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ABSTRACT: The electrical properties of a cortical (spiny) pyramidal cell were analyzed on
the basis of passive cable theory from measurements made on histological material (Koch, Poggio
& Torre 1982). The basis of this analysis is the solution of the cable equation for an arbitrary
branched dendritic tree. We determined the potential at the soma as a function of the synaptic
input (transient conductance changes) and as a function of the spine neck dimensions. From our
investigation four major points emerge:

1. Spir -~ may effectively compress the effect of each single excitatory synapse on the soma,
mappin, a wide range of inputs onto a limited range of outputs (noulincar saturation}. This is
also true for very fast transient inputs, in sharp contrast with the case of a synapse on a dendrite.

2. The somatic depolarization due to an excitatory synapse on a spine is a2 very sensitive function
of the spine neck length and diameter. Thus the spine can effectively control the attenuation of
its input via the dimensions of the neck, thereby setting the shape of the resulting saturation
curve. This might be the basic mechanism underlying ultra-short memory, long-term potentiation
in the hippocampus or learning in the cerebellum.

3. Spines with shuating inhibitory synapses on them are ineffective in reducing the scinatic
depolarization due to excitatory inputs on the dendritic shaft or on other spines. Thus isolated
inhibitory synapses on a spine are not expected to occur.

4. The conjunction of au excitatory synapse with a shunting inhibitory synapse on the same spine
may result in a time-discrimination circuit with a temporal resolution of around 100usec.
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1. Introduction

Dendritic spines, first described by Ramon y Cajal in Golgi preparation, were
confirmed to be postsynaptic targets for a major portion of the synaptic inputs
to pyramidal cells of the cortex (Gray 1959). Their functional role has remained a
matter of speculation. Most of the early hypotheses considered the establishment
of physical contact with presynaptic terminals as the main function of spines (for a
modern view of this, see Swindale 1981). More recently, however, dendritic spines
have received incrcased attention as possible sites of neuronal plasticity.

A well studied case is the long-term potentiation (LTP), an increase in the magnitude
of either the intracellular EPSP or population spike, following tetanic stimulation of
afferents in the hippocampal formation and lasting up to weeks (for a very thorough
coverage of LTP see Swanson, Teyler & Thompson 1982). Bliss & Lgmo (1973)
suggested as a possible mechanism of LTP a reduction in the resistance of the
narrow stem by which spines are attached to the parent dendrite, following a remark
by Chang (1952) that the electrical resistance of the neck could be an important
determinant of the synaptic ”weight”. Fifkova, Van Harreveld and others showed
in a series of studies (Fifkova & Anderson 1981, Van Harreveld & Fifkova 1975,
Fifkova & Van Harreveld 1977) that stimulation of the perforant path induces a
long-lasting increase in the area of the dendritic spines, which are the post-synaptic
sites on the stimulated pathways in the distal third of the dentate molecular layer.
These changes were reversible and disappeared after a couple of hours (Fifkova &
Van Harreveld 1977). Specifically, it could be shown that the spine necks increase
in width and decrease in length (Fifkova & Anderson 1931). By adding a protein
synthesis blocking compound such as anisomycin the enlargement of spines can be
successfully suppressed, suggesting that the changing spine dimensions are caused
by increased protein synthesis, possibly due to the creation of additional membrane
(Fifkova, Anderson, Young & Van Harreveld 1982). The same type of LTP occurs in
the mossy fibers to the CA3 and in the Schaeffer collaterals to the CA1 pyramidal
cells in the hippocampus. A possible explanation would be again the enlargement
of th)e post-synaptic spines (Andersen, Silfvenius, Sundberg & Sveen 1980; Eccles
1979). :

One can also try to influence experimentally the spine density and/or dimensions.
Valverde (1967) in one of the first deprivation studies found that the mean number
of spines in visual cortex of visually deprived animals is significantly reduced in
comparison with normal reared mice. In a different kind of deprivation experiment
with community-reared versus socially-isolated jewel fish, Coss & Globus (1978)
obscrved that the community reared fish have more dendritic branches and spines
and, furthermore, that these spines have thicker and shorter spine stems than
spines of their isolated colleagues. Recently, Burgess & Coss (1983) have shown that
these fish react to a 9 minute long threatening stimulus by morphological changes
in the spine shape, concomittant with a behavioural sensitization to any stimulus;
both effects are retained for at least 24 hours. Purpura (1974) and Marin-Padilla
(1974) found in the cortex of mentally retarded children a reduced spine density
and a significantly larger population of abnormally long, thin spines, concomitant
with the absence of short, thick spines. Purpura (1979) has even suggested that
some of the progressive ncurobchavioral deteriorations (amentia) may be due to
the degeneration of these spines. Bradley & Horn (1979) have exposed freshly
hatched chicks to visual stimuli and looked at cells in the hyperstriatum, known
by electrophysiology to be sensitive to early visual experience. They find that the
electrophysiological change in thesc cells after visual experience goes hand in hand
with a morphological change: the spines have increased in size when compared
with spines of dark-raiscd chickens. While all of these studies were performed




under abnormal conditions, a few reports describe the effect of natural stimuli
on spine shape. Boycott in his study (1982) of spines on the Purkinje cclls in
hibernating and awake ground squirrels, found in the hibernating animals spines
with enlarged spine heads, possibly lcading to a decreased spinc input resistance
and thus to an enhanced excitability of these neurons during winter sleep. Rausch
& Scheich (1982), when comparine young birds with speech-trained older birds,
found a reduction in spine density :d a concomitant enlargement in spine size in
the latter group. One of the rare spine studies in insccts (Brandon & Coss 1982;
see also Coss, Brandon & Globus 1980), shows that the honeybees first orientation
flight, lasting on the average no more than 5 minutes, can already reduce spine
neck dimensions and increase spine head diameter, without lowering the overall
spine length. All these observations strongly support an important role of spine
plasticity under normal stimuli conditions.

If spines are modifiable, a study of their electrical properties becomes especially
important. In contrast however, with the numerous experimental findings, there
have bcen only a few theoretical analyses of spines. Rall (1970; 1974; 1978; see
also Jack, Noble & Tsien 1075) gave an estimate of the effect of a variable spine
geometry on the somatic potential induced by an active synapse on the spine. He
pointed out that to achieve maximal plasticity of spines, i.e. small variations of the
spine neck diameter producing large variations in the somatic depolarization, there
must be a kind of impedance matching betwecn the spine neck and the dendrite,
causing distal spines to be longer and thinner than proximal ones. Recently, Crick
(1982) conjectured that dendritic spines are involved in some kind of ultra-fast
memory, on the scale of seconds or even milliseconds. In this picture spines would
be constantly changing their shape in response to the synaptic input.

In this paper we will extend the results of Rall in a study of a rcal cortical pyramidal
cell with transient conductance changes as inputs. We will then discuss several
non-exclusive hypotheses on the function of dendritic spines. Part of this analysis
has been published in a very condensed version (Koch & Poggio 1983a,b).

2. Methods

The main tool we have used is a (PASCAL) program that computes the transfer
function f(ij(w) for current input at location 7 and voltage oulput at location j as
a function of frequency w in any given passive dendritic structure (Koch, Poggio
& Torre 1982). The steady state value K;;(0) of the transfer function is the ohmic
transfer resistance seen for sceady state current inputs (V; = K;;(0)];). If the two
locations 7 and 7 coincide, one obtains the familiar input impedance at that location
(f(,-z-(w) is the impedance seen by an electrode for current injections). The complex
functions f{ij(w), for various locations i and j, completely characterize the (linear)
electrical properties of a branched passive cable. Any given current input with a
Fourier transform I;(w) at location 7 can be ”propagated” by the associated K;j(w)
to another location j to give the resulting depolarization:

~ -~

Vi(w) = Kij(w)i(w) (1)

The algorithm implemented by the program is basically due to Butz & Cowan
1974; see also Koch 1982) and is based on classical one-dimensional cable theory
for a review see Jack, Noble & Tsien 1975 or Rall 1977). The membrane is assumed




to be passive. Instead of approximating the dendrite as a series of isopotential
lumped compartments we describe a dendritic structure as a sequence of cylinders,
where each branch (or part of a branch) is represented by a cylinder of appropriate
length and diameter. This method does not place any restriction on the geometrical

structure of the dendritic tree considered nor, unlike Rall’s d3/? power law, on
the diameters of the branches. The Green functions Kj;(t), i.e. the inverse Fourier

transforms of K;;(w), are then exact solutions (for delta pulses of current) of the
cable equation for this model.

3. Our Model of the Pyramidal Cell

We calculated the electrical properties of spines on the basis of measurements
made on a Golgi stained pyramidal cell (kindly provided by V. Braitenberg) from
the sensory-motor cortex of an adult mouse. From this preparation (see figure
1) we determincd the branching structure, the length and the diameters of each
dendritic segment as described in detail elsewhere (Koch, Poggio & Torre 1982).
If not otherwise stated we used R, = 4000Qcm? for the membrane resistance,
R; = 70Qcm for the intracellular resistance and Cr, = 2uFcm ™2 for the membrane
capacity, resulting in a membrane time constant of 8 msec (Creutzfeldt, Lux &
-Nacimiento 1964). The reversal potential of the excitatory synapse E; is always
equal to 80mV relative to the resting potential. We will discuss the effect of different
neuronal paramecters on our results later.

The spines were modelled by a thin and narrow cylinder, called the spine neck and
by a thick, short cylinder simulating the spine head (see inset in figure 1). Except
when otherwise stated the spine neck is 0.1um thick and 1.0um long and the head is
0.3um thick and 0.6um long (for the exact morphology of spines see Coss, Brandon
& Globus 1980 or Westrum & Blackstad 1962; for the 3-dimensional structure
see Wilson et al. 1983). In all cases considered further on, the total spine area is
always constant and equal to 0.96um?. Because of limitations in storage space and
computation time, we simulated the pyramidal cell (in figure 1) with only 10 spines,
instead of 1000 or more spines which are actually present. To test the effect of
this approximation on our results, we compared the somatic depolarization due to
an aclive synapse in a small cell with the usual spine density (== 1.7 spines/um,;
Schiiz 1976) to the somatic potential in the same cell without any spines. Due to
the extremely small neck of the spines, practically no current enters the spines and
the potential in the twe cases differed by at most 1.5%.

4. Linear Electrical Properties of Spines

Let us first consider the electrical properties of the spine for current inputs. In this
case the input-output relation between a current input I;(t) at 7 and the resulting
voltage output Vj(t) at j is linear; i.e. -

Vj(t) = Kis(t) * L(t) (2a)
or in the Fourier-domain

Vi(w) = Kijw) - Ii(w) (2b)




100 um

Figure 1  The pyramidal cell used throughout our simulations from sensory-motor area of the
mouse cortex. Golgi preparation by V. Braitenberg. The electrotonic distance from the spine to the
soma is 1.19,0.59 and 0.08 length constants for the distal, middle and proximal spine respectively
(for R, = 40000c¢m? and R; = 76Qem). The insert shows our model of the spine. The arrows
point to the spines whose properties are studied. The fine lines crossing (but not contacting) the
cell are stained axons originating from nearby cells. From Koch & Poggio (1983a,b).

where x represents the convolution operation. The steady state resistance of the
spine neck is given by




Ry = 4R;IN

(3)

md,

Ry is equal to the resistance of a cylinder with R; being the specific resistance of
the cytoplasm, dp the spine neck diameter and i) the spine neck length. We call
Kp(w) the impedance of the spine “.cad and we model it as a very high membrane
resistance Ry = Rp,/Fy in parallci with the capacitance Oy = Cp Fiy where Fiy
is the membrane arca of the spinc head. Thus

~ RH
Kplw)= —— 4

#(w) 1+ 1w, (4)
where 7, = R,,C,, is the time constant of the neuron. The current that is injected
into the spine can either flow out through the membrane of the spine head with
the impedance Kjj(w) or flow through the spine stem with the impedance Ry
and onward into the dendri ic shaft which has the input impedance Kyy(w) (we
designate by 1 the location of the spine head and by 2 the location of the dendritic
shaft just below the spine; see inset in figure 1). Neglecting the very small current
losses through the membrane of the spine neck, we obtain the approximation (see
also Rall 1978)

1 1 L1 )

Kuw) Kpw) +Ry  Kuw)

If we obscrve that for our standard parameters K (w) > Kyy(w) and Ry /Ry < 1
we arrive at

. K R
) = O ©

where 7s = Ry Cp is the time constant of the spine. Thus the spine input impedance
equals the dendritic shaft input resistance plus the spine neck resistance filtered
by the low-pass spine filter function 1/(1 + ww7s), where the spine time-constant 7s
depends only on spine gecometry. I'or our standard values of spine neck dimensions we
find Ry = 87.25MQ, 7, = 0.98usec and 7, = 8.00msec (for a detailed derivation

of these results sce Koch 1982).1.

If we consider now the transfer impedance f{lg(w) from the spine head to the base

of the spine, we find that Kjs(w) is the product of the dendritic input impedance
and the spine filter function i.e.

Kiap(w) = %32(—3—2: (M

Since 7, is very small (much smaller than the typical time constant of K3(w), 7),
for low frequencies essentially all the injected current reaches the dendritic trunk.

! We compared the computed (exact) value of K (w) with K 11(w) determined with the
approximation equation (6), Kao(w) being also calculated with the help of our program. These
two functions differ by (at most) 3.1%




Only at high frequencies (w1th respect to 7771) do losses take place because of the
very smiall surface of the spine. ’

In the following we shall make use of two relations which hold for an arbitrary tree
without loops (Koch 1982; Koch et al. 1982):

Kij(w) = Kji(w) (8a)
e W) = f{il(w)f{z (w)
Rol) = = 8 (8t)

where [ is any location on the direct path from location ¢ to 5. For the transfer
function from spine head to soma we find therefore

Kip(w)Kas(w) _ Kae(w) 9)

Kls(w) = k'zz(W) 1 + ins

However, since K;(w) drops rapidly to zero (in the order of 1/7,,Hz) the spine
filter-function can be considered essentially flat over this range and therefore

f(ls(w) = ffzs(w) (10)

(When comparing K(w) with Kas(w), equation (10) holds within 0.02%). Again
this is due to the fact that practically all the injected current reaches the dendritic
trunk. In other words, the depolarization due to a current input at some other
location in the dendritic tree (for instance the soma) is the same, irrespective
of whether the synapse is on the spine or directly on the dendrite. In short: in
the linear (current) case, spines do not isolate. By the same argument, spines are
no more electrically isolated from a current input at an arbitrary location than
synapses directly on the dendritic stem. Specifically, the depolarization induced by
the antidromic invasion of a somatic spike, assuming a passive membrane, is the
same on the dendritic trunk as in the spine head.

Notice that these results hold for the overall transfer function and therefore for any
steady state or transient current input. Thus, if synaptic inputs were described as
current inputs (and the membrane is assumed passive) it would not matter whether
synapses are on spines or directly on the dendritic trunk.

5. Synaptic Inputs on Spines are Nonlinear

Synaptic inputs however, consist of transient conductance changes. to specific ions
and are not currents. Synaptic inputs cffectively open ”holes” in the membrane
for ions with a reversal potential E; measured with respect to the local restin

potential th If the conductance for the specific ion 7 changes by the amount gl(t
and Vi(t) is the membrane potential change at the synapse relative to the resting
potential, we have the following expression for the current

L(t) = i(&)(Er — VA(t)) (11)




The change in voltage is then given by a Volterra-integral equation

Vi(t) = Ku(l) * {a(t)(Ey — Vi(4)} (12)

Because spines have a high input impedance, cven a small and very fast conductance
change may easily drive the local potential in the spine towards the equilibrium
potential Ey, considerably reducing the amount of inflowing current and therefore
the depolarization at the soma (or some other location).

5.1. Steady-statc inputs

We shall first restrict ourselves to steady state conductance changes gi, while the
more general case of transient inputs g;(t) will be regarded later on. In the steady
state case, equation (12) takes the form

Vi = K11(0)g1(E1 — Vi) (13)

Using equation (2a), the depolarization Vs at the soma (relative to Vrest) is given
by

g1 K1:Eq

o s 14
T 1+ aKn (14)
where K1; and K, are the steady-state impedances _f{_u(O) and I~{15(0). V, can be
rewritten as: :

V, = ASE; (15)

where A is the attenuation factor A = K5/K;; and S is the spine factor § =
91K11/(1 + 91 K11). A, which is the voltage attenuation between the locations 1 and
s, depends only on the neuronal geometry, while the spine factor S, reflecting the
nonlinear addition at the spine (also called nonlinear saturation), is a function of
the conductance input and the spine geometry; the potential change at the spine,
due to a conductance change ¢ is given by SE; (of course, both A and S depend
on ncuronal paramecters such as I, and R;). Equation (14) represents a kind of
gain control mechanism. For small inputs, Vs is essentially proportional to g; and
for large inputs it saturates to E1K,5/K 1 (see figure 2).

Figure 2 shows the somatic potential as a function of the input g; for a proximal
(figure 22) and a distal spine (figure 2b). The top curve is the somatic potential V;
gencrated by a synapse on the dendritic shaft (this can be interpreted as the limiting
case of a spine with dy — oo and Iy — 0), the middle curve is the potential for our
standard spine (dy = 0.1um,{y = 1.0um) and the bottom curve is the potential
for a spine where the neck has been stretched (dy = 0.05um, Iy = 2.0um).

For steady-state inputs equation (6) can be uscd to determine the input resistance
of a spine:

4RI N (16)

K= Kn+ Ry =K+ —
7rdN

Depending on the dimensions of the neck, Ry can be very much larger than Ky,
implying that Kj; depends strongly on the spine neck diameler and length.
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Figure 2 (a) Nonlinear saturation of the somatic voltage as a function of a steady state
conductance input g; for three diffcrent cases: The synapse lies on the dendritic shaft dircctly
below a proximal spine (top curve), the synapse is situated on the spine head of a proximal
spine with the standard neck din.ensions (dy = 0.1um and In = 1.0um; middle curve) and the
synapse lies on the spine head of a proximal spine with a stretched spine neck (dn == 0.05um
and [y = 2.0um; lower curve). (b) Same as (a) except that the distal spine of figure 1 has been
used (Notice the decrease in voltage scale).

A relatively small change in dy or [y will then lead to a large change in K;; with
corresponding changes in the somatic polential. Figure 3a demonstrates this effect.
For a distal spine (sce figure 1) we stretched or contracted the spine neck in such
a way, as to leave the total ncck surface area constant (Iydy = 0.1um?). Thus
increasing the neck length goes hand in hand with a decrease in neck diameter.
Figure 3b shows the corresponding change in spine potential for different synaptic
inputs.
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Figure 3 (a) The stcadu state input impedance K,(0) = K, (for the distal spine) as a
function of the spine neck length and diameter calculated for different membrane parameters (the
spine neck dimensions were changed in such a way as to leave the total neck surface areca constant:
dnin = 0.1um?). The solid curve is for R,, = 4000{2cm?, the dotted one for R,, = 1000Q2cm?
and the dashed curve for R,, = 1600002cm?; while for these curves R; is everywhere homogeneous
with R; = 70Qcm; for the dot-dashed curve R,, = 4000Qcm?® and R; = 70Q¢m holds in the
soma and dendrites but R; has twice this valuc(140Qcm) for the cytoplasm of the spine. The
corresponding transfer resistances to the soma are 12.75,1.51,39.25 and 12.75M Q. (b) The somatic
depolarization for the distal spine of figure 1 with changing spine neck dimensions (see (a)) for
different inputs.

5.2. Transicnt inputs

Until now we have only considered steady-state inputs g;. It may be argued that
our picture of the spinc changes appreciably when transient conductance changes

10
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Figure 4 The time course of the conductance change ¢;(t) = gmazt;,axe’ ct1e(=4t/tpeak) shown
here with fpeqr = 0.25msec and g, = 1. The pulse has decayed to zero after about 0.9msec.

g1(t) are considered. With this kind of input, it is in general impossible to write
the depolarization in a closed analytical form, although the solution of the Volterra
equation can be determincd by simple numerical integration.

Owing to the very small membrane area of a spine (the surface of our standard spine
is & 1um?) the total spine capacity is exceedingly small, leading to large impedance
values even at high frequencies. Thus a significant saturation and "choking” effect
would take place even for very fast transicnt inputs. We have demonstrated this
effect using a fast conductance change ¢y(t) with a time-to-risc (tpeqk) of 0.25msec
and a total duration of 0.9msec (compare this with 7, = 8msec). The time course
of g1(t) is given by
g1(t) = const - t*e ™4t trear

and is shown in figure 4.2

Figure 5 shows the maximum of the depolarization at the synapse as a function of
the amplitude of the maximal conductance change ¢gmqz. The solid curve shows the
evoked potential at the spine head due to an active synapse at this spine, while the
comparable stcady state input change gmqr yields the dashed curve similar to the
transient curve. An active synapse at the dendritic shaft just below the spine gives
rise to a much smaller depolarization,showing very little saturation. In contrast
with the dendrite, the spine shows essentially the samc saturation behavior for fast
as for slow inputs. This is an important point: relative saturation effects and peak
voltage in a spine, compared with the dendrite’s, are much greater for transient

2const is equal to gm”t'_;:ke", where grq; is the maximum value of g(t) at t = tp.qk.

11
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TFigure 5 The maximum depolarization at the synapse, for a fast transient conductance input

of peak amplitude gmar (tpeak = 0.25msec and total duration 0.9msec) at the distal spine of
figure 1 (solid line) or at the dendritic shaft just below the spine (dotted line). The dasked line
shows that a steady state conductance change yields essentially the same depolarization in the
spine as the transient input; 7, = 8msec.

inputs than for steady state inputs.Thus, transient conductance inputs maximize
the difference between a synapse on a spine and a synapse on the dendritic shaft.

To compare the influence of the spine neck on transient inputs with our previous
results on the steady-state change in somatic voltage, we defined a rcal number

called Kf-ff, expressing the resistance between the points ¢ and j for a given

transicnt input (see Koch 1982 for a detailed derivation). Replacing Ki;(w) by

K;{f and Kis(w) by Kiﬁf we can approximate the resulting somatic potential
due to a transient conductance input g¢i(t) to a very satisfactory degree (the
maximal depolarization at the spine head in figure 5 deviates at most by 1.3%
from the voltage determined via K¢/ ). The voltage approximation always lies
below the solution of the full Volterra equation, thus giving a lower bound on the
voltage generated by a transient synaptic input (for proof sec Koch 1982). Figure
6, corresponding to figure 3b, shows the dependence of pcak somatic voltage for
three fast transient inputs at different maximal amplitudes as a function of spine
dimensions. Except for a difference in scale due to high-frequency losses through
the membrane capacity, the basic conclusion is still valid: somatic depolarization
depends strongly on spine dimensions.

6. What is the optimal neck diameter?

If the "weight” of the synapse is adjusted by small variations of the spine neck,

12
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Figure 6 Somatic depolarization as a function of spine gecometry and maximal amplitude of
the transient conductance change for a distal spine. V, was approximated by using K¢// for a
conductance input with ¢seqx = 0.25msec (see figure 3b).

it is relevant to ask under what conditions the smallest change in dpy and/or Iy
results in the largest change in V. Under the assumption that the total membrane
area is constant (dy{n = const.), this can be expressed formally by

2
a3 \1 + 1K1

Taking equations (10) and (16) into account, equation (17) gives

1 Ky
Ry = — 4+ =2
N =9 T 2

(18)
Rall has pointed out (for the case of maximum saturation i.e. g; — o0) that this
kind of impedance matching between the spine neck and the dendritic shaft to
which the spine is attached, implies a systematic variation of spine geometry with
distance from the soma: beccause the soma is a current sink, Kjy will decrease
with decreasing distance to the soma and consequentially so will the spine neck
resistance Fy. Thus, depending on synaptic strength and on the position of the
spine, spines should be shorter and thicker for proximal locations and longer and
thinner for distal locations in order to maximize synaptic ”"plasticity” (for the
functional conscquences see discussion).
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7. Interactions between two Synaptic Inputs

Up to now we have only considered the effect of a single synaptic input on the
potential. But what happens when two or more synapses are simultaneously active?
One can distinguish two important cases: nonlinear interaction between inputs of
different types; i.e. between an excitatory and an inhibitory synapse and nonlinear
addition between inputs of the same type.

7.1. Nonlinear interaction

Let us consider the case of an excitatory synapse at location e modulating the
conductance change g.(t) of an ionic species with equilibrium potential E, > 0
(relative to V;¢s:) and an inhibitory synapse modulating the conductance change
gi(t) to an ionic species with equilibrium potential E; < 0 at location ¢ (the
locations 7 and e can coincide). For transient conductance inputs the system of
coupled Volterra integral equations giving the resulting change in somatic potential
is:

Vs(t) = {ge(t)(Be — Ve(£))} * Kes(t) — {ga(t)(E: — Vi(t))} * Kis(t)
Ve(t) = {ge(t)(Ee — Ve(8))} * Kee(t) — {a:(8)(B: — Vi(1)} » Kie(t)  (19)

Vi(t) = {9e(t)(Ee — Ve(t))} * Kea(t) — {0:(8)(B: — Va(0))} * Kui(t)

To maximize the nonlinear interaction between these two different inputs, we shall
consider only shunting inhibition i.e. E; = 0 (relative to the resting potentxal)
A simple measure of the effectiveness of shunting inhibition is the ratio (called
F-factor) between the maximum somatic depolarization in the absence of inhibition
to the maximum of the somatic depolarization in the presence of the inhibitory
input.

In the case of steady state inputs, the F-factor is given by (see Koch et al. 1982)

Fy == 5 Kes 14 geKee + 9:iKii + 019 (Kee Kii — K?2) (20)
‘ 14 geKee geKes + gegi(KesKiz’ - [{eiKis)

Table 1 shows Fy. for four typical situations: both synapses are on the spine, both
synapses are on the dendritic shaft and one synapse is on the spine while the
opposing synapse lies on the dendrite.

Two conclusions can be drawn from these and similar results:

(i) An inhibitory synapse situated alone on a spine is usually ineffective in reducing
the potential at some other location. This is in accordance with the general
on-the-path property (Koch et al. 1982): inhibition is most effective when it is
located on the direct path between excitation and soma.

(ii) If the excitatory synapse lies on the spine, it does not make much difference
whether the inhibition is directly adjacent or on the dendrite (between the spine
and the soma) \

Conclusion (i) implies that one would not expect to observe any inhibitory synapses
on spines in histological preparations (see discussion).
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Figure 7 F factor (ratio of the maximum of the somatic depolarization without inhibition to
the somatic depolarization in the presence of inhibition) for synapses on the spine head of a distal
spine (continuous curve) or on the dendritic shaft just below the spine (broken curve) as a function
of relative timing between the two conductance changes. Both input functions of the form of
figure 4 have tpe,x = 0.25msec with gema, = 10785 and gymur = 1077S. The corresponding
voltage is the full solution of the coupled Volterra equations (19). The halfwidth of the curves is
0.12 and 0.22msec for the spine and the dendrite case respectively.

When transient inputs are considered, the relative timing betwcen them is an
important determinant for the degree of interaction (see Koch, Poggio & Torre
1983). We solved numerically the system of integral equations (19) for the case when
both synapses are either on the spine or on the dendrite. As input functions we used
fast transients with {peqx = 0.25msec for both inputs (see figure 4). The shunting
inhibition had a peak conductance value (gimaz) of 10778, while the excitation
was 10 times weaker (Gemezr = 10_85), but the main properties of the interaction
do not depend on it. Figure 7 shows the resulting "tuning curve” of the F' factor.
What is especially remarkable is that the vetoing effect of inhibition is very sharply
dependent on relative timing between the two inputs. Whereas inhibition on the
dendritic shaft can effectively veto excitation within a temporal window of the
order of 4-ipeq.k, inhibition on a spine is stronger and more selective, being effective

only in a window of —tpear/2 (4-120usec around the start of excitation).

7.2. Nonlincar Addition

We now determine the degrec of nonlinear addition between two excitatory synapses
lying close together, with the same driving potential I/ and the same steady-state
conductance input g. We arc specifically interested in the summation of potential
for two synapses lying on nearby spines. The effect of nonlinear addilion can be
appreciated best when the sum of the somatic potential generated when both
synapses are active alone Vi -+ Vso is compared with the somatic depolarization
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when both fire simultaneously (Vj149; see equation (19)). In figure 8 we have
plotted both voltages as a function of the strength of the steady-state synaptic
input for three different situations. The upper pair of curves show V;1 + Vi3 and
Vs142 for the case when both synapses lie on the apical tree 26um apart; the two

middle curves are for synapses lying on two standard spines (Iy = 1.0um and
dy = 0.1um) and the bottom curve (where the two voltage functions overlap) is
for two stretched spines ({y = 2.0um and dy = 0.05um). In the last case there is
practically no nonlinear addition since Vi1 4 V52 and Vi;4 differ only by a very
slight amount. This is associated, however, with a very strong nonlinear saturation
within one spine. The other extreme is represented by the situation where both
synapses lie on the apical tree. For large inputs the potential is saturated; i.e.
adding a second synapse does not change the somatic depolarization appreciably.
Thus there is a trade-off between nonlinear addition of the synapses and saturation
within the postsynaptic site. Once again, when synaptic inputs are small, they can
be considered as currents and nonlinear effects do not occur.

8. Do these results depend on parameter values ?

We stress that the quantitative values computed for our pyramidal cell depend
on the parameter values assumed. While our calculations are based on commonly
observed values for cortical cells, the reasonable physiological range is relatively
wide.

For pyramidal cells in the hippocampus, larger membrane time constants are
reported than used here (Brown, Iricke & Perkel 1981; Johnston 1981). This would
imply a R,, value of about two to three times as large as we have assumed, while
for motoneurons of the cat, membrane resistance values range between 1000 and
2000Q2crn? (Barrett & Crill 1974; Barrett 1975). Figure 3a shows the variation of
the spine input resistance Ki; as a function of the neck geometry for different Ry,
vaiues (1000, 4000 and 16000Q2cm?). As expected from (16) the resulting change in
K, is slight since the spine neck resistance Ry is independent of R,, to a very
good approximation. Thus, apart from an increase in the effect of a changing spine
geometry on sormatic depolarization, our basic results are still valid.

Values for the membrane capacity C,, much different from the one we used are not
very likely (Brown, Perkel, Norris & Peacock 1981); in any case Cy, does not affect
our steady state values.

The resistivity of the cytoplasm is rather constant at about 70Qcm for several
vertebrate neurons (Barrett & Crill 1974; Rall 1977). It seems unlikely that R; is
lower than 50Qc¢m (Barrett 1975). Within this range of values our results would
not be drastically affected. However, owing to the presence, at least in mammalian
cortex, of the spine-apparatus and related organelles in many spines (Gray 1959;
Peters & Kaiserman-Abramof 1970), the specific resistivity of the spines may be
significantly higher than the resistivity of the dendrites and the soma (Wilson et
al. 1983). Figure 3a (dot-dashed curve) shows Kj; for such a case. The specific
resistivity of the soma and the dendrites was assumed to be 7T0Qem while the Ry
value of the spine (neck and head) was doubled to 140Qcm; since Ky depends
linearly on R; therc is a significant increase in spine input resistance. This would
cause a much stronger nonlinear behavior than with a homogeneous value of R;,
without leading to an increase in the the maximal evoked somatic potential.

All of our conclusions rest on the assumption of passive or non-regenerative
membranc properties. The situation could change if the dendrite or even the spine

16




50 1

Tigure 8 Nonlinear addition as a function of synaptic input amplitude for three different
situations. For the three pairs of curves, the upper continous curve is Vi; + Vi, i.e. the sum of
the individual evoked somatic potentials while the lower dotted curve represents V;4 4 ie. the
somatic potential generated while both synapses are simultancously active (the two curves overlap
in the third case). The driving potcntial (80mV) and the steady state synaptic inputs g, are the
same for both synapses. For the two topmost curves both synapses lie directly on the apical tree,
for the middle curves both are situated on two standard spines (Iy = 1.0um and dy = 0.1um)
and for the bottom curve both are on elongated spines (Iy = 2.0um and dy = 0.05um). The
spincs are 26um apart (0.05 times the electrotonic distance) and are located in the middle part
of the apical tree.

itself would be capable of producing spikes or if voltage dependant channels would
be activated.

Precise data about conductance changes at a spine and their time course seem
much more difficult to obtain. As all our data make abundantly clear, the size of
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the conductance change is critical for determining the operating range of the spine
and its actual properties (sce discussion).

9. Discussion

K]

A main point of our investigation is reflected in figures 2 and 5. Assuming only a
single excitatory input, spines show significant nonlinear saturation. Even for very
fast conductance changes, the effect of the spine is to map a possible wide range
of input amplitudes (g;) onto a restricted set of output values (ng or in other
words, to perform nonlinear range compression (figure 2). In spines the saturation
effect becomes especially characteristic for transient inputs, since a short input can
induce much higher depolarization in the spine than in the dendrite. As Perkel
has suggested (Perkel & Brown, private communication), this large depolarization
may have functional significance in conjunction with possible active membrane
properties of the spine. Saturation goes hand in hand with reduced nonlinear
addition between synapses situated on different spines, resulting in a inore linear
behaviour between simultaneously active synapses gﬁgure 8). This might explain
the results of Andersen & Langmoen (1981) who found that simulating nearby
synapses (situated on spines) in the dendritic tree of CA1l pyramidal cells results in
a linear summation of the corresponding EPSP’s.

Saturation itself does not make the spine so interesting, since the dendrite also
exhibits nonlinear saturation, albeit to a much lesser degree. What is important is
that the spine can effectively control the attenuation of its input via the dimensions
of the neck, setting the shape of the gain control curve (figures 3b and 6).
Optimal control takes place in the intermediate range, i.e. for 0.1 < ¢1 K11 < 10.0.
Stretching the spine neck from 1.0 to 1.4um in length can reduce the somatic
potential for fast transicnts from 0.26mV to 0.11mV(—58%), while shortening the
neck to 0.6um increases the depolarization to 0.54mV (4108%;see Koch 1982).
The differences in spine neck length observed experimentally within one cell can be
much larger (see Peters & Kaiserman-Abramof 1970).

An important conclusion of our analysis is that a small change in spine dimensions
around the optimal value can produce a large change in the "weight” of the
synapse. Since spines are so numerous the total effect on the somatic potential
can be biophysically quite effective. According to our calculations, the magnitude
of the structural change to be expected is small for individual spines, making
their observation by present morphological methods very difficult. Changes of the
dimensions of all the spines on a neuron may be observable in special cases, as for
instance in the experiment by Boycott (1982).

This facilitation effect can be further augmented by either increasing the membrane
resistance or by increasing the specific resistivity of the cytoplasm within the
spine. The advantage of the latter proposal is the fact that this would increase
the nonlinearity while lowering the evoked somatic potential, leading to a higher
number of synapsesthat must be active to elicit a spike. If the input is too small
(91K1; < 0.1) the spine is working in the linear range wherc conductance inputs
can be considered as current inputs and the somatic potential does not depend any
more on the spine itself, but only on the position of the spine relative to the soma
(K1s). If the input is too large (g1 K11 > 10.0) the spine is saturated and the somatic
potential is independent of the strength of the synaptic input. Since, at least for
cortical pyramidal cells, spiny cells require the simultaneous activation of a few
hundred excitatory inputs to produce a spike (for estimates in hippocampus cells
sce Andersen & Langmoen 1981 or McNaughton, Barnes & Andersen 1981; also
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Braitenberg 1981), nonlinear saturation at large input values could be a mechanism
used by the central nervous system for preventing any one input from dominating
over the other inputs.

The same mechanism could also explain the well know fact that the soma and the
first 20 — 30um of the primary dendrites are practically devoid of spines (cf. White
& Rock 1980; Parnavelas, Sullivan, Lieberman & Webster 1977; Wilson & Groves
1980). Proximal or somatic spines could, already at rather small inputs (see figure
2a), dominate the firing pattern of the cell, masking completely the effect of more
distal spines. Perhaps to prevent this, natural selection has ensured the absence of
spines near the soma; when exceptions are found (see Scheibel & Scheibel 1968)
the total somatic spine population is very small and their appearance is long, slim
and with a tiny head, thus maximizing input resistance (figure 2a, bottom curve).

It has repeatedly been reported that long thin spines are more frequent at distal
dendritic locations while near the cell body and around the base of the primary
dendrite more short, stubby spines predominate (Berard, Burgess & Coss 1981;
Laatch & Cowan 1966; Jones & Powell 1969; Coss & Globus 1978; see, however,
Wilson et al. 1983 who find no such systematic relationship). This would seem to
handicap distal spines twice over: the attenuation from distal locations to the soma
is enhanced by increasing the spine input resistance of the distal spines. In the
light of the experimental fact that distal synapses are often equally as effective in
eliciting somatic spikes as are proximal synapses (Andersen, Silfvenius, Sundberg &
Sveen 1980, Redman & Walmsley 1981; lansek & Redman 1973) one would expect
the opposite effect, distal spines compensating for their disadvantage by lowering
their input impedance while proximal spines compensate for their preferential
position by increased spine input resistance. To that cnd distal spines should be
short and stubby and proximal spines long and thin. This howecver has never
been observed. Rall (1974) postulated that the increase in spine input resistance
with increasing distance from the soma maximizes the gain control property of
spines, small variations in neck dimensions leading to large changes in potential. He
proposed that the optimal range of the spine neck occurs when the neck resistance
Ry is approximately matched by the input impedance Kj; of the dendrite. His
argument is strictly correct only for large g; values, when equation (18) reduces
to Ry == Koy9. In the gencral case the "optimal operating range” depends on
location and on strength of the input. In table 2 we have determined for different
steady state synaptic inputs the corresponding dimensions of the spine neck for
the proximal, the middle and the distal spine of figure 1. For small conductance
changes the spines work in the linear range and the difference in geometry of the
necks is too small to be of any relevance. For larger inputs (1075) the changes in
optimal dimensions increase considerably (there is a 50% length increase and 33%
diameter decrcase from proximal to distal).This is in the same order of magnitude
as measured experimentally (Coss & Globus 1978). Thus our exact calculations
confirm Rall’s earlier hypothesis that the observed dependance of spine dimensions
on their locations could be ascribed to the fact that this changing shape implies
optimal control. As suggested by B.B. Boycott (personal communication) some
caution is needed here: the diversity of spine shapes on a single cell can also be
related to different types of inputs. Furthermore, the dependence of spine length on
location may have simple explanations, for instance in terms of a different growth
rate of distal and proximal locations. .

Although the correlation between structure and function of synapses is not
yet conclusively established, there is growing evidence associating Gray type 1
(asymmetrical) synapses with excitatory synapses and Gray type 2 (symmetrical)
synapses with inhibitory synapses (Peters, Palay & Webster 1970). Based on these
morphological criteria it is found that most spines carry an excitatory synapse. This
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does make sense when one considers the nonlinear interaction between synapses
of opposing sign (table 1). Assuming that the inhibitory reversal potential is not
too far away from the membrane resting potential, a single inhibitory synapse on
a spine is not very effective in reducing the potential due to an excitatory input
somewhere else. Moving an inhibitory synapsc from the direct path (in this case
the apical dendrite) onto a nearby spine can reduce the F-Factor by as much as
50%. In agreement with these calculations, inhibitory synapses are almost always
found either on the dendritic shaft or on the soma (Parnavelas et al. 1977; Wilson

& Groves 1980; White & Rock 1980)3

A significant exception to this rule are spines which carry both symmetrical and
asymmetrical synapses on them (White & Rock 1980; Jones & Powell 1969;
Scheibel & Scheibel 1968; Peters & Kaiserman-Abramof 1969 and 1970; Sloper
& Powell 1979; Wilson et al. 1983). Quite apart from the interesting possibility
of synthesizing local circuits performing a variety of different computations (for
an example of a multiplication-like operation see Torre & Poggio 1978; Poggio &
Torre 1981; see also Scheibel & Scheibel 1968) the conjunction of excitatory and
inhibitory synapses on a single spine seems to offer the possibility of constructing a
time-discrimination circuit with a temporal resolution of the order of 100usec, for
input pulses lasting somewhat under 1msec. Using a spine with an excitatory and
a shunting inhibitory synapse and working with inputs lasting about 1msec, we
find that delaying inhibition by just 0.1msec with respect to the start of excitation
makes this inhibition practically inefficient in reducing the somatic depolarization
due to the excitation. Using inputs ge(t) and g¢;(t) with an equal short rise time
but a more slowly decaying phase, the "tuning curve” of figure 7 would become
much more asymmetric, with the F-Factor for negative delays being rather high
but dropping very quickly to 1.0 for positive delays (by positive delay we mean
inhibition after excitation). Inhibitory conductance changes seem indeed to last
much longer than excitatory conductance changes in the cases analysed so far.
Such a mechanism might possible be used in the neuronal circuit responsible for
the startle response in teleost fish (Diamond, Gray & Yasargil 1970; Celio, Gray &
Yasargil 1979). Thus, spines with both excitatory and inhibitory synapses on them
could well represent locations where the interactions between two individual inputs
could be very specific, both in time and in space.

10. Functional considerations

So finally, what could be the functions of spines? Since in this study we only
considered the electrophysiological aspects of spines, we exclude from our discussion
suggestions such those of Peters & Kaiserman-Abramof (1970) or Swindale (1981)
on the uses of spines to connect axons and dendrites via en passant synapses on
spines. Three different possibilities could be envisaged, none excluding the others:

First of all, spines compress the range of each single excitatory synapse, mapping a
wide range of inputs onto a limited range of outputs. Spines show a high sensitivity
to small inputs and keep the maximum depolarization that can be achieved by a
single synapse below a certain value (dependent on the spine and its position relative
to the soma). Furthermore, they tend to isolate individual synapses on spines from
the depolarization generated by simultaneously active synapses elsewhere. It is
important that this saturation property holds also for very fast inputs, in sharp
contrast with the case of a synapse on a dendrite or the soma.

3There arc a few exceptions to this rule: see Kosaka (1980) or Peters & Kaiserman-Abramof
(1970) who find spines on the soma or on the initial segment with symmetrical synaptic profiles.
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Second, a fine control of synaptic efficiency via the spine diameter (and/or length)
may represent a basic mechanism for learning. This requires a conductance change
outside the linear range, implying that spines which do not fulfill this condition
have no interesting electrical function. Repeated activation of a synapse on a spine
could enlarge spine dimensions by some mechanism and thereby enhance synaptic

potency.4

This postsynaptic mechanism may :inderly long-term-potentiation in the pyramidal
cells of the hippocampus (see Introduction) and the changes in cortical functional
connectivity taking place during early visual exposure (Rauschecker & Singer 1981;
Schiiz 19812. Spine plasticity could also play the decisive role during learning in
the cerebellum. This suggestion is based on the general framework of neuronal
plasticity in the cerebellum as laid down by Marr (1969) and later modified by Albus
(1971). Marr proposed the following: the main cerebellar input, the mossy fibers,
which excite the only output of the cerebellum, the Purkinje cells, polysynaptically
through the granular cells and their axons (the parallel fibers) can be reorganized by
the simultaneous activation of the seccond cerebellar input, the climbing fibers, which
make very powerful synaps. : onto the Purkinje cells. Specifically, his hypothesis
requires that the conjunction of an active parallel fiber and an active climbing
fiber raises the transmission of the parallel fiber - Purkinje cell synapse, which is
always on a spine. Albus (1971) later postulated instead of a synaptic facilitation
a synaptic depression which seems to agree better with present experimental data
(Llinas 1981; Ito, Sakurai & Tongrooch 1982; Andersen 1982). This effect could very
well be due to a change in spine neck dimensions, induced perhaps by the change
in membrane potential (Stent 1973). Contractile proteins have been suggested as
the mechanism underlying the change in shape of spines (Crick 1982). Recently,
Fifkova & Delay (1982) and Matus et al. (1982) have shown that actin is indeed
present at high concentrations in dendritic spines. Thus the modification of spine
shape could be one of the mechanisms responsible for learning and memory in the
central nervous system.

Thirdly, the conjunction of an excitatory and inhibitory synapse on the same spine
could represent a circuit responsible for various very selective computations, such
as multiplication or time discrimination with a temporal resolution well below the
millisecond range (Diamond, Gray & Yasargil 1970).
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In this context it is interesting to mention the strong correlation Steward & Levy (1982) find
between the sites of polyribosomes, the machinery necessary for protein synthesis, and dendritic
spines.
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Tables

ge/(lo'z )
gi/(lo- s)

e on

i on

e on

i on

Spine
Spine

Spine

Dendrite

Dendrite

Spine

Dendrite

Dendrite

0.001
.001

.12

.05

.05

.05

0.0l
0.001

.06

.0k

.03

.03

0.001
0.01

2.24

1.51

1.27

1.51

0.01
0.0l

1.42

1.35

0.1
0.01

1.01

1.04

1.08

0.001
0.1

13.4

6.09

1.51

6.07

0.01
0.1

6.86

5.16

L .48

1.93

k.46

1.09

1.84

Table 1: F' values for steady state inputs in the pyramidal cell of figure 1.
Both the excitation e (£, = 80mV) and the shunting inhibition ¢ (E; = 0mV)
are located exactly below or on the spine in the middle portion of the apical
tree. The depolarization at the soma due to excitation on the spine (on the
dendrite just below the spine) without inhibition is 1.06mV(1.15mV) for g =
0.00115,4.99mV(7.8TmV) for g, = 0.014.S and 7.95mV (19.04mV) for g, = 0.1uS.

0.1
1.0

10.3

3.56

1.09

9.42




Table 2: Spine neck dimensions for optimal plasticity determined from equation
(16) and (18) for different steady state conductance changes and locations (see
arrows in figure 1). The upper value gives the spine neck length [y (in um? and
the lower value the neck diameter dy (in um). The total spine neck srea is always
constant and equal to dylny = 0.1um?2.

2

g'/(lOn6 S) proximal Spine middle Spine distal Spine
Kpp = 25.74 Kyy = 53.38 Kyp = 109.26
0.001 1.792 1.808 1.839
0.056 0.055 0.054
0.01 0.890 0.951 1.055
0.112 0.105 0.095
0.1 0.585 0.708 0.875
0.171 0.141 0.114
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