MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A. I. Memo No, B%8 December, 1982
Robot Programming

Tomis ananuaP‘ére.-;

Abstract. The industrial robot’s principal advantage over traditional automation is
programmability. Robots can perform arbitrary sequences of pre-stored motions or
of motions computed as functions of sensery input. This paper reviews requirements
for and developments in robot programming systems. The key requirements for
robot propramming systems examined in the paper are in the areas of sensing, world
maodeling, motion specification, llow of control, and programming support. Existing
and proposed robol programming systems [all into three broad categories: guiding
sysiems in which the user leads a robot through the motions to be performed,
robot-level programming systems in which the user writes a computer program
specilying motion and sensing, and task-level programming systems in which the
user specifies operations by their desired eflect on objects. A representative sample
of systems in each ol these categories is surveyed in the paper.

Acknowledgements. This report describes research done at the Artificial Intelligence
Laboratery of the Massachusetts Institute of Technology. Support for the
Laboratery’s Artificial Intelligence research s provided in part by the Office
ol Naval Research under Office of Naval Research contract NO0014-81-K-0494 and
in part by the Advanced Research Projects Agency under Office of Naval Rescarch
contracts NOO014-80-C-0505 and NODD14-82-K-0334.

(§) MASSACHUSETTS INSTITUTE OF TECHMOLOGY

1. Introduction

The key characteristic of robots is versatility; they can be applied to a large
variety of tasks without significant re-design. This versatility derives from the
generality of the robot's physical structure and contrel, but it can be exploited
only if the robot can be programmed easily. In some cases, the lack of adeguate
programming tools can make some tasks impossible to perform. In other cases,
the cost of programming may be a significant fraction of the total cost of an
application. For these reasons, robol programming systems play a crucial role in
robot development. This paper outlines some key requirements of robol programming
and reviews existing and proposed approaches to meeting these requirements.

1.1. Appreaches to robot programming

The earliest and most widespread method of programming robots involves
manually moving the robol Lo each desired position, and recording the internal joint
coordinates corresponding to that position. In addition, operations such as closing
the gripper or activating a welding gun are specified at some ol these positions. The
resulting “program” is a sequence of vectors of jeint coordinates plus activation
signals for external equipment. Buch a program is executed by moving the robot
through the specified sequence of joint coordinates and issuing the indicated signals.
‘This method of robol programming is usually known as teaching by showing,
in this paper we will use the less common, but more descriptive, term guiding
|{;rmmlmn TT].

Robot guiding is a programming method which is simple to use and to
implement. Because guiding can be implemented without a general purpose
computer, it was in widespread use for many years before it was cost-cfective
to incorporate computers into industrial robots. Programming by guiding has
some important limitations, however, particularly regarding the use of sensors.
During guiding, the programmer specifies a single execution sequence for the
robot: there are no loops, conditionals, or compulations. This is adequate for some
applications, such as spot welding, painting, and simple materials handling. In other
applicalions, however, such as mechanical assembly and inspection, one needs to
specily the desired action of the robot in response Lo sensory input, data retricval,
or computation. In these cases, robot programming requires the capabilities of a
senerel-purpose computer programming language.

Some robot systems provide compuler programming languages with commands
Lo access sensors and te specily robot motions. We refer to these as explicit or
roboi-level languages. The key advantage of robot-level languages is that they
enable the data from external sensors, such as vision and foree, to be used in
modifying the robot’s motions. Through sensing, robots can cope with a greater
degree of uncertainty in the position of external objects, thereby increasing their
range of application. The key drawback of robot-level programming languages,
relative to guiding, is that they require the robot programmer to be expert in
computer programming and in the design of sensor-based motion strategies. Hence,
robot-level languages are not accessible to the typical worker on the factory floor.

Lasano-1"Eres Idobut "ougranunaing

Many recent approaches to robot programming seek to provide the power of
robot-level languages withoul requiring programming expertise. One approach is
to extend the basic philosophy of guiding to include decision-making based on
sensing. Another approach, known as fask-level programming, requires specilying
goals for the positions of ohjects, rather than the motions of the robot needed
to achicve those goals. In particular, & task-level specification iz meant to be
completely robot-independent; no positions or paths that depend on the robot
geometry or kinematics are specified by the user. Task-level programming systems
require complete geometric models of the environment and of the robot as input; for
this reason, they are also referred to as world-modeling systems. Neither of these
approaches 1s as developed as the guiding and robot-level programming approaches,
however.

1.2. Goals of this paper

The goals of this paper are twolold: one, to identily the requirements for
advanced robot programming systems, the other to describe the major approaches
to the design of these systems. The paper is nof meant to be a catalog of all existing
robot. programming systems.

A discussion of the requirements for robol programming languages iz not
possilile without some notion of what the tasks to be programmed will be and
who the users are, The next section will discuss one task which 15 likely to be
representative of robot tasks in the near future. We will use this task to motivate
some of the detailed requirements later in the paper. The range of computer
sophistication of robot users is large, ranging from factory personnel with zero
programming expericnce to PhD's in computer science. It 15 a fatal mistake to
use this fact to argue for reducing the basic lunctionality of robot programming
systems to that accessible to the least sophisticated user. Instead, we argue that
robot programming languages should support the functional requirements of its
most sophisticated users. The sophisticated users can implement special-purpose
interfaces, in the language itself, for the less experienced users. This is the approach
taken in the design of computer programming languages; it also echoes the design
principles discussed in [Taylor, Summers, and Meyer 82,

Lengaivu-Edaes Hobal Frogramining

Figure 1. A representative robot application

CAMEEA

- s R A
il;f.- ’ e "‘
= i L G

2. A robot application

IFigure 1 illustrates & representative robot application. The task involves two
robols cooperatling to assemble a pump. Parls arrive, randomly eriented and in
arbitrary order, on two moving conveyor belts. The robot system performs the
following Tunctions: -

1. Determine the position and orientation of the parts, using a vision system.

2. Grasp the parts on the moving belts.

3. Place each part on a fixture, add it to the assembly, or put it aside for
Mture use, depending on the state of the assembly.

The following sequence is one segment of the application. The task is to grasp a
cover on the moving belt, place it on the pump base, and insert four pins so as to
align the two parts. Note the central rele played by sensory information.

1. Identify, using vision, the (non-overlapping) parts arriving on one of the
belts, a pump cover in this case, and determine its position and orientation
relative to the robot. During this operation, inspect the pump cover for
defects such as missing holes or broken tabs.

2. Move ROBOTL to the pre-specilied grasp point for the cover, relative to the
cover's position and orientation as determined by the vision system. Note
that if the belt continues moving during the operation, the grasp point
will need te be updated using measurements of the belt's position.

3. Grasp the cover using a programmer-specified gripping lorce.

Licetative L' Eres lEasbet M rogramnung

4. Test the measured linger opening against the expected opening at the
grasp point. If it is not within the expecled tolerance, signal an error.
This condition may indicate that the vision system or the control system
are mallunctioning,

5. Place the cover on the base, by moving to an approach position above
the base and moving down until a programmer-specified upward force is
detected by the wrist force sensor. During the downward metion, rotate
the hand so as to null out any torques exerted on the cover because of
misalignment of the cover and the base. Release the cover and record its
current position for Muture use.

6. In parallel with the previous steps, move ROBOTZ2 to acquire an aligning
pin from the feeder. Bring the pin to a point above the position of the first
hole in the cover, computed from the known position of the hole relative
to the cover and the position of the cover recorded above.

7. Insert the pin. One strategy for this operation requires tilting the pin
slightly to increase the chances of the tip of the pin falling into the hole
[Inoue 71, 74]. If the pin does not fall into the hole, a spiral search can
be initiated around that point [Goto 80, Taylor 76]. Once the tip of the
pin is seated in the hole, the pin is straightened. During this motion, the
robot is instructed to push down with a pre-specified force, to push in
the y direction (so as to maintain contact with the side of the hole), and
move 50 a5 to null out any forces in the z direction [Inoue 74]. At the end
of this operation, the pin position is tested to ascertain that it is within
tolerance relative to the computed heole position.

8. In parallel with the insertion of the pin by ROBOTZ2, ROBOT1 fetches another
pin and proceeds with the insertion when ROBOT2 is done. This cycle is
repeated until all the pins are inserted. Appropriate interlocks must be
maintained between the robots to aveid a collision.

This application makes use of four types of sensors:

1. Direct position sensors. The internal sensors, eg. potentiometers, or
incremental encoders, in the robot joints and in the conveyor belts are
used to determine the position of the rebol and the belt al any instant of
time,

2. Visien sensors. The camera above each belt is used to determine the
identity and position of parts arriving on the belt and to inspect them.

3. Finger louch sensors. Sensors in the Hngers are used to control the
magnitude of the gripping force and to detect the presence or absence of
objects between the fingers.

4. Wrist force sensors. The positioning errors in the robot, uncertainty in
part positions, errors in grasping position, and part tolerances all conspire
to make it impossible Lo reliably position parts relative to each other
accurately enough for tight tolerance assembly. It is possible, however, Lo

Laresnu- Fréres Hobat 'regrsisising

use the forces generaled as the assembly progresses to suggest incremental
motions that will achieve the degired final state; this is known as compliant
motion, e.g., [Mason 81).

Most of this application is possible today with commercially available robots and
vision systems. The exeeptions are in the use of sensing. The pin insertion, for
example, would be done today with a mechanical compliance device |Whitney
82 specially designed for this type of operation. Techmiques for implementing
compliant motion via force feedback are known, eg., [Paul 81, Raibert and
Craig 81, Shimano 78|; but current force feedback methods are not as fast or as
robust as mechanical compliance devices. Current commercial vision systems would
also impose limitations on the task, e.g., parts must not be touching. Improved
techniques for vision and compliance are key areas of robotics research.

Larmaimo- 1 Ere Iobul FFrugramining

3. Requiremerts of robot programming

The task described above illustrates the major aspects of sophisticaled robot
programming; sensing, world medeling, motion specification, and flow of control.
This section discusses each of these issues and their impact on robot programming,

1.1. Senzing

The vast majority of current industrial robot applications are performed using
position control alone without significant external sensing. Instead, the envirenment
is engineered so as to eliminate all significant sources of uncertainty. All parts are
delivered by feeders, for example, so that their positions will be known accurately
at programming time. Special purpose devices are designed to compensate for
uncertainty in each grasping or assembly operation. This approach requires large
investments in design time and special-purpose equipment lor cach new application.
Because of the magnitude of the investment, the range of profitable applications is
limited; because of the special-purpose nature of the equipment, the capability of the
system to respond to changes in the design of the product or in the manufacturing
method is negligible. Under these conditions, much of the potential versatility of
robots is wasted,

Sensing enables robols Lo perform tasks in the presence of significant
environmental uncertainties without special- purpose tooling. Sensors can be used to
identify the position of parts, Lo inspect parts, to detect errors during manufacturing
operations, and to accomodate to unknown surfaces. Sensing places two key
requirements on robot programming systems. The first requirement is to provide
general input and cutput mechanisms for acquiring sensory data. This requirement
can be met simply by providing the /O mechanisms available in most high-lewvel
computer programming languages, although this has seldom been done. The second
requirement is to provide versatile control mechanisms lor using sensory data
to determine robot molions. This need to specify parameters for sensor-based
muotions and lo specily alternate actions based on sensory conditions is the primary
motivation for using sophisticated robol programming languages.

Sensors are used for different purposes in robot programs; each purpose has
a separate impact on the system design. The principal uses of sensing in robot
pProgramming are:

1. Initiating and terminating motions.

2. Choosing among alternative actions.

3. Obtaining the identity and position of objects and features of objects.
4. Complying to external constraints.

The most common use of sensory data in existing systems is to initiate
and terminate motions, Most robot programming systemns provide mechanisms [or
waiting for an external binary signal before proceeding with execution of a program.
This capability is used primarily to synchronize robots with other machines. One

Lasganr Feren Hubol rogransming

cemmon application of this capability arises when acquiring paris from feeders; the
robot's grasping motion is initiated when a light-beam is interrupted by the arrival
of a new part at the feeder. Another application is that of locating an imprecisely
known surflace by moving towards it and terminating the appreach motion when
a micro-swilch is tripped or when the value of a force sensor exceeds a threshold.
This type of motion is known as a guarded move [Will and Grossman 75). Guarded
moves can be used to identify points on the edges of an imprecisely located object
such az a pallet. The contact points can then be used to determine the pallet’s
pusition relative to the robot and supply offsets for subsequent pick-up motions.
Section 4.1.2 lustrates a limited form of this technique available within some
existing guiding systems. General use of this technique requires computing new
positions on the basis of stores values; hence it is limited to robot-level languages.

The second major use of sensing is in choosing among alternative actions in
a program. One example is deciding whether to place an object in a fixture or
a disposal bin depending on the result of an inspeclion test. Another, far more
common, example arises when testing whelher a grasp or insert action had the
desired effect and deciding whether to take corrective action. This type of error
checking accounts for the majority of the statements in many robot programs.
Error checking requires the ability to obtain data from multiple sensors, such as
visual, force, and position sensors, to perforin computations on the data, and to
make decisions on the results.

The third major use of sensing in robot systems is in obtaining the identity
and position of objects or leatures of objects. For example in the application
described earlier, a vision module is used to identify and locate ohjects Arriving
on conveyor belts. Because vision systems are sizable programs requiring large
amounts of processing, they often are implemented in separate processors. The
robot program must be able, in these cases, to interface with the external system
at the level of symbolic data rather than at the level of *raw" sensory data. Similar
requirements arise in interfacing to manufacturing data bases which may indicate
Lthe identity of the objects in dilferent positions of a pallet, for example. From these
considerations we can conclude that robot programming systems should provide
general input /output interfaces, nol just a few binary or analog channels as is the
rule in today’s robot systems.

Onee the data from 2 sensor or database module is obtained, some computation
must be performed on the module’s output so as to obtain a target robot position.
For example, exisiting commercial vision systems can be used to compute the
position of the center of area of an object’s outline and the crientation of the line
that minimizes the second moment. These measurements are obtained relative to
the camera’s coordingte system. Before the object can be grasped, these data must
be related to the rebot’s coordinate system and combined with information about
the relationship of the desired grasp point to the measured data (see section 3.2).
Again, this points ouf the interplay between the requirements for obtaining sensory
data and for processing it.

The fourth mode of sensory interaction, active eompliance, is necessary in

Lousaaisi 'éres Hubul Prograimning

siluations requiring continuous molion in response to conlinuous sensory input.
Data from force, proximity, or visual sensors can be used to modify the robot's
motion so as to mainiain or achieve a desired relationship with other objects.
The force-controlled motions to turn a erank, for example, require that the target
position of the robet from instant to instant be determined from the direction
and magnitude of the forces acling on the robot hand, e.g., [Mason 81, Paul and
Shimano 76). Other examples are welding on an incompletely known or moving
surface, and inserting a peg in a hole when the position uncertainty is greater
than the clearance belween the parts, Compliant motion is an operation specific to
robotics; it requires special mechanisms in & robol programming system.

There are several techniques for speciflying compliant motions, for a review see
[Mason 83]. One method models the robot as a spring whose stiffnesses along each
of the six motion freedoms can be set [Hanalusa and Asada 77, Salisbury 80]. This
method ensures that a linear relationship is maintained between the force which
is sensed and the displacements from a nominal position along each of the motion
freedoms. A motion specification of this type requires the following information:

1. A coordinate frame in which the force sensor readings are to be resolved,
known as the constraint frame. Some common alternatives are: a frame
attached to the robot hand, a fixed frame in the room, or a lrame attached
to the object being manipulated,

3. The desired position trajectory of the robot. This specifies the robot's
nominal position as a Munetion of time.

3. Stiffnesses for each of the motion freedoms relative to the constraint frame.
For example, a high stiffness for translation along the z axis means that
the robot will allow only small deviations [rom the position specified in the
trajectory, even il high lorces are felt in the z direction. A low stillness, on
the other hand, means that a small force can cause a significant deviation
from the position specified by the trajectory.

The specification of a compliant motion for inserting a peg in a hole [Mason 83] is
as follows:

The constraint frame will be located at the center of the peg’s bottom surface,
with its z-axis aligned with the axis of the peg. The insertion motion will be a
linear displacement in the negative z direction to a position slightly below the
expected final destination of the peg. Figure 2 illustrates the coordinate system
and planned insertion motion.

The stifnesses are specified by a matrix relating the robot’s position parameters
to the force sensor inputs:

) f=Ka
where [is a 6 % 1 vector of lorces and torques, K is a 6 % 6 matrix of stifinesses, and
&5 a 6 1 vector of deviations of the robot from its planned path. While inserting

a peg in a hole, we wish the constraint frame to follow a trajectory straight down
the middle of the hole, but complying with forces along the x— and y-axes and

bsgamivu-i'eres Iubaol 1 roggraisming

——

with torques about the z- and y-axes. The stilfness matrix K for this task would
be a diagonal matrix

K= Ef‘fdg{ﬁ:n., .*.'ﬂr Ky, |I.T|:|| hh k]]
where ky indicates low stiffness and ky a high stiffness!.

The complexity of specifying the details of a2 compliant motion argues for
introducing special-purpese syntactic mechanisms inte robot languages. Several
such mechanisms have been proposed for dilferent compliant motion types [Mujtaba
and Goldman 79, Paul and Shimane 76, Paul 81, Salisbury Eﬂ]-

One key difference between the first three sensor interaclon mechanisms
and active compliance is extensgibility. The first three methods allow new sensors
and modules to be added or changed by the user, since the semantics of the
sensor is determined only by the user program. Active compliance, on the other
hand, requires much more integration between the sensor and the motion control
subsytem; a new type of sensor may require a significant system extension. ldeally,
a user’s view of compliant motion could be implemented in terms of lower-level
procedures in the same robot language. Sophisticated users could then modify this
implementation to suit new applications, new sensors, or new motion algorithms.
In practice, efficiency considerations have ruled out this possibility since compliant
motion algorithms must be executed hundreds of times a second?, This is not a
fundamenlal restriction, however, and inereasing compuler power, logether with
sophisticated compilation techniques, may allow {uture systems to provide this
desirable capability.

L e

"Unfortunately, the numerical choices for stiffnesses are dictated by detailed considerations of
characteristice of the environment and of the control system [Whitney 77, Hanafusa and Asada
7]

“{Geschke TE| describes a robot system architecture that enables dilferent sensers to be interfaced
ints the motion control subsystem from the user language lovel. See also [Paul Bl] for & different
proposal.

Lgano-béres Iubol Programenng

In summary, we have stressed the need for versatile input/output and
computation mechanisms to support sensing in robet programming systems. The
most. natural approach for providing these capabilities 153 by adopting & modern
high-level computer language as the basis for a rebot programming language. We
have identified one sensor-based mechanism, namely compliant motion, that requires
specific language mechanisms beyond those of traditional computer languages.

In addition to the direct mechanisms needed to support sensing within robot
programming languages, there are mechanisms needed due to indirect effects of the
reliance on sensing for robol programming. Some of these elfects are:

1. Target positions are not known at programming time; they may be
oblained from an external database or vision gensor or simply be defined
hy hitting something.

2. The actual path Lo be followed is not known al programming Lime; it may
be determined by the history of sensory inputs.

3. The sequence of motions is not known at programming time; the result of
senging operations will determine the actual execution sequence,

These elfects of sensing have significant impact on the structure of robot. programming
systems. The remainder of this section explores these additional requirements.

3.2, World modeling

Tasks that do not involve sensing can he specified as a sequence of desired
robot configurations; there is no need to represent the geometrical structure of the
environment in terms of objects, When the environment iz not known a priori,
however, some mechanism must be provided lor representing the positions of objects
and their features, such as surfaces and holes. Some of these positions are fixed
throughout the task, others must be determined from sensery information, and
others bear a fixed relationship with respect to variable positions. Grasping an
object, for example, requires specifying the desired position of the robot's gripper
relative to the object’s position. At execution time, the actual object position is
determined using a vision system or on-line database. The desired position for
the gripper can be determined by composing the relative grasp position and the
abgolute object position; this gripper position must then be transformed to a
robot configuration. A robot programming system should facilitate this type of
computation on object positions and robot configurations.

'The most eommon representation for object positions in robotics and graphics is
the homogeneous transform, represented by a 4 x 4 matrix [Paul 81]. A homogeneous
transform matrix expresses the relation of one coordinate frame to another by
combining & rotation of the axes and a translation of the origin. T'wo transforms can
be composed by multiplying the corresponding matrices. The inverse of a transform
which relates frame A to frame B iz a transform which relates 8 to A, Coordinate
[rames can be associated with objects and features of interest in a task, including
the robot Eripper or tool. Transforms can then be used to express their positions
with respect to one another.

Livsairo- 1 éres lulsul Prograiusing

Figure 3. World model with l:ﬂﬂ-[‘llii.lah}- frarﬁ_nas

. “f;'-/F
—
- —

——

R SR

A simple world model, with indicated coordinate frames, is shown in Figure 3.
The task is to visually locale the brackel on the table, grasp it, and insert the pin,
held in a stationary fixture, into the bracket’s hole. The meaning of the various
transferms indicated in the figure are as [ollows. C'am is the transform relating the
camera [rame to the WORLD frame. Grasp is the transform relating the desired
position of the gripper’s frame to the bracket’s frame. Let Sracke! be the unknown
transform that relates the bracket frame to WORLD, We will be able to obtain
from the vision system the value of HEt, a transform relating the bracket’s frame
to the camera’s lrame?. Hole is a transform relating the hole's [rame to that of the
bracket. The value of Hole 15 known from the design of the bracket. Pin relates
the frame of the pin to that of the fxlure. Fizfure, in turn, relates the fixture’s
frame to WORLD. Z relates the Irame of the robot base to WORLD. Our goal is
Lo determine the transform relating the end-effector’s (gripper's) frame, I9, relative
to the robol's base. Given [and 2, the robot's joint angles can be determined
(sce, for example, [Paul 81]).

The first step of the Lask is determining the value of Bracket, which is simply
Cam [fkt. The desired gripper position for grasping the bracket is:

sing only one camera we cannob determine the distance from the camera to the bracket
direcily. We assume instead that the distance to the table iz known.

Lusano=1"éres lebut rogramiming

£ E = Bracket Grasp

Sinee Cam is relative to WORLD, Bkt relative to Cam, and Grasp relative to
Ik¢, the composition gives us the desired gripper position relative to WORLD, i.e.,
& [. Al the target position we want the location of the hole relative to WORLD
to be equal to that of the pin; this relationship can be expressed as:

Bracket Hole = Fizture Pin
From thiz we can see Lhal

Bracket = Fizture Pin Hole !
Hence, the new gripper location is:

Z B = Firture Pin Hole™! Frasp

The use of coordinate frames to represent positions has twe drawbacks.
One drawback 18 that a coordinate frame, in general, does not specily a robot
configuration uniquely. There may be several robol conligurations that place the
end-effector in a specified frame. For a rebot with six independent motion freedoms,
there are usually on the order of eight robot configurations to place the gripper at
a specilied frame, Some frames within the robot’s workspace may be reached by
an infinite number of conligurations, hewever. Furthermore, for robots with mere
than six motion freedoms, the typical coordinate frames in the workspace will be
achievable by an infinite number of configurations. The dilferent configurations
that achieve a frame specilication may not be equivalent; some conligurations, for
example, may give rise Lo a collision while others may not. This indeterminacy needs
to be settled at programming time, which may be difficult for frames determined
from sensory data.

Another, dual, drawback of coordinate frames i3 that they “may overspecify
& confipuration. When grasping a symmetric object such as a eylindrical pin, for
example, it may not be necessary to specify the orientation of the gripper around
the symmetry axis. A coordinate frame will always specily this orientation, however.
Thus, il the vision system describes the pin's position as a ecoordinate lrame and
the grasping position is specified likewise, the computed grasp position will specily
the gripper’s orientation relative to the pin's axis. In some cases this will result
in & wasted alignment molion; in Lthe worsl case, the specified Trame may not be
reachable beecause of physical limits on joint travel of the robol. Another use of
partially specified object positions occurs in the interpretation of sensory data.
When the robot makes contact with an object, it acquires a constraint on the
position of that object. This information dees nol uniquely specily the object’s
posilion, but several such measurements can be used Lo update the robot's estimate
of the object’s positions. This type of computation requires representing partially
constrained positions or, equivalently, constraints on the position parameters [Taylor
76, Brooks 81].

Despite these drawbacks, coordinate frames are likely to continue being
the primary representalion of positions in robot programs. Therefore, a robot
programming system should support the representation of coordinate frames and
compulations on frames via transforma. But this is not all; a world model also should

Lz aivo=-éres Ikt 'rograisming

Ei.éure 1. .Sz.;l-'nb-ulic specilication ol positions

points, are not represented at all, and must still be specified. Therelore, the effective
use of CAD databases requires a high-level interface for specifying the desired
positions. Pointing on a graphics screen is one possibility, bul it suffers from the
two-dimensional restrictions of graphics [Ambler, Popplestone, and Kempl 82].
Another method [Ambler and Popplestone 75, Popplestone, Ambler, and Bellos 80]
is to describe positions by sets of symbolic spatial relationships that hold between
objects in each position. For example, the positions of Bleckl in Figure 4 must
salisly the following relationships:

(/3 Against f1) and (f4 Againsi [f2)

One advantage of using symbolic spatial relationships 15 that the positions they
denote are not limited to the accuracy of a light-pen or of a robot, but that of
the model. Another advantage of this method is that families of positions such as
those on a surface or along an edge can be expressed. Furthermore, people easily
understand these relationships. One small drawback of symbolic relations is that
the specifications are less concise than specifications of coordinate frames.

Another potentially important method of acquiring positions is the use of
vision. For example, two cameras can simultaneously track a peint of light from a
laser pointer and the system can compute the position of the point by triangulation
[Hasegawa 82|. One disadvantage of this method and of methods based on CAD
models is that there is no guarantee thal the specified point can be reached witheout
collisions.

We have focused on the representation of single positions; this rellects the
emphasis in current robot systems on end-point specification of motions. In many
applications, this emphasis is 'miap]aced. For example, in arc-welding, grinding,
slue application, and many other applications, the robot is called upen to follow
a complex path. Currenlly these paths are specified as a sequence of positions.
The next section discusses alternative methods of describing motions which require
representing surfaces and volumes. A large repertoire of representational and

Lusane-Fires Haobol Progranuning

computational tools is already available in CAD systems and Numerically Controlled
{NC) machining systems, e.g., |[Faux and Pratt 79].

In summary, the data manipulated by robol programs is primarily geometric.
Therefore, robol programming systems have a requirement to provide suitable
data input, data representation, and computational capabilities for geometric data.
OF these three, dala input is the most amenable to solutions that esxploit the
capabilities of robot systems, e.g., the availability of the robot and its sensors.

3.3. Motion specification

The most obvious aspect of robot programming is motion speeification. The
solution appears sitnilarly obvious: guiding. But, guiding 15 sufficient only when
all the desired positions and motiong are known at programming time. We have
poslponed a discussion of molion specification until after a discussion-of sensing
and modeling to emphasize the broader range of conditions under which robot
motion must be specified in sensor-based applications.

Heretofore, we have assumed that a robot motion is specified by its final
position, be it in absolute coordinates or relative to some object. In many cases,
this 1z not sufficient; & path lor the robot must also be specilied. A simple example
of this requirement arises when grasping parte: Lhe robot cannot approach the
grasp point from arbitrary directions; it must typically approach from above or risk
colliding with the part. Similarly, when bringing the part to add to a sub-assembly,
the approach path must be carefully specified. Paths are commonly specified by
indicating a sequence of intermediale positions, known as vta poinls, that the robot
should traverse between the initial and final positions.

The shape of the path between via points 15 chosen from among some basic
repertoire of path shapes implemented by the rebot control system. Three types of
paths are implemented in current systems: uncoordinated joint metions, straight
lines in the joint coordinate space, and straight lines in cartesian space. Each
of these represents a different tradeoll between speed of execulion and "natural”
behavior. They are each suitable to some applications more than others. Hobot
systems should support a wide repertoire of such motion regimes.

One importanl issue in motion specification arises due to the nen-uniqueness
of the mapping from cartesian to joinl coordinates. The systemm must provide
some well-defined mechanism for choosing among the alternative solutions. In some
cases, the user needs to identify which solution is called for. VAL provides a set
of configuration commands that allew the user to choose cne of the up to eight
joint solutions available at some cartesian positions. This mechanism 13 useful,
but limited. In particular, it cannot be extended to redundant robots with infinite
families of solutions or to specify the behavior at a kinematic singularity.

Some applications, such as arc-welding or spray-painting, can require very
fine control of the robot's speed along a path, as well as of the shape of the
path |Brady 83, Paul 81]. This type of specification is supported by providing
explicit trajectory conlrol commands in Lthe programming system. One simple set

Ligane-ires bt IPrograniining

of commandg could specily speed and acceleration bounds on the trajectory. AL
provides for additional specifications such as the Lotal time of the trajectory. Given
a wide range of constraints, it is very likely that the set of constraints for particular
trajectories will be inconsistent. The programming system should either provide a
well-defined semanties for treating inconsistent constraints® or make it impossible to
specily inconsistent constraints. Trajectory constraints also should ke applicable to
trajectories whose path 15 not known at programming time, for example, compliant
maotions.

The choice of via points for a task depends on the geometry of the parts, the
geometry of the robot, the shape of the path Lhe robob follows belween posilions,
and the placement of the motion in the robot workspace, When the environment is
not known completely at programming time, the via points must be specified very
conservatively, This can result in unnecessarily long motions.

An additional drawback of motions specified by sequences of robot configurations
is that the via points are chosen, typically, without regards for the dynamics of the
robot as it moves along the path. If the rebot is to go through the via points very
accurately, the resulting motion may have to be very slow. This is unfortunate,
since 1t is unlkely that the programmer meant the via points exactly. Some robot
syslems assume Lhal via points are not meant exactly unless told ostherwise. The
syslem then splines the motion between path segments to achieve a fast, smooth
maotion, but one that does not pass Lhrnugh the via points [F'a.u] 'S]]- The trouble
is that the path is then essentially unconstrained near the via points; furthermore,
the actual path followed depends on Lhe speed of Lthe molion.

A possible remedy for both of these problem 18 to specify the motion by
a sot of constraints between features of the robot and features of objects in the
environment. The execution system can Lthen choose Lhe “best” motion that satisifies
these constraints, or signal an error if no motion is pessible. This general capability
ig bevond the state of the art in trajectory planning, but a simple form has been
implemented. The user specilies a nominal carlesian path lor the robol plus some
allowed deviation from the path; the trajectory planner then plans a joint space
trajectory that satisfies the constraints [Taylor T9].

Another drawback of traditional motion specification iz the awkwardness
of specilying complex paths accurately as sequences of positions. More compact
descriplion of the desired path usually exist. An approach lollowed in NC machining
iz to deseribe the curve as the intersection of two mathematical surfaces. A recent
robot language, MCL [McDonnell Douglas 80|, has been defined as an extension to
AT, the standard NC language. The goal of MCL is to capitalize on the geometric
databases and computational tools developed within existing APT systems for
specilying robot motions. This approach is particularly altractive for domains, sueh
as aircraft manufacture, in which many of the parts are numerically machined.

*A wpecial case occurs when the computed path goos through a kinematie singularity. It is
impossible in general to satinfly trajectory constraints such as apeed of the end-effector at the
singularity,

Lagamsu Péres timbol rograimming

Another very general approach to trajectory specification is via user-supplied
]_'rm{-edures paramel.r:rimrl h-j.' time. Paul |"|""|", S'il refers to this as fﬂm:h'aﬂaﬂy
defined motion. The programming system executes the function to obtain position
goals. This method can be used, for example, to follow a surface obtained from
CAD data, turn 2 crank, and throw objects. The limiting factor in this approach
is the speed at which the function can be evaluated; in existing robot systems, no
mnethod exists for executing user procedures at servo rates.

A special case of functionally defined motion is motion specified as a function
of sensor values. One example is in compliant motien specifications, where some
degrees of freedom are controlled to satisly force conditions. Another example is a
motion defined relative to a moving conveyor belt. Both of these cases are common
enough that special purpose mechanisms have been provided in programming
systems. There are significant advantages Lo having these mechanisms implemented
using a common basic mechanism. -

In summary, the view of motion specification as simply specifying & sequence
of positions or robol configurations is too limiting. Mechanisms for geometric
specification of curves and functionally defined motion should also be provided. No
existing systems provide these mechanisms with any generality, however.

3.4. Flow of control

In the absence of any form of sensing, a fixed sequence of operations is the only
possible type of robot proegram. This model is not pewerful enough to encompass
sensing, however. In general, the program lor a sensor-based robot must choose
among alternative actions on the basis of it internal model of the task and the
data from ite sensors. The task of section 2, for example, may go through a very
complex sequence of states, because Lhe parts are arriving in random order and
hecause the execution of the various phases of the operation is overlapped. In each
state, the task program must specify the appropriate action for each robot. The
programming system must provide capabilities for making these control decisions.

The major sources of information on which control decisions can be based are:
sensors, control signals, and the world model. The simplest use of this information
is to include a test at fixed places in the program to decide which action should
be taken next, e.g, If (i < j) then Signal X else Moveto Y. One important
application where this type of contrel is suitable is error defection and correction.

Hohot operalions are subject to large uncertainties in the initial state of the
world and in the ellect of the actions. As a result, the bulk of robot programming is
devoted to error detection and correction. Much of this testing consists of comparing
the actual result of an operation with the expected results. One common example
is testing the finger opening after a grasp operation differs from the expected value,
indicating cither that the part is missing or a different part is there. This type of
tegt can be easily handled with traditional [I-THEN tests after completion of the
operation. This tesl is so common that robot languages such as VAL and ¥AVE [Paul
77| have made it part of the semantics of the grasp command.

Lusano-FParus lolal I rugl simining

Many robot applications also have other requirements that do not fall naturally
within the scope of the IF-THEN control structure. Robot programs often must
interact with people or machines, such as feeders, belis, NC machines, and other
robots. These external processes are execuling in parallel and asynchronously;
therefore, it 13 not possible to predict exactly when events of interest to the robot
program may occur. In the task of Section 2, for example, the arrival of a part
within the field of view of one of the cameras calls for immediate action: cither
one of the robots must be interrupted so as to acquire the part, or the belt must
be stopped until a robot can be interrupted. The previous operations may then be
resumed. Other examples occur in detecting collisions or part slippage from the
fingers; monitor processes can be created to continuously monitor sensors, bul they
must be able interrupt the controlling process and issue robol commands without
endangering ongeing tasks.

It is possible to uwse the signal lines supported by moest robot systems to
coordinate multiple robote and machines. For example, in the sample task, the
insertion of the pins into the pump cover (steps & through 8 in Section 2) requires
that ROBOT1 and ROBOT2 be coordinated so as to minimize the duration of the
operation while avoiding interference among the robots, If we let Robotl be in
charge, we can coordinate the operation using the following signal lines:

1. GET-PIN?: ROBOTZ asks if it is sale to get a new pin.

2. OK-TO-GET: ROBOTL says it is OK.

3. INSERT?: ROBOTZ asks il it iz safe to proeced to insert the pin.
4. OK-TO-INSERT: ROBOTI says it is OK.

5. DONE: ROBOT1 says it is all over.

-

The basic operation of the control programs could be as follows:

Lasganm-|"fres Hubal Programmmeng

ROBOT1 ROBOTE
Wait for COVER-ARRIVED 3: Ifsignzl DONE Goto 4
Signal OK-TO-GET Elgnal CET-FINY
i =1 Wait for OK-TO-GET
Call Place-Cover-in-Filyture Call Gat-Pin-2
i: Walt for INSERT-FIN? Eignal INSERT-PIN?
Eigna.l 0K -To- INSERT Wait for OK-TD=-IHSERT
if [i < np) then do Call Imgert-Fin-2
[€all Get-Pin-1 Goto 3
i:= i+1] 4: ...
else do
[ignal DONE
Gots 2]

Wait for GET-FINY

if (L « np) then do
[Eignal 0K=TO-GET
i = is1]

Call Inzert-Pin-1

Gota 1

This illustration of how a simple coordination task could be done with only binary
signals also serves to illustrate the limitations of the methed.

1. The programs are asymmetric; one robot is the master of the operation.
If the cover can arrive on cither belt and be retrieved by either robot,
then either an additional signal line is needed to indieate which robot
will be the master or both robot systerns must be subordinated to a third
controller. -

2. If one of the robots finds a defective pin, there 15 no way for it to cause
the other robot to insert an additional pin while it goes to dispose of the
defective one. The program must allecate new signal lines for this purpose.
In general, & large number of signals may be needed.

3. Because one robot does not know the position of the other one, it is
necessary lo coordinate them on the basis of very conservative criteria,
e g., being engaged in getting & pin or inserting a pin. This will result
in slow execution unless the tasks are subdivided very finely and tests
performed at each division, which is cumbersome.

4. The position of the pump cover and the pin-feeder must be known by each
process independently. Mo information obtained during the execution of
the task by one robol can be used by the other robot; it must discover
the information independently.

The difficulties outlined above are the due to limited communication between the
processes. Signal lines are a simple, but limited, method of transferring information
among the processes. In practice, sophislicated tasks require efficient means for
coordination and for sharing the world model (including the state of the robots)
belween processes.

Lgmbio- | ises obel Frogrammimg

The issue of coordinaltion between cooperating and competing asynchronous
processes is one of the most active research areas in Computer Science. Many
language mechanisms have been proposed for process synchromization, among these
are: semaphores [Dijkstra 68, events, conditional critical regions [Hoare 1972|,
menitors and gqueuves [Brinch Hansen 75], and comunicating sequential processes
[Hoare 78]. Robot systems should build upon these developments, perhaps by
using & language such as Concurrent Pascal [Brineh Hansen 75| or Ada |lchbiah
80] as a basc language. A Tew existing robot languages have adopted some of
these mechanisms, e.g., AL and TEACH [Ruofl T4, 0. Even the most sophisticated
developments in computer languages do not address all the robot coordination
problems, however.

When the interaction among robots is subject to critieal real-time constraints,
the paradigm of nearly independent control with periedic synchronization is
inadequate. An example occurs when multiple robots must cooperate physically,
e.g., in lifting an ohject too heavy for any one. Slight deviations from a pre-planned
position trajectory would cause one of the robots to bear all the weight, leading to
disaster. What iz needed, instead, is cooperative control of both robets based on
the force being exerted on both robots by the load [Ishida 77, Mason 81, Nakano
et al. T4|. The programming system should provide a mechanism for specifying the
behavior of systems more complex than a single robot. Another example of the need
of this kind of eoordination is in the programming a&nd control of multi-fingered
grippers [Salisbury and Craig 82].

In summary, existing robot programming systems are based on the view of a
robot system as a single robol weakly linked to other machines. In practice, many
machines including sensors, special grippers, feeders, conveyors, and several robots
may be cooperating during & task. Furthermore, the interactions between them may
be highly dynamie, e.g., Lo maintain a lorce between them, or may require extensive
sharing of information. Mo existing robot programming system adequately deals
with all of these interactions. In facl, no existing computer language is adequate
to deal with this kind of parallelism and real-time constraints.

3.5. Programming support

Robot applications do not occur in a vacuum. Robot programs often must access
external manufacturing data, ask users for data or corrective action, and produce
siatistical reports. These functions are typical of most computer applications
and are supported by all computer programming systems. Many robot systems
neglect to support them, however. In principle, the exercise of these Munctiens can
be separated lrom the specification of the task itself but, in practice, they are
intimately intertwined. A sophisticated robot programming system must first be a
sophisticated programming system. Again, this requirement can be readily achieved
by embedding the robot programming system within an existing programming
gystem. Alternatively, care must be taken in the design of new robot programming
gystems not to overlook the "mundane” programming functions.

Lusaiso-Pes flaleot 'rograinming

A similar situation exists with respect to program development. Robot program
development is often ignored in the design of rebol systems and, consequently,
complex robot programs can be very difficult to debug. The development of robot
programs has several characteristics which merit special treatment:

1. Robot programs have complex side-effects and their execulion time is
usually long, hence it is not always feasible to re-initialize the program
upen failure, Robot programming systems should allow programs to be
modified on-line and immediately re-started.

2. Sensory information and real-time interactions are not usually repeatable.
One useful debugging tool for sensor-based programs provides the ability
to record the sensor outputs, together with program traces.

3. Complex geometry and motions are difficult to visualize; simulators ean
play an important role in debugging, for example, see [Heginbotham,
Dooner, and Case 74, Soroka 80, Meyer 81].

These are not minor considerations, they are central to increased usefulness of
robol programming systems.

Most existing robol systems are stand-alone, meant to be used directly by a
single wser without the mediation of eomputers. This design made perfect sense
when robots were nol controlled by general-purpose computers; today it makes
little sense. A robot system should support a high-speed command interface to other
computers. Therefore, il a vser wants to develop an alternale interface, he need not
be linnted by the performance of the robot system’s user interface. On the other
hand, Lhe user can take advantage of the conlrol system and kinematics caleulations
i the existing system. This design would also facilitate the eoordirmtion of multiple
robots and make sophisticated applications easier to develop.

4. Survey of Robot Programming Systems

In this section, we survey several existing and proposed robol programming
systems.

4.1. Guiding

All robot programming systems support some form of guiding. The simplest
form of guiding is to record a sequence of robot positions that can then be “played
back™; we call this basic guiding. In robot-level systems, guiding is used to define
positions while the sequencing is specified in a program.

The dilferences among basic guiding systems are (a) in the way the positions
are specified and (b) the repertoire of motions between pasitions. The most commeoen
ways of specilying positions are: by specilying incremental motions on a teach
pendant, and by moving the robot through the motions, either directly or via a
master-slave linkage.

Loassmine 1 Ereg oot [*regramsiving

The incrementzl motions specilied via the teach-pendant can be interpreted
as: independent molion of each joint between positions, straight lines in the joint-
coordinate space, or straight lines in cartesian space relative to some coordinate
system, e. g., the robot's base or the robot’s end-effector. When using the teach-
pendant, only a few positions are usually recorded, on command from the instructor.
The path of the robol is then interpolated between these positions using one of the
three types of motion listed above.

When moving the robot through the motions directly, the complete trajectory
can be recorded as a series of closely spaced positions on a fixed time base. The
latter method is used primarily in spray-painting, where it is important to duplhcate
the input trajectory precisely.

The primary advantage of guiding is its immediacy: what you see is what
you get. In many cases, however, it is extremely cumbersome, as when the same
position (or a simple variation) must be repeated at different points in a task or
when fine positioning is needed. Furthermore, we have indicaled repeatedly the
importance of sensing in robotics and the limitations of guiding in the context
of sensing. Another important limitation of basic guiding is in expressing control
structures, which inherently require testing and describing alternate sequences.

4.1.1. Extended Guiding

The limitations of basic guiding with respect to sensing and control can be
abated, though not completely abolished, by extensions short of a full programming
language. For example, one of the most common uses of sensors in robot programs
is Lo determine the location of some ohject to be manipulated. After the object
is located, subsequent motions are made relative to the object’s coordinate frame.
This capability ean be accomodated within the guiding paradigm if taught motions
can be interpreted az relative to some coordinate frame that may be modified
at execution time. These coordinate frames can be determined, for example, by
having the robot move until a touch sensor on the end-elfector encounters an object.
This is known as a guarded motien or a search. This capability is part of some
commercial robot systems, e.g., ASEA [ASEA], Cincinatti Milacron [Holt 77|, and
JIELY]]Emseimml 77, Summers and Grossman HE]- Thais appma:h could be extended
to the case when the coordinate frames are obtained from a vision system.

Some guiding systems also provide simple control structures. For example, the
instructions in the taught sequence are given numbers. Then, on the basis of Lests
on external or internal binary signals, control can be transferred to different points
in the taught sequence. The ASEA and Cincinatti Milacron guiding systems, lor
example, both support conditional branching., These systems also support a simple
form of procedures. The procedures can be used to carry out common operations
performed at different times in the taught sequenece, sueh as commen machining
operations applied to palletized parts. The programmer can exploit these lacilities
Lo produce more compact programs. These control structure capabilities are limited,
however, primarily because guiding systems do nol suport explicit computation.

Losano-Férez Huobed Frogramming

 PIeKUP OPERATION
CRETHIL)

START

[
CONTARCT P
GEASFE FY /

To illustrate the capabilities of extended guiding systems, we present a simple
task programmed in the ASEA robot's guiding system®. The task is illustrated in
Figure §; it consists of picking a series of parts of different heights from a pallet,
moving them to a drilling machine, and placing them on a different pallet. The
resulting program has the following structure:

“This program is based on two program fragments ineluded in the ASEA manual [ASEA]

Lauzany-feres

1. Ho.

10

a0

ED

O

100
fig
130
140
160
1T
200
210
230
230
220

Instruction

DUTPUT OH 17
PATTERN
TEST JUNF 17
JUNF 170
OuTPUT OFF 17

HOLx
MO

WoD

OUTPUT OH 17
WO

Hoo

kbt Frougraniming

Reparks

Flag 0§ indicates do plekup
Begioning of procedure
Skip next instruction if flag is on

Mext time do put down

Fickup operation (see balow)
End of common code for pickup
Fegitloning for first pickup
Execute procedure

Fogitioning for second pickup
Execute procedurs

Machining and put down cperabtion
Next time do pickup

End of common code for put down
Pogition for first put down
Execute procedurs

Position for second put down

MNote that the MOD operation is used with two meanings: (1) to indicate the
end of a common section of the PATTERN, and (2] to indicate where the
common section is to be executed. The sequence of instructions exected would be:

10, 20,30, 50,60,...,100, ..., 6130, 30, 40,170, . ..

L 200, ..., 230,30,50,...

The key to the pickup cperation is that we can use a search Lo locate the top
surface of the part, so we need nol know the heights exactly. The pickup sequence
could be programmed as follows (fingers are assumed closed initially).

Prngr:ﬂntr action

. Fosition robot to FI.

2. Posivion vertically to F1.

10,
11.
12,

Lo Fl.

. PTPF

. Gelect gpeed for motiom

Position wertically to P2,
Gelect speed to P2,

ey code for search and
vartical operation.

- FIFF
. Bet grip opening and

seloct waitiog time,

GRIFFERS

Pogition wo P3.
Selact time for moticn.

Remarks

F2 iz en top the shortest part.
F1 is above the highest part, this motlon
insures that P1 is directly above P2,

Point-to-point motion with fine position
control at the end of the motion.
This marks the end of the search.

This code indicates that the moticn that
follows iz a gearch in vertical direction.

Fime poslitloning
Specify finger opening

Insert command to sctuate gTippers.
Grasping position {relative to P2).

Lemane- Héros Hobot Pragfamming

i3, FTFL Coordinated jeint motion, relative to the
positicon alter bthe search.
14, Set grip opening and Specify Tinger closing
salect walting Lime.
15. GRIFPERS Insert conmand be actuate grippers.

The putdown sequence would be programmed in & similar fashion.
4.1.2, O-line guiding

Traditional guiding requires that the workspace [or the task, all the tooling,
and any parts be available during program development. If the task involves a
single large or expensive parl, such as an airplane, ship, or automobile, it may
be impractical to wait until a completed part 15 available before starting the
programming; this could delay the complete manulacturing process, Alternatively,
the task environment may be in space or underwater. In these cases, a mockup of
the task may be built, but a more aliractive allernative is available when a CAD
model of the task exists. In this case, the task model together with a robot model
can be used to definc the program by off-line guiding. In this method, the system
simulales the motions of Lhe robot in response to a program or fo guiding input
from a teach pendant, Of-line guiding offers the additional advantages of safety and
versatility. In particular, it s possible to experiment with different arrangements
of the robot relative to the task so as to find one that, for example, minimizes task
execution Wime [Heginbotham, Dooner, and Case 79)

4.2, Mobot-level programming

In section 3 we discuszed a number of important functional issues in the design
of robot programming systems. The design of robol-level languages, by virtue
of its heritage in the design of computer languages, has inherited many of the
controversies of that noloriously controversial field. A lew of these controversial
issues are important in robot programming:

1. Compiler vs. interprefer, Language systems that compile high-lewvel
languages inte a lower-level language can achieve great efficiency of
oxccution as well as early detection of some classes of programming
errors. Interprelers, on the other hand, provide enhanced interactive
environments, including debugging, and are more readily extensible,
These human factors issuce have tended Lo dominate; most robot language
systems are interpreter based. Performance limitations of interpreters
have scmetimes interfered with achieving some uselul capabilities, such as
functionally defined motions.

2. New vs. old. [s it better to design a new language or extend an old one?
A new one can be tailored to the need of the new domain. An old one
is likely to be more complete, to have an established user group, and to
have supporting software packages. In practice, lew designers can avoid
the temptation of starting de nove; therefore most robol languages are

Lausaisc-éres lobal rograsiming

“new” languages. There are, in addition, difficulties in acquiring sources
for existing language systems. One advantage of interpreters in this regard
ig that they are smaller programs than compilers and, therclore, easier to
build.

In the remainder of the section, we examine some representative robot-level
programming systems, in roughly chronological order. The languages have been
chosen to span & wide range of approaches to robot-level programming. We use
examples to illustrate the “style” of the languages; a detailed review of all these
languages is beyvond the scope of this paper. We close the section with a brief
mention of some of the many other robot-level programming systems that have
been developed in the past ten years.

4.2.1. MHT 1960-1961

The first robot-level programming language, MHI, was developed lor one of
the carliest computer-coutrolled robots, the MH-1 at MIT |Ernst 61|. As opposed
to 1ts contemporary the Unimate, which was nol controlled by a general-purpose
computer and used no external sensors, MII-1 was equipped with several binary
touch sensors throughout its hand, an array of pressure sensors between the
fingers, and photo-diodes on the bottom of the fingers. The availability of sensors
fundamentaly affected the mode of programming developed for the MH-1.

MEI [Mechanical Hand Interpreter] ran on an interpreter implemented on
the TX-0 computer. The programming style in MHI was framed primarily around
guarded moves, i.e., moving unlil a sensory condition was delected. The language
primitives were:

1. move: indicates a direction and a speed.
2. until: test a sensor for some specified condition.
3. ifgoto: branch to a program label if zome condition is detected.

4. ifcontinue: branch to continue action il some condition holds.

A sample program, taken from [Ernst 61|, follows: .
&, move x far 130 i Move along x with speed 120
until 51 10 ral lol ; until gense organ 1

i lpdicates a decreage of 10, relative
Powe the value at start of this stap
i (eopdition 1)
until w1 206 Lol abs stp ; or until sense organ 1 ipdicates
; 208 or less abzelute, then stop.
; (condition 2)

ifgoto f1,b ; if conditionm 1 alone le fulfilled
;B0 Lo sequence b
ifgeto o £2 ¢ if at least conpdition 2 is fulfilled

i E9 o sequence o
ifcontinue t.a i in all other caszesz continue gequence &

Loz apa- P ésis Habal Frogramimisg

MHI did not support arithmetic or any other control structure beyond sensor
monitoring. The language, still, is surprisingly “modern” and powerful. It was to
be many years before & more general language was implemented.

4.2.2. WAVE 1970-19735

" The WAVE [Paul 77| system, developed at Stanford, was the earliest system
designed as a general-purpose robot programming language. WAVE was a "new”
language, whose syntax was modeled after the assembly language of the PDP-10.
¥AVE ran off-line as an assembler on & PDP-10 and produced & trajectory file
which was executed on-line by a dedicated PDP-6. The philosophy in WAVE was
that motions could be pre-planned and that only small deviations from these
motions would happen during execution. This decision was motivated by the
computation-intensive algorithms employed by WAVE for trajectory planning and
dynamic compensation. Detter algorithms and laster computers have removed this
rationale from the design of robot systems today.

In spite of WAVE's low-level syniax, the system provided an extensive repertoire
of high-level Tunctions. WAVE pioneered several important mechanisms in robot
programming systems; among these were:

1. The deseription of positions by the cartegian coordinates of the end-effector
(%,¥.2, and three Euler angles).

2. The coordination of joint motions to achieve continuity in velocities and
accelerations.

3. The specification of compliance in cartesian coordinates.

The following program in WAVE, from [Paul 77|, serves to pick up a pin and insert
it into a hole:

TRANE FIN ... i Location of pin

TEANE HOLE ... i Location of hole

LEEIGH TRIES 2 : Number of pickup attempts

HIVE PIN ; Mova to PIM. MWOVE first moves in +Z,

; then to & point above PIN, then -Z.

PICKUF:
CLOSE 1 ; Pickup pinm
SKIPE 2 ; Ekip next instruction if Error 2 occure
i [Errer 2: fingers closed beyond arg to CLOBE)
JUHF 0K i Error did not oceur, goto OK
OFEH & o Error did occur, open Lhe fing&l‘d
CHANGE 2,.-1,NIL, 0,0 < MWeve down one inch
2006 TRIES, PICKUFR ; Decrement TRIES, if not negative
; jump to PICKUP
WALT MO PIN ; Print "HO PIN® apd walt for operator

JNP PICKUP : Try again when operator types FROCEED

Lusgagio "Erea Hubod Progransmang

K
MWOVE HOLE ¢ Move above hole
ETOF FV,NIL i Etop on S0 oz,
CHANGE Z,-1 HIL.0,0 ; Try to go down ocne inch
EKIPE 23 i Error 23, failed to stop
JUKF HOHOLE i Error did net occur (pin hit surface)
FREE 2,X.¥ ; Proceed with inserticn by complying
. with forces along x and y
SPIN Z2,%.Y i Also comply with torques about x and y
STOP FV,.NIL ¢ Btop om 50 oz,
CHANGE £,-2 NIL.03,0 ; Hake the insertion
HOHOLE:
WAIT KO HOLE i Failed

Mote the use of mmp]iame and guarded moves Lo achieve robustness in t.I?e PTEEENCE
of uncertainty and for error recovery.

WAVE's syntax was dillieult, but the language supported & significant set of
robot [unctions, many of which still are not available in commercial robot systems.

4.2.3. MNINI 1972-1976

MINI [Silver 73], developed at MIT, was not a “new” language, rather it was an
extension Lo an existing LIS system by means of & few functions. The functions
served as an interface to a real-time process running on aseparate machine, LISP has
little syntax; it iz a large collection of procedures with common calling conventions,
with no distinction between user and system code. The robot contrel functions of
MINI simply expanded the repertoire of functions available to the LISP programmer.
Users could expand the basic syntax and semantics of the basic robol interface at
will, subject to the limitations of the control system. The principal limitation of
MINI was the fact that the robot joints were controlled independently. The robot
used with MINI was cartesian, which minimized the drawbacks of uncoordinated
point-to-point motions.

The principal attraction of “The Little Robot System” [Silver 73, Inoue
74| in which MINI ran was the availability of a high-quality 6 degree-of-freedom
force-sensing wrist |[Inoue 74, Minsky 72| which enabled sensitive force control of
the robot. Previous force-contrel systems either set the gains in Lthe servos to control
compliance [Inoue 71|, or used the error signals in the servos of the electric joint
motors to estimate the forces at the hand [Paul 72]. In either case, the resulting

force sensitivity was on the order of pounds; MINI's sensilivity was more than an
order of magnitude betler (approx. 1 oz.).

The basic functions in MINI set position or force goals lor each of the degrees of
freedom (SETN), reading the position and force sensors (GETM), and waiting for some
condition to cccur (WAIT). We will illustrate the use of MINI using a set of simple
procedures developed by Inoue [74]. The central piece of a peg-in-hole program
would be rendered as [ollows in MINL:

Lovana-Péres Hoaodied Frograumming

(DEFUUN NOVE-ABOVE (P OFFSET)
; 8et x,¥,.% goals and walt till they are reached
{¥= (X-LOCATION F))
(Y= (Y-LOCATION Fl)
(Z= (PLUS (Z-LOCATION F} OFFSET))
(WAIT “(AND (¥X) (®7) (D300

{DEFUN INSERT (HOLE)
(MOVE-ABOYE HOLE 0,25}
; define a target 1 inch below current poesitlon
(SETQ ZTARGET (DIFFERENCE (GETM ZPDS) 1.0))
. move down until a cortact force iz met or until
; the position target is metb.
(FZ= LANDING-FORCE)
(WALT '{0R {?FZ) (SEQ {GETM ZPO3} ZTARGET]})
(COND {{5EQ (GETW ZFO0S) ZTARGET)
; if the position geal wag met, 1. & no surface encountered
i comply with lateral [orces
(Fi= 0} (FY= 0}
; and pu_a:h down until lEIh'.iL'IE,]:I reglatance 1s mat,
(FZ= INSERTION-FORCE)
(WALIT “(FZ}22
[T ; if & surface wag encountered
(ERROR IWSERTI}Z]

MINT did not have any of the geometric and control operations of WAVE built
in, but meost of these could easily be implemented as LISP procedures. The
primary functional difference between the two systems lay in the more sophisticated
trajectory planning facilities of WAVE. The compensaling advantage of MINI was
that it did net require any pre-planning; the programs could use arbitrary LISP
computations Lo decide on motions in response to sensory input.

4.2.4, AL 1974-present

AL [Finkel, et al. 74, Mujtaba and Goldman 79] is an ambitious attempt to
develop a high-level language that provides all the capabilitics required for robot
programming as well as the programming leatures of modern high-level languages,
such as ALGOL and PASCAL. AL was designed to support robot-level and task-level
specification. The robot level has been completed and will be discussed here; the
task level development will be discussed in section 4.3.

AL, like WAVE and MINI, runs on two machines. One machine is responsible for
compiling the AL input inte a lower-level language that is interpreted by a real-time
control machine. An interpreter for the AL language has been completed, as well
[Binford 79). AL was designed to provide four major kinds of capabilities:

1. The manipulation capabilities provided by the WAVE system: cartesian
specification of motions, trajectory planning, and compliance.

Lsasii- Eares Mabal Programmmg

2. The capabilities of a real-time language: concurrent execution of processes,
synchronization, and on-conditions,

3. The data and control structures of an ALGOL-like language, including data
types Tor geometric calculations, e.g., vectors, rotations, and coordinate
frames.

4. Support for world modeling, especially the AFFIXMENT mechanism for
modeling attachments between {rames ineluding temporary ones such as

formed by grasping.
An AL program for the peg-in-hole task is:

BEGIN "ingert peg into hola"
FRAME peg_ bottom, peg__grasp, hole _bottom, hole__top:
{ The coordinates franes represent sctusl pesitions of cbject featires,
not hand positicns }
peg_bottom + FRAME(nilrot,VECTOR(Z20,30,0) *inches) ;
hole__bottom « FRAME(pilrot, VECTOR(2S,35,0)*inches);
{ Grasping position relative to peg_bottom]-
peg_ grasp + FRAME(ROT(zhat,180+*degrees) ,3*zhateinches)
trias = 2:
g:rn.:pud e FALEE: .
[The top of the hele iz defined to have a fixed relation to the bottom }
AFFIX hole _top te hole__bottom RIGIDLY
AT THANS(nilrot 3=zhateinches);

OPEN bhand T0 peg__diameter + 1*inches;
! Initiate the motion L the PeiE. pote the destinatcion Irame }
MOVE btarm TO pag_bottom * peg__grasp; -
WHILE NOT grasped AND i < tries OO
BEGIN *attampt grasp®
CLOSE bhand TO O # inchas;
IF bhand < peg diameter /2
THEN BEGIN "Ho object in grasp®
OFEM bhand TO peg_ diameter + 1 * inmches;
MOVE barm TO (& - 1 *= inches; { & indicaves current location }

ENL
ELEE grasped + TRUE;
i e i+ 1
EXD
IF NOT grasped THEN ABDRT("Failed to grasp the peg");

| Establizh & fixed relation between arm and peg }
AFFIX peg_ bottem TO barm RIGIDLY,

{ Hote that e move Lhe Fus_hr.‘a'l;.h:q., mot barm]-
MIVE pag_bottom TO hole__top;

{ Test if a hole iz below us }
NOVE barm TO (&) - 1 = inches
OM FORCE(zhat] > 10 = ounces DO ABDRT("Ho Hole®):

Luaana-Péres Rubol Programming

{ Exert downward force, while complying te side forces }
MOVE peg_bottem to hole_bottom DIRECTLY

WITH FORCE_FRANE = station IN WORLD:

WITH FORCE({zhat} = -10 * cunces

WITH FORCE({xhat) [= gunces

WITH FORCE(yhat) = 0 * ounces

SLOWLY;

END *insert peg in hole®

AL is probably the most complete robot programming system yet developed; it was
the first robot language to be a sophisticated computer language as well as a robot
control language. AL has been & significant influence on most later robot languages.

4,2.5. VAL 1975 present

VAL [Shimano 79, Unimation 80| is the robot language used in the industrial
robots of Unimation Inc., especially the PUMA series, It was designed to provide
a subset of the capabilities of WAVE on a stand-alone mini-computer. VAL 1s an
interpreter; improved trajectory caleulation methods have enabled it to forego any
off-line trajectory calculation phase. This has improved the ease of interaction with
the language. The basic capabilities of the VAL language are:

1. Point-to-point, joint-interpolated, and cartesian motions (including ap-
proach and deproach motions);

2, Specification and manipulation of cartesian coordinate frames, ineluding
the specification of locations relative to arbitrary [rames;

3. Integer variables and arithmetic, conditional branching, and procedures;

4. Setting and testing binary signal lines and the ability to monitor these
lines and execute a procedure when an event is detected.

VAL's support of sensing is limited to binary signal lines. These lines can be
used for synchronisation and also for limited sensory interaction as shown earlier.
VAL’s support of on-line frame computation is limited to composition of constant
eoordinate frames and fixed translation offsets on existing lrames. It does support
relative motion; this, together with the ability to halt a motion in response to a
signal, provides the mechanisms needed for guarded moves, The basic VAL also has
heen extended to interact with an industrial vision system |Gleason and Agin 79|
by acquiring the coordinate frame of a part in the field of view.

As a computer language, VAL is rudimentary; it most resembles the computer
language BASIC. VAL only supports integer variables, not floating point nu mhbers or
character strings. VAL does not support arithmetic on position data. VAL does not
support any kind of data aggregate such as arrays or lists and, although it supports
procedures, they may not take any arguments.

A sample VAL program for the peg-in-hole task is shown below. VAL does not
support compliant motion, so this operation assumes ecither that the clearance
between Lhe peg and hole is greater than the robot's accuracy or that a passive

Lesmatioe *éres [lubut 1Programiming

compliance device is mounted on the robot's end-effector [Whitney 82]. This limits
the comparisons that can be made to other, more general, languages. In the
example, we assume that a separate processor is monitoring a force sensor and
communicating with VAL via signal lines, In particular, signal line 3 goes high if the
% component of force exceeds a pre-set threshold.

BETI TRIES = 2

REWARE 1f the hand closes to less than 100 mm, go to statement labelled 20.

10 GRAREF 100, 20
AFMARE Otherwise contipue at statement 30.

GoTo 30

REMARK Open the fingers, displace down along world I axis and try againm.
20 OPENI 500

DRAW 0,0, -200

BETI TRIEE = TRIEE - 1

IF TRIES GE 0 THEN 10

TfFE WD FIN

sToF

REWATE Move 300mm above HOLE following a straight line,
30 APPRDE WOLE, 300
FEMARE Monitor signal lipe 3 and call procedurs ENDIT %o STOP the program
REMARE if the signal is activated during the next motlon.
REACTI 3, ENDIT
APPROS WOLE, 200
REMARE Did not feel force, 8o continue to HOLE,
HOVES HOLE

VAL has been designed primarily Tor operations involving pre-defined robet positions,
hence its limited support of computation, data structures, and sensing. A new
version of the systemn, VAL-2, is under developrnent which incorporates more support
for computation and communication with external processes,

4.2.6. AML 1977-present

aML [Taylor, Summers, and Meyer 82| is the robot language used in IBM's robot,
products. AML, like AL, 1s an attempt at developing & complete “new” programming
language for robotics that is also a [ull-Nledged computer language. The design
philesophy of AML is somewhat different {rom that of AL, however. Where AL focuses
on providing a rich set of built-in high-level primitives for robot operations, AML has
focused on providing & systems environment where different user robol programmming
interfaces may be built. For example, extended guiding [Summers and Grossman
2| and vision interfaces [Lavin and Lieberman 82| can be programmed within the
AML language itsell. This approach is similar to that followed in MINIL.

AML supports operations on data aggregates, which can be used to implement
operations on vectors, rotations, and coordinate frames, although these data types
are nob part of the language. AML also supports joint-space trajectory planning
subject to position and veloeity constraints, absolute and relative motions, and
sensor monitoring that ean interrupt motions. AML dees not suoport cartesian

Loaano-Peres ludsot Progirasnming

molion, compliant motion”, affixment of frames, or multiple processes. An AML
program for peg-in-hole might be:

FICKUP: SUBE (PART__DATA, TRIES);
MOVE(GRIFFER, DIANETER(PART_DATA)+0.2);
MOVE(<1,2.3>, XYZ__POSITION{PART_DATA)*<0,0,1%};
TRY__PICKUF(PART__DATA, TRIES);
ENLD;

ThY__PICKUF: SUBR(FART__DATA, TRIES);
IF TRIES LT 1 THEM RETURNC('NO PART");
DHOYE(3.-1.0);
1F GRASFIDIAMETER(FART_DATA}) = "NO FART®
THEN TRY__PICKUP{FART__DATA, TRIES - 1);
EXD:

GRASF: SUBRIDIAMETER, F):
FMOMS: NEW APFLY (% MONITOR, PIMCH__FORCE(F)):
MOVE(GRIPFER, 0. FMONS);
RETURN{ IF QPOSITION({GRIFFER) LE DIAMETER/2
THEH 'KD FART'
ELSE "PART"):
EHD;

INSERT: SUBRIFART__DATA, HOLE};
FHONS: HEW APPLY(S MONITOR, TIP__FORCE(LANDING _FORCE)),
MWOVE(<1,%2,3>, HOLE+<D, 0, .252);
TMOVE(S, -1.0, FMONS):
IF QUONITOR{FNONS) = 1
THEN EETURM{"NO HOLE'};
WOVE(2, HOLE{3) + FART _LENGTH(FART _DATA}]:
END;

FART __IN__MOLE: SUBR(FART_DATA, HOLE);
(FICKUP PART__DATA 2.):
{INSERT PART_DATA HOLE);
ERD:

This example has shown the implementation of low-level routines gsuch as GRASF,
thai are available as primitives in AL and VAL, In general, such routines would
be incorporated into a programming library available to users and wonld be
indistinguishable from built-in routines. The important point is that such programs
can be written in the language.

The &ML language design has adopted many deeisions from the designs of the
LISP and APL programming languages. AML, like LISP, does not make distinctions
between system and user programs. Also AML provides a versatile unilorm data
aggregate, similar to LISP's lists, whose storage is managed by the system. AML,
like APL and LISP, provides uniform facilities for manipulating aggregates and for
mapping operations over the aggregates.

"Compliant motions at low-speed could be written as user programs in AML by using ils semaor
1/0 operations. For high-speed motions, the real time control process would have to be extended.

Lenati I*dres Hebot Programiing

The languages, WAVE, MINI, AL, VAL, and AML are well within the mald of
traditional procedural languages, both in syntax and the semantics of all exeept a
few of their operations. The next three languages we consider have departed from
the main-line of computer programming languages in more significant ways.

4.2.7. TEACH 1975 - 1978

The TEACH language [Ruofl 79, 80] was developed as part of the PACS system
at Bendix Corporation. The PACS system addressed Lwo important issues that have
received little attention in other robot programming systems: the issue of parallel
execution of multiple tasks with multiple devices, including a variety of sensors;
and the issue of defining robot-independent programs. In addressing these issues
TEACH introduced several key innovations; among these were:

1. Programs are composed of partially ordered sequences of statements that
can be executed sequentially or in parallel.

2. The system supports very flexible mapping between the logical devices,
e.g., robots and fixtures, specified in the program and the physical devices
that carry them out.

3. All motions are specified relative to local coordinate frames, so as to enable
simple re-location of the motion sequence.

These features are especially important in the context of systems with multiple
robots and sensors, which are likely to be common in future applications. Few
attempls have been made to deal with the organization and coordination problems
of complex tasks with multiple devices, not all of them robots. Ruell [B0] reports
that even the facilities of TEACH proved inadequate in coping with very complex
applications and argues for the use of model-based programming tools.

4.2.H. PAL 1978-present

PAL [Takase, Paul, and Berg 78] is very different in conception from the
languages we have considered thus far, PAL programs consist primarily of a sequence
of homogeneous coordinate equations involving the locations of objects and of the
robot’s end-effector. Some of the transforms in these equations, e.g., those speciflying
the relative location of a feature to an object's frame, are delined explicitely in the
program. Other coordinate frames are defined implcitly by the equations; leading
the robot through an execution of the task establishes relations among these frames.
Solving for the impheitly defined frames completes the program.

PAL programs manipulate basic coordinate frames that define the position of
key robot features: Z represents the base of the robot relative to the world, Té
represents the end of the sixth (last) robot link relative to Z, and E represents the
position of the end-effector tool relative to T6. Motions of the tool with respect to
the robot base are arcomplished by specifying the value of Z + Té + E, where +
indicates composition of transforms. So, for example, 2 + T6 + E = CAM + BKT +
GRASF specifies that the end-effector should be placed at the grasp position on the
bracket whose position is known relative to a camera, as discussed in Section 3.2.

Losanos Péres Hobot Programmeng

The MOV <exp> command in PAL indicates that the “generalized” robot tool
frarme, ARM + TOL, is to be moved to <exp>. For simple motions of the end-effector
relative to the robot base, ARM 15 Z + T6 and TOL 15 E. We can rewrite ARM to indicate
that the motion happens relative to another object, e.g., the example zbove can be
rewritten to be

- BET - CAM + Z + TE + E = GRASP
In this case ARM can be set to the transform expression
- BET - CAM + Z + T&
MOV GRASP will then indicate that the end-effector is to be placed on the grasp
[rame of the bracket, as determined by the camera. Similarly, placing the pin in

the bracket’s hole can be viewed as redefining the tool frame of the robot to be at
the hole. This can be expressed as

- FIXTURE + Z + T6 + E - GRASF + HOLE = FIN
By setting ARM to - FIXTURE + 2 + T6 and TOL to E - GRASP + HOLE, MOV PIN will

have the desired effect. OF course, the purpose of setting ARM and TOL is to simplify
the expression of related motions in the same coordinate frame,

PAL is still under development; the system described in [Takase, Paul, and Berg
79] deals only with position data cbtained from the user rather than the robot. Much
of the development of PAL has been devoted to the natural use of guiding to define
the coordinate frames. Extensions to this systems to deal with sensory information
are suggested in [Paul 81]. The basic idea is that sensory information serves to
define the actual value of some coordinate frame in the coordinate equations.

4.2.9. BCL 1979 ~ present

MCL [McDennell Douglas 80] is an extension of the APT language for
Mumerically Controlled machining to encompass robot contrel, including the
following capabilities:

1. data types, e.g., strings, booleans, reals, and {rames;

2, eontrol structures lor conditional execution, iterative execotion, and
multi-processing;

3, real-time input and output;

4, vision interface, including the ability to define a shape to be located in
the visual feld.

Extending APT provides some ease of interfacing with existing machining facilities
including interfaces Lo existing geometric databases, By retaining APT compatibility,
MCL can also hope to draw on the existing body of skilled AP'T part programmers.
On the ether hand, the APT syntax, which was designed nearly 30 years ago, is
not likely to gain wide acceptance ocutside of the NC-machining community.

4.2.10. Additional systems

Many other robot language systems are reported in the literature, among these
are:

|ieania-1¢res Hobot Programming

1. ML [Will and Grossman 75 is 2 low-level robot language developed at IBM,
with operations comparable to those of a computer assembly language.
The motion commands specified joint motions for an (almost) cartesian
robot. The language provided support for guarded moves by means of
SENS0R commands that enabled sensor monitors; when a menitor was
activated by a sensor value outside of the specified range, all active motions
were terminated. ML supported two parallel robot tasks and provided for
simple synchronization between the tasks.

2, EMILY [Evans, Garnett, and Grossman 76| was an off-line assembler for
the ML language. It raised the syntax of ML to a level comparable to
FORTRAN.

3. MAPLE [Darringer and Blasgen 75] was an interpreted AL-like language,
also developed at IBM. The actual manipulation operations were carried
out by using the capabilities of the ML system described earlier. MAFLE
never received significant use.

4. SIGLA [Salmon 78], developed at Olivetti for the SIGMA robots, supports
a basic set of joint motion instructions, testing of binary signals, and
conditional tests. It is comparable to the ML language in syntactic level.
SIGLA supports pseudo-parallel execution of multiple tasks and some
simple force-control.

5. MAL [Gini, et al. 79], developed at Milan Pelytechnic, Italy, is a BASIC-like
language for controlling multiple cartesian robots. The language supports
multiple tasks and task synchronization by means of semaphores.

6. LAMA-S [Falek and Parent 80|, developed at IRIA, France, is a VAL-like
language with support for on-line computations, for arrays, and for
peeudo-parallel execution of tasks.

7. LM |[Latombe and Mager 81|, developed at IMAG, Grenoble, France, is
a language that provides most of the manipulation facilities of AL in
a mini-computer implementation. LM also supports alfixment, but not
multi-processing. LM is being used as the programming language for a
recently announced industrial robot produced by Scemi, Inc.. -

8. RAIL [Franklin and Vanderbrug 82}, developed at AUTOMATIX Ine.
RAIL includes a large subset of PASCAL; it supports computations on
a variely of data types, as well as providing high-level program control
mechanisms. RAIL provides interfaces to binary vision and robot welding
systems. The language has a Hexible way of defining and accessing input
or output lines, cither as single or multiple bit numbers. RAIL statements
are translated into an intermediate representation which can be executed
efliciently while enabling interactive debugging. RATL is syntactically more
sophisticated than VAL; it is comparable to AML and LM. RAIL does not
support multi-processing or affixment.

This is not a complete list, new languages arc being developed every year, but it is
represcntative of the state of the art.

Lastaiso=Péres limbat Frogramming

1.3. Task-level programming

Robot-level languages describe tasks by carefully specilying the robot actions
needed to carry it out. The goal of fask-level programming systems [Park 77),
on the other hand, is to enable task specification to be in terms of operations on
the objects in the task. The peg-in-hole task, for example, would be deseribed as:
TNSERT PEG IN HOLE, instead of the sequence of robot motions needed to accomplish
Lhe insertion.

A task planner transforms the task-level specifications into robot-level
specifications. To do this transformation, the task planner must have a description
of the objects being manipulated, the task environment, the robot carrying out
the task, the initial state of the envirenment, and the desired final state. The
output of the task planner is a robot-level program to achieve the desired final
state when executed in the specified initial state. If the synthesized program is to
reliably achieve its goal, the planner must take advantage of any capabilities lor
compliant motion, guarded motion, and error checking. Hence the task planner
must svnthesize & sensor-based robot-level program.

Task-level programming is still & subject of research; many unselved problems
remain. The approach, however, 15 a natural outgrowth of ongoing research and
development in CAD/CAM and in artificial intelligence.

Task planning can be divided into three phases: modeling, task specification,
and robol program synthesis. These phases are not computationally independent,
but they provide a convenient conceptual division of the problem.

4.3.1. World Modeling

The world model for a task must contain the following information:
geometric descriptions of all objects and robots in the task environment;
physical description of all objects, e.g., mass and inertia;

kinematic descriptions of all linkages;

Ll

descriptions of robol characteristics, e.g., joint limits, acceleration bounds,
and sensor capabilities,

Moidels of task states also must include the positions of all objects and linkages in
the world model. Moreover, the model must specily the uncertainty associated with
cach of the positions. The role that each of these items plays in the synthesis of
robot programs will be discussed in the remainder of the section. But first, we will
explore the nature of each of the descriptions and how they may be obtained.

The geometric description of objects is the principal component of the world
model. The major sources of geometric models are computer-aided design ({CAD)
systems, although computer vision may eventually become a major source of models
[Brady 82]. There are three major types of commercial CAD systems, dilfering on
their representalions of solid objects:

1. line - ohjects are represented by the lines and curves needed to draw
them,

Logano- Héres Hobet *rugrasmming

Figure 6. Models obtained by set operations on primitive volumes

{AUBUC)—D

9, surface — objects are represented as a set of surfaces, and
3. solid ~ objects are represented as combinations of primitive solids.

Line systems and some surface systems do not represent all the geometric information
needed for task planning. A list of edge descriptions, for example, is not sullicient to
describe a unique polyhedron, e.g., [Markowsky and Wesley 80]. In general, a solid
modeling system is required to obtain & complete deseription. In solid modelers,
models are constructed by performing set operations on a few types of primitive
volumes. The objects depicted in Figure 6, for example, can be described as the
union of two solid eylinders A and B, a solid cube ', and a hollow cylinder I. The
descriptions of the primitive and compound objects vary greatly among existing
gystems. For surveys of geometric modeling systems, see |Braid 78, Baer, Eastman,
and Henrion 79, Hequicha ﬂﬂ]

The legal motions of an object are constrained by the presence of other objects
in the environment and the form of the constrainis depend in detail on the shapes
of the objects. This is the fundamental reason why a task planner needs geometrie
descriptions of objects. There are additional constraints on motion imposed by
the kinematic structure of the robot itsell. Il the rebot is turning a crank or
opening a valve, then the kinematics of the erank and the valve impose additional
restrictions on the robot’s motion. The kinematic models provide the task planner
with the information required to plan robot motions that are consistent with
external constraints. Examples of kinematic models and their use in planning robot
motions can be found in [Mason 81|

The bulk of the information in & world model remains unchanged throughout
the execution of a task. The kinematic descriptions of linkages are an exceplion,
however. As a result of the robot’s operation, new linkages may be created and old
linkages destroyed. For example, inserting a pin into & hole creates a new linkage
with cne rolational and one translational degree of lreedom. Similarly, the effect of

LuganePires [obaol 1Programming

inserting the pin might be to restrict the motion of one plate relative to another,
thus removing one degree of frecdom from a previously existing hnkage. The task
planner must be appraised of Lhese changes, either by having the user specify
linkage changes with each new task state, or by having the planner deduce the new
linkages from the task state description.

In planning robot operations, many of the physical characteristics of objects
play important roles. The mass and inertia of parts, for example, will determine
how [ast they can be moved or how much force can be applied to them before
they lall over. Also, the coefficient of friction between a peg and a hole affects the
jamming conditions during insertion (see, ¢.g., |Ohwovericle and Roth 81, Whitney
82]). Henee, the world model must include a deseription of these characteristics.

The [easible operations of a robot are not sufficiently characterized by its
geometrical, kinematical, and physical deseriptions. We have repeatedly stressed
the importance of a robol's sensing capabilities: touch, force, and vision. For
task planning purposes, vision allows obtaining the position of an object to some
specified accuracy, at execulion time. Force sensing allows performing guarded and
compliant motions. Touch information could serve in both capacities, but its use
remains largely unexplored [Harmon 82]. In addition to sensing, there are many
individual characteristics of robots that must be described in the world model:
velocity and acceleration bounds, positioning accuracy of pach of the joints, and
workspace bounds, for example.

Much of the complexity in a world model arises [rom medeling the robot, which
is done once. Geometrie, kinematic, and physical models of other objects must
be provided for each new task, however. The underlying assumption in task-level
langauges is that this information would have been developed as part of the design
of these objects. I this assumption does not hold, the modeling effort required for
a task-level specification, using current modeling methods, might dwarl the effort
needed to generate a robot-level program to carry out the task.

4.3.2. Task Specilication

Tasks can be specified to the task planner as a sequence of models of the
world state al several steps during execution of the Lask. An assembly of several
parts, for example, might be specilied by a sequence of models as each part is
added to the assembly. Figure T illustrates one possible sequence of models for a
simple task. All of the models in the task specification share the descriptions of
the robot's environment and of the objects being manipulated; the steps in the
sequence differ only in the positions of the objects. Hence, a task specification is,
at first approximation, a model of the robot’s world together with a sequence of
changes in the positions of the model components.

A model state is given by the positions of all the objects in the environment.
Henee, tasks may be delined, in principle, by sequences of states ol the world
model. The sequence of model states needed to [ully specily a task depends on
the capabilities of the task planner. The ultimate task planner might need only
a description of the initial and final state of the task. This has been the goal of

Lesamo-Féren Hobal Programmiag

Figure 7. Task Deseription as a sequence of model states,

BAeoring &

Spacer
Baaring |

much of the research on automatic problem solving within artificial intelligence
(see, e.g., [Milsson 80]). These problem solving systems typically do not specifly the
detailed robot motions necessary to achieve an operation®. These systems typically
produce a plan where the primitive commands are of the form: PICKUP(A)
and M’GVET[]{F] without spucifying Lhe robot path or any sensory operations,
In contrast to these systems, task planners need significant information about
intermediate states, but they can be expected to produce a much more detailed
robol prograrm.

The positions needed to specily a medel state are essentially similar to those
needed to specify posilions lo robot-level systems. The option of using the robot te
specily positions is not open, however. The other techniques described in Section
3.2 are still applicable. The use of symbolie spatial relationships is particularly
attractive for high-level task specifications.

We have indicated that model states are simply sets of positions and task
specifications are sequences of models. Therefore, given a method such as symbaolic
gpalial relationships for specifying positions, we should be able to specify tasks.
This approach has several important limitations, however. We noted earlier that
a set of positions may overspecifly a state. A lypical example [Finkel 78] of this
dilliculty arises with symmetric objects, for example a round peg in a reund hole.
The specific orientation of the peg around its axis given in a model is irrelevant to
the task. This problem can be solved by treating the symbolic spatial relationships
themselves as specifying the state, since these relationships can express families of

*The most prominent exception is STRIPS [Nilsson 9], which included mechanisms to carry
oul Lthe plan in Lthe real world,

Luganc- s Hubot 'ugramming

positions. Another, more fundamental limitation, 15 that geometric and kinematic
models of an operation's final state are not always a complete specification of the
desired operation. One example of this is the need to specify how hard Lo Lighten
a bolt during an assembly. In general, a complete description of a task may need
to include parameters of the operations used to reach one task state from another.

The alternative to Lask specification by asequence of model states is specification
by a sequence of operations. Thus, instead of building 2 model of an object in
its desired position, we can describe the operation by which it can be achieved.
The description should still be object-oriented, not robot-oriented; for example,
the target torque for tighlening a bolt should be specified relative to the bolt and
not the robot joints. Operations will also include a goal statement involving spatial
relationships between objects. The spatial relationships given in the goal not only
specily positions, they also indicate the physical relationships between objects that
should be achieved by the operation. Specifying that two surface are Against each
other, for example, should produce a compliant motion that moves until the contact
is actually detected, not a motion to the pesition where contact is supposed to
oceur. For these reasons, existing proposals for task-level programming languages
have adopled an operation-centered approach to task specifieation [Lieberman and
Wesley 77, Losano-Péres 76].

The task specified as a sequence of model states in Figure 7 can be specified
by the following symbolic operations, assuming that the model includes names for
objects and object features:

FLACE BEARINGT S0 (SHAFT FITS BEARING1.HOLE} AND
(BEARINGL _BOTTOM AGAINST SHAFT.LIF)

FLACE SPACER 50 (SHAFT FITS SPACER.HOLE} AMD
(SPACER.BOTTOM AGAINET BEARINGL.TOP)

FLACE BEARINGZ 30 (SHAFT FITS BEARINGZ HOLE} AKD
(BEARINGZ BOTTOM AGATMST SPACER.TOP)

FLACE WASHER 350 (SHAFT FITS WASHER.HOLE) AND
(WASHER BOTTOM AGCAINET BEARINGZ.TOP)

SCHEN-IN MUT ON SHAFT TO (TORQUE = =0)

The first step in the task planning process is transforming the symbolic spatial
relationships among object features in the SO elauses to cquations on the position
parameters of objects in the model. These equations must then be simplified as far
as possible to determine the legal ranges of positions of all objects |Ambler and
Popplestone 75, Papplestone, Ambler, and Bellos 80, Taylor T6]. The symbolic form
of the relationships is used during program synthesis also.

We have mentioned thal the actual positions of objects at task execution
time will differ from those in the model; among the principal sources of error are
part varialion, robot position errors, and maodeling errors. Rohot. programs must
tolerate some degree of uncertainty if they are to be useful, but programs that

Lupana-Péres Haolzol Frogramming

guarantee success under worst case error assumptions are difficult to write and slow
to execute. Hence, the task planner must use expectations on the uncertainty fo
choose motion and sensing strategies that are efficient and robust [Inoue 74]. If the
uncertainty is loo large to guarantee success, then additional sensory capabilities
or fixtures may be used to limit the uncertainty [Brooks 82b, Taylor 76). For this
reason, estimated uncertainties are a key part of task specification.

It is not desirable te specify uncertainties numerically for each position of
each state. For rigid objects, a more atiractive alternative is to specily the initial
uncertainty of each object and use the task planner Lo update the uncertainty as
operations are performed. For linkages, information on uncertainty at each of the
joints can be used to estimate the position unecertainty of each of the links and of
grasped objecls [Brooks 81, Taylor T6).

4.3.3. Ilwbot Program Synthesis

The synthesis of a robol program from a task specification is the ecrucial
phase of task planning. The major steps invelved in this phase are grasp planning,
motion planning, and plan checking. The output of the synthesis phase is a
program composed of grasp commands, several kinds of motion specifications,
sensor commands, and error tests. This program 1s in a robot-level language lor a
parlicular robot and is suitable for repeated execution without re-planning.

Cirasping is a key operation in robot programs since it affects all subsequent
motions. The grasp planner must choose where Lo grasp objects so that no collisions
will result when grasping or moving them [Laugier 81, Lozano-Péres 76, 81, Mathur
74, Wingham 77|. In addition, the grasp planner must choose grasp positions so
that the grasped objects are stable in the gripper |Brady 82, Hanafusa and Asada
76, Paul T2|. In particular, the grasp must be able to withstand the forces generated
during motion and contact with other objects. Furthermore, the grasp operation
should be planned so that it reduces, or at least does nol increase, any uncerlainty
in the position of the object to be grasped [Mason 82|,

Once the object is grasped, the task planner must synthesize motions that will
achieve the desired goal of the operation reliably. We have seen that robol programs
involve three basic kinds of motions: free, guarded, and compliant. Molions during
an assembly operation, for cxample, may have up lo four sub-motions: a guarded
departure [rom the current position, a free motion towards the destination position
of the task step, & guarded approach Lo contact at the destination, and a eompliant
molion Lo achieve the goal position.

During free motion, the principal goal is to reach the destination without
collision; therefore, planning free motions is a problem in obstacle avoidance. Many
obstacle-avoidance algorithms exist but none of them are both general and efficient.
The type of algorithm that has received the most attention are those that build an
explicit description of the constraints on motion and search for connected regions
satisflying those constraints; see, o, Iﬁruuks 82a, Brooks and Lozano-Péres 52,
Kuntze and Schill 82, Losano-Pérez 81, Lozano-Pérez and Wesley 79, Schwartz and
Sherir 81, 82, Udupa 77]. A simple example of this kind of technique is illustrated in

Logans- Pires lobot Programming

Figure 8. Two Equivalent Obstacle Aveidance Problems

-

Figure 8. A moving pelygon A = J; A;, with distinguished point v4, must translate
among obstacle polygons B;. This problem is equivalent to the problem in which
4 translates among transformed objects Cy ;. Hach Cy; represents the forbidden
positions of v, arising because of potential collisions between A; and B;. Any curve
that does not overlap any of the Oy, is a safe path for A among the B;. Exlensions
of this approach can be used to plan the paths of cartesian robots [Lozano-Pérez
81, Lozano-Péres and Wesley T9].

Compliant motions are designed to maintain contact among objects even in
the presence of uncertainty in the location of the objects; see [Mason 83| for a
review. The basic idea is that the robet can only contrel its position along the
tangent to a surface” without violaling the constraints imposed by the surface. In
the direction normal to the surface, the robot can only contrel forces if it is to
guarantee contact with the surface. The planning of compliant motions therefore
requires models that enable one to deduce the directions which require force control
and these that require position control. This planning is most complicated when
the robot interacts with other mechanisms [Mason 81].

Compliant motions assume that the robot is already in conlact with an object;
guarded motions are used to achieve the initial contact with an object [Will and
Grossman 75). A guarded motion in the presence of uncertainty, however, does
not, allow the program to determine completely the relative position of the objects,
several possibilities may be possible as a result of the motion (see Figure 9). A
strategy, composed of compliant molions, guarded molions, and sensing, must be
synthesized to reliably achieve the specified goal. In particular, for the example in
Figure 0, the strategy must guaraniee that the desired final state is achieved no

9, rface in this context actually means a configuration spoce surface, e, the manifold of position
and orientation parameters that ensure a particular kind of contact between two ohjects, sow
[Lozanc-Pdres E1, Mason El.]

Lavsano "éres Hobol Frogramining

Figure 9. Ambiguous Results of a Guarded Motion under Uncertainty
EJ / i

matter which of the possible states actually is reached. |Brooks 82b, Latombe 82,
Lozano-Pérez 76, Lozano-Péres, Taylor, and Mason 82, Taylor 76).

Maost of the difficulty in deoing molion synthesis stems lrom the need to operate
under uncertainty in the positions of the objects and of the robot. These individual
uncertainties can be modeled and their combined effect on positions computed.
The requirements for successful completion of task steps can be used to choose
the strategy for execulion, e.g., an insertion with large clearance may be achieved
by a pesitioning motion, while one with little clearance might require a guarded
motion to find the surface followed by a compliant motion |Brooks 82b, Taylor
T6]. In genersl, the uncertainty in the position of objects may be too large to
guarantee that some motion plan will suceeed. In these cases, non-contact scnsing
such as vision may be used at run-time to reduce the uneertainty. The task planner
must decide when such information is likely to be useful, given that the sensery
information also will be subject to error. This phase of task planning has been
dubbed plan checking; it is treated in detail by [Brooks 82h|.

Task planning, as described above, assumes that the actual state of the world
will differ frem the world model, but only within known bounds. This will not
always be the case however; objects may be outside the bounds of estimated
uncertainty, objects may be of the wrong type, or objects may be absent altogether.
In these cases and many others, the synthesized programs will not have the expected
result; the synthesized program should delect the Tailure and ecither eorreet it or
discontinue the operation, Error detection will avold possible damage to the robot

Losano-Fénes Rebot |'rogramming

and other parts of the envirenment. Hence, an important part of robot program
synthesis should be the inclusion of sensory tests for error detection. Error detection
and ecorrection in robot programs is a very difficult problem, but one for which very
little research is available [Brooks 82b, Gini, Gini, and Somalvico 81, Lozano-Péres
76).

4.3.4. Task-level systems

A number of task-level language systems have been propoesed, but no complete
system has been implemented. We saw above thalt many fundamental problems
remain unsalved in this area; languages have served primarily as a focus of research,
rather than as usable systems.

The MOVE-INSTANCE system [Feldman, et al. 71| was the first of the task-level
system proposals. A subset of this proposal was implemented [Paul 72|, namely, a
program that chose stable grasping positions on polyhedra and planned a motion
to aproach and move the object. The planning did not involve obstacle avoidance
(except for the table surface) or the planning of sensory operations.

The initial definition of AL |Finkel, et al. 74| called for the ability to specify
models in AL and to allow specification of operations in terms of these models. This
has been the subject of some research [Binford 79, Taylor 76|, but the results have
not been ineorperated into the existing AL system. Some additional work within the
context of Stanford's Acronym system [Brooks 81] has dealt with planning grasp
positions [Binford T9), but AL has been viewed as the target language rather than
the user language.

Taylor [76] discusses an approach to the synthesis of sensor-based AL programs
from task-level specifications, Taylor's method relies on representing prototypical
motion strategies for particular tasks as parameteriged robot programs, known as
procedure skeletons. A skeleton has all the motions, error tests, and computations
needed to carry out a task, but many of the parameters needed Lo specily motions
and tests remain to be specified, The applicability of a particular skeleton to a task
depends on the presence of certain features in the model and the values of parameters
such as clearances and uncertainties. Choices among alternative strategies for a
single operation are made by first computing the values of a set of parameters
specific to the task, such as the magnitude of uncertainty region for the peg in
peg-in-hole insertion, and then using these parameters to choose the “best”, e.g.,
[astest, strategy. Having chosen a strategy, the planner computes the additional
parameters needed to specify the strategy motions, such as grasp positions and
approach positions. A program is produced by inserting these parameters into the
procedure skeleton that implements the chosen strategy.

The approach to stralegy synthesis based on procedure skeletons assumes that
task geometry for common sub-tasks is predictable and can be divided into a
manageable number of classes each requiring a different skeleton. This assumption
it needed because the sequence of motions in the skeleton will only be consistent
with & particular class of geometries. The assumption does not seem to be true
in general. As an example, consider the tasks shown in Figure 10. A program for

Lvaane-ired Hobot Frogramming

Figure 10. Similar Peg-in-Hole Tasks Which Require Dillerent Sirategies

1 = AT

__L_._ — -

A B. c.

—r e -

task A could perhaps be used to accomplish tasks B and C, but it could not be
guaranteed to work relizbly. In particular, the presence of additional surlaces in
tazks B and C may generate unexpected contacts, leading to failures. This approach
conlrasts to an approach which derives the strategy directly from consideration of
the task description [Losano-Péres, Taylor, and Mason 82|, In advanced systems,
both Lypes of approaches are likely to play a role.

The LAMA system was designed at MIT |Lozano-Pérez 76, Lozano-Péres
and Winston 77| as a task-level language, but only partially implemented. LAMA
formulated the relationship of task specification, obstacle avoidance, grasping,
skeleton-based stralegy synthesis, and error detection within one system. More
recent work at MIT has explored issues in task planning in more detail outside of the
contexl of any particular system [Erntrks 82a, 82b, Lozano-Péres 81, Losano-Péres,
Taylor, and Mason 82, Mason 81, 82].

AUTOPASS, at IBM [Lieberman and Wesley 77|, defined the syntax and semantics
of a task-level language and an approach to ils implemeniation. A subset of the
most general operation, the PLACE statement, was implemented. The major part of
the implementation effort focused on & methoed for planning collision-free paths for
cartesian robots among polyhedral obstacles [Losano-Péres and Wesley 79, Wesley,
et al. 80]. .

RAPT [Popplestone, Ambler, and Bellos 78| i an implemented system for
transforming symbolic specifications of geometric goals, together with a program
which specifies the directions of the motions but not their lengih, into a sequence of
end-effector positions. RAPT's emphasis has been primarily on task specilication; it
does nol deal with obstacle-avoidance, automatic grasping, or sensory operations.

Jome robot-level language systems have proposed extensions to allow some
task-level specifications. LM-GED [Mazer 82] is an implemented extension to LM
[Latombe and Mazer 81] which incorporates sy mbolic specifications of destinations.
The specification of ROBEX |Weck and Zuhlke 81] ineludes the abilily to automatically
plan collision-free molions and to gencrate programs that use sensory information
available during execution. A full-blown ROBEX, including these capabilities, has
not been implemented.

Lozano- Péred itobot Programmang

The deficiencies of existing methods for geometric reasoning and sensory
planning have prevented implementation of a complete Lask-level robot programming
gystern. There has, however, been significant progress towards sclving the basie
problems in task planning; see [Lozano-Pérez 83 for a review.

Laosano-Péres fobol Frogramming

5. Discussion and Conclusions

Existing robot programming systems have flocused primarily on the specification
of sequences of robot configurations. This is only a small aspect of robot
programming, however. The central problem of robol programming is that of
specifying robot operations so that they can operate reliably in the presence of
uncertainty and error. This has long been recognized in research labs, but until
very recently has found little acceptance in industrial situations. Some key reascns
for this difference in viewpoint are:

1. The lack of reliable and affordable sensors, especially those already
integrated into the control and programming systems of a robot.

2. Existing techniques for sensory processing have tended to be slow when
compared to mechanieal means of reducing uncertainty. ’

Both of these problems are receiving significant attention today. When they are
effectively overcome, the need for good robot programming tools will be acute.

The main goal of this paper has been to assess the state-of-the-art in robot
programming compared with the requirements of sophisticated robot tasks. Our
conclusion is that all of the existing robet systems fall short of meeting the
requirements we can identify today.

The erucial problem in the development of robot programming languages is
our lack of understanding of the basic issues in robol programming. The question
of what basic sel of operations a robot system should support remains unanswered.
Initially, the only operation available was joint motion. More regently, cartesian
motion, sensing and, especizlly, compliance have been recognized as important
capabilities for robot systems. In future systems, a whole range of additional
operations and capabilities are to be expected:

1. fncreasing integration of sensing and mofion: More efficient and
complete implementations of compliant motions are a key priority.

2. Complete object models as a source of dala for sensor inlerfaces and
frajectory planning: Existing partizl models of objects are inadequate for
most sensing tasks; they are also limited as a source of path constraints.
Surface and wvolume models, together with appropriate computational
tools, should also open the way for more natural and concise robot
PrOErams.

3. Versaiile trajectory specifications: Current systems overspecify trajec-
tories and ignore dynamic constraints on motion. Furthemore, they severely
restrict the vocabulary of path shapes available to users. A mechanism
such as functionally-defined motion can make it easy to increase the
repertoire of trajectories available to the user.

4. Coordination of multiple parallel tasks: Current robot systems have
almost completely ignored this problem, but increasing use of robots with

Losano-1*éres ool Pregrammming

more than six degrees-of-freedom, grippers with twelve or more degrees-
of-freedom, multiple special-purpose robots with twoe or three degrees-
of-freedom, and multiple sensors will make the need for coordination
mechanisms more severe, ,

5. The I/0, control, and synchronization capabilities of general-purpose
compuler programming languages: A key problem in the development
of robet languages has been the reluctance, on the part of users and
researchers alike, to accept that a robot programming language must be
a sophisticated computer language. The evidence seems to peint to the
conclusion that a robot language should be a superset of an established
computer programming language, not a subset.

These developments should be matched with continuing efforts at raising the level
of robot programming towards the task-level. By automating many of the routine
programming functions, we can simplify the programming process and thereby
expand the range of applications available to robot gystems.

One problem that has plagued robot programming research has been the
significant “barriers to entry” Lo experimental research in robot programming.
Because robol contrel systems on available robots are designed to be stand-zlone,
every research group has to re-implement a robol control system from the ground up.
This is a difficult and expensive operation. 1t i to be hoped that commercial robots
of the future will be designed with a view towards interfacing to other computers,
rather than as stand-alone systems. This should greatly stimulate development of
the sophisticated robot programming systems that we will surely need in the future.

Acknowledgements

Many of the ideas discussed in this paper have evolved over the years through
discussions with many people, too numerous to mention. | have benefited, especially,
from extensive discussions with Matthew Mason and Russell Taylor. I thank both
of them for their time and their help. The initial motivation for this paper and
many of the ideas expressed herein arose as a result of the “Workshop on Robot
Programming Languages” held at MIT in January 1982, sponsored by ONR. I am
indebted to all the participants of the workshop. The following people reall drafts
and provided valuable comments: Michael Brady, Hodney Brooks, Eric Grimson,
John Hollerbach, Berthold Horn, and Matthew Mason.

larganc-Heres Fimbal l‘mgrimmi.n,g

Iteferences

Ambler, A.P., and Popplestone, R.J. “Inlerring the positions of bodies from
specilied spatial relationships,” Artificial Intelligence 6, 2 (1975), 157-174.

Ambler, A. P., Popplestone, IL. 1., and Kempl, K. G. “An experiment in the
Offine Programming of Robets," Twelfth International Symposium on Industrial
Hobots | Paris, France, June, 1982, 401-502.

ASEA “Industrial Robot System,” ASEA AB, Sweden, YB 110-301 E.

Baer, A., Eastman, C., and Heorion, M. "Geometric Modeling: A Survey,”
Computer Aided Design 11, 5 (September 1979), 253-272.

Binford, T. O. "The AL Language for Intelligent Robots,” IRIA Seminar
on Languages and Methods of Programming Industrial Robots , Rocquencourt,
France, June 1979, T3-8T.)

Brady, J. M. "Parts Description and Acquisition Using Vision,” Proceedings
of SPIE | May 1982,

Brady, J. M. "Trajectory Planning,” in Robot Motion: Planning and Control,
Brady, M. et al. eds., MIT Press, 1983,

Nraid, I. “New Directions in Geomelric Modelling,” CAM-I Workshop on
Geometric Modeling , Arlington, Texas, 1978.

Drinch lHansen, P'. "The programming language Concurrent Pascal® JEEE
Transactions on Software Engineering 1, 2 (June, 1975), 199-207.

Brooks, R. A. "Symbolic Heasoning Among 3-D Models agd 2-D Images,"
Artificial Intelligence 1T [1081), 285-348,

Brooks, . A “Solving the find-path problem by representing free space as
generalized cones,” Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Al Memo 674, May, 1982a,

Brooks, R. A. "Symbelic Error Analysis and Robot Planning,” Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Al Memo 685,
Sceptember, 1982b,

Brooks, . A. and Lozano-Perez, T. “A Subdivision Algorithm in Configuration
space for Findpath with Rotation,” Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, Al Memo 684, December, 1982,

Darringer, J. A. and Dlasgen, M. W. “MAPLE: A High Level Language for
Research in Mechanical Assembly,” 1BM T, J. Watson Research Center, RC 5606,
Seplember 1975.

Dijkstra, E. W, "Co-operating sequential processes,” in Programming Languages,
F. Genuys, Ed., Academic Press, New York, 1968, 43-112.

Ernst, II. A. A Computer-Controlled Mechanical Hand, Se. D. Thesis, Massa-
chusetts Inslitute of Technology, 1961.

LugansFéres HRobot Programming

Fvans, . C., Garnett, D, G., and Grossman, D. D, "Software System for a
Computer Controlled Manipulator,” IBM T, 1. Watson Research Center, RC 6210,
May 1976. '

Falek, D. and Parent, M. "An Evolutive Language for an Intelligent Robot,”
Industrial Robot (September 1980), 168-171.

Faux, LD., and M.J. Pratt Computational Geometry for Design and
Manufacture , Ellis Horwood Press, Chichester, 1979.

Feldman, J., et al. “The Stanford Hand-Eye Project,” First IJCAI, London,
England, September 1971, 350-358.

Finkel, R.A. “Constructing and debugging manipulator programs,” Artificial
Intelligence Laboratory, Stanford University, AIM 284, August 1976.

Finkel, R.. Taylor, R., Bolles, I, Paul, R, and Feldman, J. “AlL, A
programming system for autemation,” Artificial Intelligence Laboratory, Stanford
University, AIM-177, November 1874,

Franklin, J. W. and Vanderbrug, G. J. “Programming Vigion and Robotics
Systems with RAIL," SME Hobots VT, March 1982, 392-406.

Geschke, C. C. “A System lor Programming and Caontrolling Sensor-Based
Manipulators,” Coerdinated Science Laboratory, University of lllinois, Urbana,
R-837, December 1978,

Gini, G., Gini, M., Gini, R, and Giuse, D. “Introducing Software Systems
in Industrial Robots,” Ninth Imiernational Sympesium on Industrial Rebots ,
Washington D. C., March 1979, 308-321.

Gini, G., Gini, M., and Somalvico, M. “Determininstic and MNondeterministic
Programming in Robot Systems,” Cybernetics and Systems 12 (1981), 345-362.

Gleason, G. . and Agin, G. J. “A Modular Vision System for Sensor-Controlled
Manipulation and Inspection,” Ninth International Symposium on Industrial
Robots , Washington D, C., March 1978, 57-70.

Goto, T., K. Takeyasu, and T. Inoyama “Control algerithm for precision insert
operation robots,” JERE Trans. Systems, Man, Cybernelics SMC-10, 1 (January,
1980}, 19-25.

Grossman, D. D. "Programming a Computer Controlled Manipulator by
Guiding Through the Motions,” TBM T. J. Watson [tesearch Center, Research
Report RCA393, 1977 (Declassified 1981).

Grossman, D. 1. and Tayler, R. H. “Interactive Generation of Object Models
with a Manipulater,” IEEE Transactions on Syslems, Man, and Cybernetics
SMC-8, 9 (Jeptember 1978), 667678,

Hanalusa, H., and Asada, 1. “Mechanics of gripping form by artificial fingers,”
Transactions of the Society of Insirument and Control FEngineers 12, 5 (1976),
F36-542.

Louamo=Péres Robot Pregeammang

Hanafusa, H., and Asada, H. “A robotic hand with elastic fingers and its
application to assembly process,” IFAC Symposium on Information and Control
FProblems in Manufacturing Technology , Tokye, 1977, .

Harmon, L. I). "Automated Tactile Sensing," Hobotics Research 1, 2 (Summer
1982), 3-32.

Hasegawa, T. "A New Appreoach to Teaching Object Descriptions for a
Manipulation Environment,” Twelfth Iniernafional Symposium on Industrial
Hobols , Paris, France, June, 1982, 87-97.

Heginbotham, W.B., Dooner, M., and Case, K. “Robot Application Simulation,”
Indusirial Robot (June 1979), 76-80.

Hoare, C. A. R. "Towards a theory of parallel programming,” in Operating
Systems Technigues, Academic Press, New York, 1972, 61-T1.

Hoare, C. A. R. "Communicating Sequential Processes,” Communicafions of
the ACM 21, & (August, 1978), 666-67T.

Holt, H. R. “Robot Decigion Making,” Cincinnati Milacron Ine., M8T7-751,
1977. .

Ichbiah, J. D (Ed.) “Reference Manual for the Ada Programming Language,”
US Department of Defense, Advanced Reasearch Projects Agency, 1980.

Inoue, H. "Computer controlled bilateral manipulator,” Bulletin of the JSME
14, 69 (1971), 199-207,

Inoue, H. “Force feedback in precise assembly tasks,” Artificial Intelligence
Laboratory, Massachusetts Institute of Technology, AIM-308, August 1974,

Ishida, T. "Force control in coordination of two arms,” Fifth International
Conference on Artificial Intelligence , Cambridge, Mass., August, 1977,

Kuntze, H. B. and Schill, W. *Methods for Collision Avoidance in Computer
Controlled Industrial Robots,” Twelfth International Symposium on Industrial
Robots , Paris, France, June, 1982, 519-530.

Latembe, J. C. "Equipe Intelligence Artificielle et Robotique: Etat d'avancement
des recherches,” Laboratoire IMAG, Grenoble, France, RR 201, February 1982,

Latombe, J. C. and Mazer, E. "LM: a High-Level Language for Controlling
Assembly Hobots,” Eleventh International Symposium on Industrial Robots |
Tokvo, Japan, October 1981.

Laugier, C. "A program flor automatic grasping of objects with & robot
arm," Elevenih International Symposium on Industrial Robots , Tokyo, Japan,
October 1981,

Lavin, M. A. and Lieherman, L. I. "AML/V: An Industrial Machine Vision
Programming System,” Int. J. of Roboties Research 1, 3 (1982).

Licherman, L.L, and Wesley, M. A. “AUTOPASS: an automatic programming
system [or computer controlled mechanical assembly,” IBM Journal of Research
Development 21, 4 (1977), 321-334.

Losanc-Hires Robot Programming

Lozano-Peres, T. “The design of a mechanical assembly system,” Artificial
Intelligence Laboratory, Massachusetts Institute of Technology, Al TR 397, 1976.

Lozano-Peres, T. “Automatic Planning of Manipulator Transfer Movemen e
IEEE Transactions on Systems, Man, and Cybernetics SMC-11, 10 (October
1981), 681-698.

Lozano-Perez, T. “Task Planning,” in Robot Motion: Planning and Control,
Brady, M. et al. eds., MIT Press, 1983,

Letano-Perez, T., and Winsten, P. H. “LAMA: a language for automatic
mechanical assembly,” Fifth International Jeint Conference on Artificial
Intelligence , Massachusetts Institute of Technology, Cambridge, Mass., August
1977, T10-T16.

Lozano-Perez, T., and Wesley, M. A. “An algorithm for planning collision-free
paths among polyhedral ohstacles,” Commumecalions of the ACM 22, 10 (October
1979), 560-570.

Lozano-Peres, T., Taylor, R. H. and Mason, M. T. "Automatic Synthesis of Fine-
Motion Strategies for Robots,” Artificial Intelligence Laboratory, Massachusetts
Institute of Technology, December 1982,

MeDonnell Douglas, Ine “Hobatic 5-]’51..:[]1 for Aercspace Batch Manuflacturing,”
MeDonnell Douglas, Ine, February 1980.

Markowsky, G. and Wesley, M. A, “Fleshing Out Wire Frames," [BM Journal
of Research and Development 24, 5 (September 1980},

Mason, M.T. “Compliance and force control for computer controlled manipulators,”
IEEE Transactions on Systems, Man and Cybernetics SMC-11, 6 (June, 1981},
418-432.

Mason, M. T. Manipulator Grasping and Pushing Operations, Ph. D. thesis
Thesis, Department of Electrical Engineering and Computer Seience, Massachusetls
Institute of Technology, 1982. -

Mason, M. T. “Compliance,” in Rebot Motion: Planning and Conlrol,
Brady, M. et al. eds., MIT Press, 1983.

Mathur, D. “The grasp planner,” Department of Artificial Intelligence,
University of Edinburgh, DAI Working Paper 1, 1974

Mazer, E. “LM-Geo: Geometric Programming of Assembly Robots,” Laboratoire
IMAG, Grenoble, France, 1982,

Meyer, J. M. “An Emulation System for Programmable Sensory Robots," IBM
Journal of Research and Development 25, 6 (November 1981).

Minsky, M. “Manipulator Design Vignettes,” MIT Artificial Intelligence
Laboratory, 267, Oclober 1972,

Mujtaba, 8., and Goldman, R. "AL user’s manual” Stanford Artificial
Intelligence Laboratory, AIM 323, January 1979.

Lasana-Feiai [tobat Programming

Makane, E., 5. Ozaki, T. Ishida, and I. Kato “Cooperational control of the
anthropomorphous manipulater '"MELARM'," Pree, Jth Int. Symp. Iﬂdustrmi
Hobots , Tokyo, 1974, 251-260.

WNilsson, N. "A mobile automaton: an application of artificial intelligence
techniques,” Froc. Int. Joint Conf Artificial Intelligence , 1969, 509-520.

Nilsson, N. Prineiples of Artaficial Intelligence , Tioga Publishing, California,
1980,

Obwovoriole, M. 5., and Roth, B. "A theory of parts mating for assembly
automation,” Ro.Man. Sy.-81 , Warsaw, Poland, 1981.

Park, W.T. "Minicomputer software organization for control of industrial
robots,” Joini Automatic Control Conference , San Francisco, 1977,

Paul, It. P. "Modelling, trajectory caleulation, and servoing of a controlled
arm,” Stanford University, Artificial Intelligence Laboratory, AIM 177, Nevember
1972.

Paul, R. P. "WAVE: A model-based language for manipulator control," The
Industrial Robot (March 1977).

Paul, R. P, Robol Manipulators: Mathemalics, Programming, and Control
» MIT Press, Cambridge, 1981.

Paul, R. P., and Shimano, B. “Compliance and control,” 1576 Joint Automatic
Control Conference |, 1976, pp. 694-699.

Popplestone, R.J., Ambler, A. P., and Bellos, I. “RAPT, A language for
describing assemblies," Industrial Hobot 5, 3 (1978}, 131-137.

Popplestone, IL.J., Ambler, A. P., and Bellos, I. “An interpreter for a language
for describing assemblies,” Artificial Intelligence 14, 1 {1980}, 79-107.

Raibert, M.H., and Craig, J. J. "Hybrid position/force control of manipulators,”
ASME Journal of Dynamic Systems, Measurement, and Control 102, (June,
1981}, pp. 126-133,

Requicha, A. A. G. “Hepresentation of Rigid Solids: Theory, Methods, and
Systems,” Computing Surveys 12, 4 (December 1980), 437-464.

Ruoff, C. F. “TEACH - A Concurrent Robot Control Language,” IEEE
COMPSAC , Chicago, Illinois, November 1970, 442- 445,

Ruoff, C. F. “An Advanced Multitasking Robot System,” ndustrial Robot
(June 1980).

Salisbury, J. K. “Active Stiffness Control of a Manipulator in Cartesian
Coordinates,” [EEE Confrence on Deetsion and Control , Albuguerque, New
Mexico, November 1980.

Salisbury, LK., and Craig, J. J. *Articulated hands: force eontrol and kinematic
issues,” Robotics Research 1, 1 (1982), 4-17.

Lowanc Pérea Rebot Programming

Salmon, M. “SIGLA: The Olivetti SIGMA Robot Programming Language,”
Eigth International Symposium on Industrial Robots , Stutigart, West Germany,
June 1978,

Schwartz, J. T. and Sharir, M. “On the Piano Movers Praoblem I: The Case
of & Two-Dimensional Rigid Polygonal Body Moving Amidst Polygonal Barriers,”
Department of Computer Science, Courant Institute of Mathematical Sciences,
NYU, RHeport 39, October 1981,

Schwartz, J. T. and Sharir, M. “On the Piano Movers Problem I: General
Properties for Computing Topological Properties of Real Algebraic Manifolds,”
Department of Computer Science, Courant Institute of Mathematical Sciences,
NYU, Report 41, February 1982.

Shimano, B. “The kinematic design and force control of computer controlled
manipulators,” Artificial Intelligence Laberatory, Stanford University, Memo 313,
March 1978,

Shimano, B. “VAL: An Industrial Robot Programming and Contrel System,”
IRIA Seminar on Languages and Methods of Programming Indusirial Robots
, Roequencourt, France, June 19749, 47-59.

Silver, 1. “The Little Robot System,” MIT Artificial Intelligence Laboratory,
AlM 273, January 1973,

Soroka, B. I. “Debugging Robot Programs With a Simulater,” SME CADCAM-
& . Dearborn, Michigan, Movember, 1980.

Summers, P. D., and Grossman, D. D. “XPROBE: An Experimental System
for Programming Robots by Example," IBM T. J. Watson Research Center, 1982,

Takase, K., Paul, . P., and Berg, E. J. "A Structured Approach to Hobol
Programming and Teaching,” JTEEE COMPSAC , Chicago, Ilinois, November
1979,

Taylor, R.H. “The Synthesis of Manipulator Control Programs from Task-

level Specifications (Ph.D. Thesis),” Artificial Intelligence Laboratery, Stanford
University, AIM-282, July 1976.

Taylor, R.H. “Planning and execution of straight-line manipulator trajectories,”
IBM Journal of [Research and Development 23 (1979), 424-436.

Taylor, R. H., Summers, P. D., and Meyer, I. M. “AML: A Manufacturing
Language,” Fobotics Hesearch 1, 3 (Fall 1982).

Udupa, S.M. "Collision detection and avoidance in computer controller
manipulators,” Fifth International Joini Conference on Artifictal Intelligence
. Massachusetts Institute of Technelogy, 1977,

Unimation Inc. “User's Guide to VAL: A Robot Programming and Control
Systemn,” Unimation Ine., Danbury, Conn., Version 12, June 1980.
Week, M. and Zublke, D). “Fundamentals for the Development of a High-

Level Programming Language for MNumerically Controlled Industrial Robots,”
AUTOFACT West , Dearborn, Michigan, 1981,

Losano-Péres Rebkat Programming

Wesley, M. A., et al. “A Geometric Modeling System for Automated Mechanical
Assembly,” IBM Journal of Research and Development 24, 1 (January 1950),
bd=T4.

Whitney, DLE. “Force feedback control of manipulator fine motions,” Journal
of Dynamac Systems, Measurement, and Control.

Whitney, D.E. “Quasi-static assembly of compliantly supported rigid parts,”
Journal of Dynamic Systems, Measurement, and Control 104, 1 (March, 1982),
65-TT.

Will, P.M., and Gressman, D.D. “An experimental system for computer
controlled mechanical assembly,” IEEE Transactions on Computers C-24, No. 9
(1975), 879-888.

Wingham, M. Planning how to grasp objects in a cluttered environment, M.Ph.
Thesis, Edinburgh University, 1977. :

