that the fact that the operators provided by APL arc somewhat
limited does not prevent the user from defining any kind of scquence function he desires by simply using
more primitive constructs to write the appropriate function on arrays.

APL also supports the ideca of implicit MAPS to some extent. Every scalar function can be applied -to
vectors with the meaning that the operation is to be applied to every clement of the vector. Also, scalars are
coerced to vectors wherever necessary. Both of these processes are happening in the expression (VECTOR>0)
above which takes in VECTOR and produces a vector of zeros and oncs which indicate which elements of
VECTOR are greater then zero. Coercion cannot be done as completely as with the expressional notation
presented here because there is no mechanism for differentiating between arrays which are arrays, and ones
which arc intended to be sequences.

There are two ways in which APL. is morc powerful than the expressional notation presented here. First, it
supports a number of operators which are much more powerful. For example, it has a number of operators
which rearrange the order and structure of an array such as reshape, concatenation (of two vectors), expansion
(the inverse of compression), reversal, rotation, and grade up (sort). It has complex operations on pairs of
arrays su.ch as outer product and inner product which produce outputs which are not the same shape as the
inputs. In addition to all this, arrays are of course also just data objccts, and you can opcrate on them as such.
You can retricve and sct individual elements and perform arbitrary computations.

Another way in which APL is more powerful is that while sequences are analogous to vectors, the standard
intermedliate structure in APL is the array. The fact that arrays are multidimensional makes them a more
flexible representation. All of the operators above can be applied to arrays, and to sclected parts of arrays
producing results of similar or dissimilar shape.

Comparison With Other Loop Notations -36- Waters

The powerful features provided by APL. make it possible to compactly express a wide varicty of compléx
mathematical algorithms which cannot be expressed in the expressional notation at all. For these algorithms,
APL has the virtue of casy understandability, constructibility, and modifiability. Unfortunately APL. has
several drawbacks. First, it does not support any data structures other than numbers, characters. and arrays.
Sccond. although APL. supports the expressional metaphor almost completely, it does not support the clement
at a time metaphor at all. Third, due to that fact that it supports such complex array functions and the fact

that it rejects the clement at a time metaphor, APL cannot in general be compiled into efficient code. Fourth,

APL’s approach to loops is cmbedded into a somewhat cryptic and forbidding syntax. Together, these
featurces have limited APL’s impact.

The expressional loop notation presented here eliminates these problems. First, it can handle arbitrary
data structures. For example, to deal with a new aggregate structure, the user need only define new
enumerators and reducers to convert the aggregate to a sequence and vice versa. Second the element at a time
metaphor is part of the basis for the notation. Third, the expressional loop notation deliberately omits all
those operations on sequences which would make it hard to compile. Fourth, the expressional notation is
designed to be added into preexisting Janguages as a natural extension of their syntax. One need not learn a
new language and environment in order to use it.

The Listless Transformer

In a Lisp-like language onc could decide to support the expressional metaphor by implementing
sequences as lists. Wadler [15] has implemented an interesting prototype systcm (the Listless Transformer)
which is capable of transforming programs containing scquences implemented as lists and climinating the
actual computation of many intermediate lists. The loop notation supported by his system is at heart
essentially identical to APL with lists substituted for arrays. The target of his system is a Lisp-like language
called Iswim[15]. The example below shows how sequence functions can be defined and used in this
language.

def Evector(v) =
Evectori(v, 0, length(v))
where rec Evectorli(v, i, end) =

il i>end then nil _
else cons(aref(v, i), Evectorl(v, i+1, end))

def rec Fpositive(xs) =
case xs of
nil => nil
cons(x ,rest) => if x>0 then cons(x, Fpositive(rest))
else Fpositive(rest)

def Rsum(xs) =
Rsuml(xs, 0)
where rec Rsuml(xs, total) =
case xs of
nil => total
cons(x, rest) => Rsuml(rest, total+x)
def sum-positive-listless(v) =
Rsum(Fpositive(Evector(v)))

It is not clear whether any of the basic sequence functions are supported; however, they would be easy to
implement as macros. In any case, the user can implement any scquence function he desires be defining

arbitrary functions on lists. Iswim is a typed language and coercions like implicit introduction of MAPS can be
supported.

By

Waters -37- Comparison With Other Loop Notatigns

Like APL., Wadler’s notation is morce powerful than the notation described here in that it supports
arbitrarily complex sequence functions and scquences can be multi-dimensional sequences of sequences. It
goes beyond APLL in being able to deal with arbitrary data structures.

Wadler’s notation also shares APL.’s greatest weaknesses. It does not support the clement at a time
metaphor. In addition, due to the fact that arbitrarily complex sequence functions are allowed, it cannot be
efficiently compiled in the gencral case. It also shares the problem that, since it is not oriented toward the
clement at a time metaphor, loops involving side-cffects cannot be efficiently compiled.

Coroutines

Another language which supports most of the expressional metaphor is the coroutine language of Kahn
and MacQueen [7]. They have suggested using parallel processes (coroutines) in order to represent
computations communicating via one way channels (sequences). In their approach, unbounded sequences are
implemented as real data objects which are passed an clement at a time through channels between processes
exccuted in parallel. The code below shows one way the vector summing algorithm could be implemented in
their system. Each sequence function is defined as a separate process. These processes can have ordinary
(unitary) inputs (c.g., the VECTOR input of EVECTOR) and outputs (c.g.. the return valuc of RSUM). They can
also have channel (sequence) inputs (c.g., the CHANNEL1 argument of FPOSITIVE) and outputs (e.g., the
CHANNEL output of EVECTOR). An element is retricved from a channel by the function (GET channel). An
element can be put into a channel by the function (PUT item channel}. In order to use the sequence
functions, they are combined together in an expression as in the function SUM-POSITIVE-COROUTINE. This
expression is placed in a DOCO form which causes the three processes to be executed concurrently.

process Evector vector => channel;
vars 1
1 -> 1
repeat
put(i, channel);
increment 1i;
until idupper-bound(vector);
put(done, channel)
endprocess;

process Fpositive in channell => channel2;
vars n;
regpeat
get(channell) -> n;
if n=done or n>0 then put(n, channel2) close
until n=done
endprocess;

process Rsum in channel => sum;
vars n, sum;
0 -> sum;
repeat
get(channel) -> n;
if not(n=done) then sum+n -> sum close
until n=done;
roturn(sum)
endprocess;

process sum-positive-coroutine vector
. start doco Rsum(Fpositive(Evector vector)) closeco -
endprocess;

The language of Kahn and MacQuecn supports neither the basic sequence functions, nor automatic

Comparison With Other Loop Notations -38- Waters

~ coercions. However, they could be added if desired.

'The coroutine approach is more powerful than the expressional notation along a different dimension from
APL.. Each process is a truly independent parallel process. One aspect of this is that sequences can rcally be
infinite. In addition, it is possible for one process to terminate without forcing the other ones to terminate and
processes can dynamically spawn whole networks of other processes. This makes it possible to express modes
of computation which cannot be conveniently expressed with any of the other notations discussed here.
However, this brings with it a certain overhead. In the example above, the special token DONE is passed -
around between the processes so that the termination of the EVECTOR process will trigger the termination of
the other processes. »

The key drawback of the coroutine approach is that it is not clear how it can be compiled. Like APL, it
supports the definition of arbitrarily complex sequence functions. Going beyond this, given that the
coroutine notation is capable of expressing arbitrary parallel computations, one would expect that it will be
extremely difficult to write an optimizing compiler which reliably detects groups of processes which interact
mierely as simple loops. However, without such a compiler, the coroutines impose an unacceptable overhead
on the execution of simple loops.

The expressional loop notation presented here is based on ideas very similar to the coroutine notation,
however it is restricted so that it is trivial to compile. The intention is to use the expressional notation to
represent simple loops while rescrving the coroutine notation for those situations where its greater power is
- required.

Hibol & Model

The language Hibol[12,13] is the oldest language which both supports the idea of a sequence and is
completely compilable. It is a very high level business data processing language based on the concept of a
flow (which is basically equivalent to a sequence). It is very strongly oriented toward the clement at a time
metaphor and relies heavily on the concept of the imptlicit introduction of MAPS. The body of cach Hibol
program is a nonprocedural set of expressions specifying the computations on typical sequence elements.

The program SUM_POSITIVE_HIBOL computes the sum of the positive clements in a file. (The only
aggregate data type supported by Hibol is a file.) The language provides a few standard sequence functions
(c.g., the cporaior SUM in the program below). In addition, the operator IF implements the basic sequence
function FILTERS. These facilities make it possible to specify the body of SUM_POSIT IVE_HIBOL as a Simple
expression. The DATA DIVISION part of the program describes the files accessed by the program in a format
very similar to Cobol.

Waters -39 Comparison With Other 1Loop Notations

/% the program sum_positive_hibol =»/
data division
key section
key index
field type is integer
input section
file vector_item
key is index
type is integer
output section
file sum_positive
type is integer

computation division
sum_positive is (sum of (vector_item if vector_item > 0))

Hibol is more powerful than the expressional notation in that flows are multidimensional objects like
arrays where cach level of index is an alphanumeric key rather than a number. The Hibol operators can be
selectively applied to specific dimensions of a flow. A set of defaulting mechanisms make it possible to
specify a simple program like the one above without having to explicitly specify which dimensions operators
are being applied to.

The operations which can be applied to flows have been carefully selected so that all flow expressions can
be compiled into efficient loop code and the Hibol compiler clearly shows that an expressional looping
notation can be straightforwardly compiled even if it supports multidimensional sequences. Nevertheless,
when designing the expressional loop notation presented here it was decided to omit this feature for two
reasons. First, it was judged that the frequency of its use would not justify the extra compicxity of supporting
it. Second, when a loop algorithm becomes complex enough that the user is forced to specify which
dimensions operators are being applied to, the syntactic mechanisms required cause the resulting expressions
to begin to lose the virtue of casy understandability.

From the point of view of this discussion the primary weakness of Hibol is that it ‘does not provide very
much support for the expressional metaphor. First, it provides a few built in sequence functions, but does not
allow the user to definc new ones. Note that files are the only aggregate data structure supported by Hibol,
and that enumeration and reduction of files occurs implicitly. Sccond, it supports only two of the basic
sequence functions: MAPS (introduced only implicitly) and FILTERS (the form IF). Implicit nested loops can
be specified but there is no notion of an explicit looping block.

As discussed above, the expressional loop notation presented here addresses these problems because it can
deal with arbitrary data structures, because it supports the creation of user defined scquence functions, and
because it is intended to be embedded in a language which supports standard control flow constructs. The
expressional notation being presented here could be looked at as taking some of the key ideas embodied in
Hibol and scparating them out from the business data processing language context of Hibol in a form in
which they can be conveniently added into other languages.

More recently, another language has been developed which is very much like Hibol. This language
(Model [11]) is based on the same idea of a multidimensional sequence, and is also primarily intended for
business data processing applications. It is somewhat more powerful, and has a somewhat wider range of
features, but at the level of this discussion it is essentially identical to Hibol. It is fully compilable and has the
same basic advantages and disadvantages. It serves as yet another example that the idea of a sequence appears
in many different forms in many different languages.

Acknowledgments -40- _ Waters |

Acknowledgments

Both the LETS macro package and this paper have benefited from many helpful comments made by
people at the Al laboratory. In particular, | would like to thank C. Rich for suggestions which led to a
number of very significant improvements in the clarity and power of the notation, E. Ciccarelli for comments
which materially improved the presentation in this paper, and 1). Chapman for being the first real user of
LETS and making a number of useful suggestions on form and content.

References

[1]J.G.P. Barnes, "Programming in Ada", Addison-Wesley, l.ondon, 1982.

[2] T.A. Budd, "An APL Compiler”, Univ. of Arizona, Dept. of Comp. Sci. TR 81-17, October 1981.

[3] G. Burke and D. Moon, "Loop lteration Macro”, MIT/LCS/TM-169, July 1980.

[4] D.P. Friedman and D.S. Wise, "CONS Should Not Evaluate Its Arguments”,

, Indiana Tech. Rep. 44, Nov. 1975.

* [5]1..J. Guibas and D.K. Wyatt, "Compilation and Delayed Evaluation in APL",
in Proc. 5Sth ACM POPL Conf., Sept, 1978.

[6] P. Henderson and J.H. Morris, "A Lazy Evaluator, presented at the SIGPLAN-SIGACT Symp. on
Principles of Programming L.anguages, Atlanta, Jan. 1976.

[71 G. Kahn and D.B. MacQueen, "Coroutines and Networks of Parallel Processes”, in 1977 Proc. IFIP
congress, North-Holland, Amsterdam The Netherlands, 1977.

[8] B.H. Liskov, et. al., "CLU Reference Manual”, Lecture Notes in Computer Science, G. Goos and J.
Hartmanis editors, V114 Springer-Verlag, New York, 1981. -

[9] ID.A. Moon, "MacL.isp Reference Manual”, MIT Cambridge MA, April 1974,

[10] R.P. Polivka and S. Pakin, "APL: The Language and Its Usage", Prentice-Hall,
Englewood Cliffs NJ, 1975.

[11] N.S. Prywes, A. Pnueli, and S. Shastry, "Use of a Non-Procedural Specification Language and Associated
Program Generator in Software Development”, ACM TOPLAS, V1 #2, October 1979, pp 196-217.

[12] G.R. Ruth, "Data Driven Loops”, MIT/LLCS/TR-244, 1981.

[13] G.R. Ruth, S. Alter, and W. Martin, "A Very High Level Language for Business Data Processing”,
MIT/LCS/TR-254, 1981.

[14] M. Shaw 2ad W.A. Wulf, "Abstraction and Verification in ALPHARD: Defining and Specifying
Iteration and Generators”, CACM V20 pp 553-564, Aug. 1977.

[15] P. Wadler, "Applicative Languages, Program Transformation, and List Operators”, PhD Thesis,
Carnegie-Mecllon Univ., 1982.

[16] R.C. Waters, "Automatic Analysis of the Logical Structure of Programs”, MIT/ Al/TR-492, Dec. 1978.

[17] R.C. Waters, "A Method for Analyzing Loop Programs”, IEEE Trans. on Soft. Eng., V5 #3, May 1979.

[18] . Weinreb and D. Moon, "Lisp Machine Manual", MIT Cambridge MA, July 1981. ’

Waters -4] - The Compilation Process

Appendix A: The Compilation Process

The first scction in this appendix describes some assumptions which the macro expansion process makes
about the form of the loop expressions to be processed. The user must be careful to ensure that these
assumptions are satisfied. The rest of the scctions discusses the actual macro expansion process in detail. ‘This
discussion is intended to function both as detailed documentation for the actual program, and as a guide to
anyonc who wishes to implement a similar system. ‘

The compilation process revolves around a data structure representing the key information about a
fragment of looping behavior. Each fragment data structure contains all of the information nceded to create a
loop corresponding to a sequence function, and information about the inputs and outputs of the sequence
function. A call on a sequence function is represented as an application of a fragment data structure to a list
of arguments. The process of combining several scquence functions together into a single loop proceeds by
combinirg together the fragment data structures corresponding to them,

Giver: a program that contains one or more loop expressions, macro expansion will proceed normally until
the outermost macro in one of thesc loop expressions is encountered. At that time. the LETS macro package
processes the loop expression, converting it into an iterative loop. Macro expansion then continues normally

until another loop expression is encountered.
~ The process of converting a loop expression into a loop occurs in several steps. After locating an
expression, all of the calls on sequence functions in it arc located and the expression is parsed performing any
necessary coercions (e.g., implicit MAPS introduction). Once this is done, all of the separate loop fragments in
the expression are combined into one large loop fragment. This structure is then converted into an iterative
loop. ‘

As an example, the following shows the code which is produced for the loop in the program SuUM-
POSITIVE-EXPRESSIONAL.

(macroexpand '(Rsum (Fpositive (Evector vector))))

yields: (prog T (sum2 elementl10 index6 f4 last7)
' (setq last? (1- (array-length vector)))

(setq index6 0)
{setq sum2 0)

L0 (cond ((> index6 last7) (go EO0)))
(setq element10 (aref vector index6))
(setq f4 (plusp element10)})
(cond (f4 (setq sum2 (+ sum2 element10})))
(setq index6 (1+ index6))
(go LO)

E0 (return-from T sum2})

Interaction With Other Macros

There are two aspects to the way in which the LETS macro package interacts with other macros which must
be kept in mind when using the package. The first stems from the fact that the macro package has almost no
knowledge of fexprs and other macros. In order to avoid the problems that could arise, you should never
have a variable which is the same name as a function. This restriction can only be considered to be a bug in
the systein and should be rectified in later versions. ‘The second issue is more fundamental and stems from
the fact that when producing a loop, the LETS macro package gathers together a group of sequence functions
which may be intermixed with calls on other macros. The user must be aware of the fact that all of the
sequence functions will be processed before any of the other macros are processed.

The fact that the LETS macro package does not have any special understanding of fexprs or other macros

The Compilation Process -42- ‘ Waters

“leads to two specific restrictions on the kinds of loop expressions you can write. The first restriction comes
from the fact that the LETS macro package assumes that cvery instance of a name of a sequence function is a
call on that sequence function. (Note that this is not just every instance of the name that is the CAR of a list.
The macro must look for sequence functions in a wider range of contexts than this due to idiocyncracies in
some of the standard system macros. Note that inside of a backquoted list in Macl.isp , (ELIST X) rcads in
as (]'./]] ELIST X).) In order to avoid problems, you should never use the name of a sequence function
as a variable name. One of the reasons why cach of the sequence function names is given a prefix letter is o -
reduce the probability of variable name conflicts happening by mistake.

The second restriction is that, for cach variable name in the argument list of a DEFUNS, bound by LETS«, or
in the lambda list of a literal lambda expression passed as an argument to a sequence function, cvery
occurrence of that symbol in its scope must be an instance of a reference to that variable. The function SUBST
will be used to rename this variable when necessary to avoid name conflicts. The two main ways that trouble
could arise is if you usc a variable name which is the same as a function name, or if you rebind the variable
name in some inner scope. Note that you cannot even use the variable name in a quoted list.

Both of the above restrictions could be removed by adding more knowledge into the system. The problem
has been localized to four key functions which have to be rewritten so that they properly understand fexprs
and macros. All of the rest of the package is correct as it stands.

There are two key limitations which stem from the fact that sequence functions are processed before other
macros. The first limitation is that only sequence functions can expand into loop fragments. In particular, an
ordinary macro cannot expand into code which is supposed to be a loop fragment. This will not work because
the macro will not be expanded until after the loop it is in has already been completely constructed. Note that
it is all right for a macro to contain a complete loop expression which will be converted into a loop as a whole
by itself. The appropriate way to make macros describing loop fragments is to use DEFUNS. For example,
compare the following two definitions of a loop fragment which enumerates the CARs of the elements of a list.
Only the second one will work.

(defmacro car-Elist-buggy (input)
(1ist 'car (1ist 'Elist input)))

(defunS car-Elist (input)
(ca (Elist input)))

Another consequence of the fact that the LETS macro package does extensive processing before other
macros are expanded is that you cannot nest one of the expressional macros inside a call of a macro that looks
inside of its argument. For example, cven assuming that you definc a SETF property for ELIST, you cannot
write "(SETF (ELIST L) X)". The problem is that since the loop macros arc expanded first, SETF will
never get to see the ELIST. Also note that instances of loop macros are usually replaced by variables in the
resulting loop. However, you can say things like the following "(SETF (CAR (ELIST L)) X)" because the
SETF does not need to look at the argument of the CAR.

Waters -43 - The Compilation Process

The Representation for a Fragmént

Loop fragments are represented internally by the following structure:

(S-frag args returns
icode codel code? pcode ucode)

The args field is a list of argument descriptors. Each descriptor is a list of four parts (kind mode var info)
The symbol var is the name of the argument. Every internal use of the argument is represented by that
symbol. There is onc argument declaration for every input, and auxiliary variable used by the fragment. The
order of the declarations is used to match the inputs up with parameters when the fragment is used. The
symbol var is created by GENSYM and is guaranteed to be unique and occur only in this single fragment so that
SUBST can validly be used to rename it. If the fragment is copicd, then the vars are renamed to new unique
GENSYMs,

Note that free variable inputs and outputs are not mentioned in the argument descriptors. Rather, they
are just referred to in the body of the fragment where appropriate. Due to the fact that the order of execution
in a loop expression is preserved, things work out all right when fragments are combined together without the
system having to take any explicit action. In fact, the system ignores the presence of free variables entirely.

The kindis one of four keywords indicating what kind of input is being described.

&INPUT - An obligatory input passed in by nesting in argument position.

&0PTIONAL - An optional input passed in by nesting in argument position. When the fragment is
applied to arguments this variable is either converted to an &INPUT variable or an &AUX variable.
The info field is an expression which will be used to compute a value which will be used to initialize
the variable when no argument is supplied.

&REST - This is bound to a list of the remaining nested inputs (if any). There can be at most one &REST
variable.

&AUX - An internal auxiliary variable.

The mode field specifies the kind of value which is contained in the variable. 1t is one of three keywords.

&UNITARY - This is a unitary value which is available before the repetitive computation of the loop
begins.

&SEQUENCE - This is a scquence value. A new clement of the value is computed on cach cycle of the
loop.

&END- UNITARY - This is a unitary value which is not available until after repetitive computation of the
loop ends.

The returns are also a list of argument descriptors which are very much the same as those for the args
except for a few key points. First, the var does not have to be unique. Rather, it can directly refer to one of
the vars in the args. This indicates that this value is going to be directly exported from the fragment. If it is
unique then it indicates that an internal variable must be maintained in order to store the value which will be
exported. Second, the kind field is one of the following two keywords.

&OUTFUT - The is an ordinary output passed out as the return value. There must be exactly one of
these. The LETS macro package does not support multiple outputs from sequence functions.

&FLAC - This is an auxiliary flag used in filtered computations. The filtcred sequences themselves are
carvied in scparate variables. The info ficld is a list of all of the free variables and return values
which are under the control of this filter flag.

The remainder of the fragment specifics the computation to be performed. The icode is a list of zero or

The Compilation Process -44 - : Waters

‘1n0mcmnC$kmswhkhachmuwdcmmﬂyonajuatmﬁwcﬂurmpmhhcpanofﬂmlom)Bemxuwd.The
icode cannot refer to any sequence arguments. It can read only unitary inputs. It can write any aux, or unitary
output. lts effect is to give initial values to variables. ‘Typically, cvery unitary output is given some default
value.

The codel and code? are the repetitive body of the fragment. They are the only places where sequence
arguments can be referred to. Both of these are lists of zero or more cxprcssio;ns. Both of them are cxccuted
on every cycle of the loop and can read sequence values. The codel (but not the code?) can write sequence -
values. .

There are two different slots here because of the follow'ing property. All the codel parts of all the
fragments being used will be executed before all of the code2 parts. This gives you control over what is going
on. In particular all terminations are placed in codel parts. As a result, you can depend on the fact that the
code2 will not be executed on the cycle where the loop terminates. (The code/ may be.)

The peode is a list of zero or more expressions which is exccuted exactly once after the loop, if it terminates
normally. It cannot refer to any sequence quantities. Its purpose is to perform epilog computations involving
the unitary outputs.

The ucode is a list of zero or more cxpressions which is executed in an UNWIND-PROTECT wrapped around
the loop eventually produced. It cannot refer to any sequence quantities. 1ts purpose is to perform epilog
computations involving the unitary outputs which must be performed no matter how the loop is terminated.

Each of the seven basic sequence functions makes it possible to specify a particular piece of the fragment
data structure. AT-START, MAPS. AT-END, and AT-UNWIND specify computation to be performed in the icode,
codel, pcode, and ucode respectively. PREVIOUS specifies computation to be performed in the code2 and an
auxiliary variable to remember prior values. TRUNCATES specifies computation to be performed in the code/
which is then tested by a COND which contains a DONE to trigger termination. '

FILTERS specifies computation to be performed in the codel in order to compute a flag value. It also sets
up the correct info ficld for the flag in order to specify what value is controiled. If this value is subsequently
read by the codel or code2 of another fragment, then a COND predicated on the flag will be used so that they
will be evaluated only on those cycles where all of the filtered inputs are available.

The following examples illustrate the fragment representation. The first corresponds to the sequence
function T._1S:. Note the use of some pcode in order to reverse the list CONSed up. The second corresponds
to ERANGE. Note the use of an optional parameter BY, the presence of a terminator, and that the
incrementation of the state is placed in code2 so that it will not be done on the cycle on which the loop
terminates. The final fragment corresponds to FILTERS. Notice the flag variable and the output which comes
directly from an input.

(S-frag ((&input &sequence item nil)) ;R1ist
({(&output &end-unitary result nil))

etq result nil))

5
setq result (cons item result)))
etq result (nreverse result)))

((
((
()
((s
())

Waters - 45- The Compilation Process

(S-frag ((&input &unitary state nil) ;Erange
(&input &unitary end nil)
(&%optional &unitary by 1))
((&output &sequence int nil))

()
({(cond ((> state end) (done))) (setq int state))
((setq state (+ state by)))
()
()
(S-frag ((&input &unitary fn nil) ;filterS
(&input &sequence main nil)

(&rest &sequence others nil))

((&output &sequence main nil)

(&f1ag &sequence flag (main)))
()
{(setq flag (apply fn (1ist* main others))))
()
()
()

All of the internal macro processing revolves around fragments represented in the above form. They are
combined together into larger and larger fragments and then converted into normal loop code.

Locating Loop Expressions

Before a loop expression can be processed, it has to be located in its entirety. There are two ways in which
this can happen. The first case is when the loop is delimited by a LETS» or DEFUNS, In that situation there is
no difficulty in identifying it. The second case occurs whenever any of the sequence functions is encountered
unexpectedly (i.e., not during the processing of a loop which has already been located). When this happens,
the sequence function application is wrapped in a LETS+ and processing continues as if the LETS* had always
been there. Note that if a loop is nested inside another one, the inner loop must be explicitly placed in a
quoted LAMBDA or a LETS#, One effect of this is that it is trivial to locate such inner loops.

LetS*

One purpose of a LETS# is to delincate a loop as discussed above, The other is to define sequen.ce
variables. All of the variable value pairs are handled as shown below by putting the initializing expressions
inside the LETS. Note that this means that these expressions cannot refer to the values which any of the
bound variables have outside of the LETS*. The macro S-DESETQ is used to handle destructuring. The LETS
macro package provides its own destructuring macro becausc DESETQ is not a standard LispMachine form.,

(TetS* ((x (Erange 1 10))

((a b) (ET1ist 1ist)))
(reverse (R1ist (Tist 'item x (+ a b}))))

becomes: (1etS» (x a b) :
(setqg x (Erangs 1 10))
(s-desetq (a b) (Elist list))
(reverse (R1ist (1ist 'item x (+ a b)))))

Note that the only variables which carry sequences inside the body of the LETS» arc the oncs specified in
the bound variable list. All of the frec variables referred to in the body arc unitary no matter what they are in
the placc where they are defined. This reflects the fact that if this loop is nested in another loop then it will be
MAPScd and so any sequences in that loop will look like unitary valucs from its point of view. Note that if
sequences were multidimensional objects as in APL then things would be much more complicated because

"The Compilation Process - 46 - Waters |

cach level of looping would only strip a single dimension off of a scquence.

Implicit Map$S and Coercions

The processing of the body of a LETSx starts by parsing the body and performing any nccessary coercions.
The parsing is donc by recursive decent. Bach argument to a sequence function is coerced to be of the type
required by the function. While this is going on the body is checked to see that cach sequence function has
the correct number of arguments and that there are no improperly nested loops.

As a convenience when debugging, things are arranged so that if you do a MACROEXPAND-1 of a LETS= (or
DEFUNS) the form you get shows the result of parsing without other operations being performed. The result
. of the parsing phase is illustrated by the following example.

(macroexpand-1
“(1etS* ((x (Erange 1 (1+ 1imit)))
((a b) (Elist Tist)))
(reverse (R1ist (1ist 'item x (+ 2 b)Y

yields: (s-letS (x ab)
(mapS-no-ret #'(1ambda (v1) (setq x v1)))
(Erange 1 (at-start #'(1ambda () (1+ 1imit)))))
(mapS-no-ret #'(1ambda (v2) (s-desetq (a b) v2)) (Elist Tist))
(at-end #'(lambda (v3) (reverse v3))
(R1ist (mapS #'(1ambda () (list ritem x (+ a b)))))))
S-LETS (and S-DEFUNS) are special internal forms which are used to represent the result of the parsing
process. MAPS-NO-RET is one of a group of special internal sequence functions which are used for coercions

in situations where no actual value is desired.

Combining Fragments

Once all of the appropriate coercions have been applied, the fragments are combined together into one
large fragment. First cach sequence cxpression in the body is processed as described below. Then the
resulting fragments are combined together using the same combination process which is used in the
processing of the individual expressions. The single resulting fragment is then converted into loop code as
discussed . the next section. }

An application of a sequence function is processed in three stages. First, the &OPTIONAL and &REST
arguments in the fragment representing the sequence function itself are processed. If a parameter is supplied
for an &OPTIONAL argument, then the argument is converted into an ordinary &INPUT argument before
further processing. 1f no parameter is supplied then an &OPTIONAL argument is converted into an &AUX
argument and the initializing expression is used to give the argument a value cither in the icode (if it is
unitary) or in the codel (if it is a scquence value). Note that this expression is evaluated inside the fragment
and can refer to all of the arguments which precede it. In order to handle &REST arguments, ordinary &INPUT
arguments are first created for cach actual parameter supplied. After this, each occurrence of the &REST
argument in the body is replaced by a LIST of the newly created &INPUT parameters. '

Second, each of the parameters to the sequence function which is not a variable or a constant is recursively
processed in order to convert it into a loop fragment. Third, each parameter fragment is combined into the
main fragment being applicd as follows. If a parameter is a constant or variable then it is substituted into the
main fragment in place of the input variable. , : .

Substitution is used instead of simply using a SETQ to transfer the value in order to reduce the number of
variables which are nccessary. The system checks carcfully to sce that substitution can actually be done. if
the destination fragment modifies an input' variable then a SETQ must be used if the source variable must be

Waters | -47 - The Compilation Process

protected. Considerable care is taken in the exact way in which the built-in sequence functions are defined in
order to maximize the readability of the loop code which will eventually be produced and in order to
minimize the number of variables which will be needed.

If a parameter is a fragment the input variable is renamed to be the same as the output variable carrying
the return value and the two fragments are combined as shown below. The new fragment is created merely
by concatenating the corresponding parts of the two initial fragments. As a result, the order of evaluation is
preserved. Note that due to the renaming of the input variable the data flow works out right without any
special processing being necessary. Also since all variable names in the original fragments were GENSYMs there
is no possibility of unintentional name clashes.

((S-FRAG argsa returnsa icodea codela codela pcodea ucodea)
"(S-FRAG argsb returnsb icodeb codelb codelb pcodeb ucodeb))

becomes: (S-FRAG argsa-argsb returnsa-returnsh
icodea-icodeb
codela-codelb
codea-code2b
pcodea-pcodeb
ucodea-ucodeb)

The only complexity is involved with filters. If any of the variables read by codelb or code2b are
controlled by filter flags in the first fragment, then both codelb and code2b are nested in CONDs predicated on
the AND of these flags. For example, suppose that codelb reads two sequence variables S1 and S2, which are
controlled by the flags F1 and F2 respectively. In this case, codelb would be converted to
(COND (AND F1 F2) . codelb) before combination. Code2b would be converted analogously. The info
ficlds of the flag outputs in refurnsa are updated to reflect the fact that they are now also controlling all of the
outputs in returnsa.

The Form of the Loops Produced

Once all of the fragments have been combined into a single large fragment, this fragment is converted into
a loop as indicated below. The various parts of the fragment arc merely concatenated together into the body
of a PROG. Far-listis a list of all of the aux, flag, and return variables which are specified in args and returns.
The return-value is the &OUTPUT variable from refurns. If the fragment contains any ucode then the PROG
produced is wrapped in an UNWIND-PROTECT containing this ucode.

(S-FRAG args returns icode codel codel pcode nil)

becomes: (PROG T varlist

icode
L codel
code2
(go L)
E pcode

(RETURN-FROM T refurn-value))

Note that the PROG produced is just basic Lisp. (On the LispMachinc this PROG is named T so that it will
be transparent to the user.) The PROG contains a number of variables and tags created by the macros. These
are all GENSYMs and so that they cannot conflict with any user variables, All of the variables specificd by the
user become variables in the PROG. At a break point, you can look at these variables in order to see the
current element in cach of the corresponding scquences.

The form (DONE) expands into (GO E). The form (DONE resulr) expands into (RETURN-FROM T result).
Note that no special action is taken with regard to terminations, they just end up in the right places as things

The Compilation Process -48 - Waters

© are combined together.

Apply Simplification

The LETS macro package makes a special effort in order to ensure that functional arguments to scqucncé
functions get cfficiently compiled inline. Consider for example, what happens to the call on FILTERS shown
‘below. Substituting the arguments into the FILTERS fragment (shown earlier in this appendix) produces
(among other things) the APPLY shown. Using special knowledge of APPLY, LISTs, and LIST the arguments °
are substituted into the lambda body as shown. '

(filter$S #'?1ambda (a b) (> (car a) (car b))) sequencel sequence2)

produces: (setq flag (apply #'(lambda (a b) (> (car a) (car b)))
(1ist* sequencel (1ist sequence2))))

becomes: (setg flag (> (car sequencel) (car sequence2)))

DefunS

The purpose of a (DEFUNS name lambda-list . body) is to define a sequence function. The body is exactly
like the body of a LETS*. In addition the aux variables in the lambda-list are just like LETS» variables. These
variables and the body are processed exactly as described above in order to create a fragment, The arguments
in the lambda-list specify that some of the free variables in the fragment are actually non-free inputs. The
fragment is modified to reflect this. Note that these variables must be unique in the body so that the system
can use SUBST to rename them. A sequence function macro is then constructed with the appropriate name. -

Waters - 49 - Functional Summary

Appendix B: Functional Summary

This Appendix is intended as a short reference manual for the system. It assumes that you have alrcady
read the rest of the paper and just gives a very brief description of each of the macros available to the user.
(Note that all of these macro names are global on the LispMachine.) The macros are listed in logical
groupings. The summary begins with a description of the basic macros.

TotS» ((varvalue) ...) &rest body
This has two purposes: to define a group of variables which contain sequences of values, and to
indicate that a group of sequence expressions (the body) should be combined together into a single
lonp. Each value will be coerced to a sequence. If it is omitted (or if the var-value pair is rendered as

' merely a symbol) then the initial value is undefined and the variable must be written before it can be

¢ , read. A trec of vars instcad of a symbol can be specified, in which case destructuring is performed.
Note that every free variable is per force unitary. In the body, you can use SETQ to assign to a sequence
variable.

All of the expressions in the body are combined into a single loop. Each unitary expression in the
body will be automatically MAPSed if possible. The only time it is not possible is if it uses the output of
some reducer. In this latter case, the expression will be automatically computed AT-END. The value of
the last expression in the body is coerced to unitary and returned as the value of the loop.

defun$ name lambda-list &rest body
The purpose of this form is to define a new sequence function. The lambda-list is just like an ordinary
lambda list except that in addition to the keywords &0PTIONAL, &REST, and &AUX it supports two
additional keywords: &UNITARY and &SEQUENCE. &UNITARY indicates that following arguments are
unitary. This is the default to start with. &SEQUENCE indicates that the following arguments carry
sequences. Just as in an ordinary DEFUN, the user can include an optional documentation string and/or
a declaration specifying the arg-list, after the lambda list.

DEFUNS defines a macro of the specified name defining the sequence function specified by body.
The body is exactly like the body of a LETS« except that it is not immediately coded up into a loop, and
the value of the last expression is not coerced to unitary. Rather, this value is returned whether it is
unitary or a sequence.

done &ontional result
In a loop expression the macro DONE can be executed in order to indicate that the loop should be
immediately terminated. If no result is specified, then the loop will be terminated normally executing
all AT-END code, and returning the result specificd by the last expression. If a result argument is
supplied then it will be returned as the value of the loop. Note, however, that in this case any AT-END
code will be skipped. Any AT-UNWIND code is executed in either case.

RSN

Functional Summary -50- Waters

The Basic Sequence Functions

There are seven basic sequence functions which support the basic capabilitics of the cxpressional loop
notation. All of the other sequence functions are defined in terms of these functions. Note that all of the
basic sequence functions take functional arguments. These will be cfficiently compiled inline as long as they
are quoted functions.

at-start function&rest args
This computes (APPLY function args) in the initialization code before a loop begins. All of the args

must be unitary values.

at-end function&rest args
This computes (APPLY finction args) in the epilog code after a loop ends. All of the args must be
unitary values. They can be values returned by reducers. Note that this will not be executed if the loop
is terminated via a DONE with arguments or by some extraordinary exit such as a THROW.

at-unwind function &rest args
This computes (APPLY finction args) in an UNWIND-PROTECT wrapped around the loop. All of the
args must be unitary values. They can be values returned by reducers. The difference between this
and AT-END is that it will be executed no matter how the loop is terminated.

map$ finction &rest &sequence args .
The nth element of the output sequence is computed by applying function to the nth elements of the
input sequences. However, if the nth element of any of the input sequences is empty then finction is
not applied and the nth element of the output is empty. The length of the output sequence is the same
as the length of the shortest input sequence.
eg., (mapS#'+[1_234][12_3])=>[2__6]

filterS funclion&sequence source &rest args

This embodics the idea of selecting particular items out of a sequence. The elements of the output
sequence are computed as follows. If the result of applying finction to the nth elements of the input
seorenes (the source and args) is non-NIL then the nth clement of the source is used as the nth
clement of the output; otherwise the nth output element is empty. However, if the nth element of any
of the input sequences is empty then fiunction is not applied and the nth clement of the output is
empty. The output sequence is exactly the same length as the shortest input sequence; however, some
of the output sequence slots may be empty.

eg., (FilterS#'>[1_234]1[00_0])=>[1__4]

truncate$S finction &sequence source &rest args

This embodics the idea of terminating a loop. The finction argument is applied to successive groups of
corresponding elements of the input sequences. The output sequence is composed of the elements of
the source up to but not including the first element corresponding to a non-NIL evaluation of function.
As with the other sequence functions, if any of the nth clements of the input sequences are cmpty then
function is not applied and the nth output element is empty. Note that the output sequence is typically
shorter than any of the input sequences, and can be of length zero.

cg., (truncateS#'< [1_231[00_4])=>[1__]

e.g., (truncateS#'> [1_23][00_4])=>[]

Waters , -51- Functional Summary

previou$ init function &rest &sequence args

This sequence function ecmbodies the idea of feedback between cycles of a loop. It takes in a group of
sequences and returns a scquence. If therc are no_empty slots in any of the inputs then the first
element of the output is the value init and the nth element of the output is computed by applying
function to the (n-1)th elements of the input sequences. If there are empty slots then this is generalized
as follows. The nth slot of the output is empty if and only if the nth slot of any input is empty. The
first non-empty slot of the output contains init. after that each non-cmpty slot is computed by applying
firnction to the previous group of non-empty input values. The length of the output scquence is the
seme as the length of the shortest input sequence. (Note that function is applied to the last values of
the input sequences even though the result is not part of the output.)

€.g., (previouSNIL #'ncons [_A_BCJ) =>[_nil_(A)(8)]

Five additional sequence functions are defined which embody stereotyped uses of PREVIOUS.

generate$S function init rest &sequence args

This uses an internal state variable in order to generate a potentially infinite sequence of values. The
unitary value inif specifics the initial (first) value of the state. On the nth cycle of the loop, function is
called with the nth value of the state as its first argument and the nth elements of the input sequences
(if any) as its remaining arguments in order to compute the next value of the state. However, if the nth
element of any of the input sequences is empty then funcrion is not called and the value of the state is
not changed. The output sequence consists of all of the values of the state including the first one init.
If there are no input sequences (the normal case) or if none of them are finite, then the output will be
infinite. If any of the input sequences is finite, then the length of the output will be the same as the
length of the shortest input. Note that in this case, the final value of the state will not be returned as
part of the output.

cg., (generateS#'1+0)=>[01234567...]

enumerate$ fruncate-function generate-function init
This is simply (TRUNCATES truncate-function (GENERATES generate-function init)). It is the preferred
way to define an enumerator. :
e.g. (enumerateS#'zerop#'1-5)=>[54321]

scans$ function init &rest &sequence args

This is just like MAPS cxcept that it has an internal state variable. The initial (zcroth) value of this
variable is the unitary value init. The clements of the output are the successive values of the state not
including its zeroth value. The nth value of the state is computed by calling fiunction with the prior

~ value of the state as its first argument and the nth clements of the sequence inputs as its remaining
erguments. However, if the nth element of any of the input sequences is empty then function is not
zpplied, the state is not changed, and the nth element of the output is empty. The length of the output
sequence is the same as the length of the shortest input sequence.
28, (scanS#'+0[1_234])=>[1_3610]

reduceS finction init &rest &sequence args
This creates a sequence function with an internal state variable. The state is initialized to the (unitary)
value init. The nth value of the state is computed by calling fiunction with the prior valuc of the state as
its first argument and the nth clements of the inputs as its remaining arguments. However, if the nth
element of any of the input sequences is empty then function is not applied and the state is not
changed. When the input sequences are exhausted, the final value of the state variable is returned as

5

Functional Summary -52- , Waters |

the (unitary) result. If there are no non-empty clements in the input sequences then the value init will
be returned.

e.g., (reduceS#'+0[12_3][1.234])=>8

e.g., (reduceS#'+0[J[1.234])=>0

Pvalue sequence &optional (first NIL)
This takes in a sequence and returns a sequence which is shifted right one position. First is used as the
first element of the output, and the last element of the input is discarded. Note that while the elements
in the non-empty slots are shifted right, the pattern of empty slots remains fixed.
e.g. (Pvalue [1_34]0)=>[0_13] ‘

Predefined Generators

Gseglience arg
This takes in a unitary argument and produces an infinite sequence of that value. Note that the
successive elements of the sequence will all be EQ.
e.g., (Gsequence1)=>[111...]

Gl1ist list
This generates the successive elements of Jist. It will get an error if it encounters a non-list CDR.
e.g., (619st'(123))=>[123NILNILNIL...]

Gsublists list
This generates the successive CDRs of Jist. It will get an error if it encounters a non-list CDR.
e.g., (Gsublists '(123)) =>[(123) (23) (3) NILNILNIL...]

Grange &optional (first 1) (step-size 1)
This generates fixnums from first adding step-size at each step. Note that step-size can be negative.
e.g., (Grange102) =>[101214 ...]

Predefined Enumerators

Elist list
This enumerates the successive elements of list up to and not including the first NULL sublist. It will get
an error if it encounters a non-list CDR.
e.g., (Elist '(123))=>[123]
e.g., (E1istnil) =>[]

Esublists list
* This enumerates the successive CDRs of /ist up to and not including the first NULL sublist. It will get an
error if it encounters a non-list CDR.
e.g., (Esublists '(123)) =>[(123)(23)(3)]

Elists list .
This enumerates the successive elements of /ist up to and including the first NULL or non-list sublist.
e.g. (Elists '(12.3))=>[123] ‘
eg., (Elists NIL)=>[]

Waters -53- Functional Summary

Eplist plist
This creates a sequence of pairs of successive property names and property values of the naked plist
plist. Note that the function PLIST returns the CDR of a naked plist, not a naked plist.
e.g. (Eplist "(NILA1B2)) =>[(A. 1) (B.2)]

Ealist alist
This creates a sequence of pairs of successive keys and values respectively of alist. It requires that the
lists of values associated with each key be anon-NIL list. : ‘
e.g., (Ealist '((A1) (B23)))=>[(A.1)(B.2)(B.3)]

Erango first last &optional (step-size 1)
Creates a sequence of integers by counting from first to last by the positive increment step-size.
c.g., (Erange 482) =>[468]

Evector veclor&optional (first 0) (last (1- (array-length vector)))
This enumerates the successive clements of a one dimensional array. You can specify a subrange of
‘ndices by specifying first and /ast. (Note that this will not work on MacLisp arrays of numeric type.)
e.g., (Evector<123>)=>[123]

Efile file-name
This creates a sequence by doing successive reads on the file until end of file is reached. File-name can
be anything acceptable to OPEN.
e.g., (Efile "data.lisp") => [123]
if the file contains "1 23"

Predefined Filters and Terminators

Fselect &sequence source boolean-sequence
This creates a sequence whose values are the values of source corresponding to non-NIL values of
boolean-sequence. '
e.g. (Fselect [1234][NILTTNIL]) =>[_23_]

Fpositive &sequence sequence
This takes in a sequence of fixnums and restricts it to a sequence containing only elements greater than
7€ro.
e.g., (Fpositive[-101])=>[__1]

Fgreater &sequence sequence &optional &unitary limit
This takes in a sequence of fixnums and restricts it to a sequence containing only elements greater than
limit.
e.g., (Fgreater [123]2) =>[__13]

Tsele:t &sequence source boolean-sequence
This crcates a sequence whose values arc the values of source up to and not including the one
corresponding to the first non-NIL value of boolean-sequence.
e.g., (Tselect [123 4] [NILTTNIL]) =>[1]

Functional Summary -54- Waters

Predefined Reducers

Rlast &sequence sequence&optional &unitary (default NIL)
This takes in a sequence and returns its last value. If the sequence has zero length then default is
returned.
e.g., (Rlast[123])=>3
e.g., (Rlast []) => NIL

Rignore &sequence sequence
This takes in a sequence and returns NIL. Itis uscful in many of the same situations as MAPC.
e.g., (Rignore[123]) => NIL

R1ist &sequence sequence
This creates a list of the elements in sequence. The order of the elements is preserved.
e.g., (R1ist[123])=>(123)
e.g., (R1ist[]) => NIL

Rbag &sequence sequence
This creates a list of the clements in sequence. The order of the elements in the list is undefined. This
is more efficient if you really do not carc what the order is. (The order ends up reversed, but you
should not depend on that, because it could change at any time.)
e.g., (Rbag [123])=>(321)

R1ist+ &sequence sequence
This creates a list of the elements in sequence with the last clement of the sequence ending up as the
CDR of the last CONS cell in the list.
eg., (Rlist«[123])=>(12.3)
c.g., (R1ist*[1]) =>1
e.g., (R1ists []) => NIL

Rnconc &sequence Sequence
This ~re'.tes a list by NCONCing together the successive elements of sequence. This is what MAPCAN does
to create its output.

e.g., (Rnconc [(12) NIL (34)]) =>(1234)

Rappend &sequence sequence
This creates a list by APPENDing together the successive clements of sequence.
e.g., (Rappend [(12) NIL (34)]) =>(1234)

Rset &sequence sequence
This combines the elements in sequence into a list omitting any duplicate elements. The order of this
list is undefined. The predicate which is used to test for duplicates is EQUAL.

e.g., (Rset [AA (B) (B)]) => ((B) A)

Reqset &sequence sequence
This is the same as RSET except that the test for duplicates is EQ instead of EQUAL

e.g. (Regset [AA (B) (B)]) => ((B) (B) A)

Waters -55- Functional Summary

Rplist &sequence properties values
This takes in a sequence of property names, and a sequence of values and creates a naked plist. Note
that the function SETPLIST expects to receive the CDR of a naked plist as its second argument.
e.g., (Rplist [AB][12]) => (NILA1B2)

‘Ralist &sequence keys values
This takes in a sequence of keys, and a sequence of values and creates an alist. All of the values which
have the same key are combined into a single entry in the alist hcaded by the key. The predicate which
i3 used to test for cquality of keys is EQUAL.
eg., (Ralist [(A)B (A)B][1234]) => ((B42)((A)31))

Regalist &sequence keys values
"his is identical to RALIST except that the test for key equality is EQ.
e.g., (Reqalist [(A)B (A)B][12347)=>(((A)3)(B42)((A)1))

Rvecter vector &sequence Sequence &optional &unitary (first0) (last (1- (array-lengthvector)))
This takes in a onc dimensional array and a sequence of elements and stores those elements in
successive positions in the array. You can specify a specific subrange in the array. (This will not work
with MacLisp arrays of numeric type.) Note that this reducer is unusual in that it contains a terminator
end will stop the loop as soon as the vector is full,

2.8., (Rvector <NIL NIL NILNIL>[123]) =><123NIL>
e.g., (Rvector <NILNIL> [123]) => <1 2>

Rf1ile file-name &sequence sequence
This takes in a sequence and writes all of its clements into a file. File-name can be anything acceptable
to OPEN.
e.g., (Rfile "data.1isp"[123])=>T
"<er>1<er>2<cer>3 " is printed in "data.lisp"

Rsum &sequence infegers
Computes the sum of the integers in its input.
e.g., (Rsum{123]) =>86

Rsum$ &sequence flonums
Computes the sum of the flonums in its input.
c.g., (Rsum$ [1.1 2.2 3.3]) =>6.6

Rmax &sequence numbers
Computes the maximum of the numbers in its input. Returns NIL if the input has length zero.
e.g., (Rmax [123]) =>3 .
c.g., (Rmax []) => NIL

Rmin &.equence numbers
Computes the minimum of the numbers in its input. Returns NIL if the input has length zero.
e.g., (Rmin [123]) => 1
¢.g., (Rmin []) => NIL

Functional Summary - 56 -

Waters
4. ST
" Rcount &sequence sequence ‘ gﬁ
Computes the number of elements in its input.

¢.8., (Rcount [123]) =>3 , ' : .
Rand &sequence sequence S

Computes the AND of all of the elements of sequence. As with AND, the return value is either NIL or ﬁhe
last clement of the input.

eg., (Rand{123])=>3

e.g., (Rand [1 NIL 2]) => NIL

eg., (Rand[]) =>T

Rand-fast &sequence sequence

~ This is the same as RAND except that the loop is terminated as soon as a NIL value (if any) 1s
encountered,

e.g., (Rand-fast[123])=>3
Ror &séquence sequence
Computes the OR of all of the clements of sequence. As with OR, the return value is either NIL or the
first non-NIL element of the input.
eg., (Ror[123])=>1
e.g., (Ror [NIL NIL]) => NIL
e.g., (Ror []) => NIL

mine W
Ror-fast &sequence sequence

This is the same as ROR cxcept that the loop is terminated as soon as a non-NIL value (if any) is
encountered.

eg., (Ror-fast [123]) => 1

