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1. INTRODUCTION

Finite scts of points can be represented by finite lists of points, but it'is impossible to represent finite
lists of points with finite sets of points. This is because a sct of points has no distinguished member and
therefore it is impossible to define a function which maps a set of points to a "first” point in that set. While
this simple obscrvation scems straightforward and correct, it is very difficult to prove. What is meant by
"represent” or by "a distinguished member"? Intuitively a list has more structure or contains more
information than a set. But what does this mean? One approach to defining the meaning of
"representations”, "distinguished members" and "more structure” is to study the general nature of
mathematical objects (such as sets and scquences). One approach to the general nature of mathematical
objects is set theory. Symmetric set theory is a new set theory which provides simple universal definitions of
the above notions.

Currently the most widely studied formal theory of mathematics as a whole is Zermello-Fracnkel set
Vtheory (ZF) and its variants. The primary difference between ZF set theory and symmetric set theory involves
points. A point is an object which has no members (and is thus not a set). In ZF set theory there is only one
point (the null set) while symmetric set thcory requires the existence of many points. The following
discussion of this issue is from the introduction to Foundations of Set Theory by Fraenkel, Bar-Hillel, and
Levy [Fraenkel et. al. 58] (they refer to points as individuals).

Let us refer to thosc elements which have members as sets and to those clements which have no
members as individuals. ...

The existence of at least one individual is called for by both philosophical and practical reasons.
.. Letus, however, stress that referring to one of the individuals as the null set is done only for reasons
of convenience and simplicity, and can be regarded as a mere notational convention,

Having decided that we need an individual we now face the question of whether we need more
than one individual. It turns out that for mathematical purposes there seems to be no real need for
individuals other than the null set. Therefore we shall not admit any such individuals into ZF.

While it is true that most mathematics can be done in a framework where the null set is the only
point there are notions which are best defined in a framework where many points are present. For example
every mathematical object seems to have a natural notion of isomorphism associated with it. There is a
natural notion of what it means for two Turing machines, or context frce grammars, or topological spaces to
be isomorphic. ZF set theory provides no satisfactory gencral notion of isomorphism. The terms
"representation”, "distinguished clement”, and "more structure” are very hard to definc in a framework
where only one point is present. - However these notions can be given simple universal definitions in the
presence of many points. - )

The notion of isomorphism can be approached from two different directions. The first is to extend
standard notions of isomorphism for particular types of objects to a notion of isomorphism for arbitrary sets
which arc built up out of points. This type of isomorphism will be called a structural isomorphism. The

second approach to the notion of isomorphism is to consider the syminetrics (automorphisms) of a universe
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<U €>. A pair <U €> is a universe of objects where U is a universal domain and € is a binary relation on U
where x€y is read "x is an element of y". A point of <U €> is an clement p of U such that there is no x in U
such that x€p. The universe of symmetric sets has lots of points and lots of automorphisms. In particular
there is a natural one to one correspondence between the the permutations of the points of <U €> and the
automorphisms of <U €> (since ZF sect theory allows only one point there are no non-trivial symmetries of
<U €> in ZF sct theory). In the theory of symmetric sets it can be shown that two objects x and y are
structurally isomorphic just in case there is an automorphism (a symmetry) of <U €> which maps x to y. This
result justifies the intuition that isomorphic objects arc indistinguishable. .

Philosophers of mathematics have observed that mathematical descriptions of structures such as the
natural numbers do not determine the identity of those structures [Benacerraf 65]. The best one can hope to
do is to determine identity "up to isomorphism". The theory of symmetric sets reflects this observation. A
specification for a particular object x might be a sentence @ such that ¢(y) holds just in case y is x. However
consider any first order formula ® of one free variable whose only non-logical symbol is €, If x and y are
isomorphic objccts then there is a symmetry of <U €> which maps x to y and thus ®(x) holds in <U €> just in
case ®(y) holds in <U €>. Thus if there arc several different objects which are isomorphic to x then no such
sentence @ can name x. In the theory of symmetric scts there are always many objects which are isomorphic
to x. '

The theory of symmetric sets provides a simple and natural measure of the "abstractness” of objects.
A more abstract object is an object ‘with "less structure”. A precise definition of this notion can be
approached in three different ways. First the symmetries of the universe of syrametric sets greatly restricts the
predicates and functions which can be defined in terms of the structure of <U €>. A function ¥ will be called
essential if it commuteé with any symmetry (automorphism) of <U €, i.e. for any symmetry p of <U €> and
any element x of U, p(F(x)) must equal F(p(x)). Given two elements x and y of U there may not exist any
essential function F which maps x to y. For example there is no essential function which maps a set of points
to an element of that set. An object y is called an abstraction of an object x just in case there is an essential
function F which maps x to y. This notion of abstraction can also be approached by studying the symmetries
of particular objects. The symmetry group of an object x, denoted A(x), is the set of all automorphisms of
<U €> which leave x fixed. The notion of an abstraction can also be defined by saying that y is an abstraction
of x just in case A(y) contains A(x). A third approach to the notion of abstraction is via the notion of
contextual isomorphism and the general notion of a "canonical” object. Two objects x and y are said to be
isomorphic in the context of z just in case there is a symmetry of z which maps x to y. For example consider a
circle and two points p and q which are in the same plane as the circle. The points p and q arc isomorphic in
the context of the circle just in case they are the same distance from the center of the circle. An object y'is said
to be canonical in the context of an object z just in case the isomorphism class of y in the context of z, )ylz, isa
singleton sct (there is o canonical point on a circle or canonical corner on a square). Tt turns out that y is an
abstraction of x just in case y is canonical in the context of x. .

Given the above notion of abstractaess it is possible to provide a precise notion of "representation”.

For cxample finite sets can be represented as finite sequences because there is an essential function which
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maps any sequence to to the corresponding set. However it is easy to show that there is no essential function
which maps finite scts of points to finitc scquenées of points. Thus sequences can not be represented as sets.

Mathematics is often done in the framework of some fixed but arbitrary context. Intuitively a
context is a collection of objects which are taken to be ﬁﬁ(cd during the course of a mathematical discussion.
The natural numbers, the real numbers, and the empty sct are all usually assumed to be fixed objects even
though their "truc identity" can not be specified. The result relating essential functions, symmetry groups,
and canonical objects can be generalized to account for context.

In addition to the different treatment of points there is another less important distinction between
symmetric set theory and ZF sct theory. The axioms of ZF sct theory are (an infinite number of) sentences of
first order logic while the axioms of symmetric set theory are precise conditions on the universe <U €> which
are stated in English rathcer than first order logic. Thus symmetric set theory avoids all of the clumsiness of '
first order logic. Furthermore it is shown in an appendix that a simple extension of the axioms of symmetric
set theory specify the structure of <U €> up to isomorphism, something which could never be done in first

order logic.
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2. THE AXIOMS OF SYMMETRIC SET THEORY

In deciding on axioms for a universe of mathematical objects there are several considerations. First
the axioms should be as clear, simple, and natural as possible. Second, since ZF set theory is well established
the axioms should not differ unnecessarily from ZF sct theory. Finally, and most interestingly, the axioms
should provide a basis for defining universal notions of isomorphism, abstraction, and representation.
However one should not expect to immediately sce how the axioms of symmetric set theory provide a basis
for general notions of isomorphism, abstraction, and representation. These notions can be defined only after
the consequences of the simple set theoretic axioms have been investigated.

No proof of the consistency of the axioms of symmetric set theory is presented in this section.
However it is shoWn in an appendix that the consistency of the axioms is equivalent to the existence of a’
strongly inaccessible cardinal. The appendix also shows that any universe satisfying the axioms is determined

up to isomorphism by a "height" and a "width" where the height can be any strongly inaccessible cardinal

and the width can be any cardinal at least as large as the height. Thus if there are strongly inaccessible
cardinals then there are many different (non-isomorphic) universes satisfying the axioms. There is however a
unique (up to isomorphism) minimal universe <U €> whose height and width are both the least strongly
inaccessible cardinal. Throughout the following sections however the universe will be taken to be some fixed

but arbitrary model of the axioms.

2.1. The Nature of the Universe <U €>

The universe of symmetric scts is taken to be a pair <U €> where U is some domain and € is a
binary relation on U. Some clements of U can be thought of as sets in the standard way. For example

consider the pair <U €> given as follows:
U is the set {a b ¢ d e f}. The relation € is given by:

a€d be&d c€d
a€e beEe
a€f cE€f

In this situation a, b, and c are points.

Definition: A point is an clement p of U which has no members, i.e. x¢p for all x in U.

In the above example the clement d represents the sct {a b}, e represents the set {a b}, and f
represents the set {ac}. Note that the relationship between d and the set {a b} is given by the relation €




2. THE AXIOMS -5- August 1983

and can not be defined purely in terms of the set U or the clement d. Not all subscts of U need have
representations in U. In the above example there is no representation for the set {e f}.

Definition: A subset C of U is represented in <U €> just in case there is an element z of U
such that x€z just in case x is in C; in this casc z is called a representation of C.,

It is important to note that the notion of representation expressed in the above definition is not the
same as the notion of representation intended in the title of this paper. A more general notion of
representation will be presented section four. However in this scction the term "representation” will be used
only in the sense given in the above definition.

The axioms of the theory of symmetric sets imply that the universe U is not empty. While a special
axiom to this cffect is not needed, the fact that U is not empty will be emphasized with an explicit axiom.

Axiom zero: U is non-empty.

The first axiom of symmetric set theory is that representations are unique.

Axiom One, Extensionality: Representations of non-empty sets are unique, i.e. for any

non-empty subsct C of U there is at most one element x of U which represents C.

The universe <U €> should be thought of as containing representations for tuples, functions, and
relations as well as representations for subsets of U. For example if x and y are clements of U then z will be
called a representation for the pair <x y> just in case z represents the set {x {x y}}, or more precisely z
represents a set {x w} wherce w represents the set {x y}. Functions and relations are represented by sets of
tuples in the standard way (or more precisely a function is represented by a set of clements of U each of which
represents a tuple). Again the term "rcpresentation” is being used here in a different sense from that
intended in the title of the paper and a more general definition is given in section four.

2.2. The Comprehension Axioms

Given the above axioms it is possible that U contains only points, i.e. that no clement of U
represents a non-cmpty subsct of U, Axioms that require that certain non-cmpty subsets of U be represented
in <U €> are called comprehension axioins. The first comprchension axiom makes use of the following

definition:

Definition: A subsct C of U will be called small just in case there is some subset C of U
which is represented in <U €> such that the cardinality of C is as big as the cardinality of C.
A subsct C of U which is not small will be called large.
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By definition every subsct C of U which is represented in <U € is sinall. However it has not been
guarantecd that every small subset of U is represented in <U €>. This is the first comprehension axiom.

Axiom Two, Strong Comprehension: Every small subset of U is represénted in<U €.

The above comprehension axiom implies that the cardinality of a subset C of U determines whether
or not C is represented in <U €>. If C is small then it is represented in <U €, if it is large then it is not. This

leads to the following lemma:

Lemma 2.1: 1f two clement sets are small then for any small subsets C and C' of U all
functions from C to C’ are represented in <U €.

Proof:  An ordered pair <x y> of elements of U is taken to be the set {x {x y}}. Thus if two element
sets are small any ordered pair of elements of U is represented in <U €>. Any function from C to
C’ is a set of such pairs with the same cardinality as C and is therefore a small subset of U.
One model of the above comprehension axiom is a universe <U €> where U is infinite and a
non-empty subset C of U is small just in case it has less than seven members, To rule out such a universe

some further axioms are needed.

Axiom Three, Infinity: There exists an element of U which represents a countably infinite
subset of U.

Axiom Four, Power Set. If a subset C of U is small then any subset of U with the cardinality
of the power set of C is also small.

Axiom Five, Union: A small union of small sets is small, i.e. for any family F of subsets of U
if F is small (has cardinality less than or equal to some simall subset of U) and if each set in F
is small then the union of all sets in F'is also small.

There is one final comprehension axiom which does not correspond to any axiom of ZF st theory.
This final axiom will turn out to be important in later sections.

Definition: P(U) is the sct of all points in <U €.

Axiom Six, Point Comprehension: P(U) is large,

This axiom implies that for any small subsct C of U there is a set of points C’ which is the same size
as C. Since both C and C’ are small lemma 2.1 implies that the bijections (one to one onto functions) from C
to C are represented in <U €>. Thus any small sct can be "identified” with a set of points. '
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2.3. The Foundation Axiom

The Foundation axiom is the final axiom of the theory of symmetric sets. It states that there are no

infinitely decreasing membership chains.

Axiom Seven, Foundation: There is no infinitely decreasing sequence of elements of U, i.e.

there is no infinite sequence x19 x29x33

The foundation axiom has important implications. It implies that there is no element x of U such
that x€x (otherwise the infinite sequence all of whose elements were x would be an infinite decreasing
sequence). In fact there can be no containment loops, i.e. no sequence x;€x,€ ... x, such that x,€x;. The
foundation axiom is equivalent to the statement that every subsct C of U contains a lower bound under €, i.e.”
any subset C of U contains a lower bound x such that there is no y in C such that y€x. The foundation axiom

can also be characterized in terms of the transitive closure of €.

Definition: 'The binary relation € + i defined to be the transitive closure of €, i.c. for any
two elements x and y of U, y€ *x just in case y€x or there is some finite sequence 21, Zy, o
zy such that y€zl€22€ zn€x.

The foundation axiom ensures that the relation €1 is a partial order on U and that €1 is well
founded. The fact that €T is a well founded partial order on U allows one to define functions on U by
recursion on € 7. For example it is possible to define a function P which maps every clement of U to its
underlying set of points. This function is defined by recursion on € + as follows:

Definition of the function P:
P(q) = {q} forany pointq
P(x) = UygxP(y) for any non-point x

Thus for any element x of U we can talk about the points P(x) of the element x. Note that P(x) is
always a subset of U rather than being any particular element of U (in fact P(x) is always a subsct of P(U), the
set of all points). It is not immediately obvious that for any element x of U the set P(x) is small and therefore
represented in <U €>, However this does follow from the axioms presented so far.

Theorem 2.2: For any clement x of U, the set P(x) is small.

Proofi The proof is by induction on € + For a point p the set P(p) is just {p} which is clearly

small. Now consider any element x of U which is not a point and such that for every y such that
y€ Ty, P(y) is small. P(x) equals the union over y€x of P(y) and therefore P(x) is a small union of
small sets and must be small. - ‘
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3. ISOMORPHISMS

A point is that which has no part.
- Euclid

It seems that every preciscly defined object has a natural notion of isomorphism associated with it.
For example graphs, context free grammars, Turing machines, and topological spaces all have a natural
associated notion of isomorphism, All of these notions of isomorphism are based on identifications between
the points of one object and the points of another. This observation motivates a notion of structural
isomorphism defined for arbitrary elements of the universe <U €> of mathematical objects.

It is intuitively clear that isomorphic mathematical objects are in some sense identical. The strongest
sense in which two elements x and y of U can be identical is if there is some symmetry (automorphism) of
<U €> which maps x to y. It turns out that under the aforementioned notion of structural isomorphism two
objects are structurally isomorphic just in case there is a symmetry of <U €> which maps onc to the other.

The notion of isomorphism can be generalized to take into account an arbitrary but fixed context,
At one level any two points p and q arc isomorphic. However if p and q appear in some fixed context then p
and q nced not be considered isomorphic. For example p and q are isomorphic in the context of the set
{p q {rs}} but they are not isomorphic in the context of the set {p {q r}}. It turns out that for any element z
of U which is taken as a fixed context there is a natural and general definition for when two elements of U are
isomorphic in the context of z. '

The universe <U €> is intended to be a model of the universe of all mathematical objects. For this
reason the term "object” will be used as a synonym for the phrase "an clement of U".

3.1. The Symmetries of <U €>

An automorphism or symmetry of <U €> is a one to onc onto map p from U to U (a permutation of
U) such that for any x and y in U, p(x)€p(y) just in casc x€y. [t can be shown that for any symmetry p of
<U €> and any object x, p(x) is a point just in case x is a point. Thus for any symmetry p of <U €> the
restriction p|P(U) of p to the points P(U) is a onc to one onto map from P(U) to P(U), ic. plP(U) is a
permutation of P(U). The first important thcorem concerning the symmetries of <U € is that cach symmetry
is determined by its corresponding perinutation of P(U).

Theorem 3.1: If p and p’. are two symmetrics of <U €> such that p|P(U) equals p’[P(U} then
p equals p’.

Proofi The proofis by induction on € +, By assumption p and p’ arc the same function on points.

Consider any x in U such that p and p” have the same value on all clements y of U such that y€ *y.
Since p preserves the membership relation the set represented by p(x) cquals {p(v): y€x}.
Similarly the set represented by p’(x) equals {p'(y): y€x}. Butsince p and p’ are the same function
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on all y€ *x, p(x) and p’(x) must represent the same set. Thus by exten'sionality p(x) must equal
p’(x). ‘
Any symmetry of <U €> determines a permutation of P(U) and theorem 3.1 shows that the induced
permutation of P(U) uniquely determines the symmetry. Tt can also be shown that every permutation of P(U)

corresponds to a symmetry of <U €.

Theorem 3.2: Any permutation p of P(U) can be extended to a symmetry of <U €.

Proof: Let p be any permutation of P(U). The extension of p to all of U is defined by induction on
€7 viathe following relation:

p(x) = the representation of {p(y): y€x}

The set {p(y): yEx} is guaranteed to be represented in <U €> because it can be no larger than the
set represented by x. It follows from the above equation that if yEx then p(y)€p(x) and further if
p(y)€p(x) then y€x. It remains only to show that the extension of p to all of U is one to one and

onto. Consider the inverse permutation p'1 of P(U) and the extension of this inverse to all of U, It
can be shown by a standard induction on € * that p'l(p(x)) cquals x for all x in U and thus the
extension of p is one to one. Similarly it can be shown that p(p'l(x)) must equal x and thus the
extension of p is onto.

Theorems 3.1 and 3.2 imply that there is a natural one to one relationship between the permutations
of the points P(U) and the symmetries (automorphisms) of <U €>. In classical set theory there is only one
point and there is only one symmetry of <U €>, namely the identity function.

If there is a symmetry of <U €> which maps x to y then x and y are truly indistinguishable. More
concretely let ® be any first order formula of one free variable whose only non-logical symbol is €. If there is
a symmetry of <U €> which ‘maps x to y then ®(x) holds in <U € just in case ®(y) helds in <U €.

Theorem 2.2 says that for any object x the set P(x) is small and thus P can be thought of as a
mapping from U to U. A simple induction on € can be used to show that the mapping P commutes with
symmetries of <U €, i.e. that for any symmetry p of <U €> and any object x, P(p(x)) equals p(P(x)).

Lemma 3.3: For any symmetry p of <U €> and any object %, P(p(x)) equals p(P(x)).

3.2. Structural Isomorphisms

There is a natural definition for what it means for two graphs. or languages, or lists of points to be
isomorphic. All of these objects can be represented by eleinents of U and it would be nice if the notion of
isomorphism which is defined for clements of U correspondad to the natural notion of isomorphism for such
objects. This observation Ieads to the definition of structural isomorphism presented below.

Any two points have the same structure simply because neither has any structure, Larger objects are
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structurally isomorphic just in case there is an identification between the points of the objects which preserves
the structure of those objects. For example let p, q, r, and s be any four distinct points. The set {p q} is
isomorphic to the set {r s}, but not the sct {rsp}. In fact any two sets of points arc isomorphic just in case
they have the same number of elements. The triple <p bq) is isomorphic to the triple <r r s> but not to the
triple <r s s>.

To define the notion of structural isomorphism precisely it is nccessary to build up some
terminology. Let C be any set of points. U(C) is defined to be the sct of all elements x of U such that P(x) is a
subset of C. Thus U(C) is the set of objects which are built up out of the points in C. Let p be any function
mapping C to arbitrary points. Any such function p can be extended to a function p’ defined on all of U(C)
via the following inductive definition:

p'(p) = p(p) for points p
p’(z) = The representation of {p’(y): y€z} for any non-point z in U(C).

For example if p(p) is r and p(q) is s then p’(Kp @>) is <rs>. Thus the function p’ "replaces” the
points of an object by their image under p. In the inductive definition of p’(z) the set {p’(y): y€z} is
guaranteed to be represented in <U €> because it can be no larger than the set represented by z. In the
following discussion any function p defined on the points C will be assumed to be defined in the above way
on all of U(C).

Definition: A structural isomorphism between two clements x and y of U is a bijection p
from P(x) to P(y) such that p(x) equals y (any function defined on P(x) will be assumed to be
defined on x via the above relation). The elements x and y are said to be structurally
isomorphic just in case there exists a structural isomorphism between them.

As an example let a group <G ©> be a pair of a sct of points G and a function © from GXG to G
satisfying the standard axioms for a group. Notice that P(KG °>) cquals G. Now consider two groups <G >
and <G’ > and let p be any bijection from G to G'. Clearly p(G) equals G’ so p(<G °>) equals <G’ p(°)>.
Thus the bijection p is a structural isomorphism between <G > and <G’ ©*> just in case p(°) equals ©’. Since
functions are represented by sets of tuples an elernent of © is a triple of points <p q r> where r is the value of
peq. Thus p( o) is a sct of triples of the form <p(p) p(a) p(r)>. The set of triples p(°) will equal the set of
triples © just in case for any triple <p q r> in ° the triple <p(p) p(q) p(r)> is in °’, i.e. just in case p(i) equals
p(p)°’p(q). This statement is cquivalent to the condition that p(p)e’p(q) equals p(peq) which corresponds to
the standard notion of isomorplﬁsm between groups.

The notion of a structural isomorphism can be.related to the symmetries of <U €>. Tt has already
been shown that there is a natural one to one correspondence beiween the automorphisms of <U € and the
permutations of P(U). The following theorem relates bijections between sets of points and permutations of

P(U).




3. ISOMORPHISMS -11- August 1983

Theorem 3.4. Any Dbijection between two small sets of points can be extended to a
permutation of all of P(U).

Proof Sketch: Let C and C be any two small sets of points and let p be any bijection from C to C'.
Let p be any member of either C or C'. Since C and C’ necd not be disjoint p may be in both C and

C’ and thus both p(p) and p'l(p) may be defined. In general any point p in either C or C is

contained in some minimal chain of the form ... p'l(p'l(p)), p'l(p), p, p(p), p(p(p))... (more
preciscly the minimal chain containing p is the least subset of CUC’ which contains p and is closed

under p and p'l). The minimal chain containing p can be one of four types. First it might be a
loop, in which case p is already a permutation of the minimal chain containing p. Sccond it might
be infinite in both direction in which casc p is also already a permutation of the chain. Third the
chain may have a "first" member which is in C but not in C* and a last member which is in C' but
not in C. Finally the minimal chain containing p may have only onc endpoint, cither a starting
point or an ending point. In these cases p is not a permutation of the minimal chain containing p.
To remedy this situation onc can extend the function p to more points and convert any chain of the
these last types into either a cycle or a chain which is infinitc in both directions. To make such an
extension there must be enough points in P(U) which are not in C or C'. But since both C and C
are assumed to be small this last condition can be readily shown.

The main result of this section can now be proven.

Theorem 3.5 Two elements x and y of U are structurally isomorphic just in case there is a
symmetry of <U €> which maps x to y.

Proofi  1f x and y are structurally isomorphic then there is a bijection p from P(x) to P(y) which
maps x to y. Any extension of p to more points will still map x to y. Thus theorem 3.4 implies that
p can be extended to a permutation of P(U) which maps x to y. On the other hand if there is a
permutation p of P(U) which maps x to y lemma 3.3 implies that P(p(x)) equals p(P(x)) so p(P(x))
equals P(y) and thus p maps P(x) onto P(y). Thus the restriction of p to P(x) is a bijection from P(x)
to P(y) which maps x to y.

Theorem 3.5 demonstrates that the two natural notions of isomorphism between symmetric sets

coincide. Thus there is never any ambiguity in what is mecant by two elements of U being isomorphic.

3.3. Symmetry and Contextual Isomorphisms

Since there is a natural notion of isomorphism for clements of U there is also a natural notion of
automorphism or symmetry. For example there are two structural symmetries of {p g}, the identity map on
the points p and q and the function which exchanges p and q. Since any structural isomorphism can be
extended to a symmetry of <U €> there is no need to distinguish between structural isomorphisms and

permutations of P(U).

Definition: 'The symmetry group of an object x, denoted A(x), is the sct of all permutations
p of P(U) such that p(x) cquals x.

There is a contextual notion of isomorphism where two objects x and y arc isomorphic in a context z
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just in case x and y bear exactly the same relationship to z. For example let z bé the set {p q {rs}} where p, q,
r, and s are points. Clearly the point p is just like the point g with respect to z (both p and q are members of z
and neither is a member of a member of z). Similarly the point r is just like the point s with respect to z. On
the other hand p is not like the point r since p is a member of z while r is not.

As another example let y be the set {<p q> <q > <r p>}. This represents a directed graph with nodes
p, q, and r and edges from p to q, q to r, and r to p. In other words y represents a cyclic directed graph of
three nodes. Notice that every node of y looks like every other node. More precisely y has three structural
symmetrics corresponding to threc rotations of the graph. For any two nodes there is a rotation which maps
one to the other.

Definition: Two objects x and y will be called isomorphic in the context of an object z just in
case there is a symmetry p of z such that p(x) equals y. The set of things isomorphic to y in
the context of z will be denoted |y},
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4. ABSTRACTION, REPRESENTATION, AND OTHER APPLICATIONS

There is an informal distinction in mathematics between essential and contextual properties. For
example consider an open sct of some topological space. The fact that the set is open is a contextual property
of that set while the cardinality of the set is an essential property. In the framework of symmetric sets this
distinction is easily made precise. Any two isomorphic objects have the same cssential properties. An
essential predicate @ is any predicate on U such that ®(x) is equivalent to ®(p(x)) for any object x and point
permutation p. An essential function is one that commutes with automorphisms of <U €3, i.e. F(p(x)) always
equals p(F(x)).

In mathematics one often encounters a notion of a "canonical” or "natural” transformation or
relationship. For example a set of points has no natural or canonical element, there is no natural or canonical
point on a circle, and a square has no canonical corner. On the other hand one can choose a canorical
element of an ordered pair. One particularly well known example is the dual space of a linear vector space.
VT he dual space D(X) of a linear vector space X is the set of linear functions from X to scalars. If there is a dot
product operation * defined on X then there is a natural isomorphism between X and D(X) where the linear
function associated with a vector x is Ay.x"y. However if no dot product operation is specified for X then
while X and D(X) are still isomorphic there is no natural or canonical isomorphism. On the other hand there
is always a canonical or natural isomorphism between X and D(D(X)). A simple and natural definition for
this notion of canonical is given by saying that y is canonical in the context of x just in case the isomorphism‘
class of y in the context of x, |y|,, contains only one object.

The theory of symmetric scts provides a simple general measure of the abstractness of objects. An
object y can be said to be an abstraction of an object x just in case any one of the following three conditions
hold: A(y) contains A(x), IyIX is a singlcton set, or y equals F(x) for some essential function F. It turns out that
these three criterion are equivalent and there is no ambiguity in what is meant by y being an abstraction of x. ‘

There arc many representation theorems in mathematics. For example every Boolean algebra can
be represented by an algebra of sets. Of course the notion of a representation is also heavily used in computer
science where alphabets are represented as binary codes and sets are represented as lists. This raises the
natural question of what is meant in gencral by a representation. The theory of symmetric sets provides a
natural framework in which to develop a general theory of representation,

Mathematicians often talk about fixed but arbitrary structures which form a context in which to
investigate other structurces. For example the natural numbers are assumed to be a fixed set even though their
"true identity” can never be specified. The same holds for the real and complex numbers. Another example
of contextual objects are the fixed constants "true™ and "'false” which are used in discussions of logic. Still -
another example from logic is the fixed but arbitrary alphabet from which the sentences of logic are
constructed. Even the "empty set” can be viewed as.an objact which is taken to be fixed but whose identity is
never specified. The general notion of a context can be handled in a natural way in the theory of symmetric

seis. A context is an object z (which may have lots of internal structure) which is "taken to be fixed”. This
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means that only symmetries of z are considered when talking about isomorphisms, symmetry groups, essential

properties, and canonical objects.

4.1, Essential Functions, Canonicality, and Abstraction

The set {p q} can be thought of as cssential property of the pair <p q@>. That is to say that given a
pair of points one can derive in a natural way a set of two points. The reversc does not seem to hold, given a
set of two points there is no natural or canonical way to derive a pair of two points. Similarly given a pointp
there is no natural or canonical sct of two points which contains p. Conversely given a set of two points there
is no natural or canonical element of that set. Recall that for any objects y and z, |y|Z is the set of all things
isomorphic to y in the context of z, i.e. ly]Z is the set of things which can be written as p(y) for some symmetry

p ofz

Definition: An object y will be called canonical in the context of an object z just in case Ivl,
is a singleton set.

There are many intuitive examples of objects which are not natural or canonical. There is no natural
or canonical point on the perimeter of a circle. There is no canonical corner on a square. There is no natural
or canonical coordinate system for three dimensional ‘space. On the other hand consider an oblique triangle
(where no two sides have the same length). One can choose a canonical vertex for such a triangle by choosing
the vertex connecting the two shorter sides.

There is another intuitively satisfying notion of what a canonical object is. Intuitively y is canonical
in the context of z if one can define a function which takes z and unambiguously returns y. This notion of a
canonical object is problematic because for any two objects z and y there is a function which maps z to y.
However one wants a definable function. Remember that the universe <U €> has many non-trivial
automorphisms and every function from U to U which is defined in terms of the structure of the universe
<U €> must respect those automorphisms. In particular any function F defined in terms of the structure of

<U €> must be essential in the following sense:

Definition: A function F from U to U will be called essential just in case for every symmetry
p of <U €> and cvery clement x of U, F(p(x)) equals p(F(x)).

Intuitively the image of an object x under an essential function F can contain no more information

than the object x itself. Thus it might be said that F(x) is an abstraction of x.

Definition:  An object y wili be called an abstraction of an object z just in case y cquals F{z)
for some cssential function F.

The main result of this section relates the the notion of cancnicality, the notion of abstraction, and the

symmctry groups of objects.
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Theorem 4.1, The First Abstraction Theorem: For any objects y and z the following are
equivalent:

1) A(y) contains A(z).
2) lyl, is asingleton set.

3) y cquals F(z) for some essential function F.

Proof: .
1<=>2: If A(y) contains A(z) then for any symmetry p of z, p(y) equals y so lyIZ contains only

y. On the other hand if |y, is a singlcton set then p(y) equals y for any symmetry p of zs0 A(z) is a

subset of A(y).

1=>3: Given that A(y) contains A(z) an essential function F from U to U can be defined as
follows: Of course F(z) is defined to be y. For any w which is isomorphic to z let p be some point
permutation such that p(z) equals w and define F(w) to be p(y) (this is equivalent to defining
F(p(z)) to be p(F(2)) for any point permutation p). 1t must be shown that this definition of F(w) is
independent of the choice of p. In particular if p and p’ are two point permutations such that p(z)
equals p’(z) equals w then it must be shown that p(y) equals p’(y). If p(z) equals p’(z) then
p'l(p‘(z)) equals z so p'1°p’ is a symmetry of z. But since A(z) is a subset of A(y), p'1°p’ is a
symmetry of y and thus p'l(p’(y)) equals y which implies that p’(y) equals p(y).

It will now be shown that for any w which is isomorphic to z and any point permutation p,
F(p(w)) equals p(F(w)). Since w is isomorphic to z there is some point permutation p’ such that w
equals p’(z). Now F(p(w)) equals F(p°p’(z)) which equals pop'(F(z)) which equals p(p’(F(z))
which equals p(F(p’(z)) which equals p(F(w)). Thus for any w isomorphic to z, F satisfies the
condition for being an essential function. To complete the definition of F let F(w) be w for any w

not isomorphic to z. .
3=>1: Suppose F is an essential function such that F(z) equals y and Ict p be any symmetry of

z. Since F is an cssential function p(F(z)) equals F(p(z)) which equals F(z). Thus p is a symmetry
of F(z), i.e. p is asymmetry of y. Thus A(y) contains A(z).

4.2. Abstraction and Points

The notion of abstraction has some important relationships to points. The first lemma about points

concerns the isomorphism classes of points in the context of an object x.

Lemma 4.2: For any object x and point p, [pl, is either a subsct of P(x) or is all of P(U)-P(x).

Prooft  For any symmetry p of x, p(P(x)) equals P{p(x)) equals P(x). Thus any symmetry p of x
induces a permutation of P(x). Thus for any point p in P(x), lplx is a subsct of P(x). On thc other

hand for any two points r and s which are not in P(x) there is a symmetry of x which exchanges r
and s. Thus if r is not in P(x) then |1, contains all of P(U)-P(x). Furthermore for r not in P(x), r],

can not intersect P(x) since otherwise there would be some point p in P(x) such that lplx was not a
subset of P(x). Thus either p is in P(x) and Iplx is a subset of P(x) or p is not in P(x) and lp[x equals
P(U)-P(x).

Corollary 4.3: For any object x and point p, p is in P(x) just in casc |p], is small.
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‘ Corollary 4.3 immediately implies that for any object x the set P(x) i$ determined by the symmetry
group of x. In fact Corollary 4.3 leads dircctly to the following theorem:

Theorem 4.4 For any objects y and x, if y is an abstraction of x then P(y) is a subset of P(x).

Proof: Let p be any point in P(y). Since A(y) contains A(x), IpIy contains |pl,.. But by Corollary 4.3
lply is small so |p|, must also be small and therefore p must be in P(x).

Theorem 4.4 immediately implies that for any for any cssential function F and any object x, P(F(x))
is a subset of P(x). It is important to realize that the converse of theorem 4.4 does not hold, i.e. if P(y) is a
subset of P(x) then y need not be an abstraction of x. For example {p q} is not an abstraction of {p q r}.

4.3. Representation and Transformational Isomorphisms

Any finite set of points can be represented by a finite list of points though there is no canonical
representation for a set of points as a list of points. More precisely there is an essential function F which maps
any finite list of points to the finite set of points contained in that list and any finite set y can be written as
F(x) for some finite list x. Note that the function F is from the representations to the represented objects.
Also note that the function from representations to represented objects is onto, i.c. every object which is to be
represented must have a representation. These observations lead to the following definition of a uniform

representation.

Definition: Let C and R be subsets of U, let F be an essential function, and let F(R) denote
{F{x) for x in R}. F is said to be a uniform representation of eclements of C as elements of R
just in case F(R) contains C.

Note that lists of points can not be fcprcsented as scts of points because there is no essential function
which maps a sct of points to a list of those points (there is no canonical representation of a set of points as a
list). A similar example involves multiscts. A list of points can be used to represent a multiset of points, but
multisets of points can not be used to represent lists.

There are certain cases in mathematics where two different (non-isomorphic) things are "essentially
the same thing”. For example an equivalence relation on a sct of points C is a relation, i.c. a sct of pairs,
which is reflexive, symmetric, and transitive. A partition of C is a family of disjoint subsets of C. Any
cquivalence relation on C can be viewed as a partition of C and vice versa. Another simple example involves
the representation of tuples. For example a tuple of points <p @> can be viewed as the set {p {p q}} or as the 7

set {q {p q}}. The following definition makes the notion of "essentially the same™ more concrete.
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Definition:  An cssential function F from U to U which is also a permutation of U will be
called a transformational symmetry of <U €>. Two objects x and y will be called
transformationally isomorphic just in case there is a transformational symmetry of <U €>
which maps x to y.

If two objects x and y are transformationally isomorphic then there is a sense in which they are

indistinguishable. More precisely the following lemma holds:

Lemma 4.5 For any transformational symmetry F there is a translation operator T which
maps any monadic essential predicate @ to a monadic essential predicate T(®) such that for
any object x, ®(x) holds just in case T(P)(F(x)) holds. '
Proofi Since F is a permutation of U it has an inverse Fl which is easily shown to be an essential
function. Let T(®) be the predicate Aw.@(F 'l(w)). Clearly @(x) is equivalent to T(®)(F(x)).
Furthermore T(®) is easily seen to be an essential predicate.

Lemma 4.5 gives a precise rclationship between objects which are transformationally isomorphic. In
particular if x and y are transformationally isomorphic via the transformational symmetry F then any essential
statement (or question) ®(x) concerning x is equivalent to some essential statement T(®)(y) concerning y. It
turns out that two objects x and y are transformationally isomorphic just in case A(x) cquals A(y). However
the condition that A(x) equals A(y) does not ensurc that there is a definable transformational symmetry F

which maps x to y.

Definition: A function F from U to U will be called definable just in case there is a first order

formula ® of two free variables whose only non-logical symbol is € such that for any two

objects x and y, @(x y) holds in <U €> just in case y equals F(x).

Consider the real numbers <R + * <> where R is a set of points, 4+ and * are binary operations on
R, and < is a total order on R. A(KR + * <>) is the group of all symmetries which leave every point in R
fixed (any symmetry of <R + * <> must leave one and zero fixed). Now consider a pair <R <™ where <’ is
a well ordering of the set of points R. It is easy to show that A(KR <) is also the group of all permutations
which leave every point in R fixed. Since A(KR + * <>) equals A(KR <), <R + * <> is transformationally
isomorphic to <R <’>. However there is probably no definable transformational symmetry of <U €> which
maps<R + * <> to <R <.

4.4. Context

Intuitively a context is a collection of objects which are taken to be "fixed”. There are some objects
which are taken to be fixed over all of mathematics. For example mathematicians often speak of "the”
natural numbers, even though' the identity of the natural numbers can not be specified (though the structure
of the numbers can be specified up to isomorphism). The same holds for "the™ real numbers, or "the”
complex plain. In logic one often assumes that there is a particular thing which is the constant "truc” and a

particular thing which is the constant "false”. A more controversial example is the empty set. There are other
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examples of "context" where the context is not even specified up to isomorphism. The phrase "fixed but
arbitrary" is often used in mathematical writing and serves to specify a context for a mathematical discussion.

As another example of context consider a linear vector space. A lincar vector space has an associated
field (usually "the" real or complex numbers) such that ény vector can be scaled by an element of the field.
In discussions of linear vector spaces the ficld is usually taken to be fixed. Thus in relating two vector spaces
one usually assumes they have the same associated field of scalars.

As yet another example consider a particular first order language L. The language L is taken to be a
sequence of typed symbols which determines a set of well formed formulas. Such a language is usually taken
to be arbitrary but fixed in discussions of logic.

To generalize the results of the previous section it is uscful to define the notion of a contextual

symmetry group. .

Definition: The symmetry group of y in the context of z, denoted AZ(y), is the set of all
symmetries of z which are also symmetries of y. More simply Az(y) equals A(y) intersect
A(z).

Note that any symmetry of the pair <y z> must be a symmetry of y and a symmetry of z, and
anything which is a symmetry of both y and z must be a symmetry of the pair <y z>. Thus A(Ky 2>) is the
intersection of A(y) and A(z) so AZ(y) cquals A(<y z>). The notion of an essential function can also be made

contextual:

Definition: A function F from U to U will be called essential in the context of z just in case
for any object x any symmetry p of z, F(p(x)) equals p(F(x)).

A good example of a contextually essential function is the cardinality function on finite sets. Let
<N <> be "the" natural numbers where N is a set of points and < is a binary relation which orders those
points. The function F which maps any finite set x to the natural number representing the size of x is essential
in the context of <N <>. Note that this cardinality function is not essential outside of this context because
F(x) can be a point not found in x. The following lemma provides an alternative characterization of functions

which are contextually essential.

Lemma 4.7. A function F from U to U is essential in the context of z just in case it can be
written as Ax.G(<x z>) for some essential function G.

Proof. 1t F can be written as Ax.G(<x z>) then it is easy to show that F is essential in the context of
7. On the other hand assume F is essential in the context of z. First if w is not a pair whose second
component is isomorphic to z then G(w) is defined to be w. If w is a pair whose sccond component
is isomorphic to z then w can be written as p{<x z>) for some object x and point pcrmutation p. In
this case G(w), which can be written as G(p{<x 2>)), is defined to be p(F(x)). It must first be shown
that G is well defined, i.e. that if p(<x 2>) cquals p’(Ky 2>) then p(F(x)) equals o’(F(y)). First note

that p"l(p'(<y 7>)) equals <x.z> so p'l(p’(y)) equals x and p-l(p’(z)) cquals z. Thus p'l"p’ is a
symmetry of z. Now since F is cssential in the context of z, p_l"p’(IT(y)) cquals F(p'lop’(y)) which
equals F(x). Butif F(x) cquals p'lop’(F(y)) then p(F(x)) must cqual p’(F(y)).
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It follows directly from the definition of G that G(<x z>) cquals F(x) and thus F can be written
as Ax.G(<x z>). To show that G commutes with arbitrary point permutations let w be any object
and p be any point permutation. If w can not be written as p'(<x z>) for some x and p’ then G(w)
cquals w and G(p(w)) cquals p(w) so the result is trivial. On the other hand suppose w can be
written as p’(<x 2>). In this case G(p(w)) cquals G(p°p’(x z>)) which cquals pop’(F(x)) which
equals p(G(p’(<x 2>))) which equals p(G(w)).

The following abstraction theorem is a generalization of the first abstraction theorem.

Theorem 4.8, The Second Abstraction Theorem: For any objects x and y and context z the
following are cquivalent:

1) A,(y) contains A (x)
2) lyley > is a singleton set
3) y equals F(x) for some function F which is essential in the context of z

Proof:  The first condition is equivalent to the statement that A(<y z>) contains A(<x z>). The
second condition is equivalent to the statement that [<y z>|¢, , is a singleton set. Finally lemma

4.7 implics that the third condition is equivalent to the statement that <y 7> equals G{<x 2>) for
some essential function G. Thus the cquivalence of these three statements follows directly from the

first abstraction theorem.

4.5. Essential Predicates

Essential functions have been shown to play an important role in characterizing the nature of
abstractions and the notion of a natural or canonical property. Essential predicates are closely related to

essential functions and can play much the same role in constructing abstractions.

Definition: A binary predicate ® on U is called cssential if for any objects x and y and point
permutation p, ®(x y) holds just in case ®(p(x) p(y)) holds.
The relationship between predicates and functions can be made more explicit by defining a monadic

function Fyg, for each binary predicate P.

Definition: For any binary predicate ® on U, Fq, is the function from U to subsets of U such
that Fq)(x) equals {y: ®(x y)}.

For example let @ be the predicate such that ®(x y) holds just in case y is a pair whose first
component is x. In this case Fq,(x) is the set of all pairs whose first component is x. Note that Fp(x) is a large
set and thus has no representation in <U €>. Thus in general Fd, can not be thought of as a function from U
to U. The following definitions will be useful in discussing the functions associated with essential predicates.

Definition: Let C be any subset of U. P(C) is the union over x in C of P(x). For any point
permutation p, p(C) is the sct {p(x): x in C}. The symmetry group of C, denoted A(C), is
the set of all point permutations p such that p(C) equals C. The isomorphism class |C], of C

in the context of an object z is the family of all sets which can be writien as p(C) for some
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point permutation p.

For any ecssential predicate @ the function Fg commutes with point permutations, i.c. Fpo(x)
equals p(Fq,(x)). Thus F ¢ can be thought of as an cssential function. However as the above example shows
Fg(x) can be large and P(Fg(x)) can be all of P(U). Thus some of the theorems concerning essential
functions do not apply to Fg. However many of the results concerning essenual functions can be generalized
to the functions associated with essential predicates.

Theorem 4.9, The Third Abstraction Theorem: For any object z and (possibly large) subset C
of U the following arc equivalent:

1) A(C) contains A(z)
2) [C], is a singleton family

3) Cequals Fp(2) for some essential predicate ®.

The proof of the above theorem is analogous to the proof of the first abstraction theorem. In
showing that 1) implies 3) the predicate @ is defined by sctting ®(p(z) p(y)) to be true for any point
permutation p and any element y of C, and ®(w x) to be false if <w x> can not be written as <p(z) p(y)> for
somey in C, ,

Essential predicates can be thought of as defining abstraction functions from objects to more
abstract objects. For an essential predicate @ and object x it does not seem very important that Fp(x) may be
large, the important point is that the symmetry group of F p(x) contains the symmetry group of x.

A good example of the use of essential predicates in defining abstractions is a multiset. Let fand g
be two finite functions (they each have a finite domain). The functions f and g will be said to represent the -
same multiset if there exists a bijection o from the domain of f to the domain of g such that for any x in the
domain of £, f{x) cquals g(a(x)). Intuitively f and g represent the same multiset if for any range clement y, f
and g map the same number of cbjects onto y. Let @ be the binary predicate on U such that &(f g) holds just
in case f and g arc finite functions which represent the same multiset. It is easy to show that @ is an
cquivalence relation on finite functions and that F(f) is the equivalence class of f under this relation. The
symmetry group of Fg(f) is not the full permutation group on P(U) but is larger than the symmetry group of
f. Thus F(I)(f) can be thought of as the multiset abstraction of f.
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5. RELATION TO OTHER WORK

The notions of isomorphism, symmetry, and representation are ubiquitous in mathematics and
probably have numerous independent origins. The relationship between symmetry and pcrmutaﬁon groups
is also well known. This relationship has been studied in some detail and it has been shown, for example, that
not every permutation group can be represented as the symmetry group of a graph [Biggs 74]. But while the
notions of isomorphism and symmetry have been extensively used for objects of a given type (e.g. graphs,
groups, algebras, languages, grammars) these particular notions of isomorphism do not provide a notion of
isomorphism defined over all mathematical objects.

Category theory provides one gencral approach to the notion of isomorphism. A category can be
thought of as a directed multigraph with an associative composition operator © on arcs and for cach node n an
assigned "identity" arc from n to n. The nodes of a category arc often associated with sets and the arcs with
functions between these sets. Thus the arcs are called "morphisms”. An isomorphism is defined to be an arc
1 such that both p°p'1 L
théory provides a general theory of isomorphism to the extent that every mathematical object can be thought

p which has an "inverse" arc p~ and p”‘op are identity arcs [Schubert 72]. Category
of as a node ("object") in a category. For example a group can be thought of as a node in the category of
groups, a graph as a node in the category of graphs, etc. However the category containing a given object must
be defined separately for each type of object. In fact the category containing an object of a given type is
usually defined in terms of the notion of isomorphism (and homomorphism)'for objects of that type.
Thercfore category theory docs not provide any satisfying general notion of isomorphism for arbitrary
mathematical objects. '

The notion of a type used in universal algebra and computer science provides another approach to a
general definition of isomofphism. An algebra is a domain together with some functions defined over that
domain. In the universal study of algebras each particular algebra has a type (or signature or language) which
is a set of symbols which are interpreted by that algebra. For example the type of a group is the single binary
function symbol o, There is a natural definition of isomorphism for the algebras of a fixed type such that two
algebras A and B are isomorphic just in case there is a bijection from the domain of A to the domain of B
which maps A’s interpretation of any svmbol to B’s interpretation of that symbol.

The notion of type also plays a critical role in many modern computer languages [Tennant 81].
There is one particular outlook on the typcs of computer data structures which pro\/ides a basis for a notion of
isomorphism. Under this view a type is a collection of objects which can be defined in a "natural” way from a
collection of base types. For example if A and B are base types then the set of functions from A to Bis also a
type. Similarly the set of pairs AXB of an clement of A and an clement of B is a type. As another example let
the type SubSets(AXA) be the collection of all sets of ordered pairs of clements of the base type A. More
simply SubSects(AXA) is the type containing all directed grzzbhs whose nodes are members of A, Scveral
people studying such data types and have employed permutations of the elements of base types to define a

notion of a "natural” function between types [Aho & Ulhman 79] [Dunlaing & Yap 82]. In fact Dunlaing and
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Yap implicitly use a notion of isomorphism based on permutations of the elethents of base types in defining
the automorphism group of an arbitrary typed object.

While there are strong similarities between symmetric sct theory the above mentioned work on data
types (especially that of Dunlaing and Yap) there is also én important difference. Symmetric set theory bases
the notion of isomorphism on points rather than types. When the notion of isomorphism is based on points
the isomorphism class of an object is an essential property of the object and does not depend on viewing that
object as an instance of some type (or as a member of some category). Thus it can be argued that the need for
types (or categories) in defining the ndtion of isomorphism is a byproduct of the fact that ur-elements were
left out of set theory.
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7. APPENDIX: CONSISTENCY AND CHHARACTERIZATION THEOREMS

This section contains some results concerning the existence and nature of universes <U €> of
symmetric sets. It is shown that the existence of a universe <U €> of symmetric sets is equivalent to the
existence of a strongly inaccessible cardinal. It is also shown that a universe <U €> of symmetric sets is
completely characterized by its "height" and "width". These results provide insight into two obvious
questions. First, are the axioms for symmetric sets consistent? Sccond, to what cxtent are the axioms
categorical, i.e. under what conditions are two universes isomorphic?

7.1. Consistency and Strongly Inaccesible Cardinals

There does not seem to be any satisfactory proof that there exists a universe of symmetric sets.
However a simple condition can be given which is cquivalent to the consistency of the axioms of symmetric
set theory. In essence the consistency of the axioms depends purcly on the consistency of axioms three

‘through five (infinity, power set, and union). Axioms three through five characterize what is known as a

strongly inaccessible cardinal. Thus the axioms of the theory of symmetric sets are consistent just in case there
exists a strongly inaccessible cardinal. This result is of interest because strongly inaccessible cardinals have
been studied in the context of Zermello-Fracnkel sct theory and it is gencrally believed that it is impossible to
prove that strongly inaccessible cardinals do not exist. Thus there is strong evidence that the theory of
symmetric sets will never be proven inconsistent.

Definition: A set U will be said to have a strongly inaccessible cardinality ju‘st in case it meets
the following conditions:

1) U is uncountably infinite
2) If C is a subset of U smaller than U then the power set of C is also smaller than U,

3) For any family F of subscts of U if F is smaller than U and every member of F is smaller
than U then the union of all members of ¥ is smaller than U.

The main result of this section will be proven in two parts. First it will be shown that any set U
which is larger than some inaccessible cardinal can be expanded to a model <U € of axioms one through six
(the foundation axiom is initially ignored). It will then be shown that any model <U €> of axioms one
through six contains a substructure <U’ €> which also satisfies axiom scven (foundation). These two results
will fcad directly to the main result that a set U can be expanded to a universe <U €> just in case U is larger
than some strongly inaccessible cardinal.

For any set Clet Sm(C) be the family of all non-empty subsets of C which are smaller than C. The
following lemma concerning Sm(C) is a standard result of set theory and will be stated without proof:

Lemma A.1) For any infinite sct C, Sm(C) is the same size as C,

The next lemma is a direct predecessor to the main result of this section,
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Lemma A.2:  Any set U which is larger than some strongly inaccessible cardinal can be
expanded to a model <U €> of axioms one through six.

Proofi  To ensure that there will be a large number of points a subset P(U) of U is chosen such that
both P(U) and U-P(U) are the same size as U (this can always be done for any infinite set U). Since
U is larger than some strongly inaccessible cardinal we can choose some subset U’ of U with a
strongly inaccessible cardinality. Let Sm(U U’) denote the family of all non-empty subsets of U
which are smaller than U’ Since since Sm(U U’) is a subset of Sm(U) lemma A.1 implies that
Sm(U U’) can be no larger than U. On the other hand Sm(U U’) contains all the singleton subsets
of U and thus Sm(U U’) is as large as U. Thus Sm(U U’) has the same cardinality as U and there is
a bijection f from U-P(U) to Sm(U U’) such that ecach clement x of U-P(U) represents some
non-cmpty subset f{x) of U which is smaller than U’ and every such subsct has a unique such
representation. The relation € is now defined such that x€y just in case y is in U-P(U) and and x is
in f{y). The resulting structure <U €> clearly satisfies axioms one and two (extensionality and
strong comprehension). A subsct of U is small in <U €> just in case it is smaller than U’, The
definition of a set with strongly inaccessible cardinality now directly implies that <U € satisfies
axioms three through five (infinity, power sct, and umon) The fact that P(U) is as big as U implies
that <U € satisfies axiom six.

It can also be shown that any model of axioms one through six can be used to generate a model which also

satisfies foundation.

Lemma A.3: Any model <U €> of axioms one through six contains a substructure which is a
model of axioms onc through seven,

Proofi  An element x of U will be called a well founded element- if there are no infinitely
decreasing € chains containing it. Let U’ be the subsct of U consisting of the well founded
elements of U. The substructure <U’ € clearly satisfies the foundation axiom so it is sufficient to
show that it also satisfics axioms one through six. Note that every point is well founded so P(U) is
contained in U’ and thus by the point comprehension axiom U’ is a large subset of U. If x is a well
founded element of U then every y such that y€x is also well founded and thus any well founded
element represents the same subset of U whether it is viewed as an clement of <U €> or as an
clement of <U’ €>. Since no two elements of U represent the same set under <U €> no two
elements of U’ represent the same set under <U’ €> and so <U’ € satisfies cxtensionality. To show
that <U’ €> satisfics the strong comprehension axiom let C be any subset of U’ which is small with
respect to <U €, i.e. there is an x in U which represents C. Since every member of C is well
founded x must also be well founded and thus x is in U’ and thus C is represented in <U’ €>. Thus
every subsct of U’ which is small with respect to <U €> is represented in <U’ €>. On the other
hand no set which is large in <U €> can be represented in <U’ €>. Thus a subset of U’ is
represented in <U’ €> just in casc it is small with respect to <U €>. The fact that U’ is large and that
a subsct of U’ is small in <U” €> just in casc it is small in <U €> immediately implies that <U” €>
satisfies the axioms of infinity, power set and union. Since U’ contains P(U) the number of points
in U’ is large so <U’ € also satisfics the point comprehension axiom.

Lemmas A.2 and A.3 lead directly to the main result of this section.

Theorem A4: A sct U can be expanded to a model <U €> of the axioms of symmetric set
theory just in case U is larger than some strongly inaccessible cardinal.

Proofi  1f U is larger than some strongly inaccessible cardinal then by lemma A.2 it can be
expanded to a model <U €> of axioms one through six such that P{U) is the same size as U. By
lemma A.3 there is a substructure <UJ” € of <U €> which contains P(U) and which satisfies all of
the axioms of symmetric set theory. But since U’ has the same cardinality as U it is also possible to
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directly extend U to a model <U € of all of the axioms.

On the other hand if U can be expanded to a model <U €> of axioms two through five (strong
comprehension, infinity, power set, and union) then it is easily shown that U must be larger than
some strongly inaccessible cardinal.

7.2. The Height and Width of a Universe

A universe <U €> of symmetric sets is characterized (up to isomorphism) by two "numbers", its
height and its width. The height and width of a universe <U €> are defined as follows:

Definition: 'The width of a universe <U € is defined to be the cardinality of its set of points
P(U). A subset C of U will be said to be minimally large in <U €> if no subset of C which is
smaller than C is large in <U €>. The height of a universe <U €> is defined to be the
cardinality of any minimally large subset of U.

The following lemma can be demonstrated directly from the comprehension axioms.

Lemma A.5: The height of any universe <U € is a strongly inaccessible cardinal.

The constructions used in the_consistency theorems of the previous section show that for any
strongly inaccessible cardinal there is a universe with that height. Since P(U) is required to be a large sct the
width of a universe must always be at least as large as its height. The constructions used in the consistency
theorems further show'that the width of a universe can be any cardinality larger than its height,

A universe can be thought of as a rectangle which is no higher than its width. The points of the
universe should be thought of as lying along the bottom edge of this rectangle. The main theorem of this

section can be proven directly.

Theorem A.6: Any two universes of symmetric sets with the same height and width are
isomorphic.

Proof Let the universe be <Uj €> and <U, €,>. Since both universes have the same height a

set is small with respect to one universe just in case it is small with respect to the other universe.
Since P(U}) and P(U,) are the same size there exists a bijection p from P(U}) to P(U,). The

function p can be extended to a function ¢ from ail of U; into U, via the following inductive
definition: -
a(p) = p(p) for any point p in P(Ul)
o(x) = the representation for {o(y): y€ 1x} for x not a point
The set on the right side of the second equation is guaranteed to have a representation in Uz

because it is no larger than the sct represented by x. 1t is casy to show by induction on x under
€ 1+ that a(y)€2a(x) just in case y€ 1X- To show that ¢ is a bijection it is sufficient to construct an
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1

inverse function o™ such that for any x in Uy a'l(o'(x)) equals x and for any y in U o(a'l(y))

1S defined by extending p™L

equals y. The inverse function o~ from P(Uz) to all of U via a relation
analogous to that above. The two conditions relating o and 0'1 can then be proven by induction on

€ 1+ and €2+ respectively.

There a few other results which help to characterize a universe <U €>. These results will be stated
briefly without proof. First it can be shown that in general the size of U equals the size of P(U) (which is at
least as large as the height of U). Second the notion of "rank” used in ZF set theory can also be defined for
symmetric sets. The details of this definition are not important but one result concerning a characterization of
small sets will be mentioned. For any subset C of U let P(C) be the union over x in C of P(x). It turns out
that a subset C of U is small just in case P(C) is small and the rank of C is less than the height of the universe.




