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, Abstract
Message policy is defined to be the description of the disposition of messages of a single
type, when received by a group of processes. Group policy applies to all the processes of a
group, but for a single message type. It is proposed that group policy be specified in an
expression which is separate from the code of the processes of the group, and in a separate
notation.  As a result, it is possible 1o write policy expressions which are indcpendent of
process state variables, and as well use a simpler control notation based on regular
expressions. Input protocol, on the ather hand, applies to single processes (or a group as a
whole) for all message types. Encapsulation of processes is presented with an urnusual
emphasis on the transactions and resources which associate with an encapsulated process
rather than the state space of the process environment. This is due to the notion of
encapsulation without shared variables, and to the association between group policies,
message sequences and transactions.
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1. Intiroduction

The mmontam aspects of concurrent language design are communications, synchronisation
and composition of processes. The first two have been extensively studied, focusing on
questions such as control, schedaling and nondeterministi, and problems such as deadlock,
starvartion and fairness. Less has been said about how complex processes may be composed
from other processes, and ultimately from elementary scquential operations and
commiunications primitives. This paper discusses groupy composition techniques, and the
communications interfaces between processes when they are organised as a group.

When a message is sent to a group of processes as a whule, one or more of the component
processes may receive it. We distinguish two aspects of grroup message reception in systems
where messages are typed. Firstly, processes are typically provided with the means to select
messages for reception, by scheduling arrangements such as system queues, or by user code
involving local variables to choose between messages of different types. We define group
input protocol to be the input behaviour of the group as a whole, for all message types.
Secondly, we define for each message type, a group policy which determines the disposition
of messages within the group. :

We shall argue that policies have more to do with the transactions handled by groups than
the reception of individual messages by processes, and are consequently better expressed at
the group level. Because the control of group policy will be predicated on transaction
attributes rather than process variables, and because 1he control issues seem simpler, a
separate notation is proposed for group policy. The notation also provides for the
encapsulation of one process by another without the use of shared variables.

2. Processes and Modularity

Language proposals for concurrent systems usually define a basic component, an
“asynchronous process with facilities for external communications and synchronisation. The
process is basic in the sense that it is the building module of concurrent systems. The
details of the proposals vary a great deal, and we shall mention some which have an
influence on the way processes may be composed together,

One difference is whether communications is mainly Lw access to shared memory, or by
message passing. In shared memory systems (SimulaG? [Dahl 70], Monitors [Hoare 74],
- Concurrent Pascal [Brinch Hansen 77}, Modula [Wirth 77]), processes communicate by
writing and reading shared variables. Access to shared objects gives a tight conpling of
processes and can result in efficient implementations,  Synchronisation can also be

achie’ vvd by setting and testing shared variables, either Try ordinary assignment or through
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special signalling facilitics of the language.

The early proposals which cschewed shared memory (PLITS [Feldman 79,
Communicating Sequential Processes (CSP) [Hoare 78], Distributed Processes (DP) [Brinch
Hansen 78], Actors [Hewitt 77]) promoted message passing in various forms on the grounds
of simplicity, reliability and clarity of expression, at least with respect to communications
and synchronisation. It is interesting to note that some of the most recent proposals
(Synchronising Resources (SR)[Andrews 81], E-CLU [Liskov and Scheifler §1], Modular
Processes (MP) [Choi 81]) allow shared variables (with the recommendation that they be
used sparingly and with carc). The sharing of variables occurs within an explicit grouping
of processes (viz. the resource in SR, guardians in E-CLU and the node in MP),

Communications and synchronisation issues are often difficult to separate in particular
language proposals, for it is frequently the case that both aspects are involved in the same
language feature: For cxample, the input and output commands of CSP are the sole means
of communication and synchronisation. These issues have been neatly separated by Choi
[Choi 81], where for each communication event there is a process which provides a service,
and a process which is requesting a service (the sender of the message). Synchronisation is
generally the concern of the sender of the message, and there are three possible
arrangements, the no-wait send, the wait send and the remote call. With no-wait send, the
sending process does not synchronise with the destination process, and continues execution
after sending the message (e.g. PLI'FS). With wait send, the sending process synchronises
with the receipt of the message by the destination process, then both processes continue
independently (c.g. CSP). With remote call, the sending process synchronises with the
completion of the service requested by the sender and invoked by the receipt of the message

(e.g. DP).

From the point of view of the receiver, three kinds of service ar¢ identified, message
service, procedure service and subprocess service. A message service simply receives the
message, perhaps assigning values to local variables in the receiver, and the receiving
process then continues normal exccution. If the messape requires a reply, it must be
explicitly constructed and sent by the receiver as a new communication (e.g. CSP and
PLITS). With procedure service, message reception invokes a procedure to handle the
message, which may also construct the value of a reply (the "out” variables in DP and Ada
[lchbiah 79]). Lastly, a service may be provided by a process rather than a procedure, for
greater concurrency. In MP, subprocesses are created dynamically to handle subprocess
service requests, while in SR, all requests are handled by processes, but the processes are
not dynamicalty creatéd. The arrangements for sending and receiving described above are
largely orthogonal, and all meaningful combinations have been proposed in the literature.,

~ The proposals for grouping processes advanced in this paper permit the construction of

process groups which achieve all the arrangements for sending and receiving surveyed
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above.

Communications is mediated by arrangenients such as sender-rewxciver pairing (as in CSP),
ports [Baizer 71], message types [Milne and Milnher 79], trionsactions [Feldman 79),
conctructions [Barter 7€}, pattern matching [Hewitt 79] and varicus notations such as Path
Expressions [Campbell and Haberman 74], and Input Tools [van «fen Bos et al 81).

Major differences exist in the structure of the processes themselwes, largely determined by
the kinds of service provided. In CSP, the basic process is simply a list of sequential
commands, using a nondeterministic guarded command notatic n to control input, output
and ordinary sequential execution, The communications commands appear as in-line code.
In contrast, DP provides a process with service procedures whichs may be called remotely,
using a monitor-like discipline. A process may have a conventional process body as well,
and the execution of the main body and the service proceduress interleave in an unusual
way [Welsh et al 80]. Ada has both in-line message receivers (entrics) and communications
procedures, in an attempt to combine the advantages of CSP arid DP. The proposals for
grouping processes in this paper are independent of process structure; the example
program at the end of the paper usés in-line code for services, buit it is casy to see how the
other kinds of service may be used.

2.2 The Composition of Systems of Processes

A simple way to compose processes is to form a loose group ing of processes within a
ommon communications environment, with a global convention for process names and
messages. Various refincments of this model have been proposi ed which provide ways of
restricting the scope of these names. For example, Milne and ‘Milner use an opcerator to
- restrict the visibility of port names [Milne and Milrier 79].  CH3 P uses textual nesting of
processes (parallel commands) and Algol-like scope ruiles for accoss to variables in different
processes. Thus there are shared variables, but a "disjointness™ wroperty ensures that there
is no shared write access, -

Textual nesting has also been used to construct hierarchical grou ps of processes with scope
rules on process names to hide the process structure of groups; from the point of view of
the sender of a message, the destination is simply a process. The destination may in fact be
a group of processes, and the primitive process within the gsroup which receives the
message is determined by the group composition andl the type «+f the message [Barter 78].
Structure hiding has been achieved in CSP by the use of a "hole -in-scope” rule whereby a
process name is known in all of the enclosing processes but not ir1 the named process itself;
structure hiding is used in a stepwise refincment programming methodology, where each
refinement step adds an additional process to a group in ordder to modify the group
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behaviour [Hoare and McKeag 79]. Shapiro has developed this methodology through an
extension of CSP which adds some flexibility to the naming conventions for processes and
message constructors, and applied it to a large system design [Shapiro 80}

Some recent proposals (SR, E-CL.U, MP), influenced by the additional considerations of
distributed systems, have defined a middle-level structure involving a group of progesses,
and some shared objects (usually variables). 'This grouping may be regarded as the
counterpart of a processor node in a network of processors. The authors of SR and MP
regard these special groups as being different to processes, and do not allow arbitrary
nesting of processes and groups.

The most interesting composition ideas have come from languages which were not
primarily intended for concurrent programming, but had a strong object-oriented approach
and with particular applications in- mind (Simula67, Smalltalk [Kay and Goldberg 77,
Ingalls 78], Thinglab [Borning 81] and Lisp Machine Flavors [Canpon 79, Weinreb and
Moon 81]). The reason is that without the complication of concurrency it is natural to
exploit the advantages of shared memory, and this has been done in most imaginative ways.
In these languages we sce the comiposition of processes to mean the actual merging of state
spaces, process bodies and service procedures, involving a much tighter composition than
the loose coupling described earlier. Simula67 introduced the idea of class concatenation,
where a class could inherit the attributes of another class. By this method, superclass
hicrarchies could be constructed. The original intention was to provide language support
for program modularity, where the modules (classes) would correspond closely with the
conceptual layers of a system design.  Class concatenation also foreshadowed another
important kind of group composition where one object encapsulates another (see later).
The idea of class introduced by Simula67 has been extraordinarily influential, even though
some of its details have been criticized (the details of concatenation, Algol scoping and
remote accessing of class attributes).

2.3 Superclass Schemes and Process Composition:

Languages such as Simula67 and Smalltalk allowed class objeccts to inherit attributes
(procedures, methods and even variables) from other classes by class concatenation,
However, the structures which can be built this way arc strictly hierachical, and may be
- classified as single superclass systems. Multiple superclass systems such as Thinglab and
Flavors allow inheritance lattices. The inheritance mainly applies to the inheritance of
methods (which may be viewed as message services), although there may be some state
space sharing as well.

In the Flavor system, a flavor {(a class-like specification) can be constructed from other
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flavors by a technique called "mixing". A mixed flavor may have components such that
more than one component has a method with the same name; an important contribution of
the Flavor system is that if an object of the mixed flavor is instantiated, and a method of
that object is invoked, more than one method may be exccuted from the set of component
methods. The programmer selects a one of a set of method combinations to control which
component methods are exccuted, and in which order. The default method combination is
called daemon combination which allows methods to be classified as before, primary or after
methods; all before methods arc handled first, then the single primary method, and finally
the after methods are handled.  Within the before and after groups of methods, method
order is determined by the order in which component flavors are mixed to form the
composite flavor (in fact a tree walk order). In every case, the message handling policy is
statically determined by the text of the flavors and methods., Our proposal dilfers in several
ways. Firstly, the specification of group policy is separated from  that of group
composition; secondly, policy is expressed only at the group level, and not within methods,
and finally, dynamic policics will be allowed (dyhamic in the sense that method ordering
can change depending on the execution environment).

3. Communications Policy

In this section we address a question which is fundamental to any proposal for forming
processes into groups, namely how is a message received within a group when it is sent to
the group as a wholc:? This question may be simplified by using message types and ensuring
that there is always exactly one process in the group able to receive messages of that type.
We define group poelicy to be a specification of how messages of a given type will be
received within the group, and this will be the key concept upon which other ideas
concerning transaction handling and encapsulation will be based. We shall now examine
more flexible policies such as broadcasting to all processes able to receive the message, or
the selection of some subset of those eligble. Of course policy may be implemented in an
additional “policy manager" process (dispatcher) associated with the group, but we shall
describe policies in a descriptive notation through pelicy expressionss, examples of which
now follow, ' ' | '

Consider a group of processes P, and a message type "msg". Let (P1l, P2, ... Pn) be those
processes of P which accept messages of type msg. Three basic policies are now given by

example.

-0 A policy of selection for P is written: policy msg:(P1{] P2)
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Only processes P1 and P2 are considered as possible destinations for messages of type
msg. The choice between P1 and P2 is nondeterministic, all other things being equal.
(An implementation could choose the first process ready to receive.)) For example,
consider a print request sent to a pool of print resources, and the request may be
satisfied by any member of a subsct of printing resources (c.g. those three which are
nearby). The policy for the group "printer-pool” may be expressed:

policy print-request: (print-resource(1) [] print-resource(2) [] print-resou rce(3))
0 A policy of broadeasting for P is written: policy msg:(P1 7/ P2)

Both P1 and P2 reccive the message, but the order is unspecified. For example, a
request for some services may also be logged on an accounting file, and registered
with a load monitor. The policy for such an encapsulated printer pool may he
expressed:

policy print-request: ( printer-pool // accounts // load-monitor )
0 A policy of serial broadeasting for P is written: policy msg:(P1 ; P2)

Both P1 and P2 receive the message, but process P1 must complete the processing of
the message before P2 starts. Serial broadcasting is likely to be most useful in groups
with shared memory; for example, it is the default policy for calling combined

methods in th¢ Lisp Machine Flavor system. Both forms of broadcasting require a
convention wheén used with remoté call, to determine which service sends the reply; -
see later for default policies.

An important degcncth case is policy msg:(P1), which sxmply directs all messages of type
msg to Pl.

A policy expression describes the dlsposntxon of every message mcwcd by the group, and

thercfore may be regarded as a repeating comstruct.  (Additional notation will be
introduced later to specify repetition of inner components). A policy expression for a
group cannot directly affect the reception of messages by that group: policy only
-determines the disposition of a message when it is received by the group.

Compound policy expressions may be formed in three obvious ways:
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o By nesting groups as in:

policy for group P is policy msg:(P1[] P2)
policy for group Q is policy msg:(Q1 [} Q2)
policy for group PQ is policy msg:(P // Q)

where a message for group PQ is sent to P1 or P2 and also to Q1 or Q2.
.Io ABy expression nesting, e.g. policy for P is policy msg:((P1 [] P2) 7/ (P3 [] P4))
where a message for group P is sent to P1 or P2 and also to P3 or P4. |
o) As a sequence of policies, policy msg:((P1{] P2) >> (P3 [] P4))
The initial policy is (P1 [] I’i), which directs one message to either P1 or P2, The

policy then changes to (P3 [] P4), and after that the policy expression repeats, A
sequence of policies achicves a similar effect to actor replacement [Hewitt ct.al 79).

In a language using policy expressions, some convention for default policy would be useful,
and perhaps some way of defining message type aliases (a reasonable default would be the
selection of a single receiver, using a static criterion such as text order in the group
description, or a dynamic sclection over all eligible processes).

3.2 Policy Model

The semantics of policies are now given as code for a virtual group message handler. The
notation is CSP-like, where "Plmsg" is the usual CSP wait send of message "msg" to
destination P. The notation is extended so that "P.msg" signifies a remote call to P: if a
process Q executes a remote call "P.msg" which activates the guarded command "7msg -->
command-list", then "P.msg" in @ does not terminate until "ecommand-list” in P does.
Also, the input command "Tmsg" differs (rom CSP in that it does not name a sender, but
will receive messages of the appropriate type [Barter 78], The three basic policies are:

policy msg:(P1[JP2) => [7msg -->[true --> Pl.msg [] true --> P2.msg J]
policy msg:(P1 //P2) => [Mmsg ~>[[ PLmsg]//[P2msg]]]

policy msg:(P1;P2)  => [Tmsg-~>[Plmsg:P2msg]l
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~ Note that all the virtual handlers have the same structure, [ LHS > RHS ], where LHS is
always the virtual input command for the group, and RHS is a simple transformation of the
policy expression, Virtual handlers for nested policy expressions are similarly constructed
by repeated transformation: '

policy msg:(P1[1P2) 7/ (P3[1P4)) =>

[ Tmsg ~> [ [ true =-> Pl.msg [] true => PL.msg ]
// [ true > PLimsg [] true --> P2.msg ]]]

Sequences of policies result in sequential composition of virtual handlers; the operator
"M takes precedence over the others in deriving the virtual handler:

policy msg:(P1>> P2) => [Imsg--> Plmsg] ;[ Imsg--> P2.msg]
policy msg:(P1[JP2) >> (P31 P4)) =>

[ 7msg --> [ true --> Pl.msg [] true ~> P2msg ]} ;
[ Pmsg --> [ true --> Plumsg [] true ~-> P2.msg []]

4. Communications Protocol

The meaning of a process may be given in terms of its input-output behaviour [Milne and
Milner 79]. Behaviour can also be expressed as the set of all possible communication
sequences [Hoare 78], In the Actor model of concurrency, an actor receiving a message
may change its local state, send messages to other actors and create new actors. The arrival
of a message at an actor is called an cvent, and local time for an actor is the arrival ordering
of events. Message sending is not important in the event ordering as the model is
asynchronous . However, an event can cause a message to be sent, and hence cause another
arrival event; in which case the first event is said to activatc the second event.
Communications between actors is represented by such ecrivation orderings. The meaning
of a program is given by the combined ordering [Hewitt et al 79, Clinger 81].

In this paper we are interested in control over input messages, and input protocol will mean
just the input behaviour of a process. We shall refer to input protocol as protocel for short
(this is a narrower definition than used in the literature on networks).

The protocol of a process is determined by the mechanisms within the process for selecting
the next message to receive from a set of pending messages. These mechanisms depend
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upon an ability to discriminate between messages h3 some global measure such as arrival
ordering [Hewitt et al 79, or on the basis of message attributes such as type, sender and
priority.  Arrival ordering is sometimes used in combination with message attributes as a
subsidiary selection criterion (PLITS, COSPOL. [Roper and Barter 81]1).  Four basic
mechanisms have been used:

o  Firstly, there are processes which have a process body which controls the selection of
the next message 1o be received, using in-line receive commands (the input command
of CSP and the entry of Ada). Local variables can be used to control message
selection by normal flow of control and by guarding input commands.

o Sccondly, there are schemes which have service procedures 01 processes which are
directly accessible to other processes, without the control of a "main body” (e.g. SR,
E-CLU). Local variables can be uscd to guard access o services.

o  Thirdly, message reception can be entircly determined by arrival ordering: in Actor
languages, messages can be typed (implicitly by pattern), and the pattern may be
matched against a set of alternative actions, but the pattern matching determines the
body which is to be executed, not the message to be selected. While languages such
as CSP have "choice nondeterminism” which affects message selection ordering,
Actor languages only have "arrival nondeterminism” duc to asynchronous
communication [Clinger 81}. '

o  Finally, there arc languages which use a separate notation to control message
selection, such as Path Expressions [Campbell and Haberman 74] and Input Tools -
[van den Bos et al 81].

Path Expressions are based on regular expressions, using the names of the setvice
procedures of a resource. As well as scheduling service requests, Path Expressions also
control the amount of concurrency in the resource services.

The Input Too!l Process model provides an event-driven model based on input events,
controlled by input rules. An Input Tool has a name, an input iule, a tool body and an
initialisation section. Tools may be composed in parallel, or nested. An input rule is based
on a regular expression notation, using the names of other tools. 1f an input rule is
matched, the tool body is exceuted, and that tool name may cause fu rther matching in an in
input rule at a higher level. Direct communications between processes involves a match
between a send command in one process and a receive rule in another (a tool may specify a

receive rule instead of an input rule). A parser uses the input rules to dynamically construct

the currently "active” structure of input tools (a tree for each proces, whose terminal nodes
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are basic tools with receive rules). Inputs which do not maich the current structure are
ignored. Thus input rules control input protocol and, as we shall show, some aspects of
what we have called policy.

Input rules can be used to-control both policy and protocol (indeed the authors do not draw
the distinction). Because the Input Tool model has sirong similarities with our policy
proposals and strong differcnces with our treatment of input protocol, we shall discuss the
model in some detail:

4.2 The Input Tool Model
The example of a printer server is given [van den Bos et al 81]:

tool printer == input (first-line; more|: source --> line$)$ end
bool more; process set source;
tool first-line = input line end
il more _
then source ;= {sender}
" .
end
tool line = receive string msg;
more : = (msg <> FOF);
if more -
then lineprint(msg)
else skip-page
fi
end
end
The input rule uses ";" for scquences of matches, "$" for repetition, and
IKboolean-expression>|: for guarding. The notation "source —->" restricts input messages to
be from a particular sender, in this example it is the one bound by the assignment "source
= {sender}". :

When the tool "printer" is activated, the parser activates the tool "first-line", and through

it, the tool "line"; "line" is a basic tool which receives a message "msg”, which matches its
receive tule, and so the body of "line" is executed. This matches the input rule of
"first-line”, and so its body is executed, and the component "first-line" of the top-level is
matched. The parser now moves 1o the next component of the top-level input rule: this
wiil be "jmore]: source --> linc$" it the boolean guard "more” is true, but if "more” is false
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that component will be invisible to the parser, and so the next component will again be
“first-line". ‘ ‘

A second example shows input rules used to direct a message of the same type to
alternative tools: :
tool squash = input |go-on]|: (star -+ nostar)$ end
tool star = input character(c): jc = "*"| end
end
tool nostar = input character(c): |c & "*"| end
if ¢ = EQF then go-on.: = false fi
end S
init ... ; go-on .= true end
end
The operator "+ " specifies a choice between two tools, and the input rule ‘character(c): |c
~ = "*"|' uses a post-test on the value of the parameter "c", so that the post-test must

succeed if the rule is to match. -

An example of a bounded buffer is given to illustrate an input rule controlling a simple
input protocol; the example is given here in abbreviated form:

tool buffer = input (Jcount < size|: put + [count> 0]; get)$ end
tool put = receive char ¢;

end
tool get = receive;

end
end

The parser does not activate the tool "put” if the bulfer is full, and similarly does not
activate the tool "get" if the buffer is empty. The boolean guards are computed within the
¢ bodies of putand get.
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The example programs show three uscs of input rules, The first example shows an input
rule specifying a message policy: an inprut line is processed by cither one or both tools. The
purpose is to provide some encapsulation of tool "line” by tool "first-line”. This particular
encapsulation does not generalise well; encapsulation will be treated later.  The third
exaraple also specifies policy for input characters, using the tool "star™ or "nostar"”
depending on the data. In Doth examples, the input rules affect policy but not input
protocol. In the second example, the input rule controls protocol in the sense that it
directly determines the scheduling of input requests. In all three examples the input rules
exercise control through shared variables, '

The use of program variables in these cxpressions allows arbitrary interactions between the
expressions and the code of the processes controlled. But typical protocol and scheduling
descriptions do involve variables which are local to (and sometimes shared between) the
processes concerned; this is a strong reason not to place these descriptions in a scparate
expression, but to feave them in the code of the processes themselves. On the other hand,
we shall show that policies have less to do with individual processes and their variables, and
more to do with groups of processes and message sequences; for this rcason we shall argue
that group policy is better placed in & separate description associated with the group, and
that a separate notation is useful for its description.

Because the method of process composition suggested in this paper does not involve
message re-scheduling, the protocol of a group is simply the merge of individual protocols
(i.e. all orderings which preserve the partial ordering of the component processes). Next
we show how policy and protocol may interact without using shared variables in cither the
processes or the policy expressions. '

5. Policy-Protocol Interaction’

Consider a group of children and gifts auriving.

The group is: (Sharon, Carol, Jenny, Michael)
The messages are: (gift, boy-gift, girl-gift)

.Some example policies are;
pelicy gift:(Sharon > Carol >> Jenny >> Michael) -- i.e. take turns.

policy girl-gift:(Sharon [} Carod [} Jenny) -- ie. choice
policy boy-gift:(Michiael) - i.c. single receiver

" The three policies are independent - e.g. the policy for messages of type "gift“ hasno
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influence on the policy for messages of the type “girl-gift".
Consider the following policies:

policy gift:(Sharon// Carol // Jenny /./ Michael)
policy gift:(Sharon ; Carol ; Jenny ; Michael)

In these two policies, for every incoming message of type "gift", four messages are copied
to the group members, concurrently in the former policy and sequentially in the latter.

" The policy for "girl-gift” is not fully determined by the policy expression; an

implementation may have some additional criteria for making the choice, such as choosing
the process which has been waiting longest for a message of that type. (An alternative
strategy is to choose without consideration of whiether processes are ready or not, and wait
if the chosen process is not ready; this can lead to more deadlocks than the first strategy).
Rather than regarding the previous as an implementation issue, the selection method could
be part of the language definition and exploited to schedule message reception” or
synchronisation; but this encourages a dangerous interdependence between processes in a
way which undermines modularity and clean interfacing. We now examine some
policy-protocol interactions which depend  only on more general aspects of
communications:

o A process may terminate, which is a most drastic change of protocol. The most
desirable behaviour with respect to group policy if a component of the group
terminates will depend on the composition method. If the terminated component is
composed with the policy operators "//" or "[]", then the process may be dropped
(dynamically) from the policy provided that there is some live component to receive
the message; if not, the group should abort.

o A process may close a typed message service, which is similar to termination, but only
with respect to that message type and the corresponding message policy.

o  The policy for a group is by definition a repeating construct, and as such associates
with miessage sequences rather than a single message. The policies given earlier could
have made this explicit with a repetition operator such as the Kleene star, e.g.: policy
msg:(P1 [} P2)*.

An explicit operator is necessary to express repetitions of policies within sequences of
policies, ¢.g.:
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policy msg:((P1[] P2)* > (P3 [ P4))

In this policy, a sequence of messages is dispatched under the policy (P1 | P2)¥,
before the policy changes to (P3 [] P4Y*. Some means of breuaking the sequence is
required, and we propose an explicit break-policy signhal rather than a test on a
program variable. A logically associated scquence of messages is usually called a
transaction, It is useful to strengthen the attributes of a transaction by
sender-recciver bindings, and two operations are proposcd for this purpose: .
attach-sender and break-sender.

bresk-policy has the following effect: 1f the current policy is part of a seqquence of
policies, and not the last policy in that sequence, the next policy becomes the current
policy; otherwise the break is passed up to the next level, if any. When there is no
"next level up” (the group is not a component of another group), the policy at that
level does not signal a break, but restarts the entire policy expression at that level,
(Repetition in policy expressions and the break-policy operation are similar to catch
and throw in some versions of Lisp [Weinreb and Moon 81].)

attach-sender restricts all further messages received by the group to be from the
sender of the last message, and this prevails until break-sender is exccuted within a
process of the same group.

-

The three policy operations described above will be illustrated in an cxample after a
discussion of encapsulation.

6. Encapsulation

Simula67 supports a form of encapsulation through class concatenation; a special symbol
inner is used to mark a point in the code of the body of a process, to identify where the
code body of the encapsulated may be regarded to notionally execute. A similar
encapsulation facility with respect to mcthod bodies is available in the Flavor system
(wrappers).

Hewitt's serialisers/guardians may be used to encapsulate a resource process by
intercepting and re-scheduling all communications with the resource. The guardian acts on
behalfof the user of the resource.” The purpose of the encapsulation is to enforce a stronger
protocol than that of the resource itself; i.e. the resource may have been designed without

considering the possibility of carcless or malicious use, and the encapsulation is then '

designed to compensate for this.
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Although shared variables are often exploited to provide the kinds of run-time
environment encapsulation possible in the languages described above, we shall only discuss
sharing through the communication environment, rather than through process state spaces,
The most important communication attributes to be shared are those to do with
transactions involving more than one message passing cvent.  Examples of transaction
attributes of interest such as policy-sequernice bindings and sender-receiver bindings have
already been mentioned.

We now introduce the construct inner to provide somce encapsulation abilities in groups,
The name inner is borrowed from Simula67, but because it is used without access to shared
variables, its semantics is different to that in Simula. A process receiving a message will
sxecute its command list (or service) up to the occurrence of the inner marker, and skip the
remainder: when an entire policy expression is complete, all command lists whose
remainder parts were skipped are then executed, in reverse order to the order in which they
were skipped. Fach remainder will be exccuted as many times as it was skipped in cach
component of the policy expression.

Thus an encapsulating process encapsulates the transactions or message sequences of the
encapsulated process, rather than its exccution cnvironment; but this is often what is
required anyway. A common use of encapsulation is resource locking, where only requests
of the current transaction are allowed to access the resource, and all other requests are
locked out for the duration of the transaction. To achieve this effect, encapsulating process
could contain the following code:

... lock; irnner; unlock; ...

I the following example, inner is used to illustrate head and tail encapsulation in the
printer problem. The example is an extended version of the earlier printer example, with
the added requirements that each file be printed with a header and a trailer, both
containing information extracted from the first line of the file, and that empty files should
not cause a page-skip. The programming language used is the same as that used for the
description of virtual group policy handlers [Barter 78] for the sake of example, and it is not
intended that the group policy model associate with any specific language.

[ Printer ::
group-members : (Newfile, Printlines, ...)
policy line ; (Newfile* > Printlines*)
.. policies for other message types

s

SO § e e e A e £ 2t St e & s s i




C.). Barter C | -16 -

]
/7

[ Newfile ::
¥ Nine ~>
[ line.eof --> skip -
[Inot Tine.cof -->
attach-sender;
print-header(line);
break-policy
inner;
print-trailer(line);
page-skip;
break-sender;

1 11
%

[ Printlines ::
* Nine >
[ linc.eof --> break-policy
[Inot line.cof --> print(line)

111

The modularity achieved is' typically that which is to be expected from careful
encapsulation. The process Newfile only performs operations at the file level, either empty
oncs which are skipped, or non-empty ones which have headers, bodies (for which inner is
a surrogate), and trailers. The process Printlines just handles sequences of lines under some
prevailing policy, breaking at end-of-{ile,

Note that the sender-recciver binding is now handled in the same process, and that the
Leader and trailer procedures use the same value of line as their parameters.

Conclusions

Message policy has been defined to be the description of the disposition of messages of the
same type, when received by a group of processes. Group policy applies to all the
processes of a group, but for a single message type. It is proposed that group policy be
specified in an expression which is separate from the code of the processes of the group,
and in a separate notation. Separate specification seems natural, for policies are associated
with transactions and message sequences rather than the details of processes; for this reason

it is possible to write policy expression which are independent of process state variables,
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and as well use a simpler control notation based on regular expressions.

Input protocol, on the other hand, applics to single processes (or a group as a whole) for all
message types. When policy aspects are separated from input protocol, scheduling is what
usually remains, and scheduling often has strong associations with process state variables;

for this reason it is often difficult to specify protocol expressions without using control

constructs which access process state variables.  Accordingly, we leave control over
protocol in the code of the processes themselves.

Encapsulation of processes is presented with an unusual emphasis on the transactions and
resources which associate with an encapsulated process rather than the state space of the
process environment. This is due to the notion of encapsulation without shared variables,
and to the association between group policies, message sequences and transactions.

We have tried to avoid committment to any particular Janguage within the general
message-passing group surveyed, though there are important interactions which will affect
group composition and policy expression, as well as implementation (e.g. the prescence of
remote call in a language will significantly influcnce implementation strategics). We have
not argued against shared variables (in small amount), but have shown what is possible
without them. The example program given used a CSP-like syntax, and suggested a
Joad-and-go exccution environment. We believe that the idcas transfer to incremental
execution environments as well, such as provided by Lisp. This could be done in several
ways. Firstly, policics could be expressed as Lisp (Lisp Machine) functions, dispatching
messages to objects of the appropriate flavor and wrappers; the programmer would have to
enumerate all the flavor mixes required by the policics. This achicves dynamic control over
over method execution by object replication. A macro technique could make this easier to
use. Finally, the flavor and wrapper concepts could be unified, and generalised so that the
policy for executing methods could be controlled dynamically, rather than being tied to the
order in which flavors are combined,

Two significant problems need immediate consideration. Firstly, we have discussed the
formation of groups from classes rather than objects, and the difference is important in
languages with dynamic process creation. Secondly, we have not examined the question of
objects being components of more than one group (shared objects).
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