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1. Introduction

An important goal of carly vision is the computation of a representation of the
visible surfaces in an image, in particular the determination of the orientation of
those surfaces as defined by their local surface normals [Marr 1982, Brady 1982].
Many processes contribute to achieving this goal, stercopsis and structure from
motion being currently the most studied in image understanding. 'Three other
important contributing processes are shape-from-contour, shape-from-texture--
gradicnts, and shape-from-shading. Several psychophysical demonstrations show
that shape-from-contour is significantly more powerful than shape-from-texture-
gradients [Clark et. al. 1956, Gruber and Clark 1956, Braunstein and Payne,
1969]. Similarly, Barrow and Tenenbaum [1981, Figure 1.3 ff] suggest that
shape-from-contour is a more effective clue to shape than shape-from-shading.

In this paper we consider the computation of shape-from-contour. Figure 1
shows a number of shapes that are typically perceived as images of surfaces
which are oriented out of the picture plane. The corresponding (scts of) surface
normals (up to tilt reversal) are shown to the right. It may be supposed (see
for example [Gregory 1973, pages 168ff]) that the slant judgements in Figure
1 are largely determined by familiarity with regular shapes such as circles and
squares. Figure 2 strains that hypothesis (though Gregory propeses that we are
familiar with the shape of puddles) and suggests that the computation is based
on more general knowledge of shapes and surfaces. The method we propose
is based on such general knowledge, namely a preference for symmetric, or at
least compact, surfaces. Note that the contour docs not need to be closed in
order to be interpreted as oriented out of the image plane. Finally, Figure
3 shows that, in general, contours are interpreted as curved three-dimensional
surfaces.

We develop an extremum principle for determining three-dimensional surface
orientation from a two-dimensional contour. Initially, we work out the
extremum principle for the cases illustrated in Figures 1 and 2, that is, assuming
a priori that the contour is closed and that the interpreted surface is planar.
Later, we discuss how to extend our approach to open contours and how to
interpret contours as curved surfaces as shown in Figure 3.

The extremum principle maximizes a familiar measure of the compactness or
symmetry of an oricnted surface, namely the ratio of the area to the square of
the perimeter. It is shown that this measure is at the heart of the maximum
likelihood approach to shape-from-contour developed by Witkin [1981] and
Davis, Janos, and Dunn [1982]. The maximum likclihood appreach has had
somc success interpreting irregularly shaped objects. The method is incffective,
however, when the distribution of image tangents is not random, as is the
case, for example, when the image is a regular shape, such as an cllipse or
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Figure 1 '
Two-dimensional contours that are often interpreted as planes that are oriented with

respect to the image plane. The commonly judged slant is shown next to each shape.

Figure 2 .
Some unfamiliar shapes that are also interpreted as planes that are oriented with respect

to the image plane. The shape on the left is from [Gregory 1973, fig. 10.9], the others
from [Witkin 1980, p 29 and 94].

a parallelogram. Our extremum principle interprets regular figures correctly.
We show that the maximum likelihood method approximates the extremum
principle for irregular figures; but that the maximum likelihood method docs
not compute the correct slant for an cllipse. Witkin [1981, Figure 5] provides




Figure 3
Some shapes that are interpreted as curved three-dimensional surfaces.

empirical evxdence that the maxnmum likelihood method computes a good
approximation to e pcrccwcd tilt but underestimates the slant. We prove in
Appendix A that max1mum hkehhood method consistently overestimates the
slant of an elhpse A more thorough 1mest1gat10n of the dlfferencc between
the Extremum P, 1p1e and thc Max1mum lechhood method i 1s necded.

One class of figures that are readlly percelved as lying in a plane other than
the image plane ar¢ skew symrhemes Wthh are two- dlmensmnal linear (affine)
transformations eal symmemes Kanadc [1981, page 424] has suggested a
method for determining the three- drmcnsxonal orientation of skcw -symmetric
figures, under thé"'*'hcurlsnc assumptllon that such figures are mterprcted as
oriented real symmetries. We prove that our extremum prmcxple necessarily
interprets skew s netries as‘oncntcd real symmetrles thus dlspcnsmg with
the need for any h rxsuc assumptlon to that effect. Kanade shows that there
is a onec-paramet amlly 0 p0551blc orlcntatlons of a skew- symmcmc figure,
forming a hyper in gradlcnt space He suggests that the minimum slant
member of the ofie¢ ‘alamcter family IS perceived. In the specnal case of a real
quggcsuoﬁ 1mplles that symmetric shapes arc perceived as
anc, that is havmg zero slant. It is clear ﬁom the cllipse
is is not correct. Our method interprets real symmetries
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in Figure 1 that @
correctly.

First, we review the maximum likclihood method. In Section 3, we discuss
several previous cxtq,,,mum prmcxplcs and justify our choice of LhC compactness




measure. In Scction 4, we derive the mathematics necessary to extremize
the compactness measure, and rclate the extremum principle to the maximum
likclihood method.  In Scction 5, we investigate Kanade's work on skew
symmetry. Onc approach to extending the extremum principle to interpret
curved surfaces, such as that shown in Figure 3, is sketched in Scction 6. In
the final section, we relate this work to the psychophysical literature on slant
estimation and image understanding work on shape from texture.

2. The Sampling Approach

Witkin [1981] has treated the determination of shape-from-contour as a problem
of signal detection. Recently, Davis, Janos, and Dunn [1982] have corrected
some of Witkin’s mathematics and proposed two efficient algorithms to compute
the orientation of a planar surface from an image contour. Witkin’s approach
uses a geometric model of (orthographic) projection and a statistical model of
(a) the distribution of surfaces in space (statistics of the universe) and (b) of
the distribution of tangents to the image contour. We shall adopt the geometric
model, but dispense with the statistical model in favor of an extremum principle.

First, the gcometric model. Assume that the image plane is horizontal with
coordinates (z,y) (see Figure 4) . To obtain a plane with slant o and tilt
7, we rotate (z,y) by 7 in the image plane and then rotate the image plane
by o about the new y axis. Assume that the coordinate frame in the plane
(0,7) is chosen so that it projects into (z,y). (In Scction 4, we describe this
transformation more precisely, see also Davis, Janos, and Dunn [1982, p3].)

Now suppose that a curve is drawn in the plane (o, 7) and denote by g the
angle that the tangent makes at a typical point on the curve. Let a be the
tangent angle in the image plane at the point corresponding to . Then o and
B are related by:

tan g

tan(a —7) = sl

(2.1)

We now turn to the statistical model, which consists of two assumptions
called isotropy and independence. Isotropy reasonably supposes that all surface
orientations are equally likely to occur in nature and that tangents to surface
curves are equally likely in all directions. More succinctly, it is assumed that the
quantities (8, 0, 7) are randomly distributed and their joint probability density
function ("density") D(8,0,7) is given by [Davis, Janos, and Dunn, 1982]:

D(B,0,7) = ;13 sino (2.2)

We assume that the ranges of the anglesare: 0 <6 < 3,0 <7< 71,0 <
B < . Similarly, the density of (o, 7) is given by :
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Figure 4
The geometry of orthographic projection. See text for details of notation.

D(o,7) = —:;sin o (2.3)

The independence assumption requires that the image tangents {a;:1 < 1 < n}
are statistically independent. That is, it is assumed that the tangent directions
at different points on the image curve are independent. This is only true if
the contour is highly irrcgularly shaped, or if the number of samples is small.
In any case, the assumption of independence is an inherent weakness of the
sampling approach (sec for example [Witkin 1981, p. 36]).

Witkin [1981, p. 25 - 26] shows that the joint density function D(a,0,7) is
given by: :

1 :
Dle,0,r) = & sin o cos o . (2.4)
T cos(a — 7) + cos? osin*(a — 7)

For the conditional density D(a|o, 7) we find:

D(alo,r) = = coso . (2.5)
T cos?(a — 7) - cos? osin?(a — 7)

Denote the sample (ajy,ag,...a,) by A (the sample is independent by
assumption). It has conditional density




D(Alo,7) = || D(as|o,7) (2.6)

=

1

By Bayes’ formula we obtain

Do, |A) = D(Alo,7)D(0,7)

~ [ [ D(A|o,7)D(0,7)dodr (2.7)

Observe that the numerator is independent of o and 7. The sampling approach
takes a random sample A and defines the most likely orientation of the plane
(0,7) to be that which extremizes D(o,7|A). Witkin [1981] quantizes ¢ and
7, and describes an algorithm to find the maximizing (o;, 7). Davis, Janos,
and Dunn [1982] develop a more efficient algorithm that first estimates ¢ and
7 and then uses those estimates in a Newton iterative process. They provide
evidence that their method is more accurate than Witkin’s, Curiously, however,
they state [Davis, Janos, and Dunn 1982, p 24] that "the iterative algorithm was
not used [in the experiments they report] because the intitial estimates (whose
computation is trivial) are very accurate and the iterative scheme often failed
to converge to the solution".

3. Extremum Principles.

Brady and Horn [1983] survey the use of extremum principles in image
understanding. The choice of performance index or measure to be extremized,
and the class of functions over which the extremization takes place, are justified
by appealing to a model of the geometry or photometry of image forming and
constraints such as smoothness. For example, the use of extremum principles
in surface reconstruction is based upon surface consistency theorems [Grimson
1981, 1982, 1983, Yuille 1983] and a thin plate model of visual surfaces [Brady
and Horn 1983, Terzopoulos 1983].

There are several plausible measures of a curve that might be extremized in
order to compute shape-from-contour. First, § x2ds, where « is the curvature
of the contour, has been investigated as a curve of least energy for interpolating
across gaps in planc curves [Horn 1981]. Here we seck a measure of a curve
that is extremized when the plane containing the curve is slanted and tilted
appropriately. Contrary to what appears to be a popular belicef, given an ellipse
in the image plane, § x2ds is nor extremized in the plane that transforms the
cllipsc into a circle. Appendix B contains a proof of this assertion. Since
ellipses are normally perceived as slanted circles, we reject the square curvature
as a suitable measure.

Another possible measure is proposed by Barrow and Tenenbaum [1981, p89].
Assuming planarity (the torsion 7 is zcro), it reduces to




One objection to this measure is that it involves high-order derivatives of the
curve. This means it is overly dependent on small scale behaviour. Consider,
for example, a curve which is circular except for a small kink. The circular
part of the curve will contribute a tiny proportion to the integral even when
the plane containing the curve is rotated. 'The kink, on the other hand, will
contribute an arbitrarily large proportion and so will dominate the integral no
matter how small it is compared with the rest of the curve. This is clearly
undesirable. For example, it suggests that the measure will be highly sensitive
to noise in the position and orientation of the points forming the contour.

A sccond objection to the measure proposed by Barrow and Tenenbaum is
that it is minimized by, and hence has an intrinsic preference for, straight lines,
for which dx/ds zero. This means that the measure has a bias towards planes
that correspond to the (non-general) side-on viewing position. These planes are
perpendicular to the image plane and have slant /2.

We base our choice of measure on the following observations.

1.  Contours that are the projection of curves in planes with

large slant are most effective for eliciting a three-dimensional
interpretation.

2. A curve is foreshorted by projection by the cosine of the slant

angle in the tilt direction, and not at all in the orthogonal direction.

We conclude that three-dimensional interpretations are most readily clicited

for shapcs that are highly clongated in one direction. Another way to express

this idea is that the image contour has large aspect ratio or is radially asymmetric,

The measure we suggest will pick out the plane orientation for which the curve
is most compact and most radially symmetric. Specifically our measure is

_ (Area)
" (Perimeter)?’

- (3.1)

This is a scale invariant number characterizing the curve. For all possible curves
it is maximized by the most compact one, a circle. By compact, we mean most
radially symmetric. This gives the measure an upper bound of 1/4x. Its lower
bound is clearly zero and it is achicved for a straight line. It follows that our
measure has a built-in prejudice against side-on views for which the slant is
m/2.

In general, given a contour, our extremum principle will choose the orientation
in which the deprojected contour maximizes M. For example an ellipse is
interpreted as a slanted circle. The tilt angle is given by the minor axis of the
ellipse. It is also straightforward to show that a parallelogram corresponds to a
rotated square. Appendix C discusses the interpretation of several simple shapes.




In particular, an cllipse is interpreted as a slanted circle, a parallclogram as a
slanted square, and a triangle as a slanted equilateral triangle. In Section 5 we
extend the parallelogram result to the more general case of skewed symmetry.

We note that the quantity M is commonly used in pattern recognition and
industrial vision systems [Agin 1980, Pavlidis 1977, Ballard and Brown 1982]
as a feature that measures the compactness of an object. Furthermore, we can
show that the measure M defined in Eq. (3.1) is at the heart of the gcometric
model in the maximum likelihood approach.

From Section 2, we sce that the maximum likelihood approach maximizes
the product of a number of terms of form

fle) = =2 : (3.2)

cos?(a — 7) + cos? osin®(a — 1)

Differentiating Eq. 2.1 with respect to the arc length s; along the image curve
and sp along the rotated curve respectively we obtain

Ky dsy 1

krdsp  fla)
where k; and kpr are the curvature at corresponding points of the image contour
and its deprojection in the rotated plane respectively. In fact, ;7 = doe/dsy and
kr = dfB/dsg. There is no o or 7 dependence in the numerator of cquation
(3.3). We can write cach term xds as (ds ds)/(pds) where p is the radius of
curvature. Now observe that (pds)/(ds ds) is just a local computation of area
divided by perimeter squared! Hence maximizing each f(«) in the maximum
likelihood approach is equivalent to locally maximizing arca over perimeter
squared. In section (4) we will examine this connection more rigorously.

Finally we note that the area, as well as the perimeter, can be obtained by

an integral round the contour. If n is the normal to the curve then it is a
straightforward application of Stokes’ Theorem to show that

(3.3)

(Area)n = -;—f r X dr, 7 (3.5)

where (Area) is a scalar quantity, and r is a vector coordinate system in the
plane of the figure. This formula simplifics the calculations and means the
perimeter and the arca can be computed simultancously.

4. Extremizing the Measure

We now write down the measure for a curve with arbitrary orientation and then
extremize with respect to the orientation. T.et the unit normals to the image
plane and the rotated planc be k and n respectively. The slant o of the rotated
planc is given by the scalar product




cosc =k-n (4.1).

l.et I'r and T'y be the contour in the rotated and image plancs. A vector r in
the image plane satisfies r- k = 0, and is the projection of a vector v in the
rotated plane that satisfics v-n == 0. The projection relationship between v and
its image r is defined by:

r=kX (vXk)=v—(v-kk (4.2)
o nXxX(rxXk)  (n-Kr—(n-rk
T (n-K) (4.3),

where X denotes vector product. Now I'p and I'; have (vector) areas Ag and
Ay given by

1% |

= = d .

AR 2 I‘va A/ (44)
1

A1=5 I‘Ir><dr (4.5)

Observe that the arca vectors have the same direction as the normal to the plane
containing the arca. In particular, Ag is in direction n and Ay is in direction
k. Substituting Eq. 4.3 into Eq. 4.4 and using Eq. 4.1, we find

AR=A1+kX(nXAI)

(n-k) (4.8)

_(k-Ag)

=7
coso
It follows that
[|Arll
Ap|| = —— 4,

gl = =0 (47)

(We recall that the range of ¢ guarantees that cos o is positive.
The perimeter lengths Pr and P are given by

&=£Jm| C (48)
Pr=f o (49)

Substituting Eq. 4.3 into Eq. 4.8 gives

N2t
Pr = f; . {(dr)2 + (—(";j%} (4.10)
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In general there is no simple relationship between the perimeters analogous to

Eq. 4.6 between the areas. Nevertheless, by Eq. 4.7,

ARl _ _llAd]
P2, Picoso

(4.11)

and so our extremum principle is cquivalent to extremizing cos? o Pr, which
we write as

n-dr2)?
7= jé‘a {(n K)dr? 4+ L(B’%”} (4.12)

We extremize this with respect to the orientation n of the rotated plane,
maintaining the constraint that n is a unit vector by a Lagrange multiplier A/4.
This gives

k}[ ((n e 4 I d')2)_%(n -k)2dr? — (n - dr)?

(n-k) (n-Kk)?
o medY e drdr (4.13)
+2f((n.x\)d,2+ (n.k)) i
~+ An =
Taking scalar products of Eq (4.13) with k and n, respectively, gives
0= (n-kA
n- dr)? —t - k)2dr? — (n - dr)?
+f ((“ e+ G ) e 19
0=A ) ,
di? Y EAVES a2
+(n-k) f ((n - K)dr? + ('('n d;; ) (n-k) ‘(i; .:")2(" M a1s)

We use Eq. 4.14 to remove the integral cocfficient of k in Eq. 4.13, allowing
us to express Eq. 4.13 as a sum of the second integral and k X (k X n) times
A. We now use Eq. 4.15 to climinate A from this new form of Eq. 4.13. We
recall that the unit tangent t is defined by

(= dr
T ds’

where s is arc length along the contour. It follows that

dr = tds.




1

Recalling that (n - k) = cos o, we find

- |
2}[{cosza 4+ (n- t)z} (t-m)dr= —k X (k X n)f{cosza + (n -t)2} ds
(4.16)
where t = dr/||dr|| is the unit tangent to the image contour.
Let the unit vectors in the z and y directions in the image plane be i and j
and the normal to the image planc k. By definition, coso = k- k. The tilt 7
is defined by

i-n
= — 4.17
COST s'ina (4.17)
sint =31, (4.18)
sin o

The tangent vector t and the normal n can be written:
t = coscai + sin ¢j (4.19)
n = sino cos7i - sin o sin 7j 4+ cosok (4.20)
where « is the tangent angle in the image. We now form the scalar products

of Eq. 4.16 with i and j to obtain (with appropriate cancelling)

2 }{ (cos? 0 + sin? ocos?(a — 7))~ cos(a — 1) cos ads
(4.21)
= cosT f (cos? o + sin? ocos?(a — 7))7ds

and

2 f(cos?o + sin? ocos?(a — 7))~ cos(a — 7) sin auds
(4.22)
= sin7 f(cos2 0 -+ sin® ocos®(a — 7)) ds

we can rewrite these equations, after multiplying by factors of -} cos7 and |
+sin7, as;
2 f (cos? o + sin? acosz(a — 7))t cos*(a — T)ds
= ]K(cos2 o + sin? ocos®(a — 7)) Zds (4.23)

2 f‘(cos2 0 + sin? ocos?(a — T))*% cos(a — 7)sin(a — 7)ds
=0 O (4.29)
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We use Egs. 423 and 4.24 in Appendix D to determine the extremizing
orientation for a skew symmetry. We.can rewrite these equations in the form:

2-( ?{(cos2 o 4 sin? ocos? (o — T))%ds) =0 (4.25)
90\ cost o
_6_(_1_ }K(cos2 0 4 sin? ocos?(a — r))%ds) =0 (4.26)
0T\ cost o

to emphasize that they correspond to extremizing with respect to o and 7.

We can implement the cxtremum method directly from Eqns. (4.25) and
(4.26) by quantizing the tangent angle o, slant oy, and tilt 7%, replacing the
integral by a sum. This gives good results, even though we use fixed point
integers in our edge finder. A multi-level search speeds the algorithm by a
factor of ten. For large slant the ratio of the greatest to least value of the
expression is large, and the result is numerically well-conditioned. For smaller
slants (less than about 45 degrees in the case of an ellipse) the ratio is small
and the result poorly conditioned, so that round-off errors can be significant.

To conclude this Section, we show that these equations are similar, though not
identical, to those obtained by the maximum likelihood method in the limit as
the number of sampled tangents tends to infinity. To see this we recall from Eq.
2.7 that this method involves extremizing D(A|o, 7) with respect to o and 7.
Since the denominator is independent of ¢ and 7, this amounts to extremizing
D(A|o,7)D(o, 7). This is the same as extremizing log D(A|o, 7)D(o, 7). Using
2.3, 2.5 and 2.6 we obtain:

"

E = nlogcoso + logsino — Y log(cos?(e; — 1) + cos? osin®(a; — 7).
i=1

(4.27)

where we have ignored factors of w which will vanish on differentiation.

Dividing £ by n and taking the limit as n tends to infinity gives:

F =logcoso ]( dr — f{log(cosz(a — 1) + cos? osin?(a — 7))dr. (4.28)

Using the identity:

cos?(c — 1) + cos? osin?(a — 7) = cos? ¢ + sin® ocos?(a — 1) (4.29)

gives

F =logcoso f dr — flog(cosz o + sin? ocos}(a — 7))dr. (4.30)
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This formula is similar to Fgs 4.25 and 4.26. Thus we expect the Extremum
Mecthod to give similar results to the Sampling Method when the contour is
sufficiently irregular. However, we can show formally that the Sampling Method
and the Extremum Method are not equivalent. In Appendix A we show that the
Sampling Mcthod overestimates the slant of an ellipse. The precise discrepancy
between the methods, and its practical conscquence for computing shape from
contour is currently under investigation. ' '

5. Skew Symmetry

We now consider a more general class of shapes for which the maximum
likelihood approach is not cffective. Kanade [1981, scc. 6.2] has introduced
skew symmetries, which are two-dimensional linear (affine) transformations of
real symmetries. There is a bijective correspondence between skew symmetries
and images of symmetric shapes that lic in planes oriented to the image plane.
Kanade proposes the heuristic assumption that a skew symmetry is interpreted
as an oriented real symmetry, and he considers the problem of computing the
slant and tilt of the oriented plane,

Denote the angles between the z-axis of the image and the images of the
symmetry axis and an axis orthogonal to it (the skewed transverse axis) by o and
B respectively. The orthogonality of the symmetry and transverse axes cnable
one constraint on the orientation of the plane to be derived. Kanade uses
gradient space (p, g) [Horn, 1977, Brady, 1982] to represent surface oricntations.
He shows [Kanade 1981, p. 425] that the heuristic assumption is equivalent to
requiring the gradient (p, ¢) of the oriented plane to lie on the hyperbola

2 (& — B) 2 (a—p)
2

picos T g3sin = — cos(a — f) (5.1)

where

o = e 22) 4 gn(222)

7 = -—psin(a _: ﬂ) —t-—qcos(a—:-;:—é).

Kanade [1981, p. 426] further proposecs that the vertices of the hyperbola,
which correspond to the least slanted orientation, are chosen within this one-
parameter family. This proposal is in accordance with a heuristic observation of
Stevens [1980]. In the special case that the skew symmetry is a real symmetry,
that is in the casc that @ — f§ == 4-7/2, the hyperbola reduces to a pair of
orthogonal lincs [Kanade 1981, page 426] passing through the origin. In such
cases the slant is zero. In other words, Kanade’s proposal predicts that real
symmectrics are incvitably interpreted as lying in the image plane, and hence

(52)
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Figure 5 '
A partition of a skew-symmetric object into regions for the piecewise analysis presented -

in this section.

having zero slant. Inspection of Figure 1 shows that this is not the case. A
(symmetric) ellipse is typically percecived as a slanted circle, particularly if the
major and minor axes do not linc up with the horizontal and vertical.

Although Kanade’s minimum slant proposal does not seem to be correct,
there is evidence (for example [Stevens 1980]) for Kanade’s assumption that
skew symmetries are interpreted as real symmetries. We now show that the
assumption can in fact be deduced from our Extremum Principle. As a corollary,
in Appendix D we determine the slant and tilt of any given skew-symmetric
figure; only in special cases does it correspond to the minimum slant member
of Kanade’s one-parameter family.

Instead of using Eqgs. 4.25 and 4.26, we prove the result from first principles
since this enables us to use symmetry directly. First, we partition the image
into regions as shown in Figure 5. A typical region is shown in Figure 6a and
we skew it by an angle o to get Figure 6b. We show that the ratio of the area
to the perimeter squared is greatest for Figure 6a with o = 0. We show this
is also true for the sum of the regions and take the limit as the width of the
regions goes to zero to complete the proof.

From Figure 6a we calculate the arca A; = ||A|| and the the portion P; of
the perimeter of the shape to be

A; = 2al + (b— a)l (5.3)




and

P =2/ 4 (b— a)2. (5.4)
From Figure 6b we find -
Al = 2alcosa+ (b—a)lcosa

= A, cosa
and

P = \/lzcosza + (b—a+Isina)? + \/lzcosa2 + (b—a —Isina)?.
' (5.6)
We nced to show that

1 .
°°f2°‘ <= (5.7)
p? P

k3

This is equivalent to showing

(2cosa — 1)(12 4+ (b —a)?) .

' 3 %

< {12 + (b—a)? + 2(b — a)lsin a} {12 + (b — a)* — 2(b — a)lsin a} .

_ (5.8)

This condition clearly holds for 7/2 > a > m/3. Assume therefore that

0 <a< 7/3 Squaring'both sides of (5.8), we see that the condition is
equivalent to :

.2
4 _ 4 2 — 2 -——_—El-r—l__a—.-—._.
F4(b—a) +1°(b—a) (2+cos2a—cosa

On completing the square we see this always holds provided

) > 0. (5.9)

4cosa— 1~ 3cos a >0 (5.10)

This is so provided 3 < cosa < 1, that is for 0 < a < §. It follows that the
ratio of the area to the perimeter squared is maximized for cach region when
a=0. . ’

We now partition the shape into n regions as shown in Figure 5. Let the 7t#
block have arca A} and perimeter P, when the skew angle is e, and denote
the area by A; and the perimeter by P; when o is zero. It follows from the
above results that

Al = A;cosa (5.11)
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Figure 6
a. A basic region before skewing it. b. The result of skewing the region shown in (a)

through angle a.

and
A: A;
< —. (5.12)
P2 " p?
We conclude from Egs. (5.11) and (5.12) that
P> P2cosa. (5.13)
Hence we obtain
n n
Y P?>cosa ) P? (5.14)
i=1 i=1
n n
YAl =cosa ) A . (5.15)
i=1 i=1
1t follows that
n Al n A
=g =5 (5.16)
i=1F; i—1 Fi

and taking the limit as n tends to infinity shows that our extremum principle
interprets a skew symmetry as a oricnted real symmetry.
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6. Strategy and Sensitivity

In Scction 3, we suggested that radially asymmetric, elongated, or non-compact,
contours most readily clicit three-dimensional interpretations. We then proposed
a compactness measurc A/Pz, and suggested that perceived surface orientation
corresponds to the slant and tilt that maximize the measure. We briefly discussed
the role of extremum principles in computer vision (Brady and Horn [1983]
present a fuller discussion), and criticized Barrow and Tenenbaum’s mecasure on
the grounds that it is highly sensitive to noise. In Sections 4 and 5 we analyzed
the extremum principle and showed that it corresponded closely to human
perception of oriented planar contours, and that it interprets skew symmetries
as oriented real symmetries.

In this Section we return to the discussion in Section 3, concentrating on two
additional questions concerning our measure. First, we ask whether there are
specific reasons why a visual system should adopt the strategy of extremizing
our measure. We suggest that the extremum principle not only determines the
orientation of the viewed curve, but provides an estimate of the stability of the
interpretation. We relate this to the idea of general viewpoint. Second, we
show that the compactness measure is relatively insensitive to noise and to the
scale at which the image is sampled. To this end we consider two cases: (i)
adding a sinusoid to the contour, (ii) assuming that the image can be modelled
in terms of fractals [Mandelbrot, 1982].

Viewing position and stability

Consider viewing a given planar curve from the hemisphere of all possible
directions. Consider further the way the image changes when the viewpoint
is shifted slightly. A smooth curve will hardly change with a slight change of
viewpoint from most viewing directions. We call these viewing dircctions stable
viewpoints. Stable viewpoints can be grouped into regions whose boundaries
correspond to viewpoints where the contour changes rapidly for a slight change
of viewing position. These stable regions will be quite large for images of
smooth planar curves and smooth curved surfaces. We suggest that image
contours are interpretated as curves that are viewed from stable viewpoints.
This is the essence of the general viewpoint constraint in computer vision. We
are able to estimate how stable a given viewpoint is.

One way to find stable viewing positions is to define a similarity measure for
viewpoints and then find the cxtrema of this mcasure. Sutherland [personal
communication] has proposed A/P? as a similarity measure, based on empirical
studies of animal perception. 1f this is correct, extremizing A/P? corresponds
to finding the stable viewing positions of a contour, and, as a result, the stable
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interpretations of a contour, defined to be those which observers at general
positions arc most likely to sce. 'This suggests that assuming gencral viewing
position corresponds to assuming interpretations around which our compactness
measure is extremized and where it varies slowly.

We illustrate this idea by considering an cllipse. For an cllipse the stable
viewing position corresponds to interpreting the cllipse as an oriented circle.
Even if the circle is slanted by as much as thirty degrees, the value of A/P2
hardly changes, as our algorithm demonstrates, and so the circle is a stable
interpretation. If the algorithm is applicd to an ellipse with large eccentricity,
corresponding to large slant, A/P2 changes rapidly for slight changes to the
viewing position. So if we look at an cllipse from all possible viewing angles
it is most likely to appear as a circle and so interpreting an ellipse as a slanted
circle is a good strategy.

These results are preliminary, and they will be rigorously developed in a
further paper. '

Sensitivity of the compactness measure to noise

The second question concerns the sensitivity of the measure to noise and to
the scale at which an image is sampled. Since our measure involves fewer
derivatives of the contour than measures such as that proposed by Barrow
and Tenenbaum, it should be relatively insensitive to noise. Although our
present algorithm and the sampling method are essentially equally sensitive, it
is possible to develop a less sensitive algorithm to implement our measure. The
sampling method inevitably involves calculating tangents, however, and hence
is inherently sensitive to noise and scale. For example if the image contour
is continuous, but not differentiable, the sampling method cannot (strictly) be
applied. Similarly if the orientation of the tangent to the contour has a large
high frequency component, the sampling approach will be very sensitive to
noise.

Consider the sensitivity to noise of the extremum principle. Clearly, the
perimeter P depends on the scale at which the image is viewed, while the area
A is much less dependent. It follows that the ratio A/P? varies with scale.
If a sinusoid is added to a smooth contour, for example, the area will remain
approximately the same but the perimeter will change significantly. This does
not imply, however, that the extrema of A/P? vary with scale. For example, it
is casy to show that if a sinusoid is added to the contour, the extremum of the
area over the perimeter squared is effectively unchanged.

Similarly, suppose that the image can be approximated by a fractal [Mandelbrot,
1982]. If we measure the image at a small fractal scale constant /, the perimeter
will be given by
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P(l) = FIi—9, (6.1)

where F'is independent of [, and d > 1 is the fractal dimension. Provided [ is
small. the valuc of A is cssentially independent of {, since the fractal tends to a
limit contour, with finite area, as [ goes to zero. Now we extremize A/P? for
all contours which can be projected into the image contour. This is equivalent
to extremizing log(A/P?) which, using (6.1), we write as

log(%) =log A—2log FF — 2(1 — d)log . (6.2)

We now extremize this over ¢ and 7 (Egs. 4.24 and 4.25), and note that the
term involving [ is independent of ¢ and 7 and disappear. It follows that the
extrema of A/P? are independent of the scale of viewing for an image that
can be approximated by a fractal.

7. Interpreting image contours as curved surfaces

Figure 3 shows a number of contours that are interpreted as curved surfaces.
In this section we discuss one method for extending our extremum principle
to this general case. The key obscrvation, as it was for Witkin [1981], is that
our method can be applied locally. To do this, we assume that the surface is
locally planar. At the surface boundary, corresponding to the deprojection of
the image contour, the binormal coincides with the surface normal. The idea
is to compute a local estimate of the surface normal by the extremum principle
described in the previous sections and then to usc¢ an algorithm, such as that
developed by Terzopoulos [1983], to interpolate the surface orientation in the
interior of the surface. The method is closely related to that proposed by Brady
and Grimson [1981] for perceiving subjective surfaces.

The main question concerns how to apply the extremum principle locally.
We are currently investigating the following approach. Consider the circle of
curvature to the space curve that is the deprojection of the contour. One way
to define the circle of curvature is as the best fitting local circle through three
points (or more if one assumes noisy data and makes a least squares estimate)
on the space curve ncar the point in question. The circle of curvature projects
into an ellipse. We compute the best fitting ellipse at each point on the image
contour, and compute from it a local estimate of the surface ‘orientation by
finding the slant and tilt of the corrcsponding circle, interpreted as the circle
of curvature. It is easy to show that so long as the surface foreshortening is
differentiable, this is a good estimator of the circle of curvature and hence of
the local surface normal.

It requires 5 parameters to define an arbitrary ellipse.  Computing the
best fitting cllipse in the general case is a complex nonlinear problem best
approached using a numerical descent method, though several algorithms have
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been published recently for computing best fitting cllipses [Bookstein 1979, Agin
1981, Nakagawa and Rosenfeld 1979, Sampson 1982]. If we assume that the
normal to the space curve is not significantly foreshortened, we can compute
the ellipse center and major axis from the curvature of the contour at the point
in question. The slope of the contour at that point also defines the orientation
of the ellipse, leaving a much simpler one-parameter problem.

We note that perceptually the strongest local cues to surface orientation
correspond to points of high curvature. This is consistent with our method of
locally estimating surface orientation by fitting local ellipses.. Recall that our
compactness measure was inspired by the obscrvation, for example on cllipses,
that large slant is an effective cue to surface orientation and in the case of
an ellipse this produces points of high curvature. In fact, we can show that
numerical conditioning of the estimator of slant increases monotonically with
the slant. Conversely, for straight line portions of a contour, the curvature
is zero, and the surface is locally-planar. Hence surface orientation does not
change along the length of the straight portion.

One issue that remains to be studied is the interface to the surface reconstruc-
tion algorithm. Consider the image of a triangle shown in Figure 1. There
are, in general, three different perceived orientations of the triangle correspond-
ing to propagating the interpretation of each of the (high curvature) corners.
Adjacent corners give inconsistent information, and so it scems necessary to use
a labelling approach such as that proposed by Zucker, Hummel, and Rosenfeld
[1977].

7. Related work

Gibson [1950] has argued that surface oricntation is directly determined by
certain "higher order variables” in the proximal stimulus array. What exactly
constitutes a "higher order variable” has been the subject of extensive debate.
Nevertheless, Gibson and his followers have proposed several such, especially
for optical flow and texture gradients. Flock [1964, Flock et. al. 1967] have
adopted a Gibsonian perspective on the judgement of slant in texture gradients.
He has introduced a "higher order variable" optical slant (actually "optical
theta” in the original) as a possible basis for monocular slant perception [Flock
1964, Eq. 5] or, at least, as a discriminant for planarity. Flock’s work implicitly
assumes planarity [Flock 1964, p. 381], and it assumes that the tilt direction
has been computed previously. In fact, there are many assumptions in Flock’s
paper (Freeman [1965, p. 502} counts 13). Morcover, several studies [Clark
et. al. 1956, Gruber and Clark 1956, Freeman 1965, Braunstcin and Payne
1969] have shown that the determination of surface orientation from texture
gradients, for example using optical slant or as in Ikeuchi [1983], is less effective
than its detcrmination from bounding contour.
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O

(o) | (b)

Figure 7 .
a. A box-like figure typical of those studied by Atineave and Frost [1969]. b. A sheared

box.

Attneave [1972, sce also Attncave and Frost 1969] describes an approach
to determining surface orientation that has similaritics to that developed here.
First, he argues for a Pracgnanz theory of perception, which stresses economy
principles in perception. This has meant different things to different researchers.
The Gestalt psychologists explicitly noted the link between Pracgnanz and
minimization principles (for example the soap bubble) in mathematical physics.
Attneave [1972, p. 285] suggests that such minima may be computed by "hill--
climbing techniques”. The extremum principles discussed in Section 3 of this
paper and surveyed in [Brady and Horn 1983, Grimson 1981, 1982, 1983, and
Terzopoulos 1983] can be considered to be more sophisticated formalizations of
similar intuitions.

In fact, Attneave adopts Hochberg’s formulation of the Praegnanz theory as
the tendency to keep differences to a minimum. In particular he considers
three-dimensional interpretations that cqualize one or more of angles, lengths
of edges, and surface slopes in figures such as Figure 7a. The more of these
that are in fact equalized in a particular three-dimensional interpretation of an
image, the more likely that interpretation is to be chosen. In fact, the extremum
principle developed in this paper will interpret Figure 7a correctly. It will also
determine the shear in Figure 7b.

Second, Attncave [1972, Fig. 4] considers the judged orientation of rhombus
figures (sec Appendix D below for analysis of this case by our extremum
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principle.) Surface orientation can be judged reliably for such shapes, more
rcliably in fact than for the box figures shown in Figure 7, so long as the
symmetries of the rhombus do not align with the horizontal and vertical. It is
well known that the horizontal and vertical are important for shape description.
(sce for example Brady [1983] for discussion). Note that surface slant is
consistently underestimated. '

In order to express depth constraints, Barnard [1982] and Ikeuchi [1983]
have proposed alternative projections to orthographic projection used in the
development in Scctions 3 and 4. The methods we have developed extend
straightforwardly to these alternative projections.

Barnard [1982] finds surface orientation from vanishing points of families of
parallel edges using central or perspective projection. He considers the projec-
tion of an angle, and, after the fashion of Hochberg and Attneave, heuristically
assumes equi-angularity to arrive at a three-dimensional interpretation of a
triangle. As noted in Appendix C, our method dispenses with the need for such
a heuristic assumption. Similar remarks apply to Barnard’s study of curvature,

TIkeuchi [1983] proposes a method for determining surface orientation for a
surface that is covered with uniformly repeating texture elements. He assumes
that the surface element corresponding to the texture clement is planar. Most
critically it is assumed that the shape of the texture element is known a priori.
For a particular slant and tilt, the orientation of the projection of the known
figure changes. Ikeuchi proposes a measure that is superficially similar to the
symmetry measure in Scction 4 to determine the slant and tilt of a texture
element.

Olson [1974] has studied a version of Ames’ trapezoidal window illusion.
Surface slant is judged more accurately when the stimulus is moving consistent
with the static three-dimensional interpretation than in the purely static case.
Similarly, Wallach, Weisz, and Adams [1956] have shown that when an ellipse
is rotated in the image planc about an axis passing through its center and
normal to the image it is perceived as a spinning oriented circle, like a settling
spinning penny. The instantancous surface orientation of the oriented circle
can be computed by our method. Hildreth’s forthcoming PhDD thesis on the
perception of motion discusses the rotating cllipse and proposed a theoretical
explanation of human perception of it.




23

Appendix A: The maximwn likelihood methed applied to an cllipse

Equation (4.30) gives the value F' of the logarithm of the Maximum Likelihood
estimator for surface orientation:

F =logcoso f dr — flog(cos2 o 4+ sin? gcos?(a — 7))dr. (A1)

In this Appendix we investigate the slant computed by the Maximum Likelihood
method for the ellipse

2 2
T
It

a?

v
b2
It is convenient to use the standard parameterization,

=1 (4.2)

z = acosf
y = bsin, 0<o<2r ’ (A.3)
dr = (a®sin? 6 + b2 cos® 9) 2 df

Pending a more thorough analysis, we assume that the tilt 7 = 7/2 is computed
correctly by the Maximum Likelihood method, and restrict attention to slant.
Witkin [1981, Figure 5] and our own computational experiments suggests that
this is reasonable; in any case, if it is not so, the inequivalence of the Maximum
Likelihood and Extremum Principle methods would be assured. Without loss
of generality, we assume that @ > b, and denote a/b by A > 1.

Since 7 = 7/2, -

9 1

cos’o = ———
1+ tan?a

a’sin?¢

, (A4)

a?sin? § + b2 cos2 4

since tan a = dy/dz. Also,

. : s

sin(a — 7) = sin(a — 5) = —cosq, (A.5)
and so Eq. (A.1) reduces to

F =logcoso f dr — flog(l — cos? asin? o)dr. (A.8)

We are interested in extrema of F', and so we consider dF'/do, which we
write ‘
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- 2 .2 2 - 12 2
dF ___]{a sin® 0 cos® 0 — b? cos edr, 1<) (A7)

coto—— =
d

o a%sin?0cos? o -+ b2 cos2 0

Suppose that the Maximum Likelihood method is extremized at ¢ = o',
The slant that is neccessary to interpret the cllipse as a circle is given by
coso = 1/X\. The Maximum Likclihood method overestimates slant if and
only if ' > cos™!(1/)\), which is if and only if coso’ < 1/\. This is true
if dF'/do 5 0 for all o such that 1 < Xcoso < X. Denote hcoso by u,
so that 1 < u < X. Substituting in Eq. (A.7) and changing the limits of
integration, we find

dF g ™ 42 sin? § — cos? f
do 0 u2sin? 4 4 cos?4
We now split the range of integration into four equal intervals of size /4.

With suitable changes of variables to bring the intervals of integration to [0, §],
we find

(\%sin?0 + cos’0)2d8  (A.8)

(A2 cos? 0 + sin? 6)7

g_F_ _ 4/% u?cos? 6 — sin? 4
do 0 u2cos?f +sin%4d
u?sin® 0 — cos? §

N 42 sin? 0 + cos? §

(A.9)

(A%sin? 6 + cos? 6)2ds

Over the range of integration, cos# > sin §. Algebraic manipulation of Eq.
(A.9) shows it to be greater. than zero, so that it is certainly not zero. Hence
the Maximum Likelihood method overestimates the slant.
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Appendix B: Why square curvature is inappropriate

In section 3 we rejected the measure

F= / k2ds - | (B.1)

because, despite popular belief to the contrary, it docs not interpret an ellipse
as a circle. In this appendix we substantiate that claim.

Consider the cllipse defined by Egs. (A.2) and (A.3). The curvature < of the
ellipse is given by

2
d?r
.‘Cz = E_s_2 (B.Z)
. a?b? (B 3v)
(a2 sin? 8 4 b2 cos? §)3

where s is the arc length. Substituting Equation (B.3) into (B.1) we have

27 ab?
F(a,b) =/ df (B.4)
0 (a2sin®g 4 b2 cos? )2
Suppose, without loss of generality, that the ellipse is in the image plane and
that @ > b. Suppose further that the square curvature performance index (B.1)
is correct and interprets the ellipse as a circle lying in a plane that is slanted

with angle o to the y-axis, where

b= acoso (B.5)

Equivalently, if we set b' = b/coso, the measure will choose o such that
b == a. Hence if we write b = \a, and consider F(a,b) to be a function of
A, the measure should be extremized by A = 1. We will now show that this is
not the case.

1 2m *
/ do (B.6)
(sin? 8 + X2 cos?9)?

Differentiating this with respect to A gives

27 _ 3
1/ 2) sin? 0 — 3\3 cos? edﬁ (B.7)
(sin?f + X2 cos? 0)2
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Evaluating this exprcssion at X = 1 gives

oF

2m
N = % /0 (2sin% 4 — 3 cos? 0)dd
m
=— (B.8)

Since the partial of F' with respect to A docs not vanish when X\ is equal to
one, the circle does not extremize the ellipse for the square curvature measure.
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Appendix C: The interpretation of some simple shapes

In this appendix we show that our method correctly interprets a number of
simple shapes, namely an cllipse, a parallelogram, and a triangle.
FEllipse

Suppose the cllipse is given by equations (A.2) and (A.3). It is easy to show

that the arca A and perimeter P are given by
A = 7ab
' o C.1
P= /0 (a®sin® 0 + b% cos® 0)2d6 (C-1)

Maximizing A/.P2 is equivalent to minimizing P/\/Z. We set b = ha, (\ is
the cccentricity of the cllipse,) and define P/v/A = f(\). We find

sin

1 2 2 0 N
fO) = ﬁ /0 ( \ + X cos? §)zdf (C.2)

By the same argument presented in appendix B, the ellipse will be interpretéd
as a circle provided A = 1 is a minimum of f()\). Changing the variable of
the integral to ¢ = 6 - § we find that

0 =1(5) (c.3)

which implies that X\ = 1 extremizes f(X\). It is also clear that extrema occur
in pairs of the form \,1/\. Furthermore, both are stationary points or one
is a maximum and the other a minimum. Observe that f(X\) tends to infinity
as A tends either to zero or infinity. It follows that a sufficient condition for
A =1 to be a global minimum is that all pairs of extrema be stationary points.
Suppose that this is not the case, and let A\g be the smallest extremum that is
not a stationary point. Since f(X\) tends to infinity as X tends to zero, Ao must
be a minimum and 1/X\g a maximum. But 1/X\¢ is the largest non-stationary
extremum, and so, by the same argument as above, it must be a minimum.
This contradiction cstablishes the result.

Parallelogram and triangle

In section 5 we showed that a skew symmetry is always interprcted as an
oriented symmetry by our method. In particular, a parallclogram is interpreted
as a rectangle. By the same argument, a rectangle is a skewed symmetry of a
square. Hence our method interprets a parallelogram as a square.

Similar rcasoning shows that a triangle is interpreted as a skewed isosceles
triangle, which is interpreted as a skewed equilateral triangle. The axcs of the
skewed symmetry join a vertex to the midpoint of the opposite side. Hence
our mcthod interprets a triangle as an oriented equilateral triangle.
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Appendix I}: The slant and tilt of a skewed symmetry

In this appendix we calculate the slant ¢ and the tilt 7 that correspond to the
oriented real symmetry that is the interpretation of a skewed symmetry whose
skew angle is 6. -

As a simple, though instructive, example, consider a rhombus of side a and
included angle 7y (Figure 8). To find the extremizing tilt, we substitute the data
from Figure 8 into Eq. 4.24, and find

sin7 cos T sin(7 — ) cos(7 — )

; +
{1 — sin? ¢ sin? T}' {1 —sin®o sinz(r - '7)}

We can rewrite this in the form

- =0 (D.1)

F

{cosz(r — ) — cos? T} {cosz(r — ) 4 cos?T

+ (1 — cos? o)(1 — cos?(1 — 7))(1 — cos®7) — 1}

=0
, (D.2)
We assume first that the first factor is zero. It follows that
cos(r — ) = 4-cosT (D.3)
and so
¥ —27 =nm. (D.4)

Since 0 < 7 < 7 and 0 < v < 7, there are two possible solutions, namely

(D.5)

(D.6)

Observe that the tilt direction is one of the axes of symmetry of the rhombus
shown in Figure 8.

Having solved for the tilt, we now solve for the extremizing slant o using
Eq. 4.23. Recalling from Eq. D.4 that sinz('r —1) = sin® 7, we find upon
substitution into Eq. 4.23

1 b
5{1 — sin® ¢ sin? 7'} = cos® 'r{l — sin? o sin? 'r} (D.7)
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which we solve to get

2 v
cos?o = cT)sz T, (D.8)
sin® 7

The requirement that |cos o| < 1 picks out cither Equation (D.5) or (D.6),
so we get a unique solution. In this case the skew angle is given by

b= —-—n1. (D.9)

To summarize, if § < 0 we get

;T
T4 2
1-+siné (D-10)
oS0 = ———
, . cosé
and if 6 > 0,
T4 2
cos § (D-11)
S0 = g

These formulae were derived for an cqual-sided parallelogram but they will
clearly apply to the more general case and a rotation through the angles given
by Equations (D.10) and (D.11) will unskew any symmetry. It should be noted
that 7 is taken to be zero on the axis of symmetry, as in Figure 8.

To conclude this Appendix, we consider the case that the second factor in
Eq. (D.2) is zero and the first factor non-zero. We introduce the angle 3 by
analogy with Eq. (2.1) defining orthographic projection:

tan? ¢ = cos? o tan?(y — 1) (D.12)
Then
2
sy —r) =
cos?o . an (D.13)
2 cos® o
cos’(y —7) =

cos? o 4 tan?

where, without loss of generality, we suppose 0 < 9 < 7/2. Now by
assumption, the sccond factor in Eq. (D.2) is zero:

cos? 7 4 cos?(y — 7) 4 sin? osin® 7sin?(y — T)—1=0 (D.14)
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Figure 8 .
A typical skew symmetric figure, namely a thombus of side a and included angle ~, with

skew angle § = Z — ~. The tilt direction is aligned with one of the axes of symmetry

of the rhombus, determined by the angle 6.

Using Eq. (D.13), we find

tan® rtan? =1,
from which we deduce
sin7T = cos 9
(D.15)
cosT = usiny, =41,
since the ranges of the variables can be assumed to be 0 < 0 < 7/2;0 <
T M0 < <7w/2;0 <y < 7 From Eq. (D.13) we find that

vtanicoso
cos?o + tan?y’
and, since sin 7 cos 7 has the same sign as sin(y — 7) cos(y—7), 4’ = v. From
Eq. (D.1) we deduce

sin(y — 7) cos(y — 1) = v =1, (D.18)

sin7cos 7 — sin(y — 7) cos(y — 7)
2

(S

2 2

osin?r 1 — sin® o sin?(y - T)%

vsin cosy

1 —sin (D.17)

1 — sin? o cos? z,b%
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So far in this Appendix we have only used one of the constraints derived iﬁ
Section 4, namely Eq. (4.24) (from which we derived Eq. (D.1)). We now use
the second constraint Eq. (4.23), which we can write in the form

2cos’ T — (1 —sin?0 27)?
(1 —sin®osin7)%
2 cos?(y — 1) (D.18)
(1 — sin? o sin?(y — 7))2
— (1 —sin?osin®(y— 7))t =0

After some algebraic manipulation, we deduce

cos o = — tan? ¥,

from which it follows that cos o is ncgative, which is impossible in the range
under consideration.
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