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Abstract: Nonlinear, local and highly parallel algorithms can perform several simple
but important visual computations. Specific classes of algorithms can be considered
in an abstract way. I study here the class of polynomial algorithms to cxemplify
some of the important issues for visual processing like linear vs. nonlinear and
local vs. global. Polynomial algorithms are a natural extension of Perceptrons to
time dependent grey level images . Although they share most of the limitations
of Perceptrons, they are powerful parallel computational devices. Several of their
properties are characterized and especially (a) their equivalence with Perceptrons
for geometrical figures and (b) the synthesis of nonlinear algorithms (mappings) via
associative learning. Finally, the paper considers how algorithms of this type could
be implemented in nervous hardware, in terms of synaptic interactions strategically
located in a dendritic tree. The implementation of three specific algorithms is briefly
outlined:

(a) direction sensitive motion detection
(b) detection of discontinuities in the optical flow

(c) detection and localization of zero-crossings in the convolution of the image
with the Laplacian (of a Gaussian). In the appendix, another (nonlinear) differential
- operator, the second directional derivative along the gradient, is briefly discussed
as an alternative to the Laplacian.
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1. EARLY VISUAL ALGORITHMS

1.1. Algorithms Depend on Computation and Hardware

One can distinguish (or at least I did so with David Marr:see Marr and

Poggio, 1976; Marr, 1982) at least three levels at which a visual processor must be -

understood. At the top level is the computational theory of the device in which the
problem to be solved is characterized, and the natural constraints are made explicit.
At the bottom is the level of the detailed neuronal “hardware” - neural circuits,
synapses and so forth - that perform the computation. In the middle is a study
of the algorithms used to compute the solution. This second level] is the hardest
to define precisely since it represents a bridge between the computational level
and the hardware level. Thus, while the circuitry is determined by the available
mechanisms and the computation by the nature of the problem, the algorithm itself
is determined by the computation and by the available hardware.

David Marr has especially stressed the computational level of analysis since it is
a level of explanation which is still new to neurobiology. Together we have stressed
that the relationships between these levels are rather loose. In this paper I find it
especially appropriate to emphasize that it is hopeless to understand the algorithms
used by a biological or artificial processor without knowing which computational
problem is solved and what are the properties and the limitations of the hardware.

Both the mechanisms and the problem provide powerful constraints to the
possible algorithms. Horace Barlow made this point very clearly when, in his Ferrier
lecture (1981), he spoke about the “limiting requirements” imposed by the physics
of light, i.e., the nature of the visual world, and the properties of the nervous
mechanisms, for instance the limited precision of the connections and the noise
of nervous transduction. For instance, the von Neuman architecture of classical
computers depends almost entirely on the type of available processing elements
which made concurrency cumbersome to implement. In the nervous system the
processing elements — neurons and synapses, as I will discuss later — are abundant
and flexible. VLSI is now bringing similar advantages to circuits. Connections,
however, are still vastly more numerous and more flexible in the brain than in solid
state electronics, where they are restricted to 2-D surfaces. The costs of internal
communication are still exorbitant in today’s computers.

1t is therefore not surprising that algorithms strongly depend on the constraints
imposed by the hardware. I would argue that the main reason for the large gap

presently existing between computational theories and computer scientists on

one end and physiology on the other end is our ignorance of the nature and the
properties of the biological hardware performing the elementary steps of information
processing. Biophysics of mformation processing, which I will discuss later, is as
necessary for analyzing and understanding the algorithms used by the brain as the
computational analysis of the specific tasks.




1.2. Systems and Algorithmns

Visual information processing begins with a large array of photoreceptors
that transduce local light intensities into time dependent signals. The information
about the outside world and how it changes is implicit in this retinotopic array of
signals and must be decoded by a variety of processes or algorithms. Formally these
algorithms, considered as “black boxes”, have many inputs — the photoreceptors —
and are in general nonlinear.

Since I restrict my discussion to the first steps of visual information processing,
1 will consider algorithms that operate almost directly on the photoreceptor signals,
i.e., on the primary intensity representation (Nishihara, 1981). At this level, and
especially for biological systems, it is natural to treat algorithms as systems or
operators mapping a set of inputs into a set of outputs. From this point of view,
two simple dichotomies can characterize, albeit rather superficially, early v1sual
algorithms: 1) linear vs. nonlinear; and 2) parallel vs. serial.

Systems have inputs and outputs. Mathematically a system is equivalent to
an operator which maps functions into functions (in a suitable space). An operator
can be defined in at least two ways: (a) as a catalogue of all the inputs and the
corresponding outputs; and (b) as an algorithm, i.e., an explicit law or set of rules
that enables one to compute the output for any given input.

These two descriptions are met under different forms in various contexts. In
information theory a view close to (a) leads to the classical combinatorial definition
of information measure, while an algorithmic view leads to the Kolmogorov’s
definition of information entropy. In computer technology logical operations are
often performed through a look-up table, i.e., a catalogue.

1.3. Linear vs. Nonlinear

Nonlinear systems represent in the space of all systems a much larger class
than linear systems. The restriction of linearity is very strong and sets powerful
general constraints on the system s behavior and properties. A linear system is a
map L satisfying

L{az) = aL(z)

L(:I:l + 22) == L(xl) + L(:Eg)

From the information processing point of view, the limitations of linear systems
are clear. Linear operations cannot perform conjunctions and discriminate the
intersection of events. In a sense which can be made more precise multiplications or
divisions are necessary to provide a sufficiently powerful set of basic operations. The




crucial processes of an information processing device require logical operations that
are cssentially nonlinear and more like multiplications than addition or subtraction.

Ifor a computer scientist this question of lincar vs. nonlinear algorithms may
indeed seem a straw problem: after all every computing machine is intrinsically
nonlinear, is full of nonlinearities. For neurobiologists, however, the question of
linearity vs. nonlinearity of some nervous subsystem - and of the operation thereby
implemented - is non trivial. As we will see later, the classical view of the neuron
and the concept of integrative action may be flawed by the failure to recognize the
necessity of nonlinear operation on graded synaptic inputs.

1.4. Parallel vs. Serial

The distinction between parallel vs. serial processing is almost a commonplace
in a variety of different areas (of course the concepts of parallel and serial processing
have a range of meanings). It is, for instance, the most frequently cited difference
between present computers and brains. The amount and the nature of wiring are
vastly different: it is easy to create many very small transistors with present solid
state technologies but more difficult to produce extensive connections among them.
In a brain each nervous cell receives thousands of inputs. Nervous wiring is not
restricted to two-dimensional surfaces. Especially in the first parts of the visual
‘pathway nervous processing is indeed undoubtedly spatially parallel and preserving
the topography of the image (at least up to area 17 and other visual areas, modulo
a conformal mapping that preserves local geometry).

Algorithms with a more serial flavor are certainly used at later stages in
the nervous system. Even in vision, however, serial processing is likely to play an
important role quite early on, certainly earlier than most neurobiologists accustomed
to the idea of topographic maps and inner screen would be ready to admit.

From a computational point of view the most interesting issues about parallel
algorithms revolve around the notion of “local and global” or “parts and wholes”.
Loosely speaking, a computational problem is inherently local if it can be divided
into small, non-interacting modules. It is inherently global if any way of dividing it
into subcomponents must entail substantial interaction among the modules.

1.5. Plan of the paper

It is, however, very difficult to characterize the locality or globality, as well as
the linearity or nonlinearity, of a computational task without any reference to a
specific and possibly abstract class of machines on which the computation will run.
I will thus consider a class of algorithms and related abstract machines that are a
natural extension of Perceptrons and briefly formalize in this framework the issue of -
local and global as well as of linear and nonlinear. The motivations for considering
this particular class of algorithms is more fully discussed by Poggio and Reichardt
(1980). The main attraction of polynomial algorithms is their generality: they




approximate, under rather weak conditions, all smooth input-output transductions.
Heuristically, several early visual computations seem indeed to have this smooth
character of transducing input signals continuously into output functions, without
major discontinuities or “decisions”. The main results on polynomial algorithms are
summarized in section 2., mainly from Poggio and Reichardt (1980), to which we
refer the reader for detailed definitions, proofs and references. Some of the results on
coding of the inpul set (section 2.8) and nonlinear associative mappings (section 2.9
and 2.10) are new. In the context of this paper the main thrust of the next section
is to show formally that several simple but important computations require local
(i.e. highly parallel) algorithms with nonlinearities of 2 simple kind. The question
is then how could these interactions be implemented in neuronal hardware? Section
3. suggests that a specific biophysical mechanism may perform the key operation
in many local, nonlinear visual algorithms. The section is a brief and incomplete
summary of several recent papers. Three examples of specific algorithms based on
this mechanism are proposed in the last section for (a) detecting directional motion,
(b) separating figure {rom ground and (c) localizing zero-crossings . It is conjectured
that the corresponding circuitries may indeed be used by some biological visual
systems. The first two example are summarized from Torre and Poggio (1978)
and Poggio et al. (1981a), respectively. The neuronal circuitry for the detection of
zero-crossings is original. It may be useful to point out that this paper is not fully
selfcontained. Its main purpose is rather to outline several recent developments and
to connect them in a new and coherent framework: the many gaps and missing
details should be filled in from the original papers.




2. POLYNOMIAL ALGORITHMS

As I mentioned, the input space relevant for us is a 2-D array of time-dependent
signals. We formalize this, defining as refina the collection of N photoreceptors
arranged on a 2-D lattice, and by a pattern on the retina a set of input functions,
seen by the photoreceptors. Then a polynomial algorithm on the pattern X is a
mapping to an outputl function with the form

N
Sla]= ). Z Ly . [a(t)] (1)

t=191...%

where Lj; ;. is an i-linear form in the i components of the input array
[z1(t)...2n(t)]. Eq. 1 is a natural extension of the usual algebraic polynomials:
inputs and outputs are here functions instead of real (or complex) numbers.

2.1. Inputs

When z,(t) = z;, the input pattern is a grey-level “figure” on the retina. If the z;
take only 0 and 1 values the pattern is essentially a “geometric figure” as considered
in “Perceptrons” by Minsky and Papert (1969). Since a linear transformation of
the pattern does not change the type of representation (eq. 1), it is often useful
to think of the pattern as a (linearly!) filtered version of the brightness array ( for
instance through a Difference of Gaussians operator, a DOG).

2.2. Graphs

Eq. 1 is equivalent to the decomposition of the operator S into the sum of
interactions of different orders between the input functions. Each term can be
represented by a certain graph and thus an N-input system can be decomposed into
a sequence of graphs (see Fig. 1). The graphs are actually another notation for the
polynomial operator itself. In particular, composition of systems can be computed
directly in terms of the graphical notation.

2.3. Three Questions

Three interesting questions can be asked about these operators. The first one
concerns the existenc: of an explicit representation. The second problem is how
wide is the class of algorithms that can be approximated by polynomial systems?
Finally, we would like to characterize the computational properties and limitations
of polynomial algorithms, especially in the {ramework of the local-global and
linear-nonlinear dichotomies.
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Figure 1. The graphic representation for equation 1

2.4. Representatmn and Approximation

(a) The answer to the first question (see Poggio and Reichardt 1980; Palm
1978, 1979) can be stated in terms of the following

PROPOSITION 1 (see for precise versions of this theorem Palm and Poggio
1977; Palm 1978).

All polynomial systems can be represented by symbolic integrals. Time
tnvariant polynomial systems can be represented by Volterra series (with the
kernels being distributions).

Thus the class of Volterra series coincides with the class of polynomial
functionals and a polynomial algorithm (or its graph) can be written in terms of
integrals and associated kernels. For instance, a linear time-invariant system can
be written as a convolution

= /K(t — 7)z(r)dr (2)

and a second order interaction as

Lisler(t), 22(0)] = [ [ Kualt — 11, — raJes(m)ea(ma)drsdr, (3)

(b) The answer to the second question depends on the type of approximation,
L.e. topology, that is used (see Palm and Poggio, 1978;Palm 1978, 1979; Poggio
and Reichardt, 1980). For instance, under the stochastic approximation and the
pointwise approximation — rather weak approximations - polynomial systems like
equation 1 approximate essentially every mapping between L? and R, but only
a subclass of continuous mappings under the uniform approximation. Stronger -
results clearly hold for discrete-time systems and for discrete time, finite value
input spaces. For discrete time systems all different topologies are equivalent and
thus all continuous systems can be approximated by polynomial systems. If the
input set is finite, then any mapping can be written as a polynomial.




2.5. Computational Properties: degree and p-order

A representation like eq. 1 is essentially a canonical decomposition of the
system into the sum of simpler, standard components. Computational properties
of the mapping are then “additively” determined by the computational properties
of the standard components, the graphs of Fig. 1. Typically one would like to
know what is the “simplest” set of graphs or interactions that can perform a
given computation. Intuitively, the terms in the representation of Fig. 1b (or eq. 1)
become increasingly complex going from left to right. It turns out that the concept
of simplicity of a graph can be formalized in terms of the notion of degree, which
measures its “nonlinearity”, and p-order, which measures its “locality”.

DEFINITION
A canonical graph 1s of degree k, if it corresponds to a k-linear form.

The degree of a graph is the total number of incoming lines. Linear graphs
have degree 1, quadratic ones (bilinear forms) have degree 2.

DEFINITION

A canonical graph has p-order h, if it has inputs from h distinct
“photoreceptors”.

DEFINITION

The degree and p-order of a polynomial system are the mazimum degree
and p-order in the graphs of its canonical decomposition.

Although degree, p-order, and rank (see Poggio and Reichardt, 1980) all
characterize a polynomial algorithm, the p-order is probably the single most
important measure of the simplicity of a graph [linear graphs have p-order 1 (and
degree 1)]. The main reason is that the notion of p-order formalizes the issue of “local
vs. global” for polynomial algorithms. A lower p-order system is local: the canonical
subsystems make independent, nonlinear computations based on small patches of
the retina. A high p-order algorithm is global: individual graphs receive inputs from
many photoreccptors in the retina. One can ask, similar to “Perceptrons”, whether
a certain computation is of finite p-order, i.e. if it can be computed by a polynomial
mapping of some fixed p-order, regardless of the size of the retina. Notice that
a linear algorithm may use inputs from many photoreceptors, but its canonical
representation consists of p-order 1 graphs. Linear operations on the input patterns
do not change p-order (or degree) of an algorithm (see later).

2.6. Computational Properties: Standard Machines

Several abstract computational machines could be considered for a comparison,
like finite state machines, McCulloch-Pitts networks, difference equations, per-
ceptrons, etc. The comparison clearly depends on the input set {most machines
are defined only for discrete inputs with a binary number of values). If we restrict
ourselves to a discrete, finite set the previous discussion implies that it is always
possible to synthesize a polynomial mapping that simulates exactly the behavior of




any specific machine. If we relax the constraint of a finite set, polynomial mappings
are less powerful than systems with infinite memory like fnite state machines,
difference equations, and McCulloch-Pitts networks with loops. In practice, time is
always finite and thus polynomial algorithms are equivalent to these other machines.
The situation, however, clearly indicates that a polynomial description, for instance,
of a finite state machine may almost always be too cumbersome to be useful. These
limitations of polynomial algorithms are also indicated by their equivalence with
standard perceptrons (on appropriate patterns).

2.7. Polynomial Algorithms are equivalent to Perceptrons for Geometrical Figures

The input set is restricted to “geometrical figures”, i.e. to the set [0, I]N where
N is the number of photoreceptors. A predicate on R is a function ¥ from a figure
of R to [0,1]. A perceptron is a predicate on the retina R of the form (Minsky and
Papert, 1969)

V(R) =3 a;i¢i(R) > 0]

where [some condition] is 1 if the condition is true and 0 if it is false. The
support of ¢ is the set of all photoreceptors which affect the value of ¢, and the
order of ¢ is the size of the support of ¢. It is straightforward to prove

Lemma

Any (perceptron) ¢ function of support n can be represented ezactly for
all figures by a set of polynomial graphs of p-order n and degree (2™ — 1).

THEOREM 2

For geometrical figures on [0, 11N perceptrons of order < n and polynomials
of p-order n and degree (2" — 1) are equivalent.

Thus the resulls on the order of perceptrons which compute various geometrical
predicates also apply to the p-order of the corresponding polynomial mappings.
Fig. 2 lists some of these results.

For both perceptrons and polynomial algorithms many simple computations
turn out to be nonlocal. The limitations of perceptrons carry over to polynomial
algorithms, and probably hold also for more general time dependent input patterns.
This is not a surprise but is especially interesting from the point of view of the
globality of given computational problems in vision. The implication is that simple,
parallel algorithms, not just restricted to the Perceptron machine, can easily, i.e.
locally, compute a range of important predicates, but cannot compute all of them.
Apparently simple computations — like connectedness, straightness - probably
- require different types of algorithms, perhaps more “serial”. Other computations,
however, such as the computation of the direction of motion and of discontinuities
in the motion field, can be performed by simple parallel algorithms (see fig.3). It
may be interesting to consider the various processes involved in the first stages
of visual perception from this point of view. In particular, Treismann’s notion of




Computation p-order Computation p-order

[ X is a circle] 4 Translation invariant recognition of 3

[1XizM] 1 figures

NxismMi ! [X is odd] o(|R[)

[1Xt=M] 2 Iy, p, p-order (p,)=1 0

[The n-th central moment of X about 1 p-order y, =2:p, Ay,

" the origin is >3] [ X is connected] oo > ¢|R|'?)

All Boolean functions of 2 variables, 1 Translation invariant geometric spectra 2
except x @ yand x=y 1 in context 0

x@y 2 [X 1s a holiow square] 3

x=y 2 [One component of X is a hollow square] [’

[X is convex] 3 [X has symmetry under reflection] <4

[Pattern A is a translate of pattern B <5

Figure 2. P-order of some computations on geometrical figures

Computation p-order  Degree
Directional movement (translation invariant) 2 2
Directional movement (translation- and lor2 2
rotation invariant)
Relative movement 2or 4
better 4
Absolute position of a stimulus on the retina 1
(not invariant to any geometric group)
Expansion or contraction of a texture =4
(translation invariant)
First order statistics of a (timeless) texture 1 High
Second order statistics of a (timeless) texture 2 High
Expansion-concentration of a texture (around 2 2

the coordinate origin)

Figure 3. P-order of some computations on time dependent paiterns

separable and not separable features, Julesz’ concept of instantaneous perception
and Barlow’s idea of topographic maps may be connected to the intrinsic “locality

vs. globality” (and nonlinearity) of algorithms.

2.8. Coding of The Input Set

I mentioned earlier that linear transformations of the input patterns do not
change the main characteristics of a polynomial algorithm (they simply change the
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kernel’s values). More generally a transformation of the retina Iy into Ry by the
mapping f provides for every patiern

X = [z4(t)...zn(t))

another pattern

Y = [y(t), - ya(t)] = FIX] = [f1[X], ..., frn] X]]
Given a polynomial mapping Sy on R, we define a mapping Sy on Ry through

The following property is self-evident (Poggio and Reichardt, 1980)
PROPERTY

If for 1 = 1..m the support of f is at most equal to 1, then p-order(S;) <
p-order(Sy).

Thus nonlinear scaling of each input separately does not increase the p-order
of a polynomial algorithm. Coding of this type will, however, change the order
and possibly decrease it. In other words, this simple input coding may make a
polynomial algorithm simpler without changing its essential properties. We can
then consider the class of polynomial algorithms defined by transformation of the
retina of support 1. Two principles can be used to guide the choice of appropriate
transformations (Resnikolf, 1975).

Principle 1

The domain and the range of the induced polynomial algorithm must
cowncide with the domain and range of the input-output operation (conszdered
as function on R).

Principle 2

The transformations of the retina shall be birational functions, the .
ezponential functions and its inverse and the compositions of these functions.

Thus the transformations f; of the retina affect the necessary conversion of
domain and range with a minimal disruption of the algebraic structure of the input
space . The extension from functions f; to operators seems quite natural, when the
inputs are time-dependent.

Input coding of this type simply tries to “linearize” the computation as much
as possible.. Input coding with support greater than 1 changes the p-order of the
polynomial algorithm. Output coding also changes the properties of the algorithm.
This can casily be seen in Fig.4 which shows Kolmogorov’s (1963) solution of
Hilbert’s 13th problem: a continuous function can always be represented as the
superposition of functions of 1 variable, as shown (for 3 variables) in the figure. Thus
with appropriate output and input coding a p-order 1 polynomial can represent all

1n




Figure 4. Kolmogorov’s and Arnold’s decomposition of a function of three variables

continuous mappings. Interestingly, this result does not hold for continuous time
functionals (Palm, 1978).

2.9. Associative Memory and Synthesis of a Polynomial Algorithm

How can one synthesize (by ’learning’) a non-linear polynomial algorithm from
a set of given inputs and desired outputs? In the case of a finite, discrete space
of inputs the problem is well known. It is equivalent to the problem of optimal
estimation of a system and to the problem of synthesizing an associative memory
(Poggio, 1975 a,b). The usual problem considered in the literature concerns the
synthesis of an optimal {inear mapping M from a set of input vectors X and a set
of desired output vectors Y. The best approximate mapping is given by M = ¥ X T
where X is the pseudouniverse of X (see Kohonen, 1977). This technique can be
extended to find the optimal polynomial mapping (Poggio, 1975 a,b). In particular,
then, any mapping can be constructed in this way, al least in principle, since any
mapping between two finite sets of vectors can be written as a polynomial (see
earlier). This can also be derived from another interesting result, that I discuss
next.

2.10. Associative Meniories and Nonlinearities

The role of nonlinearities in an associative memory scheme has been long
recognized as critically important. The following simple theorem provides a general
connection between linear associative schemes and nonlinearities. :

12
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PROPOSITION 3

Any nonlinear associative mapping between two finite sets of vectors 1s
equivalent to a linear associative mapping precceded by (nonlinear) input
coding.

PROOF

The proof is based on the following two obvious lemmas (given, implicitly, in
Palm 1978; Poggio, 1975b).

LEMMA 1 Any (nonlinear) mapping between two finite sets of vectors
can be written as a polynomial.

LEMMA 2 Any polynomial mapping between two finite sets of vectors

Y = Ly + Li[X] + Lo[X, X]...

is a linear mapping on appropriate crossproducts of the elements of X
(i.e. on the tensor products X, X R X,...).

The synthesis of these crossproducts can be seen as nonlinear input coding (of
support >1). [Output coding instead of input coding has similar properties (see
Poggio 1975b)]. A simple but striking result follows again:

COROLLARY

Any nonlinear mapping between two finite sets of vector can be synthesized
associatively with the pseudoinverse technique. '

For more general input sets the problem cannot be answered exactly but only in
terms of approximate associalive mappings. The idea of coding an input set before
performing the bulk of the computation or association is clearly powerful and can
be found in a variety of contexts. In the framework of associative memory it is again
interesting to notice the connection with the Kolmogorov result: input coding here
does not depend on the mapping to be synthesized but the final “output” function
g does. The result shows that for a continuous function an n-dimensional table can
be replaced by a 1-dimensional table representing g and some input coding. This
does not necessarily reduce the memory requirements in all cases. However, it may
be conjectured that an appropriate choice of the input coding for a specific class
of input-output operations may allow significant reductions in memory size (see
Poggio and Rosser, 1982).

In summary, polynomial algorithms are powerful parallel computational devices

and it is important to stress not only their limitations but also their locality in a
number of important computations. They may be useful for characterizing simple
parallel processing operations in a visual system. The detection of motion and
relative motion can be characterized in terms of simple polynomial algorithms and
general properties can be proved for a whole range of specific models. As discussed
- carlier, however, the algorithms used by a system are strongly constrained by the
available hardware. In the next section I will briefly discuss a class of mechanisms —

“local interactions between synaptic inputs - possibly used by the nervous systems. I
will also show that these interactions compute in fact specific polynomial functionals
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of the inputs. Thus the link between polynomial algorithms and nervous hardware
may turn out to be, at least in some instances, rather direct.

14




3. BIOPHYSICS OF INFORMATION PROCESSING

Many different, types of algorithms could be used in early vision. The
computational problem does not provide sufficient constraints to uniquely define the
algorithm. Even properties like local vs. global may vary for the same computation
between different classes of algorithms. Ultimately the hardware of the computer or
of the brain imposes critical limiting factors that constrain the class of algorithms.
What is then the hardware of the brain? Where are the elementary operations
performed and what do they look like?

The traditional view is that the threshold mechanism associated with spike
generation performs the elementary logical operations: a neuron fires if the sum of
its inputs exceeds a certain threshold and is otherwise silent. All logical operations
can be implemented in this way, via McCullogh-Pitts networks.

It is, however, clear by now that there are probably several other mechanisms
as important or more important than the McCullogh-Pitts neuron. For instance,
it is now well recognized that much processing takes place without somatic spikes,
simply in terms of graded potentials. If graded signals play an important processing
role, there must be nonlinear interactions between synaptic signals. The need for
nonlinear operations that are more like multiplication than addition or subtraction
has been customarily neglected by most neurophysiologists but is clearly critical
for even the first stages of visual information processing.

A simple biophysical mechanism that could underly nonlinear interactions
between graded signals is already known. Since synaptic inputs are not current
inputs but conductance changes to specific ions, synapses which are electrially close
to each other on a cell’s dendrite will mutually influence each other and result in
a potential change at the soma which depends nonlinearly on the input signals.
Probably the simplest and most common interaction of this type involves two
synapses (or sets of synapses), one excitatory and the other inhibitory, increasing
conductance to an ion with a battery close to the cell’s resting potential. Activation
of the inhibitory channel by itself will contribute nothing to the potential, but it
may have a very powerful effect in shunting the potential towards the resting state
when a neighbouring excitatory synapse becomes active. This shunting effect can
be powerful and local. It can also be shown from the membrane’s equations (Torre
and Poggio, 1978; Poggio and Torre, 1981) that the interaction implemented is
multiplication-like, of the type g; — agygo. This is in turn formally equivalent to
an ‘analogue’ AND-NOT operation, one input (g3) vetoing the other (g;).

3.1. Synaptic interactions are polynomial functionals

The multiplication-like character of these synaptic interactions can be indeed
demonstrated rigorously. An extiension of cable theory shows that the voltage
potential in an arbitrary dendritic structure is given by a specific Volterra series of
the conductance inputs.

PROPOSITION 4 (Poggio & Torre, 1977)

The membrane potential in a passive dendritic tree is an entire functional
Jor all bounded, transient conductance inputs.
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1982; Poggio et al., 1982), though not strictly valid for the channels described by H.
Wilson, suggests that sero-crossings are very rich in information about the filtered
image. Ideas based on Logan’s type of results are attractive especially from the
point of view of visual psychophysics and physiology, since they seem to provide
a theoretical basis for the existence of edge detectors in the output of bandpass
channpels in the visual system, thus providing a potential ‘synthesis of the edge
detectors ideas with the frequency channels evidence. Marr and Hildreth (1980) have
provided a number of attractive heuristic arguments for Justifying a slight variation
of the original scheme (Marr and Poggio, 1977). In particular they proposed that
the initial filtering of the image was performed by nondirectional (as opposed to
- oriented) receptive ficlds, again described as differences of gaussians (DOG) (which
approximates the operation of taking the Laplacian of the image filtered through a
gaussian, see Appendix.) Since X retinal ganglion cells have a DOG receptive field
and are usually described as linear filters, it is not too unreasonable to propose
that the filtering operation is indeed performed in the retina and represented by
the activity in the ON and OFF layers of ganglion cells, positive values being
represented by ON center X cells and negative values by OFF center X cells.
Thus the binary map of the convolved image shown in fig. 9 would represent the -
combined map of activity in the OFF and ON layers of ganglion cells in the retina.

How can the zero-crossings - the transition of activity between ON and OFF
cells ~ be detected? '

Fig. 10 shows that a mechanism connecting neighboring ON and OFF cells with
an AND gate, possibly implemented via synaptic mechanisms of the Poggio-Torre
type (with a shunting conductance decreasing input, see Koch et al., 1982), could
detect zero-crossing lying between the two rows of cells. This scheme, proposed by
Marr and Hildreth (1980) does not require the inhibition which seems to be involved
in the main properties of cortical cells, like orientation and direction selectivity. An
alternative scheme can, however, be based on the synaptic veto mechanism.

The critical observation is that a zero-crossing is also defined by activity in
the ON layer and absence of activity in neighboring ON cells (and conversely for
the OFF layer). Thus a zero-crossing can be detected by avoidance of inhibition,
logically equivalent to an AND-NOT operation. It is a simple matter to adapt this
idea to create an oriented zero-crossing segment detector as shown in fig. 10. Since
the veto operation can be performed by distal excitation (on spines ?) and inhibition
of the shunting type on the proximal part of a single dendrite, the same cell may
perform independently this operation on the OFF and on the ON layer on different
dendrites, adding the two results for increasing reliability. Interestingly, however,
either the ON or the OFF layer alone are sufficient. Notice that in a standard map
of the receptive field inhibition may be invisible and only excitatory inputs from
ON and OFF cells (on different dendrites) may be measureable (and linear). In this
scheme unbalanced receptive fields (loosely corresponding to sustained properties)
are not only advantageous but probably (as suggested by K. Richter) necessary for
a robust physiological implementation. A trivial property of the circuitry follows
from the preceeding sections:

COROLLARY
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Figure 6. Some local circuits performing different simple operations: a veto-like operation, a
multiplication, a diwision, again a multiplication-like operation.

obtained when (shunting) inhibition is on the direct path to the soma.

The role of the dendritic morphology in information processing has been
studied (Koch et al., 1982; see also Poggio et al., 1981b and Poggio and Koch,
1981) in the case of retinal ganglion cells. In particular, we have examined with
computer experiments on histological data the precise conditions underlying the
effectiveness and the specificity of a veto interaction of the shunting type. The
main result is that the effect can be powerful with physiological parameters values
especially for dendritic morphologies of the & type. In this case inhibition can
veto specifically an excitatory input if it is on the direct path from the location
of the excitatory synapse to the soma. As a consequence each class of cells may
perform characteristic operations on their inputs depending on the branching and
the geometry of the dendritic tree. Koch et al.(1982) have shown that & and ~
ganglion cells may underly different classes of logical-like operations because of
their different branching patterns.

3.3. A Basic Elementary Mechanism

Because of the strength and specificity of such nonlinear interactions we have
proposed that they may perform characteristic information processing operations
in passive dendritic trees. Since inhibition vetoes effectively more distal excitatory
inputs only when it is on-path to the source a variety of local operations can be
performed, exploiting the branching geometry of a dendritic tree with a suitable
localization of excitatory and inhibitory inputs. If this is true, a neuron would
- probably resemble an analogue LSI circuit with thousands of elementary processing
units - the synapses - rather than a single logical gate. The idea that a veto- like
operation plays an important role in visual information processing in the brain is
not new, though its specific synaptic nature and properties probably are: Barlow has
stressed many times, since his classical study of direction sensitive ganglion cells,
(Barlow and Levick, 1965), that a veto-like operation is an important physiological
mechanism in the retinal and cortical processes that underly perception. In the next
section I will propose several simple visual algorithms—and corresponding neuronal
circuits—that use this elementary veto mechanism.
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Figure 7. Reichardt and Hassenstein’s movement detector model, Barlow and Levick’s scheme
and Torre and Poggio’s synaptic mechanism.

4. THREE EXAMPLES OF NONLINEAR,LOCAL ALGORITHMS

4.1. Direction selective Motion Detection

The computation of local motion — in the simple sense of. detecting the
direction of motion - is a simple but fundamental step in machine and biological
vision systems. It is straightforward to show that it is a nonlinear computation
- i.e. linear operations alone could never be said to be truly direction selective.
In terms of polynomial algorithms direction selectivity requires at least p-order
2 , i.e. a multiplication-like operation between 2 photoreceptors (or second order
‘cells’ linearly filtering the photoreceptor array). A linear system cannot give a
time-averaged output that inverts sign for inversion of direction of motion, since
< Llzy,z9) >= L[< 24 >, < 22 >], if L is a linear mapping. A p-order 2
polynomial algorithm with a non-zero antisymmetric kernel component has the
correct property. Thus: ’

PROPOSITION 6 (Poggio & Reichardt, 1976, 1981)

Direction selective motion detection —~ the average outpul must reverse
sign for tnversion of direction of motion — is p-order 2 (and degree 2).

In the specific case of the visual system of the fly there is convincing evidence
that the p-order of the algorithm used is indeed 2 and not higher. The evidence
rests on a variety of experiments briefly reviewed in (Poggio and Reichardt, 1976).

Thus the basic algorithm for direction selective motion detection is based on
a multiplication-like interaction between pairs of inputs after asymmetric filtering
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(low-pass but also high-pass filters are possible). A particularly simple filtering
operation is an asymmetric delay (see fig. 7). 1t is easy to prove that correlation
models are equivalent to p-order 2 polynomial algorithms:

PROPOSITION 7 (Poggio & Reichardt, 1976)

Correlation models of motion detectors (in the sense of Reichardt) are a
subclass of antisymmetric, p-order 2, polynomial algorithms.

How can this algorithm be implemented in neural hardware? If we follow the
ideas outlined earlier, the obvious choice would be to use a synaptic mechanism of
the veto type at the level of a cell’s dendrite. As shown in fig. 7, Barlow and Levick
had in fact proposed from their physiological experiments on directional selective

ganglion cells, an AND-NOT operation as the basis for directional selectivity to

motion. Torre and Poggio (1978) conjectured that the synaptic veto effect described
earlier may be the mechanism whereby directional selectivity is achieved. Provided
that suitable conditions on the ionic channels, the geometry of the dendritic tree
and the localization of synapses are satisfied, their conjecture certainly fits two
of the main experimental properties of direction selective cells, namely that the
interactions responsible are between local subunits of the receptive field, and that
they are inhibitory. Thus the basic algorithm used for simple motion detection in
various biological systems may indeed by based on the synaptic veto mechanism. In
particular, Koch et al. (1982) have recently proposed that a 6-cell-like morphology
1s the substratum of direction selectivity in the retina of the cat.

4.2. Detection of Relative Movement

Discontinuities in the optical flow field-—the distribution of apparent velocities
on the eyes—are a good indication of object boundaries and can be used to segment,
images into regions that correspond to different objects. In particular, the relative
motion of an object against a textured backgrcund can be used to reveal its presence
and to delineate its boundaries. The human visual system is very efficient at this
task. Quite similarly a fly is able to detect and discriminate an object that moves
relative to a ground texture.

In terms of polynomial algorithms this computation is of p-order 4 (although
p-order 2, degree 4 may also be sufficient in specific cases, see Reichardt and
Poggio, 1979). Many experiments have established that the fly indeed uses an
algorithm which is mainly p-order 4 (it has also higher terms). More precisely the
behavioral data which measure the fixation response of the fly to a textured small
figure oscillating sinusoidally with various phases in front of an oscillating ground
texture — shows that the basic algorithm relies on an inhibitory multiplication —
like operation between motion detector units (Reichardt and Poggio, 1979).

Again the synaptic veto mechanism of shunting inhibition seems an ideal
candidate for implementing this operation. The overall circuitry is shown in
fig. 8 (Poggio et al., 198l1a). Large field cells summate the output of many
elementary motion detectors and inhibit via presynaptic shunting inhibition the
single elementary motion detectors. This circuitry accounts well for a large body
of existing behavioral experiments; many more predictions have been successfully
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Figure 8. The circuit (and algorithm thereby implemented) possibly used by the visual system
of the fly to perform the detection of disconlinuities in the optical flow. Redrawn from Poggio et
al., 1981

tested. In particular, the dynamics of the fly’s behavioral response is quantitatively
predicted by this algorithm for a variety of figure-ground descrimination tasks.
Presynaptic inhibition with an equilibrium potentical near the resting potential is
conjectured to implement the key operation in the algorithm, which amounts to a
comparison of large field motion with local measurements. This circuitry, considered
as an algorithm for detecting discontinuities in the optical flow (it has p-order 4
and higher), is efficient and reliable, as shown by several computer experiments on
textured patterns.

4.3. The Detection of Zero-crossings

Over the past twenty years researchers in computer vision have proposed
several algorithms to detect and represent various kinds of intensity changes. I
will focus here on one of them because of its potential implications for cortical
processing. The basic ideas were suggested to D. Marr and myself (Marr and Poggio,
1977, 1979), while working on the problem of human stereo, from a combination
of psychophysical data (by H. Wilson) and of recent results in the field of complex
analysis . Briefly the scheme consists of filtering the image through a number
of independent bandpass operations that simultaneously blur and take a second
spatial derivative. Changes in intensity are then localized separately in each of
the filtered versions of the image by detecting the loci of zero values, i.e. the
zero-crossings. Zero-crossings are a close relative of physical edges and can be used
for later processing; they are for instance used in the stereo algorithm developed at
- MIT (Grimson, 1981) and elsewhere. To help in understanding why zero-crossings
in bandpass channels may be useful discrete symbols to extract, 1 will describe
a result in complex analysis that I still find intriguing and fascinating. In 1977
B. Logan (1977) proved that under some technical conditions an appropriately
bandpass signal can be completely reconstructed from its zero-crossings alone. A
successful extension of this theorem to images by Nishihara and Poggio (Poggio,
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1982; Poggio et al., 1982), though not strictly valid for the channels described by H.
Wilson, suggests that sero-crossings are very rich in information about the filtered
image. Ideas based on Logan’s type of results are attractive especially from the
point of view of visual psychophysics and physiology, since they seem to provide
a theoretical basis for the existence of edge detectors in the output of bandpass
channpels in the visual system, thus providing a potential ‘synthesis of the edge
detectors ideas with the frequency channels evidence. Marr and Hildreth (1980) have
provided a number of attractive heuristic arguments for Justifying a slight variation
of the original scheme (Marr and Poggio, 1977). In particular they proposed that
the initial filtering of the image was performed by nondirectional (as opposed to
- oriented) receptive ficlds, again described as differences of gaussians (DOG) (which
approximates the operation of taking the Laplacian of the image filtered through a
gaussian, see Appendix.) Since X retinal ganglion cells have a DOG receptive field
and are usually described as linear filters, it is not too unreasonable to propose
that the filtering operation is indeed performed in the retina and represented by
the activity in the ON and OFF layers of ganglion cells, positive values being
represented by ON center X cells and negative values by OFF center X cells.
Thus the binary map of the convolved image shown in fig. 9 would represent the -
combined map of activity in the OFF and ON layers of ganglion cells in the retina.

How can the zero-crossings - the transition of activity between ON and OFF
cells ~ be detected? '

Fig. 10 shows that a mechanism connecting neighboring ON and OFF cells with
an AND gate, possibly implemented via synaptic mechanisms of the Poggio-Torre
type (with a shunting conductance decreasing input, see Koch et al., 1982), could
detect zero-crossing lying between the two rows of cells. This scheme, proposed by
Marr and Hildreth (1980) does not require the inhibition which seems to be involved
in the main properties of cortical cells, like orientation and direction selectivity. An
alternative scheme can, however, be based on the synaptic veto mechanism.

The critical observation is that a zero-crossing is also defined by activity in
the ON layer and absence of activity in neighboring ON cells (and conversely for
the OFF layer). Thus a zero-crossing can be detected by avoidance of inhibition,
logically equivalent to an AND-NOT operation. It is a simple matter to adapt this
idea to create an oriented zero-crossing segment detector as shown in fig. 10. Since
the veto operation can be performed by distal excitation (on spines ?) and inhibition
of the shunting type on the proximal part of a single dendrite, the same cell may
perform independently this operation on the OFF and on the ON layer on different
dendrites, adding the two results for increasing reliability. Interestingly, however,
either the ON or the OFF layer alone are sufficient. Notice that in a standard map
of the receptive field inhibition may be invisible and only excitatory inputs from
ON and OFF cells (on different dendrites) may be measureable (and linear). In this
scheme unbalanced receptive fields (loosely corresponding to sustained properties)
are not only advantageous but probably (as suggested by K. Richter) necessary for
a robust physiological implementation. A trivial property of the circuitry follows
from the preceeding sections:
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Figure 9. The vmage of a dark piece of metal on a whitish background (top). The middle
represent- the sign of the convolution of the image with a center-surround lype of receptive field
(DOG). The filtering operation was performed by the M.1.T. convolver, developed by K. Nishihara
and N. Larson (1981). The bottom graph shows a horizontal scan through the convolution arrey.
Black would correspond to actwity in the OFF ganglion cell layer in the relina and no actiity in
the ON ganglion cells, while white would correspond to the complementary activity pattern.
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Figure 10. Various models of zero-crossing detectors. In (¢) a zero-crossing corresponding to
transition of activity between the ON layer and the OFF layer (like the zerc-crossing corresponding
to the first edge from the right in fig. 9) can be detected by an AND mechanism between adjacent
regions of the ON and the OFF layer, as proposed by Marr and Hildreth (1980): either input alone
s “mnuisible”. In (b) and (c) the same zero-crossing is detected by an AND-NOT operation on
either the ON or the OFF layer (circled inputs are “invisible”, unless the other excitatory input
15 stmultaneously active, as it 1s the case for so-called “silent” whibition). All these operations
may be performed by nonlinear, p-ordebr 2 interactions. A cell summating linearly these last two
operations, performed on different dendrites, is sketched on the right side of the figure.

A veto-like zero-crossing detector can be regarded as a p-order 2 polynomial
algorithm on the ganglion cells array.

With an appropriate transformation of the input its degree can be as low as
degree 2 (see earlier example). Thus this way of detecting Z€ro-crossings is equivalent
to taking measurements on the ganglion cell activity that are degree 2, p-order 2
(nonlinear) functionals.

. This idea can be easily extended to account for directional selective properties,
of some cortical cells. The first possibility is to gate the schemes of fig.10 (left) with
an hypothetically transient Y-cell input. The resulting algorithm would be similar to
the scheme proposed by Marr and Ullman (1981), where all AND operations would
be substituted with AND-NOT operations in the way suggested earlier. Another
possibility is a scheme similar to the models of fig.7. As in the fly motion detector
scheme, a low-pass operation on one of the two channels (or high-pass on the other)
endows the zero-crossing detector scheme with direction selective properties (see
fig. 11). Since precision is needed in the detection of the zero-crossing, the low-pass
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Figure 11. A prediction: moving zero-crossings are detected - with directional selective
properties — by the schemes sketched here: light edges by the ON mechanism, dark edges by the
OFF mechanism. If a cell has to detect the same physical edge moving in both directions, then it

may use both the ON and the OFF mechanism - on different dendrites.

element must operate on the inhibitory input. It follows then that light edges can be
detected only by the ON system and dark edges by the OFF system (if directional
selectivity is required; otherwise there is no such restriction). This prediction may
be supported by recent pharmacological experiments of P. Schiller. Interestingly,
this algorithm is again very similar to the fly’s (and Barlow’s) movement detector,
operating on a specific linear transformation of the retinal image ( DOGs), instead of
the usual gaussians induced by the optics (the p point-spread functions of Geiger and
Poggio (1975) are actually generallinear transformations of the retinal image) Thus,
motion detection in insects may indeed be very similar to the detection of moving
(but non-oriented !) zero-crossings, since center-surround filtering is known to occur
before motion detection in the fly’s visual pathway! Similar very simple schemes,
also based on the synaptic veto mechanism, seem capable of accounting for several
properties of cortical binocular cells. Keith Nishihara has actually developed similar
schemes in a fast stereo algorithm for robotics applications recently implemented
on the Lisp machine. ’
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APPENDIX

V. Torre and T. Poggio

Iustead of the Laplacian of a gaussian as the underlying filter, it is appealing
to consider the second directional derivative along the gradient of the image filtered
through a gaussian and consider its zero-crossings. 'The second directional derivative
along the gradient has the form (in cartesian coordinates)

12 foz + 2fafyfoy -+ Fofyy
fi4+ 12

to be compared with the Laplacian

fm:c + fyy

where f(z,y) represenis the image convolved with a gaussian point spread
function. The first operator is nonlinear and symmetric. It reduces to the Laplacian
for “one-dimensional” patterns f depending only on one spatial variable. In addition,
the second directional derivative of a (symmetric) gaussian along the gradient is
quite similar to the Laplacian of a gaussian. Thus, for circularly symmetric patterns
filtered through a gaussian, the two operators lead to very similar results. Thus,
the two operators cannot be distinguished in physiological experiments using either
fully circularly symmetric or one-dimensional patterns like gratings or bars. It has
already been observed by several authors (for instance, J. Canny, per. comm.) that
the second directional derivative along the gradient appears to be a better and more
natural operator for edge detection than the Laplacian (see Torre and Poggio, in

prep.).
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