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Abstract:

[t is shown here that the equivalence class of an expression under the congruence closure of any
finite st of equations between ground terms is a context free expression language. An expression is either a
symbol or an n-tuple of expressions; the difference between expressions and strings is that expressions have
inherent phrase structure. The Downey, Sethi, and Tarjan algorithm for computing congruence closures can
be used to convert a finite sct of equations = to a context free expression grammar G such that for any
expression u the equivalence class of u under Z is preciscly the language generated by an expression form
I'(u) under the grammar G. The fact that context free expression languages are closed under intersection is
used to derive an algorithm for computing a grammar for the equivalence class of a given expression under
any finite disjunction of finite sets of equations between ground expressions. This algorithm can also be used
to derive a grammar representing the cquivalence class of conditional expressions of the form
if P then u else v. The description of an equivalence class by a context free expression grammar can also be
used to simplify expressions under "well behaved” simplicity orders. Specifically if G is a context free
expression grammar which generates an equivalence class of expressions then for any well behaved simplicity
order there is a subsct G’ of the productions of G such that the expressions gencrated by G are exactly those
expressions of the equivalence class which are simplicity bounds and whose subterms are also simplicity
bounds. Furthermore G’ can be tomputed from G in order nlog(n) time plus the the time required to do
order nlog(n) comparisons between expressions where 7 is the size G.
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1. INTRODUCTION

There are several arcas in which it is important to be able to "solve" for certain expressions. The
most familiar example is in applicd mathematics where onc is interested in "solving” a system of simultaneous
cquations. A related problem is that of answering data base queries of the form "what is x?". In general one
is presented with a collection of terms, some mcthods for showing equivalences between terms, and the
problem of "solving for" or "simplifying" some particular term.

One motivation for algorithms which solve for expressions arises from procedural attachment.
Consider a data base consisting of a collection of first order sentences and suppose that the binary function
symbol + is intended to denote ordinary addition over the integers. Clearly it is possible to directly compute
the sum of two numerals and thus one can benefit from associating the function symbol + with such an
addition procedure (such procedural attachment in FOL is described by Weyhrauch [1]). However to apply
the addition procedure to a term such as +[f[x], fly]] one must solve for its subterms, in this case f[x] and f[y],
in terms of numeric constants. Thus the usefulness of procedures attached to function or predicate symbols
can depend upon the ability to solve for expressions.

Another motivation for algorithms that éolve for expressions, arises from Moore’s notion of a rigid
designator [2]. Moore addresses the philosophical question of when an individual (or a data base) "knows"
the meaning of some term. For example when does an individual "know" John’s phone number. Moore
addresses this question by first defining a modal logic with a Kripke style semantics and then defining the
notion of a "rigid designator"” as a term, such as the numeral 2, which has the same meaning in all possible
worlds. Moore then defines "knowing the meaning of a term" such that a person knows the meaning of the
term phone# [John] just in case there is a rigid designator d such that the person can deduce that
phone# [John] equals d. The details of Moore’s constructions are not important here other than to note that
he makes a distinction between terms which may denote different things in different worlds and rigid
designators which can not. Now consider a data base consisting of sentences in Moore’s logic and a question
of the form "what is phone#[John]?". Intuitively one should expect the system to either answer "I don’t
know", or to return a rigid designator such as the numeral 2537884. Thus the problem of answering a query
of the form "what is x?" can be reduced to the problem of "solving" for x in terms of a rigid designator.

In general suppose that some set of symbols has been identified as "independent” (or rigid in
Moore’s sense) and all other symbols are considered "dependent”. The problem addressed here is that of
taking a finite sct of equalities Z between ground terms and a particular term u and "solving" for u in terms of
the independent symbols by performing substitutions of equals for equals. As an example consider the three
equations a = f[f{fla]}]. b = fla}] and ¢ = {[b] and suppose that the symbols f and ¢ are taken to be
independent. It is possible to solve for b in terms of f and ¢, specifically b = f[f[c]]. As another example
consider the equations a = f[b¢], b = gfa c], and ¢ = f[g[a c] ¢] where g and ¢ arc taken to be independent,
It follows from these cqualities that b = gfc c]. ' l

The only technique for showing cquivalences used by the procedures described here is the
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substitution of a ground expression for an equivalent ground expression.  The problem of solving for an
expression using substitution as the only means of showing cquivalences may seem like a very special case of
the problem of solving for an expression using arbitrary techniques for showing cquivalences. However the
substitution of cquals for equals can play an important role in cases where other techniques for showing
cquivalences are also sound. For example consider a sct of simultancous linear equations which can be
"solved" using some standard matrix inversion procedure. Steele and Sussman [3] propose an alternative to
the standard matrix inversion techniques which they call "constraint propagation”. Constraint propagation
can be more efficient than matrix inversion when the matrix of cocfficients is sparse. . Constraint propagation
also seems to model the way people often solve sets of equations. In constraint propagation a set of equations
is expanded to a larger sct by solving each equation locally for each variable appcaring in that equation.
There is then a "propagation" phase based purely on the substitution of equals for equals. This
"probagation" phase of the process could be handled by the algorithms presented here. A more complete
discussion of the relationship between constraint propagation and substitution of equals for equals is given in
[41.

The problem of solving for an expression given a set of equalities between ground terms can be
usefully generalized in two ways. First instead of considering a set of equations one can consider an arbitrary
Boolean formula built up from equalities between ground terms. For example the following Boolean formula
implies the equality f(x)=1.

(x=aV x=bh) A fla]=1A f[b]=1

A second way the problem can be generalized is to consider simplification under some simplicity
order on terms. Solving for an expression is just a special case of simplification. To see this consider the
partial order on terms defined by making a term u "simpler” than a term v just in case v contains dependent
symbols while u does not. Under such a simplicity order solving for a given term is equivalent to
"simplifying" that term to an expression containing only independent symbols.

The importance of the more general problem of simplifying terms under a predefined simplicity
order can be seen by considering a set of simultaneous equations in applied mathematics. Numerals and
terms constructed purely from numerals and "known" function symbols such as + are in some sense simpler
than other terms. Often symbolic "constants" arc used in applied mathematics and terms constructed purely
from numeric and symbolic constants are in some sense simpler than terms which contain "variables”.
Variables are sometimes divided into dependent and independent variables and terms which contain no
dependent variables are in some sense simpler than terms which do not. Also the size (or some other measure
of complexity) can be an limportant factor }n'detenninirng a terms simplicity.

The above problems are approached here by establishing a relationship between equivalence classes
and context free expression grammars. A context free expression grammar is just like a context free string
grammar except that it describes a set of cxpressions (terms) rather than a set of strings (it is important to note
that an expression is a trce and therefore has an inherent phrase structure while a string has no such
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structure). A finite set 2 of equalitics between ground expressions induces a congruence relation on
expressions where two expressions are cangruent just in case they can be proven equal from the equalities in
- 3. Such a congruence relation will be called a finitely equational congruence relation. A finitely equational
congruence relation can be represented by a context free cxpression grammar. Given a finite set 2 of
- equalitics between expressions the congruence closure algorithm of Downey, Sethi, and Tarjan [5] can be used
to construct a context free expression grammar G such that for any expression u the equivalence class of u is
the language gencrated by an expression form I'(u) under G. Furthermore G can be constructed from Z in
order nlog(n) average time where n is the size of Z. |

Let u be an arbitrary expression and let Q be an arbitrary consistent Boolean expression built up
from equalities and the standard Boolean connectives =, A, and V. Using the fact that context free -
expression languages are closed under intersection it is possible to construct a context free expression
grammar G which generates the set of expressions which can proven equivalent to u given the formula Q.
This procedure can be used to cdmpute a grammar for the class of simple expressions which are equivalent to
a conditional expression of the form if Q then u else v. '

Finally a procedure is developed for simplifying expressions under an arbitrary well behaved
simplicity order. Let G be a grammar such that the equivalence class of an expression u is the language
generated by an expression form I'(u) under G. For any well behaved simplicity order there is a subset G’ of
the productions of G such that the language generated by ['(u) under G’ is precisely the set of simplifications
of u. The subset G’ can be computed from G in order nlog(n) time plus the time required to do order nlog(n)
comparisons between expressions where # is the size of G.

It is hoped that the ability to represent finitely equational congruence relations with context free
expressions grammars will provide both a deeper understanding of such congruence relations and a more
flexible computational frarhework in which to perform deduction.
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2. EXPRESSIONS, EQUATIONS, AND GRAMMARS

The algorithms described here work just as well on second order terms as on first order terms. Thus
expressions which are intended to denote functions or predicates are not. handled any differently from
expressions denoting domain elements. In fact the algorithms described here do not depend on any "typing”
at all. This observation motivates the following definition of the set of all expressions over an alphabet A.

Definition:  An expression over an alphabet A is either a symbol in A or an n-tuple
<uj uy ... uy> of expressions over A.

This definition of an expression is similar to the definition of an s-expression in LISP. While all of
the algorithms described here operate on expressions they work just as well when restricted to typed
expressions or first order terms.

Consider a set of equalitics 2 between expressions. If = was a set of equalities between first order
terms then it would be clear what cqualities follow from =. However since expressions are in some sense
more general than first order terms an explicit definition of the set of equalities which are deducible from X is
given below (it is based on the standard deductive properties of cquality). There is a simple semantics (which
will not be presented here) for expressions under which the following notion of "deducible” is both sound
and complete.

Definition: The set of equalities deducible from a set of equalities Z, is the smallest set which
contains 2 and which satisfies is the following deductive principles:

Reflexivity. For any expression u, u=u is deducible.
Symmetry: If u=v is deducible from X then v=u is deducible from Z.

Transitivity:  If both v=w and u=w are deducible from = then u=v is
deducible from Z.

Substitutivity: 1f the equalities U =Vy, Uy=Vg, . Up =V are all deducible

from Z then the equality <uj uy ...u >=<vy vy ... v > is deducible from 2.

The following defintitions and lemma 2.1 provide some basic concepts relating sets of equalities to
equivalence rclations on expressions. While these notions may seem obvious and redundant they facilitate

precision in later sections.

Definitions: let = be an cquivalence relation on expressions. The relation = will be said
to subsume an equality u=v just in case u is equivalent to v under ==, i.e. just in case u=v.

The relation = will be said to subsume a set of cqualitics Z just in case it subsumes every
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equality in 2. The relation = is called a congruence relation just in case it is substitutive, i.c.

g‘f ™ whenever the cquivalences up=vy, UH=Vy, u, v hold, the cquivalence

n
<u] Uy ... un>::<v1 V) e Vn> also holds.

lemma 2.I: Congruence relations are deductively closed, i.e. if = is a congruence relation
and T is a sct of equalities subsumed by = then any equality deducible from Z is also
subsumed by ~=. '

The following definition provides another characterization of the set of equalitics deducible from a given set
Z.

Definition: The congruence closure of a set of equalities 2 is the equivalence relation =
on expressions which subsumes exactly those equalities which are deducible from Z, i.e.
U v just in case the equality u=v is deducible from Z. The equivalence class of an
expression u under the congruence closure of = is denoted lulz. The congruence closure of
a finite set 2 will be called a finitely equational congruence relation.

It is interesting to note that |u|2 can be an infinite set cven when = is finite. For example if = is
{Kfa>=a} then |a|2 includes all expressions of the form <f<f..<fa>...>>. The main result of this section
~ will be that ju|y; can be described by a context free expression grammar as defined below.

Definition:  Let A be an alphabet of terminal symbols and let N be a collection of
non-terminal symbols such that N is disjoint from A. A context free expression grammar
over A and N is a set of productions of the form X=>a where X is a non-terminal symbol

and a is an expression over A union N.

Expression grammars are véry much like string grammars. Each non-terminal symbol of an
expression grammar generates a set of expressions over the terminal alphabet in the same way that each
non-terminal of a context free string grammar generates a set of strings. For example the grammar consisting
of the productions A=>a and A=><f A> describes the set of expressions of the form <f<f..<Lfa>..>>.

Let A be a set of terminal symbols and N be a sct of non-terminal symbols. Expressions over A
(expressions containing only terminal symbols) will be called terminal expressions (or simply expressions) and
will be denoted by the letters u, v, and w. Expressions over A union N will be called expression forms and will
be denoted by the greek fetters a, B, and y -For a given grammar G the relation = * is defined on expréssion

forms as the smallest relation satisfying the following three properties:




2. FQUATIONS AND GRAMMARS . -6- | May 1983

1) Forany expression form a, a=>*a.
2) If X=>a is a production of G then X=>*a.

3) If a=*B then for any ecxpression form <yj..a..y,> containing a,

<yl ¢ | ...‘Yn>$*<'}'1 . B ...'Yn>

Intuitively a=>*B just in casc B can be derived from a by replacing some number of non-terminal
symbols in & by expressions which they generate. The language generated by an expression form a is defined
to be the set of terminal expressions u such that a=>*u. ' ‘

The investigation of context free expression grammars is motivated by the existence of a re]atiénship A
between a certain class of such grammars and finitely equational congruence relations on expressions. The
following definition identifies the relevant class of grammars. |

Definition: A context free expression grammar will be called normal if the following two
conditions hold. First all productions are either of the form X=>a where a is a terminal
symbol, or of the form X=><Y; Y, ... Yn> where each Y; isa non-terminal symbol. Second
there are no two productions X=>« and Y=>8 such that X and Y are distinct non-terminals
but such that « and 8 are the same expression form.

It turns out that any normal grammar G represents a congruence relation on expressions. In general
all expressions generated by a given expression form a will be equivalent under this relation. However not all
expression forms generate entire equivalence classes. In particular if a=>*f then the language generated by
B may be only a proper subset of the language gencrated by a. It turns out that the expression forms which
generate entire equival.ence classes are precisely the maximal expression forms where maximal is defined as
below:

Definition: An expression form e« will be called maximal under an expression grammar G

just in case there is no expression form B other than a such that = *« under G.

Consider the equivalence class of the expression <g a> under the congruence closure of the equation
<fa>=a. The following normal grammar "represents” the congruence relation on expressions imposed by
this equality (the first "production™ below represents in the standard way the pair of productions A=>a and
A=><F AD).

A= a|<FA>
F=f

The equivalence class of <g a> under the equality <fa>=a is cxactly the language gencrated by the
expression form <g A> under the above grammar. Note that the expression forms A and <g A> arc maximal
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under this grammar while the expression form <A is not. o

For any function T on expressions let =1 denote the equivalence relation such that Uy justin
case I'(u) equals I'(v). Furthermore for any cquivalence relation = on expressions and any cxpression v let
[V~ denote the equivalence class of v under =. The following thcorem establishes the first half of the
relationship between normal expression grammars and finitely equational congruence relations.

Lemma 2.2: 1et G be any normal context free expression grammar. For each expression u
there exists a unique expression form I'(u) which is maximal under G and which generates u.
Thus there exists a unique function T, called the maximal generator function of G, which
maps each expression u to the maximal expression I'(u) which generates u. Furthermore
=r is a finitely equational congruence relation and for any expression u the language
generated by I'(u) is precisely Iulzr.

proof: The function I' is defined recursively via the following conditions:

1) For any terminal symbol a if there is a production of the form X=>a then I'(a) is X otherwise
I'(a)isa.

2) If u is of the form <uj uy .. u,> then if there is a production of the form
X=<T(u)T(u,)..T (un)> then I'(u) equals X otherwise I'(u) equals <F(u1) I'(uy) .. I‘(un)>.

Since the normality of a grammar ensures that no two distinct productions have the same right
hand side, the above definition is well formed. Note that I'(u) can be computed in linear time in
the size of u (in general membership in a context free expression language can be determined in
linear time although this will not be proven here).

A simple induction on expressions can be used to show that for any expression u, I'(u)=>*u
(the details are left to the reader). It will now be shown by induction that for any expression u, I'(u)
is maximal. To see this first note that in a normal grammar each non-terminal symbol is a maximal
expression form (the only way a non-terminal symbol X could fail to be maximal is if there was
some other non-terminal symbol Y such that Y=>X was a production of G, but this is not allowed
in normal grammars). Now if a is a ferminal symbol then either T'(a) is a non-terminal symbol
(which is a maximal expression form) or I'(a) is a. But if I'(a) is a then by the definition of T there
can be no production of G whose right hand side is a in which case a is a maximal expression form.
Now let u be of the form <uj uy...u, > and assume that for cach uj F(ui) is maximal. IfT'(u)is a
non-terminal symbol then it is maximal, on the other hand if T'(u) is not a non-terminal symbol
then it is an n-tuple of maximal expression forms which is not the right hand side of any production
and is therefore maximal.

The proof that for any expression v there is at most one maximal expression form which
generates v is done by induction on v. For a terminal symbol a if there is no production of the form
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X=>a in the grammar then a is the unique maximal expression form which gencrates a. On the
other hand if there is a production of the form X=>a then since the grammar is normal there is only
onc such production and the non-terminal symbol X is the unique maximal expression form which
gencerates a. Now let v be an expression of the form <vy v ... v, > such that for cach v; there is at
most one maximal expression form which generates Vi Since I‘(vi) is maximal and generates \Z it
the unique such maximal expression form. Now there are two cases. The first case occurs when
there is a non-terminal symbol X such that X=>*v. Since the grammar is normal it must contain a
production- of the form X=><X; X, .. X > where cach X, is a non-terminal symbol such that
X.

i
the production X:(F(vi) F(vz) .. (vn)> is in the grammar. This must hold for every

=*v;. However since each non-terminal symbol is maximal, Xi must equal l‘(vi) and therefore

non-terminal symbol X which generates v, i.e. for each X which generates v the above production
must be in the grammar. However since there can be at most one production whose right hand side
is <I‘(vi) F(vz) F(vn)> there cén be at most one non-terminal symbol which generates v. Note
that in this case the expression form <I‘(vi) I'(v5) ... T(v,)> is not maximal. The second case occurs
when there exists a maximal expression form a which generates v but which is not a non-terminal
symbol, i.e. there exists an expression form a which generates v and is of the form <aj a5 ... a>.
Since a is maximal each a; must also be maximal and since a generates v, a; must generate v; for
each i. However since there is at most one maximal expression generating v;, o must be I’ (Vi) soa
must be <I'(vj) I'(v5)...T(v)>. Note that in this case <L) T(vy) ... F(vn)> is maximal and
therefore the first and second case can never occur at the same time. So cither there is a unique
non-terminal symbol which generates v or there is no such non-terminal and <I‘(vi) I‘(vz) ..T (vn)>
is the unique maximal expression which generates v.

The relation = is substitutive, i.e. is a congruence relation. To see this let u be an expression
of the form <uy ujy ...u,> and let v be any expression of the form <vy v, ... v,>. It suffices to show
that if F(ui) equals I‘(vi) for each i, then F((ul uy ... un)) equals F(<v1 Vg e vn>). However this
follows directly from the definition of T'.

To establish that the language gencrated by I'(u) is precisely Iul:z;r first note that if v is in

lulzr, i.e. if [(v) equals I'(u), then since T'(v)=>*v it must be the case that ['(u)=>*v. On the

other hand if I'(u)=>*v then since there is at most one maximal expression form which generates v, -
I'(u) equals I'(v) and therefore v is in Iulzr.

Finally it must be shown that the congruence relation defined by T is finitely equational, i.e.
that there is a finite set of equalitics 2 such that = is the same as <. A non-terminal symbol X
will be called coherent if the languaéc' gencrated by X is not empty. A production or expression
form will be called coherent if it contains only coherent non-terminal symbols. Each coherent
non-terminal symbol X can be associated with some expression u(X) such that X=>*u(X). Now for
cach coherent expression form a, u(a) is defined as the result of replacing cach non-terminal
symbol X by u(X); clearly a=>*u(a). Now let Z be the sct of cqualitics of the form u(X)=u(a)
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where X=>a is a coherent production of G, Now if u(X)=u(a) is an cquality in 2 then X
generates both u(X) and u(a) under.G. Thus if u(X)=u(a) is an cquality in Z then F'(u(X)) equals
I'(u(a)) and therefore u(X)= rula). Thus cvery equality in 2 is subsumed by =p and since =
is a congruence relation every cquality deducible from 2 is therefore also subsumed by =y. It
remains only to show that every cquality subsumed by = is deducible from Z. This is done by
showing via a standard induction on cxpressions that for any expression v the equality v=u(T'(v)) is
deducible from Z (the details are left to the recader). Thus if the equality w=v is subsumed by =r
then since T'(w) equals I'(v) and the equalities v=u(I'(v)) and w=u(I"(w)) are both deducible from
2., the cquality w=v is deducible from . ‘ '

The following lemma completes the relationship between normal grammars and finitely equational
congruence relations by showing that every finitely equational congruence relation can be represented by a

normal grammar,

Lemma 2.3: For any finite set of equalities = there is a normal context free expression
grammar G with maximal generator function I' such that =p is the same as <y.
Furthermore G can be computed from Z in order nlog(n) average time where n is the total
size of Z.

proof:  Let D be the finite set of'expressions contained in X either directly or as a subexpression of
some expression contained in 3. Downey, Tarjan, and Sethi [5] show how to construct a function F
on D such that for any two expressions u and v in D, F(u) equals F(v) just in case the equality u=v
follows from Z. Furthermore a tabular representation of the function F can be computed in
nlog(n) average time where n is the total size of Z. Such a function F can be translated into a
normal context free cxpression grammar G in the following way: Each expression v in D is
associated with a non-terminal symbol X(v) such that for any two expression u and v in D, X(u)
equals X(v) just in case F(u) equals F(v). Now for each terminal symbol a in D we include the
production X(a)=>a and for cach expression v in D of the form <v{ v, ... v,> we include the the
production X(v)=><X(v1) X(vz) X(vn)>. The grammar G can be computed from F in time
proportional to the total size of Z. '

To show that G is normal it is sufficient to show that no two distinct productions have the same
right hand side. Let u and v be two expressions in D such that the production corresponding to u
has the same right hand side as the production corresponding to v. It is sufficient to prove that X(u)
must equal X(v) since then the production corresponding u would be the same as the production
corresponding to v. Since the right hand sides of the productions corresponding to u and v are the
same ¢ither u and v arc both the same terminal symbol (in which case the result is trivial) or u is the
form <uy Uy ..U, vV was of the form <V Vg e V2, and X(ui) equals X(vi) for each i. However in
the latter casc cach cquality u;=v; would be deducible from X and therefore by substitutivity the
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cquality u=v would also be deducible from 2 and thus X(u) would equal X(v). v

It remains to show that = is the same as =, where I' is the maximal generator function of
G. First note that if u=v is an cquality in 2 then u and v arc in D and X(u) must equal X(v).
Furthermore it is easily shown by induction that for any expression u, if u is in D then I'(u) equals
X(u). Thus if u=v is an cquality in Z then T'(u) cquals T'(v) and thus =r subsumes Z.
Furthermore lemma 2.2 ensures that = is a congruence relation and therefore subsumes any
equality deducible from 2. It remains only to show that any equality subsumed by <ris
deducible from Z. To show this first note that for each non-terminal symbol Y in G there is at least
one expression w in D such that Y equals X(w). Thus each non-terminal symbol Y can be
associated with an expression u(Y) in D such that X(u(Y)) equals Y. Now for any expression form
a let u(a) be the result of replacing each non-terminal symbol Y in & by u(Y). It can now be shown
by a standard induction that for any expression w the equality w=u(I'(w)) is deducible from Z (the
details are left to the reader). Finally if an equality w=v is subsumed by =r then since I'(w)
equals I'(v), and the two equalities w=u(I'(w)) and v=u(T'(v)) are both deducible from Z the
equality w=v can also be deduced from 2.

A set of expressions L. will be called a context free expression language if there is a context free
‘expression grammar G and a non-terminal symbol X of G such that L is the language generated X under G.
Now let G be any normal grammar and let T’ be the maximal generator function of G. Note that for any

expression u, if T'(u) is a non-terminal symbol of G then Iulzr is a context free expression language.

Furthermore if I'(u) is not a non-terminal symbol then one can simply construct a new grammar G’ by adding

a new non-terminal symbol X and the production X=>I(u) so that |U|zr is the language generated by X
under G’. In either case lulzr is a context free expression language. These observations and the above

lemmas now yield the main result of this section:

Theorem 2.4 For any finite sct of equations 2 and any expression u, lul: is a context free
expression language.

At this point it is useful to introduce another simple example. Consider the following three
equations:

UL add> = a
fad =b
Fh = ¢

These equations correspond to the following normal grammar:
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A=>a|<FC>

B = bh|<FA>

C=c|<FB
F=f

Under this grammar I'(<g <f b>>) cquals <g C> and the cquivalence class of <g <f b>> equals the set
of expressions generated by <g C>. What expressions are there, if any, which are both equivalent to <g <fb>>
and contain only the symbols g, f and a? The answer is the set of expressions generated by the expression

form <g C> under the following subset of productions:

A=a|<FO
B=<FA>
C=<FB

F=f

In general consider a division of the terminal symbols into "dependent” and "independent”
symbols. The following theorem provides a technique for solving for expressions in terms of independent

symbols.

Theorem 2.5:  Let G a normal grammar with maximal generator function I', and let G’ be
that subset of the productions of G which do not contain any dependent symbols. For any A
expression u the language generated by I'(u) under G’ is precisely the set of expressions
which are equivalent to u under = and which do not contain any dependent symbols.

Proof:  Any expression generated by ['(u) under G’ contains no dependent symbols and is
equivalent to u under =, i.e. is a solution for u. On the other hand any solution v for u must be
equivalent to u and therefore must be generated by I'(u) under G. But in this case since v does not
contain any dependent symbols the derivation of v from T‘(u) must not involve any productions
which contain dependent symbols. Thus v must be generated by I'(u) under G’ as well,
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3. BOOLEAN CONGRUENCE RELATIONS

Now that a good representation has been developed for cquivalence classes under finitely equational
congruence relations we turn our attention to Boolean congruence relations.  An equational Boolean fonnulg
over an alphabet A4 is a formula which is built up from cqualities between expressions over A using negations,
disjunctions, conjunctions, and implications in the standard way. The congruence closure of an equational
Boolcan formula Q is defined to be the congrucnce relation ::Q on expressions such that usz just in case
u=v is deducible from Q using the standard deduction rules for Boolean connectives and the deduction rules
for equalities described carlier. For an arbitrary expression u the equivalence class of u under the congruence .
closure of Q will be denoted by |u|Q. It will be shown in this section that IulQ is either the universal relation
or a context free expression language.

Let P be an equational Boolean formula which is a conjunction uj=vy A uy#vy Aug=vy.. of
equalities and negations of equalitics and let Z be the sct of equalities which appear in positive form in P. .
Using the techniques described in the previous section one can compute a normal expression grammar G with
maximal generator function I' such that = is the same as =y. Now the conjunction P is satisfiable just in
~ case there is no negated equality WY appearing in P such that the equality u;=v; is deducible from Z, or
equivalently such that F(ui) equals I'(v;). If the conjunction is unsatisfiable then anything follows from P and
thus the congruence closure of P is- the universal relation. If the conjunction P is satisfiable then the
congruence closure of P is just the congruence closure of Z and for any expression u, |u|P equals |u|2 which
equals the language gencrated by ['(u) under G.

Any equational Boolean formula can be converted to disjunctive normal form, i.e. is equivalent to a
disjunction of conjunctions of equalities and negations of equalities. Let Q any equational Boolean formula
and letPy V P, \/...V<Pn be a disjunctive normal form of Q where each P, is a conjunction of equalities and
negations of equalities. An equality u=v follows from Q just in case it follows from each P;. In other words

zQ is the intersection of the =p’s. But by the above remarks the congruence closure of a given P, is cither
: i

the universal relation or the congruence closure of the positive equalitics in that conjunction. These remarks
lead to the following lemma:

Lemma 3.1: The congruence closure of any eduational Boolean formula is either the

universal relation or a finite intersection of finitely equational congruence relations.

Given the above observations it is clear that one can decide whether an equality u=v follows from a
formula Q by first converting Q to disjunctive normal form and then sceing if u=v follows from ecach
disjunct. However it is not clear that a mechanism which can solve for u under a set of equalities can be
extended to a mechanism for solving for u under an arbitrary equational Boolean formula. What is needed is
a good characterization of the equivalence class of u under Q. As a simple example consider the following

formula in which <f™ a> is an abbreviation for an expression of the form <f <f..<fa>..>> where the symbol f
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appears n times.

o 5 7
FFad=a V L ad=a
The cquivalence class of a under this formula is the set of expressions of the form <f™a> where nis a
multiple of 35. One approach to the problem of solving for expressions under a Boolean formula Q would be
to try to find a finite set of cqualitiecs = such that zQ was the same as =y. The following theorem
demonstrates that this can not be done in general.
Theorem 3.2: The intersection of two finitely equational congruence relations need not be
finitely equational.
Proof'sketch: Consider the following pair of sets of equations:
i {a= b}
3y {Kfa> = a,<fb> = b, <ga> =<gh>}
The intersection of zzl and = s, is the same as zQ where Q is the Boolean formula:
— o a=bV (Kfa>=a A<Ib>=b A <ga>=<g b>)
..‘ H B .

The relation zQ is the same as the relation =1 where Il is the infinite set of equalities of the
form:

<g<Mad> = <g <M b

Now =y is finitely equational just in case there is a finite set of equalities  such that =is
the same as =. If such a set 2 exists then if u=v is an equality in Z then u= v and thus the
equality u=v must be deducible from Il. But an equality is deducible from IT just in case it is
deducible from some finite subset of IT and thus all of the equalities in % must be deducible from a
single finite subset of IT. Thus =nis finitely equational just in case it is the congruence closure of
some finite subset of I1. However given the above definition of T no finite subset of IT can imply
all of thé equalities in I so =y is not finitely equational. ‘

The above theorem says that there is a Boolean formula Q such that zQ is not finitely equational.
However it is still possible that for each expression u there is a finite set of equalitics 2 such that |ulQ equals
|Ul§; (remember that there are infinitely many such expressions u).

Let Q be an arbitrary cquational Boolean formula. By I.emma 3.1 it is possible either to determine -

~

that the congruence closure of Q is the universal relation or to find a finite collection {21 Zy .. En} of finite
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sets of equations such that the congruence closure of Q is the intersection of the congruence closures of the

Z;’s. Thus for any expression u we have the following relation:

ulA = Juls Nuls Nl
lulg Hzl sz ||zn

Furthermore for each Z; there is a normal grammar G; with an associated maximal generator
function Tj such that Mzi is the language gencrated by T'y(u) under G;. This implies that IuIQ is the
intersection of a finite collection of context free éxprcssion languages. While it is well known that the
intersection of two context free string languages need not be a context free language there are fundamental
differences between string languages and expression languages. Specifically expressions have a-priori phrase
structure while strings do not. This difference is responsible for the fact that membership in a context free
expression language can be determined in linear time (as was mentioned in the previous section) and it is also

responsible for the following theorem:

Theorem 3.3:  The intersection of two context free expression languages is a context free

expression language.

Proofi  An expression grammar will be called one level if every production is either of the form
X=>a where a is a terminal symbol or of the form X = <X1 Xz Xn> where each Xi is a
non-terminal symbol. (A normal grammar is a one level grammar in which no two productions
have the same right hand side.) It is easy to show for any context free expression language L there
is a one level grammar G such that L is the language generated by a non-terminal symbol of G.
Given these remarks Theorem 3.3 follows directly from the following Lemma.

Lemma 3.4 For any two one level expression grammars Gy and G, there exists a grammar
denoted as G;MG, such that for each non-terminal X of Gy and non-terminal Y of G,
there exists a non-terminal of G1MNG, denoted by XMY such that the language generated by
XMY under GyNG, is the intersection of the languages generated by X and Y under Gy
and G, respectively.

Proof! Given Gl and G, define Gthz to be the one level grammar meeting the following
conditions:

1) The sct of non—teminal symbols (zf G1NG, is the cross product of the non-terminal symbols of
Gy and the non-terminal symbols of Gz. In other words for each non-terminal symbol X of Gl
and non-terminal Y of Gz there exists a non-terminal symbol of GlﬂGz which’ will be denoted
here by XNY.

2) For cach terminal symbol a a production XNY => a is in G;NG, just in case the production
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X => ais in Gy and the production Y => ais in G?_'

3) A production of the form XMNY = <XNY | X5NY, . X NY S s in GyNG, just in case the
production X => <Xy X, ... X, isin Gl and the production Y => <Y Y, ... Y > isin G,.

Let u be any expression over terminal symbols. It will first be shown by induction on u that if
XNY=>*u then X=>*u and Y=>*u. If u is a terminal symbol then this result follows directly from
the definition of G;NG,. Ifuis of the form <uj uy ... u > then if XNY=>*u then there must be a
production of G;MG, of the form XNY = <X MY X5NY, .. X NY > such that XiNY;=*y
for each i. By the definition of GyMNG, this implies that the production X = X1 Xy X2 isin
Gl and the production Y = <Y1 Y2 Yn> is in Gz. Furthermore by the induction hypothesis it
must be the case that Xi=>*ui and Y;=>*u; for cach i. Therefore it must be the case that X=>*u
and Y=>*u and the induction is complete.

Now it will be shown by induction on expressions that if X=>*u and Y=>*u then XNY=>*u.
Again if u is a terminal symbol then the result follows directly from the definition of GlﬂG2. Ifu
is of the form <uj uj ... u;> then if X=>*u and Y=>"*u there must be a production in Gj of the
form X => <Xy X ... X, and a production in G2 of the form Y = <Y1Y,..Y,> such that
X;=>*u; and Y;=> *y; for each i. But by the definition of G;NG, this implies that the production
XNy = <X1”Y1 XzﬂYz XnﬂYn> is in GlﬂG?_. Furthermore by the induction hypothesis
X{NY;= *u for each i. Therefore XMY=>"*u and the induction argument is complete.

Finally since XMY=>*u just in case X=>*u and Y=>*u the language generated by XMNY
under GjNG, is exactly the intersection of the language gencrated by X under Gl with the
language generated by Y under G.

Theorem 2.4, Lemma 3.1, and Theorem 3.3 now immediately imply the following corollary:

Corollary 3.5: For any consistent equational Boolean formula Q and any expression u, IU|Q is

a context free expression language.

Forany two grammars Gy and G, the size of the grammar G1MG, is proportional to the product of
the sizes of the grammars Gy and G,. However it scems reasonable to expect that for most pairs X, Y of
non-terminal symbols of Gl and G2 respectively the language generated by X and the language generated by
Y will be disjoint and therefore the language generated by XMY will be empty. A non-terminal symbol of a
grammar will be called coherent if the language generated by that symbol is not empty. The coherent
Sragment of agrammar G is defined to be the grammar resulting from removing all productions which contain
non-coherent non-terminal symbols. The coherent fragment of a grammar can be computed in time
proportional to the size of that coherent fragment.

The fragment of GyNG, which is relevant to describing the language gencrated by XMY can be
restricted even further. A non-terminal symbol Z will be said to be accessible from the non-terminal W if
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there is a production whose left hand side is W and whosc right hand side contains Z, or if there is a
non-terminal V such that V is accessible from W and 7 is accessible from V. For a given grammar G the
fragment of G accessible from W is the subsct of productions of G which contain only symbols accessible
from W. The fragment of G accessible from W can be computed in time proportional to the size of that
fragment. If one is interested in the language generated by XMNY under Glﬂ Gz then one necd only consider
the fragment of G1MNG, which is accessible from XNY.

Of course the intersection of a large set of context free expression languages can be done by
iteratively applying the intersection algorithm implicit in the proof of l.emma 3.4. In the worst case the size of
the grammar can grow exponentially in the number of languages which are intersected. However it is
expected that such exponential growth will not usually arise since at each step one can restrict the grammar to
the coherent subset which is accessible from the non-terminal of interest.

The mechanisms that have been described so far can be extended to deal with conditional
expressions. For a given alphabet A4 of terminal symbols one can define a conditional expression to be either a
simple expression (a non-conditional expression) or an n-tuple <if P uy uy> where P is an cquational Boolean
formula and u; and u, are conditional expressions. As was mentioned earlier it is straightforward to give a
semantics for expressions and Boolean formulas. Such a semantics can be extended to a semantics of
conditional expressions by defining the denotation of <if P u; u,> to be the denotation of uy if P is true and to
be the denotation of u, if P is false. Now for a conditional expression w and a Boolean formula Q, lwIQ is
defined to be the set of non-conditional expressions which equal w in all interpretations which make Q true.
This definition vields the following relation; o ,

Kif Pujuply = lylpag N gl=p)AQ

Given the results of this section the above relation provides a way of computing a grammar-
representing |w|Q for any conditional expression w and consistent Boolean formula Q. Note that since

clements of lwIQ must be non-conditional expressions leQ may be empty.
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4. SIMPLIFICATION

A simplicity order on expressions is a partial order such that u is simpler than v just in case u is less
than v under that order. For the purposes of this scction let = be an arbitrary congruence relation on
expressions and for any expression u let |u|z denote the cquivalence class of u under =. Note that since the
simplicity order nced not be total or well founded there need not be a unique simplest expression in Ul ~.

The following definitions arc important in discussing simplification under congruence relations.

Definitions: A simplicity bound under = is an expression w such that there is no expression
in |w|~ which is simpler than w. An expression w will be called simplified under = just in
case it and all of its subexpressions are simplicity bounds under =. A simplification of an

expression u under = is an expression in [u]~ which is simplified under =.

The main result of this section is that for any "well behaved" simplicity order and any consistent
equational Boolean formula Q the set of simplifications of an exprcssion u under ZQ is a context free
expression language. However it is important to note that there are "pathological” simplicity orders for which
this result does not hold. In particular let 2 denote the single equation <fa>=a. Clearly |ay; is the set of all
expressions of the form <f 4>, Now suppose that the simplicity order was such that larger expressions were
always simpler than smaller expressions. Since the set lalz contains arbitrarily large expressions it would not
contain a simplicity bound. To eliminate this problem one might required that the simplicity order be well
founded, i.e. that there does not exist any sequence of ever simpler expressions. However even under this
restriction there are pathological orderings. Suppose for example that all expressions other than a are equally
simple and but simpler than a. In this case any expression of the form <M a)> (for n greater than 0) is a
simplicity bound for |a|s,. However all expressions in |aly; contain a which is not a simplicity bound and
therefore no expression in |a|y is a simplification of a. The following definition establishes a class of
non-pathological or well behaved simplicity orders. Note that well beha}ved orders need not be well founded.

Definition: A well behaved simplicity order on expressions is defined here as a partial order
on expressions satisfying the following conditions: '

1) The order is pseudo-total, which means that there is a function L from expressions to a
totally ordered set such that u is simpler than v just in case L(u)<I(v). Such a function L will
be called a rtotalizer for the simplicity order and L(u) will be called the simplification level of
u. Note that not all partial orders are pseudo-total, in particular consider an order and three
objects x, y, and z such that x is less than y but z is unordered with respect to both x and y. If
such an order were pscudo-total then since z and x are unordered 1.(z) would have to equal

“I(x). Similarly 1.(z) would equal I.(y). But then I.(x) would have to equal I.(y) which
conflicts with the ordering between x and y.
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2) The order satisfies the fullowing monotonicity condition: A confext is defined to be an
expression with an "open slot” in it. For any expression w and any context C let C[w] be the
result of replacing the open slot of C with w. For example if C is the context <f<ga>-b>
then C[<g b>] is the expression <f <g a> <g b> b>. The monotonicity condition is that for any
two expression u and v and any context C, if 1.(u)<I.(v) then L(C[u])<1.(C[v]) where L is
any totalizer for the simplicity order. ‘ »

3) No expression is simpler than one of its subexpressions.

Conditions on simplicity orders, such as the monotonicity condition above, can often be most readily
expressed in terms of a totalizing function L. Such conditions can always be thought of as direct conditions
on the simplicity order and therefore the truth of such conditions is independent of the choice of the totalizing
function. In the remainder of this section L will always denote a totalizer for the simplicity order.

The monotonicity condition on well behaved simplicity orders warrants some investigation. First it
is casily shown that the monotonicity condition implies that if L(u) equals 1.(v) then for any context C,
L(C[u]) equals L(C[v]) (if L(u) equals L(v) then L(C[u])<L(C[v]) and L(C[v])<I(C[u])). Thus the level of an
expression is determined by the levels of its subexpressions. This implies that any well behaved simplicity
order can be characterized by a triple <D, Ly, L,> where D is a totally ordered sct of "simplicity levels", Liis
a function from symbols to D, and L, is a mapping from n-tuples of elements of D into D such that the
following relations hold:

L(a) = Ll(a) for symbols a
LKujuy ... un>) = LZ(<L(u1) L(uy) ... L(un)>)

Note that the above relations could be taken as a definition of L in terms of L and L,. The
condition that no expression is simpler than one of its subexpressions is equivalent to the following condition
on L2.

Ly(<L(uy) L(uz) L(un)>) 2> max(L(uy) L(uy) ... L(uy))

Unfortunately the above conditions on well behaved simplicity orders are not quite strong enough to
ensure that every expression has a simplification. There arc now two ways of ensuring this. The first is to
require that the simplicity order be well founded. The second is to require that the congruence relation be
zQ for some consistent Boolcan formula Q. The next thcorem establishes that the well foundedness
condition is sufficient for arbitrary congruence relations.

Theorem 4.1: For any well founded well bchaved simplicity order and any congruence
relation every expression has a simplification. '
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Proof: An expression w will be called "cleaner” than an cxpression u just in case the pair <l.(w) w>
is less than the pair <I.(u) u> under a lexicographical ordering where the second components of the
pairs are compared under the subexpression order. In other words w is cleaner than u just in case
L{w) is less than 1.(u) or L.(w) equals L(u) but w is proper a subexpression of u. Since well behaved
simplicity orders are well founded the cleanliness ordering is also well founded, i.e. there are no
infinite chains of ever cleaner expressions.

The proof that a simplification always exists will be done by induction on clcanliness. For an
arbitrary expression u it is assumed that all expressions cleaner than u have simplifications. It is
sufficient to show that this implies that u has a simplification.

' If there is an expression w in |u|~ which is simpler than u then w is cleaner than u and
therefore has a simplification which must also be a simplification of u. On the other hand suppose
that there is no expression in Ju|~ which is simpler than u (i.e. u is a simplicity bound). Because no
expression can be simpler than one of its subexpressions if v is a proper subexpression of u then
L(v)<I(u) and therefore v must be cleaner than u. Thus by the induction hypothesis all
subexpressions of u have simplifications. Let w be the result of replacing all of the top level
subexpressions of u with simplifications of those expressions. By substitutivity w is in |u|~ and all
proper subexpressions of w are simplicity bounds. To show that w is a simplification of u it remains
only to show that w is a simplicity bound for Ju|~. However since u is a simplicity bound and since

the monotonicity condition implies that L(w)<I.(u), w must also be a simplicity bound.

For a congruence closure zQ of a consistent Boolean formulae Q the well foundedness condition
can be removed from the above theorem. The first step in cstablishing this result is to show that for any
consistent Boolean formula Q and expression u there is a grammar G which captures all of the information in
Q relevant to simplifying u. The precise conditions placed on the grammar G is defined below in terms of u
and ~Q.

Definition:  Let G be any normal grammar with maximal generator function I'. The
grammar G will be said to cover an expression v just in case I'(v) is a non-terminal symbol.
The grammar G will be said to approximate a congruence relation = just in case |v|~ equals
the language generated by I'(v) for all expressions v which are covered by G.

lemma 4.2: For any consistent equational Boolean formula Q and any expression u there is a

normal grammar G which approximates ZQ and which covers u.

Proof: It was demonstrated in the previous section that if Q is consistent then there exists a finite
set {2 2y .. En} of finite sets of equations such that the relation zQ cquals the intersection of

the relations =y . For each Z; there exists a normal grammar G; with maximal generator function
i

I'; such that = equals = . It can be assumed without loss of generality that cach G; covers u.
i i




4. SIMPLIFICATION - -20- : May 1983

Now using the technique developed in the proof of lemma 3.4 onc can construct the grammar
GlﬂGz...ﬂGn such that thc language generated by cach non-terminal x]nxz..nxn of
GNG,..NG,, is precisely the interscction of the languages generated by each Xj. From the
definition of this grammar given in the proof of lemma 3.4 it is casy to show that this grammar is
normal. To show that this grammar approximatcs zQ let v be any expression covered by
G1NG,..NG,. The non-terminal of GyNG,..NG, which generates v must be
Fl(v)ﬂl‘z(v)...ﬂ I,(v) and the language generated by this is preciscly the intersection of the sets
|v]2i which is precisely IVlQ. Finally since u is covered by each G; the nonterminal

TN I‘z(u)...ﬂ I, (u) generates u and thus u is covered by GiN Gz...ﬂGn.

It is interesting to note that a normal grammar G can approximate a congruence relation = even if
2= is not finitely equational. In particular the relation =1, where I' is the maximal generator function of G,
need not be the same as zQ; if w is not covered by G then |w|zr may be a proper subset of [w|~.

The following lemma tightens the relationship between a congruence relation = and a grammar G
which approximates it. .

lemma 4.3 If a normal grammar G approximates a congruence relation = and u is an
expression covered by G then the set of simplifications of u under =< equals the set of
simplifications of u under = where I is the maximal generator function of G.

Proof. First note that an expression covered by G is a simplicity bound under = justin case it is a
simplicity bound under = This is becausc if v is an expression covered by G then [v| ~ equals
|vlzr. Second note that if v is an expression covered by G then since G is normal (and therefore

one level) each subexpression of v must be generated by some non-terminal symbol of G.
Therefore each subexpression of an expression covered by G is covered by G. The above two
observations imply that an expression covered by G is simplified under = just in case it is
simplified under = . Finally note that every expression in |u|~ is covered by G since |ul~ is
precisely the set generated by the non-terminal symbol T'(u). Thus the set of simplifications of u

under = consists of those expressions in |u|zr which are simplified under =, ie. the set of

simplifications of u under =

The following theorem finally establishes the desired result concerning the existence of

simplifications under consistent Boolcan formulae.

Theorem 4.4:  For any consistent Boolean formula Q, any well behaved simplicity order, and

any expression u, u has a simplification under zQ.

Given lemmas 4.2 and 4.3 the above theorem follows from the following lemma:
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Lemma 4.5: 1.ct G be any normal grammar with maximal generator function ', For any

well behaved simplicity order every expression covered by G has a simplification under =r

The above lemma will be shown by constructing an algorithm which takes a normal grammar and
assigns cach non-terminal symbol X an expression s(X) which is simplified under ~r and which is generated
by X. Then for any expression u covered by G, s(I'(u)) is a simplification of u.

The procedure for constructing the assignment s is presented below. At each point in the
computation s is defined on a subsct of non-terminal symbols. Such a partial assignment s can be extended
to expression forms of the form {ajay..ap’ by setting s(<a1 ay .. an>) equal to <S("‘1) 5(0‘2) s(an)>
whenever S(“i) is defined for each a;.

At each point in the computation there is also a queue of pairs <X, u> where X is a non-terminal
symbol and u is an expression over terminal symbols. Each pair <X, u> on this quecue should be thought of as
a constraint on the value of s(X) which states that L(s(X)) must be less than or equal to I.(u). This queue is
always sorted with respect to the terminal expressions such that for any two pairs <X, u> and <Y, v> on the .
queue if u is simpler than v then the pair <X, u> appears earlier on the queue than the pair <Y, v>. Thus if
<X, w is the pair at the head of the queue then u must be at least as simple as any other terminal expression
appearing in any other pair on the queue. The procedure maintains the following three invariants:

1) For each non-terminal X such that s(X) is defined, X generates s(X) under G.
2) For each pair <X, u> on the que{le X generates u under G.

3) Let <X, u> be the first pair on the queue. For any non-terminal symbol Y if s(Y) is
defined then L{s(Y))<L(u).

The procedure is given below, initially s is totally undefined.

1) For each production of the form X=>a where a is a terminal symbol place the pair <X, a>
on the queue.

2) Take the first pair <X, u> off the queue. If s(X) is undefined do the following:
i) Set s(X) to u.

ii) For each production of the form Y=>a such that X appears in a and s(a) is
defined, place the pair <Y, s(a)> on the queue.

3) Ifthe queue is not empty go to 2)

The algorithm terminates because there arc only f'mitcfy many non-tcrminal éymbolé which can be
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assigned simplifications. The first two invariants are that if s(X) is defined then X generates s(X) and if <X, u>
is a pair on the queue then X generates U. Thesc two invariants are casily shown to be true in the initial state _
since the function s in initially tbwlly undefined and every pair on the queue is of the form <X, a> whereais a
terminal symbol and X=>a is a production of G. Given that these invariants hold it can casily be shown that
no step of the procedure causes cither invariant to be violated.

The final invariant is that for any non-terminal Y, if s(Y) is defined and <X, u> is the first pair on the
queue then L(s(Y))<L.(u). Because the queue is sorted if <X, u> is the first pair on the queue then L(u) is the
least simplicity level assigned any terminal expression on the queue. Thus the final invariant is equivalent to
the statement that whenever s(Y) is defined, s(Y) is at least as simple as any terminal expression on the queue.
This invariant holds trivially in the initial condition since the function s is totally undefined. Furthermore
simply removing a pair from the queue can never cause this invariant to be violated. The only times the
invariant might be violated is when s(X) is defined for some X or when a pair <Z, w> is added to the queue.

Consider an execution of step 2) of the procedure in which a pair <X, u> is removed from the queue
and s(X) gets set to u. Let <Y, v> be the pair which is next on the queue when the pair <X, u> is removed.
Given that the invariant is already in fo.rce L(s(Z)) must be less than or equal to I.(u) for any non-terminal
symbol Z such that s(Z) was defined. Furthermore L(u) is less than or equal to L(v) and thus L(s(Z)) is less
than or equal to L(v) for any non-terminal symbol Z such that s(Z) was defined. Further since L{u) is less
than or equal to L(v), L(s(X)) will be less than or equal to L(v) when s(X) is set to u. Thus the removal of
<X, u> from the queue and the setting of s(X) to u does not violate the invariant.

Now consider the queucing of any'paif of the form <Z, s(a)>. Let <Y, v> be the first pair on the
queue before the pair <Z, s(a)> is added. For every non-terminal symbol W such that s(W) is defined
L{s(W)<IL(v). Given this fact the monotonicity condition on the simplicity order can be used to show (via a
simple induction on expression forms) that for any expression form a such that s(a) is defined L(s(a))<L(v). -
Thus when the pair <Z, s(a)b’is queued L(s(a)) is less than or equal to L(v) so the simplicity level of the first
pair on the queue remains the same and the invariant is not violated.

It will now be shown that if X is any coherent non-terminal (i.c. the language generated by X is not
empty) then s(X) gets defined by the above procedure and that s(X) is a simplicity bound under =r Itis
sufficient to show by induction on expressions that if v is any expression covered by G then s(I'(v)) gets
defined and L(S(T'(v))) <L(v). If v is a terminal symbol covered by G then the pair <['(v), v> will be placed on
the queue in step 1) of the procedure. This ensures that s(I'(v)) will become defined and that
L(s(T(v)))<I(v). Now suppose v is an ¢xpression covered by G which is of the form <V Vg V2 Since vis
covered by G each v; must also be covered by G and the production riv)= <F(v1) I‘(vz) F(vn)> must be a
production of G. Since each ] is covered by G the induction hypothesis implies that s(l’(vi)) gets defined and
that L(s(l‘(vi)))g L(vi). Thus the monotonicity condition on the simplicity order implics that:

LT () ST)) e STEINELY] Vg o VD).

Now since the production I‘(v)=¢~<F(v1) I“(vz) I‘(vn)> is in G and since s(F(vi)) gets defined for




~
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cach v; the pair <I'(v)<s(I'(v})) s(I'(v5)) ... (T'(v)))>)> gets placed on the queue. Thercfore s(I(v)) gets
defined such that:

L(S(M(¥)) < LT ) ST () . s(T(v )
Combining the above two relations we get:
L(s(T'(v)) £ L(v)

It has been shown that for each coherent non-terminal symbol X that s(X) gets defined and that s(X)
is a simplicity bound under =1 Note that given the way pairs are placed on the queue and the way s(X) gets
assigned, if s(X) is not a terminal symbol then it can be written as <s(Y1) s(Yz) s(Yn)> where each Y; is a
non-terminal symbol. Thus every subexpression of s(X) is also a simplicity bound and therefore s(X) is
simplified under =~r This implies that for any expression v covered by G, s(T'(v)) is a simplification of v.

In analyzing the running time of this algorithm let |G| be the total size of the grammar G. For each
pair placed on the queue there is a particular production X=>a of G such that u is s(a). A given production
can be responsible for at most the queueing of one pair so that the number of pairs placed on the queue is
order |G|. The time required to queue and remove order |G| elements from a sorted queue (a priority queue)

- is order |Gllog(]G|) plus the time it takes to compute order |Glog(|G]) comparisons. A given production

X=<X1 X, ... X)> can be examined by part ii) of step 2) of the algorithm at most n times. Thus the total
time spent in part ii) of step 2 (ignoring queucing time) is order |G|. Thus the total time taken by the above
procedure is order |Gllog(|G|) plus the time it takes to perforfn order |Gllog(|G|) comparisons between
expressions.

The next theorem pfovides a representation for the set of simplifications of an expression under the
congruence relation imposed by a normal grammar G. It turns out that the set of simplifications can be
described by a grammar which is a subset of the productions of G. ‘

Lemma 4.6: For any well behaved simplicity order and normal grammar G with maximal
generator function I there is a subset G’ of the productions of G such that for any expression
w the sct of simplifications of w under = r is the language generated by I'(w) under G,

Proof:  Without loss of generality it may be assumed that every non-terminal of G is coherent.
Thus for each non-terminal symbol X of G, I.(X) can be defined to be the simpiiﬁcation level of
any simplicity bound generated by X, i.e. 1(X) is the minimum simplicity level assigned any
expression generated by X. The totalizer 1. can be represented as a triple <D 1 1’2> as described

above. Given such a representation L(a) can be defined for an arbitrary expression form a via the
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following relation:
Layay ... ap?) = 1y(Kl(a)) 1{ay) o ay))

The monotonicity condition on the simplicity order ensures that in gencral I.(a) is the
minimum level assigned any expression generated by an expression form a.

Let G’ be that subset of the productions X=>a of G such that L(«a) equals 1.(X). Now it will be
shown by induction on expressions that for any expression v covered by G, if I'(v) generates v
under G’ then L(v) equals 1(I'(v)). For any expression v covered by G, I'(v) equals some
non-terminal symbol X of G. If v is a constant symbol covered by G then if X generates v then the
production X=>v is in G’ and by the definition of G’ this implies L(v) equals L(X). If v is of the
form <vy v5 ... v,> and X gencrates v under G’ then there must be a production X=<X1 Xy .. X2
of G’ such that X;=>*v; for each i and thus by the definition of G’ the following relations must
hold:

L(X)

LX) X, .. X, )

Ly(<L(X}) L(Xy) ... (X))

and by the induction hypothesis:

Ly(<1Av}) L(vy) .. L(v,)®)

L(v)

It will now be shown that for any expression form a, if a=>*v under G’ then 1.(v) equals L(a).
This is done by induction on expression forms. If a is a terminal symbol then if a=>*v under G’
then a must equal v and the result is trivial. If « is a non-terminal symbol and a=+*v under G’
then I'(v) must equal a and the result follows from the above induction. If « is of the form
{ay oy ... ap> then v must of the fqnn <v{ vy ..v> where a;=>*v; for each a;. In this case the
result follows from the following relations:

L(a)

LKay ay .. a,>)

Ly(<L(ap) LAay) ... L{a)?)

and by the induction hypothesis:

Ly(<L(vy) L(vy) ... L(v)>)

L(v)
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It follows from the above induction that if f(v)=> *v under G’ then L(v) is the least level
assigned any cxpression generated by I'(v) under G and therefore v is a simplicity bound under
~p. It will now be show that if ['(v)=>*v under G’ then v is simplified under =p-. Form the
above observations it is sufficient to show that if T'(v)=>*v under G’ and if v is of the form
V] Vg .. V> then for cach v;, F(vi)=>*vi under G’. The expression form T'(v) is cither a
non-terminal symbol or the n-tuple <I‘(v1) I‘(v2) F(vn)>. In the latter case I’(vi)= *Vi for each
Vi In the former case since G’ is a one level grammar each v; must be generated under G’ by some
non-terminal symbol of G, but the only non-terminal which could possibly generates v; under G is
I'(v;) and therefore ['(v;)=>*v; for each v;.

For any maximal expression form a the language gencrated by a under G is an equivalence
class of =p. Furthermore it has been shown that if a=>*v under G’ then v is simplified under
~r. Thus for any expression u the language generated by I'(u) under G’ is a subset of the
simplifications of u. It now remains only to show that every simplification of u is generated by I'(u)
under G’. _

It will be shown by induction on expressions that if v is an expression which is simplified under
<pthen I'(v)=*vunder G Ifvisa constant symbol which is simplified under = r then either
I'(v) is v in which case the result is trivial or ['(v) is a non-terminal symbol such that the production
I'(v)=>v is in G. But since v is simplified under =p L(v) must equal L(T'(v)) and thus the
production T'(v)=>v is in G’. Now let v be a simplified expression of the form <vy v, ... v>. since
v is simplified so is each Vi and therefore by the induction hypothesis for each vis F(vi):*vi under
G’. Furthermore I'(v) is either <F(v1) F(vz) F(vn)> or a non-terminal symbol X such that the
production X=><I‘(v1) F(vz) . T(vp)> is in G. Thus it is sufficient to prove that in the case where
I'(v) is a non-terminal symbol X the production X=><T’ (Vl) I‘(vz) F(vn)> isin G’, or equivalently
to prove that 1(<T'(vy) T'(v5) ... T(v)>) equals L(X). However since v is simplified 1(X) equals
L(v) and furthermore since each vy is simpiified I(F(vi)) equals L(vi). This implies the following
relations which establish the desired result:

LT () T(vy) ... T(v,)>)

Ly(CLIT(v ) LT(5) .. L))

L2(<L(v1) L(vz) L(vn)>)

L(v)

IAX)

It is important to note that the subset G’ of the productions of G can be computed in a
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straightforward way given an assignment s of simplified expressions to non-terminal symbols such as the one
produced in the procedure described earlier. Specifically a production X=>a is in G’ just in case s(X) is not
simpler than s(a).

The following theorem has now been established:

Theorem 4.7: For any consistent equational Boolean formula Q, any expression u, and any
well behaved simplification order the set of simplifications of u under zQ is a context free
expression language.
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5. CONCLUSIONS AND OPEN PROBLEMS

The notion of an expression is more general than the notion of first order term. Many different
logical formalisms consist at least in part of expressions in which the substitution of equals for cquals is valid.
Thus the concepts and algorithms discussed here can be used for valid inference in a wide variety of deductive
systems. . '

The relationship which has been established between finite sets of cquations and context free
expression grammars may have applications beyond the deduction techniques and simplification algorithms
discussed here. For cxample consider unification under a finitely equational congruence relation. . More.
precisely let u and v be two expressions containing variables and let Z be a finite set of equations between
ground expressions. For any substitution ¢ and expression u let g{u) be the result of simultanecously
replacing each variable of u with its image under . The unification problem for the finite set of equations =
is to characterize the set of ground substitutions ¢ such that o(u)= 2"(")- An obvious first step in.
approaching this problem is to consider a grammar G which represents Z and consider substitutions over the
maximal expression forms of G (remember that each maximal expression form of G represents an
equivalence class under Z). The details of a unification algorithm have not been worked out and it is not clear
what the complexity of this problem is. Another extension would be to develop a unification algorithm for
equational Boolean formulas (remember that for a Boolean formula Q, ’L"Q need not be finitely equational).

It is hoped that the material presented here will be applicable to various domains including program
verification, compiler optimization techniques, and deductive data bases.
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