ARTIFICIAL INTELLIGERCE LAZORATORY
MASSACHUSETTS IHSTITUTE OF TCCHNOLOGY

AT 691 DECEMBER. 1982
OPEN SYSTEMS
by

Carl Hewitt
Peter de Jong

ABSTRACT

This paper describes some problems and opportunities associated with concep-
tual modeling for the kind of "open systems' we foresee must and will be ‘
increasingly recognized as a central line of computer system development.
Computer applications will be based on communication between sub-systems
which will have been developed separately and independently. Some of the
reasons for independent development are the following: competition, differ-
ent goals and responsibilities, economics, and geographical distribution.

We must deal with all the problems that arise from this concepfual disparity
of sub-systems which have been independently developed. Sub-systems will

be open-ended and incremental--undergoing continual evolution. Therg are

no global objects. The only thing that all the various sub-systems hold

in common is the ability to communicate with each other. 1In this paper we
study Open Systems from the viewpoint of Message Passing Semantics, a
research programme to explore issues in the semantics of communication in
parallel systems such as negotiation, transaction management, problem

solving, change, and self-knowledge.

This report describes research done at the Artificial Intelligence Laboratory
of the Massachusetts Institute of Technology. Major support for the research
reported in this paper was provided by the System Development Foundation.

Major support for other related work in the Artificial Intelligence Laboratory
is provide§$in parggby the Advanced Research Projects Agency of the Department

of Defense under Office of Naval Research contract N0O014-80-C-0505.

© MASSACHUSETTS INSTITUTE OF TECHNCLOGY 1912

Open Systeins 1

1. Introduction

A goal of conceptual modeling is to aid in the implementation of the next generation of computing systems
by applying and unifying results from the ficlds of programming languages, data bascs, and artificial
intclligence. A central theme is to have the computer system "understand” not only the environment in
which it will operate but the application as well. Qur approach to conceptual modeling reflects the authors’
views on the way computer systems are developing now and the ways we expect them to evolve. We expect
that the standard use of computer applications will involve the interaction of subsystems which have been
independently developed at disparate geographical locations [de Jong 80]. In part the lack stems from the fact
that rescarch on Open Systems is in its infancy in the basic contributing arcas to conceptual modeling (viz.
programming languages, data bascs, and artificial intelligence). Unfortunately each of these contributing
arcas has for the most part simply tried to extrapolate the methodology and technology of a single computer
system to Open Systems. These extrapolations are inadequate because they fail to treat central problems such
as negotiation and sclf-knowledge. In this essay we discuss how message passing semantics applics to the
conceptual modeling of Open Systems. In particular we discuss a number of technologies we are developing

t;) address the problems of modeling Open Systems.

2. Open Systems

The kind of systems we envisage will be open-ended and incremental--undergoing continual evolution. In
an open system it becomes very difficult to determine what objects exist at any point in time. For examplé a
query might never finish looking for possible answers. A query to find a bargain priced used refrigerator in
good condition would reference information stored in any of a number of personal and organizational
computers. Enormous amounts of effort and time could be expended-processing the query to find such a
refrigerator, without being certain that the best buy has been located. Similarly if a system is asked to find all
the telephone numbers of passengers who have ever made rescrvations on Pan American, it might have a hard
time answering. It can give all the telephone numbers it has found so far, but there is no guarantee that
another one can’t be found by more diligent search. These examples illustrate how the "closed world
assumption” is intrinsically contrary to the nature of Opcen Systems. We understand the "closed world
assumption” to be that the information about the world being modcled is complete in the sense that all and
only the relationships that can possibly hold among objects are thosc implied by the given information at
hand (cf. [Reiter 82]). Systems based on the "closed world assumption” typically assume that they can find all
the instances of a concept that exist by searching their local storage. In contrast we desire that subsystems be
accountable for having evidence for their belicfs and be explicitly aware of the limits of their knowledge. At
first glance it might scem that the closed world assumption, almost universal in the AL, and database

literature, is smart because it provides a ready default answer for any query. Unfortunately the default

Open Systems 2

answers provided become less realistic as the Open System increases in size.

Much of the communication in Open Systems needs to be on the basis of dissemination, which is the
electronic analogue of publishing in a magazine or bulk mailed advertising. Once a picce of knowledge is
disseminated, other knowledge in the system might be affected. When an airline guide is disseminated, travel
plans can include the scheduled flights, When the guide is revised as of a certain date, some travel plans
might usc the old schedule, and some the new schedule. The distributed data base approach approach does
not work very well in Open Systems because of issues of ownership and privacy. For example when a
proprietary software system is distributed, the organization distributing the software cannot in general access
the copy on the customers premiscs in order to make updates. Instcad revisions and extensions must be

disseminated for the customers to integrate into their own systems.

There are no global objects in Open Systems. The only thing that all the various subsystems hold in common
is the ability to communicate with each other. We believe that negotiation will be a fundamentally important
modc of communication in the operation of Open Systems. Similar concepts and capabilities will develop
and evolve in many different locations in Open Systems. For example each bank will offer similar services
that differ in detail from the services of its competitors. Systems will need to negotiate the terms and
conditions of their transactions. Thus they must have a least a rudimentary language in common-- otherwise

there would be no basis for negotiation.

~ Subsystems need to have self-knowledge in order to function effectively in Open Systems in order to
understand its own abilities as well as the limits of its knowledge and power. As knowledge is added
incrementally to a subsystem, it must relate the new knowledge to its existing knowledge. Any subsystem can
have only partial knowledge of the overall system, and partial power to affect other subsystems. A travel
agency has the power to make planc reservations but in general doces not have the power to cancel flights.
Means for distributed problem solving and negotiation are necessary to combine the knowledge and powers
of various subsystems to accomplish application goals. Accommodating the above characteristics of Open

Systems will be necessary in order for conceptual modeling to be relevant to the future,

A simple example will clarify some of tﬁc above points. The application is a vacation trip. The agents
involved are a traveler, a travel agent, and a banker. To make the example more modern, the traveler is at
home using a computer workstation to communicate with a travel agency and a bank. The trip will be
planned interactively with cxtensive support from the computer systems. The people in the scenario have
their own conceptual models which describe the objects they deal with, the organization and subsystems
within which they work, and the applications they can perform. In general cach conceptual model has been
constructed independently of the others at different times and places. The personal computer system in the

home must deal with many travel agents and many banks, cach with its own view on how it should run its

Open Systems 3

own business. These business computer systems are geographically distributed. For the most part they run in
a parallel non-stop mode, always ready to interact with their customers, They are united by their ability to
communicate with cach other. Fach workstation user’s knowledge is partial: the travel agent does not know
about the traveler’s dealings with the bank. Fach agent’s power is limited: the travel agent can arrange the
trip, but will not finance it. The model changes with time: the travel agent keeps getting more information
on travel possibilities and new trips are continually being planned. Each conceptual modeling system needs
to have extensive sclf-knowledge of its own capabilities and partial knowledge about others: the travel agent

uscs its self-knowledge to help guide its interactions with customers,

3. Spectrum of Procedures

On the basis of the above discussion, we conclude that interaction with workstation users and negotiation
with other systems necessitates the introduction and analysis of problem solving procedures into the
conceptual modeling of Open Systems. Algorithmic procedures are ones for which definite propertics (e.g.
termination, certain outputs always produced, etc.) can be proven to hold (cf. [I.enat 82]). The stronger the
proven properties, the more algorithmic the procedure. In contrast to algorithmic, the measure of coherence
of procedures is the extent to which properties are known to hold. For example an organization may know
that it is able to hire another employee even though it is unable to mathematically prove this. The stronger
the known properties, the more coherent the procedure. In contrast, problem solving procedures are those
about which fewer and weaker propertics are known. Browsing procedures are even less defined and
constrained than problem solving procedures. Managers browse through their organizations looking for
problems, successes, and opportunitics. New workers browse through their organizations becoming
acquainted with the way the organization works. Thus we have a spectrum of possible procedures from

browsing to problem solving to coherence to algorithmic:
BROWSING(~~-~--- >PROBLEM SOLVING <---~- >COHERENT(~-=-~ >ALGORITHMIC

Workstation procedures can move both directions along this spectrum. A procedure can be moved in the
direction from problem solving to greater coherence by mechanizing more cases, by modifications to
amcliorate its shortcomings, ctc. A procedure can move from coherence toward prob]ém solving by
unanticipated external changes which result in anomalous results, by the discovery that their range of
applicability is not as great as previously believed, etc. Movement along the spectrum between browsing and

algorithms should be one of the central concerns of the conceptual modeling of Open Systems.

Subsystems in Open Systems have only partial knowledge. The first time a conceptual modeling system
encounters the notion of an airline reservation, it will have to be as a problem to be solved. On subsequent

occasions when it recognizes a new similar problem, we would like the system to remember the principles

Open Systems 4

behind how it solved the previous problem and adapt the solution to the new circumstances. It would
approach the new problem in a more algorithmic way--generating fewer unsuccessful goals. Open Systems
must address the central issue of "coherence™ of behavior, i.e. convergence in a set of negotiations [Brady 82].
Starting negotiations is only the beginning; we must develop mechanisms for bringing them to successful

conclusions. [Davis, Smith 81]

4. Descriptions

We arc developing Description Systems to model the relationship of objects in Open Systems [Hewitt,
Attardi, Simi 80], [Attardi, Simi 81}, We find it useful to make use of several different kinds of descriptions:
atomic descriptions, instance descriptions, etc. For cxample, FRANCE is an atomic description and
(a2 COUNTRY) an instance description. A user can hypothesize that the two descriptions are related using

the following inheritance statement (where we underline key words having a special technical meaning):

(FRANCE is (a COUNTRY))

which states that FRANCE is a specialization of (a2 COUNTRY) The import of the above statement is that

France inherits all the propertics of a country.
Instance descriptions can be specialized using attributions. For example

~(a COUNTRY (with CAPITAL PARIS))

is a specialization of (a COUNTRY). The following expresscs the statement that FRANCE is a COUNTRY with

capital Paris:

(FRANCE is (a COUNTRY (with CAPITAL PARIS)))

and hence France inherits all the properties of a country with capital Paris. Multiple partial incremental
descriptions form the basis of expressing complicated relationships between objects. For example the system

can subsequently be told

(FRANCE is (a EURAIL-PASS-MEMBER))

which says that France is a specialization of a Eurail Pass Member so that in addition France inherits all the
propertics of Eurail Pass Members. In this way later descriptions are related to carlier ones in a lattice

structure.

Our goal is that Description Systems should facilitate the conceptual modeling of the objects and properties

of Open Systems. Description Systems should be defined by a rigorous mathematical semantics [Attardi, Simi

Opcen Systems ' : 5
81]. 'The "representation”, "framc”, "schema”, etc. systems developed previously have suffered from a lack of
mathematical semantics and from being based instead on sequential Tist-processing programming languages.
Description Systems should have an epistemological basis that is compatible with the realitics of Open
Systems. Another goal is that Description Systems should be distributed over multiple computers and be able
to operate in parallel, thus facilitating communication and sharing in Open Systems. Omega is designed to

facilitate the incremental use for the partial description of Open Systems.

5. Actors

To build a conceptual modeling system for Open Systems, we need to develop a coherent understanding of
the scmantics of concurrent message passing systems. Mcssage Passing Semantics is a rescarch programme to
explore issues in the semantics of communication in parallel systems such as negotiation, transaction
management, problem solving, change, and self-knowledge. It builds on Actor T heory as a foundation for the
conceptual modeling of Open Systems. This involves important aspects of parallelism and scrialization

beyond the sequential coroutine message passing developed in systems like Simula and SmallTalk.

An aclor system is composed of abstract objects called actors. Actors are defined by their behavior when they
accept communications. When a communication is accepted an actor can perform the following kinds of
actions concurrently: make simple decisions, create new actors, fransmit more communications to its own
acquaintances as well as the acquaintances of the communication accepted, and change its behavior for the
next message accepted (i.c. change its local state) subject to the constraints of certain laws [Hewitt, Baker 77].
These actions are illustrated in the diagram below which presents a partial description of what happened
when the actor ACCOUNT43 with a balance of $10 accepted a request to make a deposit with amount $2 for
customer ¢2, and as a result created the actor $12, sent a C ompletion report to c2, and became an account
with balance $12:

Opcen Systems

ACCOUNTA3

S M e R R e e T W S M W R L S MR W ME D G b N e 6 W P L e S M A M TP W M e A e W R e N KW e T W MR A e e e R W e e b e

|(an Ac |
| (with balance $10) |
| (with behavior |
| (a Behavior |
i (with communicationAccepted |
| - (a Reguest |
| (with message |
| , (a Deposit (with amount a))) |
| (with customer c))) |
| (with becomes |
| (new Account (with balance ($10 + a)))) |
| (with sendTo]
I (a ReplyTo I
| (with target ¢)]
| (with message (a Completion)))) |

Y TE D AL S R S M L N D D L A T G N S W G WS YN G WD ER D G G S GO T R S MG W e M T G M e B e e U W e W e e W S AR v W M Ve e e

wi
i

| (a Request i
| (with message |
| (a Deposit (with amount $2))) |
| l

(with customer c2))

e G AR G G e N M Gm M A e S S P SR e M W S G i R e BF R A R AR R N HD e e e e W e P e e

|

| ---REPLIED-TO ---->| (a Completion) |
BECAME €2 mmmmmmemiccmmmanan
|
v

S AT T D TR D BRGNP SR M SN MR W S G G SR A G R T S W A S G G R MR MR W M e M AR e e S R WS O e e R M e e S W W A e e e

(with balance $12)
(with behavior
(a Behavior
(with communicationAccepted
(a Request
(with message

| |
| |
| |
| |
I |
| |
| |
| (a Deposit (with amount a))) |
| |
| I
| |
| |
| |
| |
| |

(with customer c¢)))
(with becomes
(new Account (with balance ($12 + a))))
(with sendTo
(a ReplyTo
(with target c)

S s a v MR M L S S AP WD M e S e R4 e VH S Y N D YR A MM e e e W M W A AB W A M WS T S M W S G W W W EE NS MR N e NS M RN e A e e S A

Figure 5-1: A Happening

6

Open Systens 7

Control structures such as the onc above can be characterized in terms of patterns of message

passing [Hewitt 77], [Kerns 80].

The Actor Model addresses the issucs of secrecy, protection, and authentication as communication issucs,
Secrecy and protection are inherently built into actor systems since the only operation that can bé performed
is to send a communication. There is no way to force an actor to do anything or force it to divulge any
information about itself. Authentication can be implemented using communication protocols that use

encryption,

The modeling of shared resources is fundamental to Open Systems. In this scction we discuss how Message
Passing Semantics can help clear up some of the confusion that now surrounds the conceptual modcling of
shared resources in Open Systems. Actor systems aim to provide a clean way to implement effects (not
"side-cffects” a pejorative term that has been used as a kind of curse by proponents of purcly applicative
programming in the lambda calculus). By an effect we mean a local state change in a shared actor which
causes a change in behavior that is visible to other users. For example sending a deposit to an account shared

by multiple users should have the effect of increasing the balance in the account.

6. Concurrent Systems

In this section we present a simple example which illustrates our approach to implementing shared
resources in Open Systems. We would like to discuss the conceptual modeling of a PersonalAccount
resource which is suitable for use by a growing collection of users in an Open System. To a given user, a
shared PersonalAccount will exhibit indeterminacy in the balance depending on the deposits and
withdrawals made by other users. The indeterminacy arises from the i.ndctcrminacy in the arrival order of

messages at the PersonalAccount.

A PersonalAccount is an Account with a non-negative balance. A PersonalAccount inherits its

balance attribute and message protocol for deposit and withdrawal messages from Accounts in general:

(a PersonalAccount) is (an Account (with balance (2 0)))

In addition to being an Account, a PersonalAccount is a Possess ion with owners a set of people:

(a PersonalAccount) is
{(a Possession
(with owners (a Set (withFach element (a Person)))))

“From the description of a Possession, cach PersonalAccount inherits the owners attribute and the

message protocols for ownership.

Open Systems 8

A PersonalAccount inherits attributes and behavior from botk the description of an Accoun t and the

description of a Possession.

TS S e m e am e o e e e N A > 6 - e . 4

I(an Account
| (with balance (an Amount))) |

TS % e s en e s et e NS 5 e e e e SE e W e e We M e e S oe

e e T AR e e e . e eE M e

v e o e wn he s = e A e me mr w am

Figure 6-1: Multiple Inheritance

Dealing with the issues raised by the possibility of being a specialization of more than one description has
become known as the "Multiple Inheritance Problem”. A number of approaches have been developed in the
last few years including the following: [Weinreb, Moon 81}, [Curry, Baer, Lipkic, I.ce 82], [Borning, Ingalls
82], [Bobrow, Stefik 82] and [Borgida, Mylopoulos, Wong 82]. Our approach differs in that it builds on the
theory of an underlying description system [Attardi, Simi 81] and in the fact that it is designed for a parallel
message passing cnvironment in contrast to the sequential coroutine object-oriented programming languages
derived from Simula. Traditional properties of transactions (c.g. the all or nothing property) can be
implemented by actors following the appropriate message protocols. These actors are called transaction
managers. PersonalAccount actors could be implemented as specializations of transaction managers and

thereby acquire the proper message protocol.

If an actor can change its local slate, it is called a serialized actor. A serialized actor accepts only one
message at a time for processing; it will not accept another message for processing until it has dealt with the
one which it is processing in at least a preliminary fashion. All messages received when a serialized actor is

processing a message are queued in order of arrival until they can be examined.

Below we present part of the implementation of PersonalAccounts. This implementation is written
out in "parenthesized English” ([Kahn 79], [ROSIE 81], [Hewitt, Ateardi, Simi 80, [Licbcrman 8la],
[Theriault 82]) which is gradually developing into a technical language. The underlined words have special

technical meanings.

Open Systems 9

(Define action .
(new PersonalAccount (with (balance of Account) b)
(with (owners of Possession) s))
to have the following implementation:
(create a new actor with the hehavior that
after acceptance, select one of the following handlers
for the communication accepted:
(If it is (yuery (balance of Account)) request,
(reply b))
(If it is (a Withdrawal (with Amount w)) request,
(select one of the following cases for w:
(If it is (Tess than or equal to b),
(reply (a Completion Report)) as well as
(become (pew PersonalAccount
(with (balance of Account) (b - wi))))
(If it is (greater than b), '
(complain (an Overdraft Complaint)))))
(If it is (gquery (owners of Possession)) request,

(reply s))

)

At this point we would like to take note of several unusual aspects of the above implementation, By
default, commands in the body of a procedure are executed concu rrently. For example, in the communication

handler for Withdrawal requests above, the following two commands are executed concurrently:

(reply (a Completion Report))
(become (new PersonalAccount (with Account Balance (b - w))))

The principle of maximizing concurrency is fundamental to the design of actor programming languages. It
accounts for many of the differences with convcntiona]_ languages based on communicating sequential
processes. Another cxamplc of maximizing concurrency is that the processing of messages by a serialized
actor can be pipelined. Serialized actors can be pipelined since processing on a subsequent message can

commence once the become command has been exccuted since it designates the actor which will process the

subscquent message. For example after accepting a Withdrawal message then exccuting the following

become command

(become (new PersonalAccount (with Account Balance (b - w))))

a PersonalAccount can then concurrently accept an Account Balance query and reply with the

Completion Report for the Withdrawal request.

An important special case occurs when an actor can never change its local state. Such an actor is called

Open Syslems 10

unserialized and is treated specially 5o that conceptually it is able to process arbitrarily many messages at the
same time. Actors such as the square root function and the text of Lincoln’s Gettysburg Address are

unscrialized.

Another unusual aspect is that there are no assignment commands. Effects are implemented by an actor

changing its own local state using a hecome command [[Tewitt, Attardi, Licberman 79]. We model change by
actors which change their own local state. Qur conceptual model of change contrasts with the usual computer
science notion in which change is modeled by updating the state components of a universal global state
[Milne, Strachey 76]. The absence of the existence of a well defined global state is a fundamental difference
between the actor model and classical sequential models of computation (viz. [Turing 37}, [Church 41], etc.)
Actor systems can perform nondeterministic computations for which there is no equivalent nondeterministic
Turing Machine [Clinger 81]. The noncquivalence points up the limitations of attempting to modcl parallel
systems as nondeterministic sequential machines [Milne, Strachey 76]. Will Clinger has developed an clegant
mathematical theory (called Actor Theory) which accounts for capabilities of actor systems which go beyond

those of nondeterministic Turing Machines.

The limitations of the sondeterministic sequential model have practical consequences in terms of the
properties we can prove about useful concurrent systems. Within the Actor Model [Hewitt, Attardi,
Lieberman 79] we can prove that the implementation of PersonalAccount given above will respond to
each message which is sent to it. This property (called guarantee of response for messages senf) cannot be
proved in the nondeterministic choice model. Guarantec of response is our generalization of the notion of
"termination” for sequential programming. Some models of concurrency require that a shared checking
account be implemented as a "process” which must "terminate”. In contrast we desire that the checking
account be able to continue to process messages indefinitely far into to the future. Current models of
communicating sequential processes which require that every process (c.g. a checking account) terminate are
not applicablc to Open Systems. Suppose we are attempting to withdraw money from a PersonalAccount
which we share with others. In the nondeterministic choice model [Hoare 78] the oracle (malicious demon)
might always choose to have the PersonalAccount accept a message from someonc else and never choose
to have it accept the message we sent. Note that we regard this as an issue of conceptual modeling as opposed
to an issuc of implementation. Implementors of CSP might choose to implement it in such a way that a
PersonalAccount written in CSP has the property that it always responds to messages which it is sent.
Fven so within the nondeterministic choice model, it will not be possible to prove that the
PersonalAccount has the property. ‘The above example demonstrates how modcling indeterminancy in
terms of the Actor Model as opposed to using nondeterministic choice (the malicious demon model) has

important consequences for the ability to derive results about the behavior of Open Systems.

Open Systems 11

Concurrency in Open Systems stems from the paraliel operation of an incrementally growing number of
multiple, independent, communicating sites. Sites can join an Open system in the course of its normal
operation--sometimes even affecting the results of computations initiated before they joined. Actor Theory
has been designed to accurately model the compuiational properties of Open Systems. It is a consequence of the
Actor Model that purely functional programming languages based on the lambda calculus cannot implement
shared accounts in Open Systems. The technique promoted by Strachey and Milne [Milne, Strachey 76] for
simulating some kinds of parallelism in the lambda calculus using continuations does not apply to Open
Systems. The lambda calculus simulation is sequential whercas Open Systems are inherently parallel.
Concurrency in the lambda calculus stems from the concurrent reduction/evaluation of various parts of a
single lambda expression with an environment which is fixed when the lambda expression is created. In Open
Systems independent sites can incrementally spawn ongoing computations so that the environment of a

computation is not fixed when a computation is begun.

Therefore we take issue with the common thesis that the primary advantage of applicative programming is
referential transparency (i.e. the absence of effects). Rather the primary advantage of applicative
programming is the attractive way in which actions and the results of actions can be composed. We [Hewitt,
Attardi, I icberman 79] have extended the applicative style of programming and its clegant proof theory [Scott
72] to a more general programming methodology capable of causing and describing effects (such as updating

the balance of a shared account) which cannot be implemented in the Jambda calculus for an Open System.

The object-oriented programming languages (e.g. [Birtwistle, Dahl, Myhrhaug, Nygaard 73], [Liskov,
Snyder, Atkinson, Schaffert 77], [Shaw, Wulf, London 77}, and[Ichbiah 80]) arc built out of objects
(sometimes called "data abstractions”) which arc completely separate from the procedures in the language.
Similarly the lambda calculus programming languages (c.g. [McCarthy 62], [Landin 65], [Friedman, Wise 76},
[Backus 78], and [Steele, Sussman 78]) are built on functions and data structures (viz. lists, arrays, ctc.) which
arc separate. SmallTalk [Ingalls 78] is somewhat a special case since it simplified Simula by leaving out the
procedures entirely, i.e. it has only classes. The Simula-like languages provide effective support for coroutines
but not for concurrency. In contrast the Actor Model is designed to aid in conceptual modeling of shared
objects in a highly parallcl open systems. .Actors serve to provide a unified conceptual basis for functions,
data structures, classes, suspensions, futures, procedure invocations, exception handlers, objects, procedures,
processes, etc. in all of the above programming languages [Baker, Hewitt 77), [Licberman 81b], [Hewitt,
Attardi, Lieberman 79]. For exarnple sending a request communication generalizes the traditional procedure
invocation mechanism which requires that control return to the point of invocation. A request
communication contains the mail address of a customer to which the response to the request should be sent as
well as the message specifying the task to be performed. In this way, exception handlers [Liskov, Snyder,

Atkinson, Schaffert 77, [Ichbiah 80] and co-routincs [Birtwistle, Dahl, Myhrhaug, Nygaard 73] arc

Open Systeins 12

conveniently unified with other more general control structures. ‘the Actor Modcl unifies the conceptual
basis of the lambda calculus and the object-oriented schools of programming languages--being

mathematically defined, it is independent of all programming languages.

We conjecture that actors (unlike lainbdu expressions, elc.) are the universal objects of concurrent systems
and that they can serve as a cfficient interface between the hardware and software. Actors provide an absolute
conceptual interface between the software and hardware of parallel computer systems. The function of the
hardware is to efficiently implement the primitive actors and the ability to communicate in parallel. Software
systems in turn can be implemented in terms of actors completely independently of the hardware
configuration. A system consisting of multiple processors - called the APIARY -~ is being developed to use

the inherent parallelism of actor systems to increase the speed of computation [Hewitt 30].

7. Hypothesis Formation

A Sprite is an actor attached to a description in a description network to process disseminated messages
[Kornfeld, Hewitt 81}, [Kornfeld 82], [Barber 82]. Sprites are used in problem solving to reason about
hypotheses and goals. Each Sprite has access to the material disseminated in a single description network
-~ which can be distributed over many computers. The Principle of Commutativity [Kornfeld, Hewitt 81] is
fundamental to the Scientific Community Metaphor which provides the rationale for sprites. By this
principle, a sprite S that is applicable to a message M will read the message regardless of whether the sprite is
created first and then the message M is disseminated or the message M is disseminated and then S created.
The Principle of Commutativity reflects the norm of scientific communitics that a scientist should read the
literature relevant to the problem it is working on regardless of whether the literature was published before it

commenced working on the problem, or the literature was published afterward.

Hypothesis formation is an important reasoning activity that can be performed by sprites. For example,
from the hypothesis that Mike uses his credit card properly in 1955, we would like to be able to hypothesize
that Mike uses his credit card properly in 1956. For example reasoning about Mike’s use of his credit card can
casily be performed by the following Sprite which behaves as follows: when an hypothesis that Mike uscs his

credit properly in 1955 is disseminated then disseminate the hypothesis that he uses it properly in 1956.

(when (hypothesis (USE-PROPERLY MIKE 1955) do
(hypothesize (USE-PROPERLY MIKE 195G))

Figure 7-1: A Simplc Sprite

Note that the reasoning used by the above Sprite is not isomorphic with the first order logic inference rules

for the following implication:

Open Systems 13

(USE-PROPERLY MIKE 1955) implies (USE-PROPERLY MIKE 1956)

The bug in the above implication manifests itself under the circumstance in which Mike doesn’t use his credit ‘
card properly in 1956 even though he did use it properly in 1955. Using the rules of first order logic from
(not (USE-PROPERLY MIKE 1956)) and the above implication we can logically infer
(not (USE-PROPERLY MIKE 1355)) which is a mistake.

The above example illustrates the Contrapositive Bug in first order logic. The Contrapositive Bug is the
inability to do hypothesis formation in a first order logic theory. It occurs whenever we wish to infer an
hypothesis H2 from an hypothesis H1 recognizing full well that the negation of H2 does not move us to infer

the negation of H1.

We will demonstrate that the Contrapositive Bug is a consequence of the truth-theoretic [Tarski 44])
semantics that underlie first order logic. In truth-theoretic semantics, the meaning of a sentence is determined
by the models which make it truc. For example the disjunction of two sentences is truc exactly when neither
of its disjuncts is false. Our goal is to prove that if the hypothesis (USE-PROPERLY MIKE 1956) can be
validly derived from (USE-PROPERLY MIKE 1955) in first order logic from the sentences S, then
(not (USE-PROPERLY MIKE 1956)) can be validly derived from
(not (USE-PROPERLY MIKE 1955)). By the Completcness and Deduction Theorems for first order
logic, a deduction is valid only if it is true in every model. It follows that in every model of §,
(USE-PROPERLY MIKE 1956) is true if (USE-PROPERLY MIKE 1955) is true. One of the
fundamental tenets of truth-theoretic semantics is that in a given model, a sentence is cither truc or false.
Therefore (USE-PROPERLY MIKE 1955) must be false in every model of S in which
(USE-PROPERLY MIKE 1956) is false. The above cxample shows how the Contrapositive Bug is a

consequence of the truth-theoretic semantics on which first order logic is based.

Other limitations of truth-theoretic semantics as a foundation for rcasoning are discussed in the sections

below.

8. Due Process

Due Process is the problem solving method of gathering evidence in parallel from partics affected by an
issue, weighing the evidence, and then making a decision. Understanding Due Process Reasoning is central 1o

modeling the reasoning processes that go on in Open Systems.

In this section we consider a concrete example of Duc Process reasoning. Note that the hypothesis that

Mike didn’t use his credit card properly before 1984 is evidence for the hypothesis that he will not use his

Open Systems i4

credit card properly in 1984. This reasoning is expressed by the sprite below:

(when (hypothesis ((not (USE-PROPERLY MIKE y))
and {y PRECEDES 1984)})) do
(hypothesize (not (USE-PROPERLY MIKE 1984)))

Using Due Process reasoning, a goal cannot be established by looking for evidence only in favor of the goal.
In order to decide whether or not Mike uses his credit card properly in 1984, proponent activitics must be
established to gather evidence in favor and skeptics to gather evidence against [Kornfeld, Hewitt 81]. The
resources devoted to gathering cvidence should be appropriate for importance and urgency of the issue being
addressed. The evidence is then weighed and if possible a decision is made. For cxample suppose that we
have information that Mike did not use his credit card properly in 1975 but that he did use it properly in both
1982 and 1983. Then the Sprite given above together with the following:

(when (hypothesis (USE-PROPERLY MIKE 1983) do
(hypothesize (USE-PROPERLY MIKE 1984))

can be invoked in parallel to produce evidence both for and against the hypothesis that Mike uses his card
properly in 1984. Having used it properly in 1982 is evidence in favor of using it properly in 1984 whereas not
™ having used it properly in 1975 is cvidence against. Due Process can be implemented by Sprites which have
been programmed to weigh conflicting evidence. They can use the hypothesis that a card will be used
properly in a year if it has been used properly in recent previous years, even though it was used improperly in

the distant past.

The following first order sentences which attempt to summarize the situation we arc describing are

inconsistent:

(USE-PROPERLY MIKE 1982)

(USE-PROPERLY MIKE 1983)

((not (USE-PROPERLY MIKE y)) and (y PRECEDES 1984)) implies
(not (USE-PROPERLY MIKE 1984)))

(not (USE-PROPERLY MIKE 1975)

(USE-PROPERLY MIKE 1983) implies (USE-PROPERLY MIKE 1984)

(1975 PRECEDES 1984)

Figure 8-1: An Inconsistent Description

By the rules of first order logic, from the above inconsistency any arbitrary conclusion can be drawn no
matter how ridiculous. The above cxample illustrates the Inconsistency Bug in first order logic. The
£ Inconsistency Bug in the inability of a first order logic theory to deal rationally with inconsistent descriptions.

Tt occurs whenever an inconsistent sct of axioms is used to derive a theorem which is unsound because the

Opcn Systems 15

proof depends in an cssential way on the contradictions in the axioms, [ike the Contrapositive Bug, the
Inconsistency Bug is a consequence of the truth-theoretic scmantics that underlie first order logic. Truth-
theoretic semantics takes the meaning of a set of sentences to be the sct of all models which satisfy the

sentences. An inconsistent sct of sentences is meaningless becausc there are no models which satisfy the set.

The history of physics is replete with examples mathematical models which turned out to be contradictory
by the derivation of a paradox deep in the middle of a calculation. Even mathematics is not immune to the
phenomena of theorems being lost after the underlying theory has been shown to be contradictory. The
proofs of such theorems depended on a contradictory axiomatization in some fundamental way [I.akatos 76)
and thus the theorems had not been solidly established even though they had been proved. We conjecture
that any set of axioms that purporis to describe the expert knowledge of a complicated, real system (viz. humai
kidneys, the Japanese econ.omy, the US Supreme Court, etc,) will be inconsistent. From this we conclude that
the Tnconsistency Bug poscs an important problem to the use of first order logic reasoning [Hewitt 751,
[diSessa 77], [Minsky 75].

The existence of bugs has not gone unnoticed by advocates of the use of first order logic for the
mechanization of reasoning. Some advocates of first order logic concerned with the problems discussed
above are attempting to use multiple first order logical theories and their meta-theories (viz. [McCarthy 801,
[Weyhrauch 80], [Hayes 77}, [Moore 82], ctc.) One of the approaches is called circumseription. Instcad of

using a simple implication like the one below
(USE-PROPERLY MIKE 1983) implies (USE-PROPERLY MIKE 1984)

to express hypothesis formation, the implication below is used instead:

((USE-PROPERLY MIKE 1983) and ASSUMPTION-1)
implies (USE-PROPERLY MIKE 1984)

The hypothesis ASSUMPTION-1 is to be taken to be truc unless its negation can be proved from the other
axioms. Ray Reiter pointed out to us that circumscription presently formulated does not deal at all well with
the problem of inconsistent cvidence. In the example of Due Process presented above, we would like to be
able to hypothesize that Mike uses his credit card properly in 1984 because he used it propetly in the previous
couple of years. Since the description is inconsistent, (not ASSUMPTION-1) is provable and therefore
(USE-PROPERLY MIKE 1984) cannotbe inferred from (USE-PROPERLY MIKE 1983).

The development of logic systems to cope with the problems discussed above is currently in a state of rapid
flux. Other researchers are investigating the use of higher order logics, modal logics, intuitionistic logics, ctc.

None of the above modifications to logic address what we consider to be the fundamental limitation of logic:

<5

Open Systems 16

Mathematical reasoning [De Millo, Lipton, Perlis 79] as well as reasoning about the world is a social process
which inherently requires communication among the parties involved. None of the above extensions to logic
make provision for the kind of communication required. We conjeciure that it is impossible to implement Due
Process Reasoning for Open Systems in first order logic because it lacks the necessary communication
capabilities. Due Process inherently involves being open to outside communications, even those put Jorth by

parties which joined the Open System after the issue being acted upon was first posed.

Due Process is central to the operation of most community decision making (viz. trial courts, legislatures,
appeal courts, regulatory agencies, scientific communitics, etc). We must address the problem of making
computer systems apply Due Process with something approaching the subtlety and sophistication of human
communities. Achicving this goal will require further advances in anthropomorphic programming which is the
design of computer systems on the basis of the same principles used by human communities.
Anthropomorphic programming is the soundest programming methodology currently available and is also the
one which shows the greatest promise for future growth. [Hewitt 69],[Kay, Goldberg 77}, [Hewitt 77],
[Kornfeld, Hewitt 81] An cxcellent discussion of many of the issucs addressed by anthropomorphic
programming is contained in [Booth, Gentleman 82]. Anthropomorphic programming is a powerful tool with

which to further the implementation of Due Process Reasoning.

9. Message Passing Semantics

Message Passing Semantics takes a different perspective on the meaning of a sentence from that of truth-
theoretic semantics. [n truth-theoretic semantics, the meaning of a sentence is determined by the models
which make it true. For example the conjunction of two sentences is true exactly when both of its conjuncts
are true. In contrast Message Passing Semantics takes the meaning of @ message to be the effect it has on the
subsequent behavior of the system. In other words the meaning of a message is determined by how it affects the
recipients. Each partial meaning of a message is constructed by a recipient in terms of how it is processed (c.f.
[Reddy 79]). The meaning of a message is open ended and unfolds indefinitely far into the future as other

recipicents process the message.

At a deep level, understanding always involves categorization, which is a function of interactional (rather
than inherent) propertics and the perspective of individual viewpoints. Message Passing Scmantics differs
radically from truth-theoretic semantics which assumes that it is possible to give an account of truth in itself,
frec of interactional issues, and that the theory of meaning will be based on such a theory of truth [Lakof¥,
Johnson 80].

An important limitation of truth-thcoretic semantics is that although it accounts for some reasoning about

hypotheses, it docs not account for goals. Goals are not the kind of object that can meaningfully be said to be

Open Hystems 17

cither truc or false. The distinction bewween hypotkesis invoked (ic. sprites of the form

(when (hypothesis e ...) and goal invoked (ic. sprites of the form

(when (goal ...) ...) rcasoning is central Due Process Reasoning. Recall the following sprite

considered carlier which performs hypothesis formation.

(when (hypothesis (USE-PROPERLY MIKE 1983)) do
(hypothesize (USE-PROPERLY MIKE 1984))

Figure 9-1: An Hypothesis-invoked Sprite

From the above sprite we can derive the following:

(when (goal (USE-PROPERLY MIKE 1984)) do
(show (USE-PROPERLY MIKE 1983)))

Figure 9-2: A Goal-invoked Sprite

When the above sprite is invoked with the goal that Mike uses his card properly in 1984, it disseminates the
subgoal that he uses his card properly in 1983. The sprite shown below shows how the goal-invoked sprite can

be derived from the hypothesis-invoked sprite:

(when
(hypothesis
(when (hypothesis antecedent) do
(hypothesize consequent)))

(hypothesize
(when (goal consequent) do
(show antecedent))))

Making the distinction between hypothesis-invoked and goal-invoked reasoning as a key component of a
language for problem solving was proposed by [Hewitt 69] and implemented by [Sussman, Winograd,
Charniak 70] which built on carlier work by Minsky and Papert as well as Newell, Shaw, and Simon [Newell
62). The separation of hypotheses and goalS' and explicitly reasoning about both is an important advantage of
process-based reasoning over truth-theoretic based reasoning (cf. [Hewitt 75], [de Kleer, Doyle, Stecle, Sussman
77]). Winograd made excellent use of this work [Winograd 71] and further developed these ideas [Winograd

80]. The rules for sprites [Kornfeld, Hewitt 81] extend this work to Open Systems.

Sprites can perform logical inferences in contexts where this is appropriate. For cxample the following

sprite

Open Systems _ 18

(when (hypethesis (and sentencel s
(hypothesize sentencel) as wue
(hypothesize sentence2))

will concurrently hypothesize individual sentences (call them sentencel and sentence?2) whenever the

conjunction {(and sentencel sentence2) is hypothesized.

One of the most challenging problems in the conceptual modeling of Open Systems is sorting out the
relationship between doing and describing. The distinction between doing and describing is well illustrated by
officc work in large corporations. Policics and procedures manuals, memos, guidelines, ctc. provide a
description whereas the office workers themselves perform the work as practical action [Suchman 79].
Currently the discrepancies between the available descriptions and the realities of the actual work are huge

[Wynn 79]. Modern office work is learned mainly by apprenticeship.

The distinction between doing and describing is different from the usual distinction made in the Artificial
Intelligence literature [McCarthy, Hayes 69] [Hayes 77] between the episiemological adequacy of a system (its
accuracy with respect to truth-theoretic semantics [Tarski 44]) and the Aeuristic adequacy (the efficiency of its
inferential procedures in proving theorems). Thus the distinction between epistemological adequacy and
heuristic adequacy is founded on the basis of truth-theoretic semantics. A simple example can help clarify the
distinction. An epistemologically adcquate theory of bicycle riding gives an accurate description of the
physics of how a bicycle works. An heuristically adequate system can derive theorems in the theory of bicycle
riding fast enough for some purpose. Both kinds of adequacy are concerned with the description of bicycle
riding; the former with its accuracy; the later with the efficiency with which the description can be used to
answer questions. Neither kind of adequacy accomplishes riding a bicycle from Boston to Lexington. That is,
describing a future 1987 bicycle ride from Boston to Lexington in arbitrarily fine detail will not cause it to
actually happen. Message Passing Semantics deals coherently with both doing and describing whereas truth-

theoretic semantics only addresses some of the issues of describing,

10. Self-Reference, Self-Knowledge, and Self-Development

Self-reference, self-knowledge, and self-development will be important capabilities for the effective utilization
of Open Systems. Therefore understanding these capabilitics is central to the conceptual modeling of Open
Systems. Unfortunately the analysis of the communication semantics of these capabilitics is still quite
rudimentary. However we feel that the prospects for deeper analysis are excellent. Note that both negotiation
and Due Process are inherently self-referential activities in which reference and appeal to the nature of the

ongoing process is often made from within.

Open Systems 19

Many of the advantages of self-reference stem from the ability to analyze the meaning of past
communications. Such an analysis can indicate that the system is in a rut or alternatively that it is making
good progress toward some goal. Analysis of recent communications can provide valuable information as to
how certain negotiations are proceeding. Historical analysis provides leverage by giving a subsystem a handle
on the semantics of the communications between itsclf and the external environment. In gencral, knowledge
of the nature of this interaction cannot be derived solely from gencral theories independently of the historical

contexf.

Of course the ability of a subsystem to abstractly analyze its own mechanisms is also important. Indced this
ability is essential in order to cffectively support users in their problem solving activities. When a subsystem
runs into difficulty attempting to carry out a task, it nceds extensive knowledge of what it is doing and why in

order to interact effectively with others to overcome the difficulties.

Additional leverage is provided by the capability for a subsystem to have explicit knowledge of its own
goals. Such knowledge enables a system to relate its goals to one another so that in some cases it can detect
partial conflicts and overlaps. In addition it can aid in focusing effort by providing information which can

potentially be used to help judge whether or not it is spreading its resources too thin.

11. Conclusion

In this paper we have discussed a number of issues we are addressing in the conceptual modeling of Open
Systems. Open Systems are distributed, highly parallel, incrementally evolving, computer systems that are in
continuous operation always capable of further growth. The actors in Open Systems must cope with
incomplete knowledge and power. In order to function more cffectivcly,. the need to be able to negotiate with

cach other, perform problem solving using Duc Process reasoning, and have a good deal of self-knowledge.

Together with our colleagues, we have implemented many separate systems to deal with different aspects of
the issucs involved: Act 1[Lieberman 81a], Omega [Barber 82], Ether [Kornfeld 82}, SBA [Byrd, Smith, de
Jong 82], etc. Currently the Message Passing Semantics Group is constructing a system which unifies these
technologies to support the conceptual modeling of Open Systems. Message Passing Semantics is in an active
rescarch phase. The cxamples presented in this paper represent our current thoughts on what is nceded,
rather than our final views. Clearly a great deal of study still needs to be performed on difficult issues in the
conceptual modcling of Open Systems which have been only touched upon in this paper (such as negotiation,

transaction management, problem solving, change, and sclf-knowledge).

Open Systenis 20

12. Acknowledgments

We would tike to thank Michael Brodie for many long discussions concerning conceptual modeling. We
would also like to thank the other participants of the Conceptual Modcling Workshop for sharpening our
ideas on this subject. A preliminary version of this paper is being published in a volume on the workshop
[Conceptual Modeling 82]. Subscquent to the workshop conversations with several of our colleagues
provided ‘additional valuable insights which have been incorporated: Discussions with David Isracl, John
McCarthy, and Ray l'{eitcr helped us to sharpen our critique of first order logic. Fanya Montalvo helped
develop the scction on self knowledge and suggested how to make the paper more coherent. A discussion
with Allen Newell suggested that Due Process Reasoning is even more fundamental than first supposed and
perhaps can be used to derive what he calls ".weak methods”. Charles Smith made valuable suggestions on
how to better focus the beginning of the paper. Jerry Barber suggested an improved title. A conversation
with John Wheeler established some fascinating connections with developments in modern physics which will
be a topic in a forthcoming paper. Discussions with Bob Moore helped us to sharpen the distinction between
our approach to the semantics of communication and the truth theoretic approach. For many years the first
author has benefitted from discussions with Richard Weyhrauch who has a deep understanding of the
strengths and weaknesses of first order logic. Randy Davis pointed out several weak points in our
presentation. Jonathan Amsterdam, Mike Brady, Toni Cohen, Bob Filman, Kenneth Kahn, JCR Licklider,
Dave McDonald, and Daniel Weld provided valuable comments. Very preliminary versions of some of the
ideas in this paper benefitted from being critiqued by the participants at the the Distributed Artificial

Intelligence Workshop organized by [.ee Erman which was held at the USC Conference Center in June 1982.

Much of the work underlying our ideas was conducted by members of the Message Passing Semantics
group at MIT. We especially would like to thank Giuseppe Attardi, Jerry Barber, Bill Kornfeld, Henry
Lieberman, Dan Theriault, and Maria Simi. The development of the Actor Model has benefited from
extensive interaction with the work of Jack Dennis, Dan Fricdman, Bert Halstead, Tony Hoare, Gilles Kahn,
Dave MacQuecen, Robin Milner, Gordon Plotkin, Steve Ward, David Wise over the past half decade. The
work on Simuta and its successors SmallTalk, CLLU, Alphard, ctc. has profoundly influenced our work, We
are particularly grateful to Alan Kay, Peter'Dcutsch, and the other members of the Learning Research group

for interactions and useful suggestions.

This paper describes rescarch done at the Artificial Intelligence Laboratory of the Massachusctts Institute
of Technology. Major support for the rescarch reported in this paper was provided by the System
Developrment Foundation. Major support for other related work in the Artificial Intelligence Laboratory is
provided, in part, by the Advanced Rescarch Projects Agency of the Department of Defense under Office of
Maval Research contract NO014-80-C-0505. We would like to thank Charles Smith, Mike Brady, and Patrick

Winston for their support and cncouragement.

Open Systems 21

References

[Attardi, Simi 81]
Attardi, G. and Simi, M.
Semantics of Inheritance and Attributions in the Description System Omega.
In Proceedings of IJC AI 81, 1JCAI, Vancouver, B. C., Canada, August, 1981.

[Backus 78]
Backus, J.
Can Programming be Liberated from the von Neumann Style? A Functional Style and Its Algebra of
Programs.
Communications of the ACM 21(8):613-641, August, 1978.

{Baker, Hewitt 77]
Baker, H. and Hewitt, C.
The Incremental Garbage Collection of Processes.

In Conference Record of the Conference on AI and Programming Languages. ACM, Rochester, New
York, August, 1977.

[Barber 82)
Barber, G. R.
Office Semantics.
PhDD thesis, Massachusetts Institutc of Technology, 1982.

[Birtwistle, Dahl, Myhrhaug, Nygaard 73]
: Birtwistle, G. M., Dahl, O-J., Myhrhaug, B., Nygaard, K.
Simula Begin.
Van Nostrand Reinhold, New York, 1973.

[Bobrow, Stefik 82]
Bobrow, D. G., Stefik, M. J.
Loops: An Object Oriented Programming System for Interlisp.
Draft, Xerox PARK, 1982,

[Booth, Gentleman 82]
Booth, K. §., Gentleman, W. M.
Anthropomorphic Programming.
In Conference on Language Issue in Large Scale Computing. Lawrence Livermore [aboratory, March,
1982.

[Borgida, Mylopoulos, Wong 82]
Borgida, A., Mylopoulos, J. 1.., Wong, H. K. T.
Generalization as a Basis for Software Specification.
In Brodie, M. L., Mylopoulos, J. L., Schmidt, J. W., cditor, Perspectives on Conceptual Modeling.
Springer-Verlag, 1982.

[Borning, Ingalls 82]
Borning, A. H., Ingalls, D. H.
Multiple Inheritance in Smalltalk-80.
In Proceedings of the National Conference on Artificial Intelligence. AAAI, August, 1982.

Open Systemns 22

[Brady 82]
Brady, M.
Private communications

[Byrd, Smith, de Jong 82]
Byrd, R. J., Smith, S. E., de Jong, S. P.
An Actor-Based Programming System.
In Conference on Office Information Systems. ACM SIGOA, June, 1982.

[Church 41]
Church, A.
The Calculi of Lambda-Conversion.,
In Annals of Mathematics Studies Number 6. Princeton University Press, 1941.

[Clinger 81]
Clinger, W. D,
Foundations of Actor Semantics.
AI-TR- 633, MIT Artificial Intelligence Laboratory, May, 1981,

[Conceptual Modeling 82]
Brodie, M. L., Mylopoulos, J. 1.., Schmidt, J. W.
Perspectives on Conceptual Modeling.
Springer-Verlag, N.Y., 1982.

[Curry, Baer, Lipkie, Lee 82]
Curry, G., Baer, L., Lipkie, D., Lee, B.
Traits: An Approach to Multiple-Inheritance Subclassing.
In Conference on Office Information Systems. ACM SIGOA, June, 1982.

[Davis, Smith 81]
Davis, R., Sinith, R.
Negotiation as a Metaphor for Distributed Problem Solving.
Memo 624, MIT Al Laboratory, May, 1981.

[de Jong 80]
de Jong S. P.
The System for Business Automation(SBA): A Unified Application Development System,
In Proceedings of the 1980 IFIP Congress. 1EFIP, Tokyo, 1980.

[de Kleer, Doyle, Steele, Sussman 77]
de Kleer, J., Doyle, J., Steele, G. 1., and Sussman, G. J.
AMORD: Explicit Control of Reasoning.
In Proceedings of the Symposium on Artificial Intelligence and Programming Languages. SIGART,
Rochester, N.Y., August, 1977,

[De Millo, Lipton, Perlis 79]
De Millo, R., Lipton, R., and Peilis, A.
Social Processes and Proofs of Theorems,
Communications of the ACM 22(5):271-280, May, 1979.

Open Systems 23

[diSessa 77]
diSessa, A.
On Learnable Representations of Knowledge: A Meaning for the Computational Metaphor.
Al Memo 441, MIT, September, 1977.

[Friedman, Wise 76]
Friedman, D. P., Wise, D. S.
The Impact of Applicative Programming on Multiprocessing.
In Proceedings of the International Conference on Parallel Processing, pages 263-272. ACM, 1976.

[Hayes 771
Hayes, P. J.
In Defense of Logic.

In Proceedings of the Fifth International Joint Conference on Artificial Intelligence, pages 559-565.
Cambridge, Ma, 1977.

[Hewitt 69]
Hewitt C. E.
PLLANNER: A Language for Proving Theorems in Robots.
In Proceedings of IJC AI-69. 1JCAIL Washington D. C., May, 1969,

[Hewitt 75}
Hewitt, C.
How To Use What You Know.
In Proceedings of IJC AI 75. 1JCAI, Tiblisi, Georgia, USSR, August, 1975.

[Hewitt 77]
Hewitt C.

Viewing Control Structures as Patterns of Passing Mcessages.
Artificial Intelligence 8:323-364, 1977.

[Hewitt 80]
Hewitt C. E.
The Apiary Network Architecture for Knowledgeable Systems,
In Conference Record of the 1980 Lisp Conference. Stanford University, Stanford, California, August,
1980.

[Hewitt, Attardi, Licberman 79]
Hewitt C., Attardi G., and Licberman H.
Specifying and Proving Propertics of Guardians for Distributed Systems.

In Proceedings of the Conference on Semantics of Concurrent Computation. INRIA, Evian, France,
July, 1979.

[Hewitt, Attardi, Simi 80]
Hewitt, C., Attardi, G., and Simi, M.
Knowledge Embedding with a Description System.
In Proceedings of the First National Annual Conference on Artificial Intelligence. Amcerican
Association for Artificial Intelligence, August, 1980.

Open Systems 24

[Hewitt, Baker 77]
Hewitt, C. and Baker, H.
Laws for Communicating Parallel Processes.
In 1977 IFIP Congress Proceedings. 1F1P, 1977,

[Hoare 78]
Hoare, C. A. R.
Communicating Scquential Processes.
CACM 21(8):666-677, August, 1978.

[Tchbiah 80}
Ichbiah, 1. D,
Reference Manual for the Ada Programming Language.
November 1980 cdition, United States Department of Defense, 1980.

[Ingalls 78]
Ingalls D.
The SmallTalk-76 Programming System, Design and Implementation.

In Conference Record of the Fifth Annual ACM Symposium on Principles of Programming Languages.
ACM, Tucson, Arizona, January, 1978.

[Kahn 79]
Kahn, K. M.
Creation of Computer Animation from Story Descriptions.
PhD thesis, Massachusetts Institute of Technology, 1979.

[Kay, Goldberg 77]
Kay A., Goldberg A.
Personal Dynamic Media.
IEEE 10(3), March, 1977.

[Kerns 80]
Kerns, B.
Towards a Better Definition of Transactions.
Technical Report, M.L.T. A.1. Laboratory, December, 1980.

[Kornfeld 82]
Kornfeld, W.
Concepts in Parallel Problem Solving.
PhD thesis, Massachusetts Institute of Technology, 1982.

[Kornfeld, Hewitt 81]
Kornfeld, W. A. and Hewitt, C.
The Scientific Community Metaphor.
IEEE Transactions on Systems, Man, and Cybernetics SMC-11(1), January, 1981.

[T .akatos 76]
Lakatos, Imre.
Proofs and Refutations: The Logic of Mathematical Discovery.
Cambridge University Press, 1976.

Open Sysiems

[Lakoff, Johnson 80]
Lakoff, G., Johnson, M.
Metaphors We Live By.
The University of Chicago Press, 1980.

[I.andin 65]
Landin, P.
A Correspondence Between ALGOL. 60 and Church’s Lambda Notation.
Communication of the ACM 8(2), February, 1965.

[I.enat 82]
Lenat, . B.
The Nature of Heuristics.
Artificial Intelligence (), , 1982.

[Licberman 81a]
Lieberman, H.
A Preview of Act-1.
A.l. Memo 625, MIT Atrtificial Inteltigence Laboratory, 1981.

[Lieberman 81b]
Lieberman, H.

Thinking About Lots of Things At Once Without Getting Confused: Parallelism in Act-1.

A.L. Memo 626, MIT Artificial Intelligence Laboratory, 1981.

[Liskov, Snyder, Atkinson, Schaffert 77]
Liskov B., Snyder A., Atkinson R., and Schaffert C.
Abstraction Mechanism in CLU.
Communications of the ACM 20(8), August, 1977.

[McCarthy 62]
McCarthy, John,
LISP 1.5 Programmer’s Manual.
The MIT Press, Cambridge, Ma., 1962.

[McCarthy 80]
McCarthy, J.
Circumscription - A Form of Non-Monotonic Reasoning,
Artificial Intelligence 13(1,2):27-39, April, 1980.

[McCarthy, Hayes 69]
McCarthy, J. and Hayes, P. J.
Some Philosophical Problems from the Standpoint of Artificial Intelligence.

In Machine Inteliigence 4, pages 463-502. Edinburgh University Press, 1969.

[Milne, Strachey 76]
Milne, R. and Strachey, C.

A Theory of Programming Languages.
John Wilcy & Sons, New York, 1976.

25

Open Systems

[Minsky 75]
Minsky, M,
A Framcwork for Representing Knowledge.
In Winston, P., editor, The Psychology of Computer Vision. McGraw-Hill, New York, 1975.

[Moore 82]
Moore, R. C.
The Role of Logic in Knowledge Representation and Commonsense Reasoning.
In Proceedings of the National Conference on Artificial Intelligence. AAAL, August, 1982,

[Newell 62]
Newell, A.
Some Problems of Basic Organization in Problem-Solving Prograims.
Memorandum RM-3283-PR, Rand, December, 1962.

[Reddy 79]
Reddy, M.
The Conduit Metaphor.
In Ortony, A., editor, Metaphor and Thought. Cambridge University Press, 1979,

[Reiter 82]
Reiter, R.
Towards a Logical Reconstruction of Relational Database Theory.
In Brodie, M. L., Mylopoulos, J. L., Schmidt, J. W, editor, Perspectives on Conceptual Modelmg
Springer-Verlag, 1982,

[ROSIE 81]
Hayes-Roth, F., Gorlin, D., Rosenschein, S., Sowizral, H., and Waterman, D.
Rationale and Motivation for ROSIE.
Technical Report N-1648-ARPA, RAND, November, 1981.

[Scott 72]
Scott, D. S.
[attice Theoretic Models for Various Type-free Calculi.
In Proceedings 4th International Congress in Logic, Methodology and the Philosophy of Science. ,
Bucharest, Hungary, 1972.

[Shaw, Wulf, London 77]
Shaw, M., Wulf, W. A, London, R. L.
Abstraction and Verification in Alphard: Defining and Specifying Iteration and Generators.
Communications of the ACM 20(8), August, 1977.

[Steele, Sussman 78]
Steele G. L. Jr., Sussman, G. .
The Revised Report on SCHEME: A Dialect of LISP. -
Al Memo 452, MIT, January, 1978.

[Suchman 79]
Suchman, L.
Office Procedures as Practical Action: A Case Study.
Technical Report, XEROX PARC, September, 1979.

26

Open Systems 27

[Sussman, Winograd, Charniak 70]
Sussman, G. J., Winograd, T., and Charniak, E.
MICRO-PLANNER Reference Manual.
Al Memo 203, MIT Al Lab, 1970.

[Tarski 44]
Tarski, A.
The Semantic Conception of Truth.
Philosophy and Phenomenological Research 4 :341-375, 1944,

[Theriault 82}
Theriault, D.
A Primer for the Act-1 Language.
AL Memo 672, MIT Artificial Intelligence Taboratory, April, 1982,

[Turing 37]
Turing, A. M.
Computability and A-dcfinability.
Journal of Symbolic Logic 2:153-163, 1937.

[Weinreb, Moon 81]
Weinreb, D. and Moon D.
LISP Machine Manual,
MIT, 1981.

[Weyhrauch 80]
Weyhrauch, R.
Prolegomena to a Theory of Mechanized Formal Reasoning.
Artificial Intelligence 13(1,2):133-172, April, 1980.

[Winograd 71}
Winograd T.

Procedures as a Representation for Data in a Computer Program for Understandmg Natural Language.
MAC TR 83, MIT, 1971.

[Winograd 80]
Winograd, T.
Extended Inference Modes in Reasoning,
Artificial Intelligence 13(1,2):.5-26, April, 1980.

[Wynn 79]
Wynn, E.

Office Conversation as an Information Medium.
PhD thesis, Department of Anthropology, University of California, Berkeley, 1979.

