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ABSTRACT:

The human visual system can extract 3-D shape information of unfamiliar moving
objects from their projected transformations. Computational studies of this capacity
have established that 3-D shape, can be extracted correctly from a brief presentation,
provided that the moving objects are rigid. The human visual system requires a
longer temporal extension, but it can cope, however, with considerable deviations
from rigidity. It is shown how the 3-D structure of rigid and non-rigid objects can
be recovered by maintaining an internal model of the viewed object and modifying
it at each instant by the minimal non-rigid change that is sufficient to account
for the observed transformation. The results of applying this incremental rigidity
scheme to rigid and non-rigid objects in motion are described and compared with
human perceptions.
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1. The rigidity--based recovery of structure from motion

1.1 The perception of structure from motion by human observers

The human visual system is capable of extracting three-dimensional (3-D) shape
information from two-dimensional (2-D) transformations in the image. Experiments
employing shadow projections of moving objects and computer generated displays
have established that the 3-D shape of objects in motion can be perceived when
their changing projection is observed, even when each static view is completely
devoid of 3-D information.

Observations related to this intriguing capacity have been reported as early
as 1860 by Sinsteden (described in Miles 1931), who observed the perception of
depth and depth-reversals induced by a distant windmill, and then examined
this phenomenon in the laboratory using rotating cardboard objects. The early
experiments in this area where concerned primarily with the perceived depth-
reversals of rotating objects. The fact that the 3-D structure of moving objects
can be recovered perceptually from their changing projection was noted by Musatti
in 1924 (see Johansson 1978). It was investigated systematically for the first time
using shadow projections by Wallach & O’Connell (1953) who coined the term
"kinetic depth effect” to describe this phenomenon. The perception of structure from
motion has been investigated extensively since, under various conditions, including
the motion of connected and unconnected elements, and using both perspective
and orthographic projections. (In orthographic projection the projecting rays are
parallel, and perpendicular to the image plane; in a perspective projection they
meet at a common point.) For detailed reviews see (Braunstein 1976, Johansson
1978, Ullman 1979a).

1.2 Computational studies of the recovery of structure from motion

In trying to recover 3-D structure from the transformations in the image, one is
faced with the problem of inherent ambiguity: unless some constraints are imposed,
the image transformations are insufficient to determine the 3-D structure uniquely.
This ambiguity problem has been the focus of a number of computational studies
that attempted to discover the conditions under which 3-D structure is uniquely
determined by the projected transformations in the image.

From the earliest empirical studies of the kinetic depth effect it has been
suggested that the rigidity of objects may play a key role in the perception of
structure from motion (Wallach & O’Connell 1953, Gibson & Gibson 1957, Green
1961, Johansson 1975). Computational studies have established that rigidity is a
sufficiently powerful constraint for imposing uniqueness upon the 3-D interpretation
of the viewed transformations. A 2-D transformation can be tested to determine
whether or not it is compatible with the projection of a rigid object in motion.
If it is, then the inducing object is in general guaranteed to be unique, and its
3-D structure can be recovered. (Under orthographic projection the structure is
determined uniquely up to a reflection about the image plane.-This is an unavoidable




ambiguity, since the orthographic projections of a rotating object, and its mirror
image rotating in the opposite direction, coincide.)

Uniqueness results have been established under a number of different conditions.
Ullman & Fremlin (Ullman 1979a) have shown that under orthographic projection
three views of four non-coplanar points are sufficient to guarantee a unique 3-D
solution. Longuet-Higgins & Prazdny (1980) proved that the instantaneous velocity
field and its first and second spatial derivatives at a point admit at most three different
3-D interpretations. Recently, Tsai & Huang (1982) in an elegant analysis have
shown that, with the exception of a few special configurations, two perspective views
of seven points are also sufficient to guarantee uniqueness. Additional uniqueness
results have been obtained for restricted motion, such as planar surfaces in motion
(Hay 1966), the recovery of time to collision (Lee 1976,1980), pure translatory
motion (Clocksin 1980), planar or fixed axis motion (Bobick, 1983; Hoffman &
Flinchbaugh, 1982; Webb & Aggarwal, 1981) and translatlon perpendicular to the
rotation axis (Longuet-Higgins 1983, J- A review of
these and other computational results obtained to dat;e on the recovery of structure
from motion will appear in (Ullman 1983).

In summary, the uniqueness results establish that by exploiting a rigidity
constraint the recovery of 3-D structure is possible on the basis of motion
information alone, and that the recovery is possible in principle on the basis of
information that is local in space and time.

1.8 Additional requirements for the recovery of structure from motion

There are a number of interesting differences between the mathematical results
cited above and the recovery of structure from motion by the human visual system.

Extension in time:  Although the recovery of structure from motion is
possible in principle from the instantaneous velocity field, the human visual system
requires an extended time period to reach an accurate perception of the 3-D
structure (Wallach & O’Connell 1953, White & Mueser 1960, Green 1961). This
difference is not surprising, especially when the recovery scheme is applied locally
to small objects or local surface patches. For surface patches extending about 20 of
visual angle, drastically different objects can induce almost identical instantaneous
velocity fields. This limitation of the instantaneous velocity field is illustrated in
figure 1. The figure shows a cross-section of two surfaces, S1 and S2 seen from
a side view. The surfaces are assumed to be rotationally symmetric around the
observer’s line of sight, so that S1, for example, is a part of the surface of a
sphere. When the viewing distance is such that the surfaces in Figure 1 occupy
20 of visual angle, the difference in their velocity fields within the entire patch
does not exceed 6%. The implication is that although the instantaneous velocity
field contains sufficient information for the recovery of the 3-D shape, the reliable
interpretation of local structure from motion requires the integration of information
over a more extended time period.
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Figure 1 Limitations of the instantaneous velocity field. Sy and §; are two
rotationally symmetric surfaces when the surfaces occupy 20 of visual angles, the
differences in their velocity fields at each point does not exceed 6%.

Deviations from rigidity: In interpreting structure from motion, the visual
system can cope with less than strict rigidity (Johansson 1964, 1978, Jansson &
Johansson 1973). If the viewed object undergoes a rigid transformation combined
with some non-rigid distortions, the 3-D object and its distortions can often be
perceived. This tolerance for deviations from rigidity also implies that the recovery
process enjoys a certain immunity to noise. If the viewed object is in fact rigid, but
the measurement of its motion and the computations performed are not entirely
accurate, the result would not be a complete breakdown of the recovery process, but
a perception of a slightly distorting object. Robustness with respect to errors in the
measured velocity field is particularly important, since an accurate measurement
of the velocity field is difficult to obtain (Fennema & Thompson 1979, Horn &
Schunck 1981, Adelson & Movshon 1982, Ullman & Hildreth 1983). For human




observers, kinetic depth displays of rigid objects often give rise to the perception
of a somewhat distorting object (Wallach, Weisz & Adams, 1956; White & Mueser
1960, Green 1961, Brannstein 1962).

-Successive apprerimation: For the human visual system, the recovery of
structure from motion is not an all-or-none process. Although the accuracy of the
perceived structure improves with time, a cruder perception of shape and relative
depth are still possible under short viewing periods. For short viewing times, objects
often appear flatter than their correct 3-D structure. For example, a rotating
cylinder (Ullman 1979a) would not appear to have the full depth of the correct
3-D object. The perceived shape is qualitatively similar to the correct one, and, as
mentioned above, oftem improves with time.

Integrating sources of 8—D information: The kinetic depth experiments
demonstrated the capacity of the human visual system to recover 3-D structure on
the basis of motion information alone. Wallach & O’Connell, for example, included
in their experiments wireframe objects whose static projection induced no 3-D
perception. Such objects appear initially as flat and lying in the frontal image-
plane, but acquire the correct 3-D shape when viewed in motion. Under more
natural conditions, motion information is seldom dissociated from other sources of
information. In this case, problems related to the integration of different sources
of information arise. Wallach, O’Connell & Neisser (1953), for instance, reported a
kinetic depth experiment with an object whose static projection was often perceived
as a 90° corner (i.e., three mutually perpendicular rods). The actual shape of this
object was different: the angle between the rods was in fact 110 rather than 90°.
Observers who initially saw the 90° corner, often perceived a 3-D structure that
agreed better with the object’s correct structure after viewing the projection of
the moving object for sufficiently long time. The initially perceived structure is
therefore not necessarily flat, and it may be influenced by different sources of 3-D
information. In the above experiment the structure from motion interpretation
sometimes eventually dominated over the static cues. There are also cases of
conflicting 3-D information in which the perceived 3-D structure is determined
primarily by the static cues rather than the motion information (Ullman 1979a, ch.
5). The case where the structure from motion process is ineffective is not directly
relevant to the present discussion, and will not be considered further.

1.4 A hypothesis: mazimizing rigidity relative to the current internal model

The above discussion suggests that to be comparable in performance to the
human visual system the process of recovering structure from motion should meet
the following requirements. (i) At each instant there should exist an estimation of
the 3-D structure of the viewed object. This internal model of the viewed structure
may be initially crude and inaccurate, and may be influenced by static sources of
3-D information. (ii) The recovery process should prefer rigid transformations. (iii)
The recovery scheme should tolerate deviations from rigidity. (iv) It should be able
to integrate information from an extended viewing period. (v) It should eventually
recover the correct 3-D structure, or a close approximation to it.




Most of these requirements can be met naturally by the following ”incremental
rigidity” scheme. Assume that at any given time there is an internal model of
the viewed object. Let M(t) denote the internal model at time t. As the object
continues to move, its projection would change. If M(t) is not an accurate model
of the object at time ¢, then no rigid transformation of M(t) would be sufficient to
account for the observed transformation in the image. The crucial step is that the
internal model would then be modified by the minimal change that is still sufficient
to account for the observed transformation. In other words, the internal model
resists changes as much as possible, and consequently becomes as rigid as possible.

Such a scheme takes into account the use of a current 3-D model which initially
may be inaccurate (requirement i), the tendency to perceive rigid transformations
when possible (requirement ii), without requiring strict rigidity (requirement iii).
It also combines information from extended viewing periods, by incorporating
incremental changes into the internal model (requirement iv). It thus has the
appealing property of combining information from extended periods, and at the
same time using at any instant only the internal model and the incoming image at
that instant. It does not require storing and using long sequences of different views
of the object as might be used, for example, in a computer implementation of a
structure from motion process. Unlike Johansson’s (1974) trajectory-based scheme,
which also integrates information over an extended viewing period, this mode of
temporal integration is not limited to fixed-axis motion, but can be applied to
objects under general motion.

The incremental rigidity scheme therefore meets four of the five requirements
listed above. It remains unclear, however, whether such a scheme can cope with the
last, and most crucial, requirement. That is, if M(t) is initially incorrect, would it
eventually converge to the correct 3-D structure? The answer is not obvious: if the
model is incorrect at time %, it is not clear whether an attempt to transform it as
rigidly as possible would bring it any closer to the unknown structure of the viewed
object. To assess the feasibility of the incremental rigidity scheme it is therefore
necessary to examine whether the incremental changes in M(t) would cause it in
the long run to converge to the correct 3-D structure of the viewed object. The
main problem regarding the incremental rigidity scheme is therefore the following:
if M(t) is updated by transforming it at each instant as rigidly as possible, will
it converge eventually to the correct 3-D structure under rigid motion, and under
deviations from rigidity. This problem is examined in the next two sections. Section
2 describes more precisely the incremental rigidity scheme and how it is applied
to recover 3-D structure from motion. Section 3 describes the results of applying
this scheme to rigid as well as non-rigid objects. The general conclusion is that
the incremental rigidity scheme copes successfully with rigid objects as well as with
considerable deviations from rigidity, and that it resembles various aspects of the
perceptual recovery of structure from motion.

2. The incremental rigidity scheme




Analytic treatment of the convergence requirement did not seem {ractable;
therefore, a computer program was devised to test the convergence of the incremental
rigidity scheme to the correct 3-D structure under both rigid and non-rigid motion.
This section will describe the incremental rigidity scheme that has been employed.
Section 2.1 describes the basic scheme, 2.2 considers possible modifications, and
2.3 examines briefly problems of efficiency, including the execution of the scheme
in an analogue, distributed manner. Section 3 then describes the behavior of the
scheme as revealed by the computer simulations, and in particular its convergence
to the correct 3-D structure under rigid and non-rigid motion.

2.1 The basic scheme

For the computer implementation it is convenient to consider the visual input
as a sequence of frames, each one depicting a number of identifiable feature points
rather than continuous flow. (The temporal discreteness of the input is not a
necessary aspect of the scheme, a continuous formulation is also conceivable.)
The scheme maintains and updates an internal model M (t) of the viewed object.
M(t) consists of a set of three-dimensional coordinates (X;,Y;, Z;). Assuming
orthographic projection onto the X — Z image plane, (X, Z;) are the image
coordinates of the 5** point, and Y; is its depth as estimated in the current model.
(X — Z was chosen as the image plane, with the positive Y direction pointing away
from the observer. This notation keeps the coordinate system right-handed.) As
will be noted below, a similar scheme can be defined for a perspective rather than
orthographic projection. For small objects, or small surface patches of objects, the
two projections are in close agreement, hence, the type of projection employed has
little effect on the behavior of the scheme. The relation between the two projections
is discussed in more detail in section 4.1. In the lack of information about the
3-D shape of the viewed object, the initial model M(t) at ¢t = 0 is taken to be
completely flat, i.e., ¥; = 0 (or any other constant, since the overall distance to
the object remains undetermined) for 2 = 1...n, where n is the number of points
considered in the computation. ‘ ‘ ‘

Next, a new frame corresponding to a later time ' is considered, and the
problem is then to update M(t) so as to agree with the new frame, while making
the transformation from M(t) to M(t') as rigid as possible. The new frame is
represented as a set of 2-D image coordinates (z;,2;). The depth values y; are as
yet undetermined. It is assumed, however, that the correspondence between points
in the two successive frames is known. When the y, values have been estimated,
the set of coordinates (z;, y;, 2;) is the estimated structure at time ¢/, denoted by
S(t'). The notation convention used is that all the parameters that refer to M(t)
are denoted by capital letters (X,Y, Z, etc.), and those referring to S(t) by small
letters (z, vy, 2, etc.).

The most tigid transformation of the internal model M(t) is now determined
in the following manner. Let L;; denote the distance between points ¢ and j in
M(t). That is:

L= (Xi — X, + (Y — Y3)* + (Z — Z;)* (1)




Similarly, l;; is the internal distance in the estimated structure between points
i and 7 at time t'. That is:

Bi=(zi— ;)" + (vi — vj)* + (s — 2;)° (2)

A rigid transformation implies that L;; = [;; for all 7,7 (that is, all the
internal distances in the object remain unchanged). To make the transformation
as rigid as possible, the unknown depth values y; should therefore be chosen so
as to make the values of [;; and L;; agree as closely as possible. If D(L;j, ;) is
a measure of the difference between L;; and [;;, then the problem of determining
the most rigid transformation of the model can be formulated as determining the .
values of y; so as to minimize the overall deviation from rigidity 3=, ; D(Lsj, lij)
t=1..,n—17=1i41,...,n).

A reasonable choice of the distance function D should make the contributions
from nearby points weigh more than distant ones. The reason is that the nearest
neighbors to a given point are more likely to belong to the same object than distant
neighbors. A point is consequently more likely to move rigidly with its nearest’
neighbors. An example of such a distance measure is:

L.: — l"' 2
D(Lyj, lij) = (—1‘743—“]—)" (3)
1]

In this measure the effect of, say, a 10% change in L;; decreases as L;; increases.

After the values of y; have been determined using the minimization criterion,
(4, ¥4, 2;) becomes the new model M(t'). A new frame is then registered, and the
process repeats itself.

In summary, the computation involved at each step in establishing the most
rigid interpretation is the following. Given an internal model M(t) in the form

(X,,Y:,Z;),s = 1,...n, and the new frame (z;,2),? = 1,...,n, find a vector of
depth-values y; such that the overall deviation from rigidity Y=, ; D(Lij, l;;) for
1=1,..,n—1,7=1-+41,...,n is minimized.

2.2 Possible modificetions

Some modifications of the basic scheme presented above are possible. For
example, a somewhat different form of the metric D can be used. The important
issue to explore, however, is whether any such scheme converges successfully to
the correct 3-D structure. As discussed above, the incremental rigidity scheme
meets requirements (i) through (iv), but it is unclear whether it can also meet the
convergence requirement. To be considered a plausible scheme for the recovery of
structure from motion by the human visual system, the convergence requirement
must also be met for rigid as well as not strictly rigid objects. If a particular version

- of the scheme accomplishes the 3-D recovery task successfully, then it provides

a certain existence proof that an incremental rigidity scheme can meet all of the
requirements listed above.




Two modifications of the basic scheme described above were explored. One
was to introduce some changes to the metric D. The other, more substantial
modification, takes into account the fact that M(t), the internal model at time t,
may be inaccurate, and allows it to be corrected.

The basic scheme described in the previous section can be summarized as
minimizing D(M(t), S(t')), a measure of the overall distortion between the 3-D
model at time ¢t and the new computed structure at time t'. The modified method
searches for a modified, corrected model M'(t), such that the transition from M(t)
to M'(t) (the correction to the internal model) is small, and the transition from
M'(t) to S(t') is as rigid as possible. This modified scheme minimizes therefore
the sum: D(M(t), M'(t)) + D(M'(t), S(¢')). Since it allows changes in the internal
model M(t), this scheme will be referred to below as the “flexible model” scheme.
In general, the modifications explored of the metric D had only small effects on
the convergence to the correct 3-D structure. The use of the more complicated
flexible model scheme also did not introduce fundamental changes, but usually
resulted in an overall improvement of the computed structure. This flexible model
also has the advantage that other 3D cues could influence the transition from M(t)
to M'(t) (like stereo or shading cues that change dynamically). These observations
suggest that the basic incremental rigidity scheme is not sensitive to variations in
the exact formulation of the minimization problem. Additional comments regarding
the modified scheme are incorporated in the discussion of the results in section 3.

2.8 IMplementation

The incremental rigidity scheme described above has been implemented as a
computer program on a Lisp Machine at the MIT Artificial Intelligence Laboratory.
The computation made use of a relatively efficient variable-metric minimization
procedure developed by Davidon (1968). For a quadratic function of n variables,
this method is guaranteed to converge to a minimum within at most n iterations.
The computational load at each stage is relatively small, estimated by Davidon
(1968) to require approximately B_gﬁ multiplications. When the objective function
(in our case, the overall deviation from rigidity) has more than a single minimum,

the minimization process will converge to a local, but not necessarily the global, -

minimum. The results described in section 3 demonstrate that this convergence is
sufficient for the recovery of the unknown 3-D structure. Some consequences of the
convergence to the local minimum are discussed in section 4.4.

For the flat initial model, an additional step is required to ensure convergence
to a local minimum. The flat internal model can change into two equally likely
configurations, one being the mirror image reflection of the other about the image
plane. The model is therefore perturbed slightly, to cause it to prefer one of the
~ two symmetric minima over the other.

This minimization method is efficient for implementation on a serial digital
computer. More parallel distributed implementations are also possible. Such
extensions will not be analyzed here mathematically (for a discussion of minimization

.




in distributed networks see Ullman 1979b). Instead, a mechanical analogue that
performs essentially the same computation in a parallel distributed manner will be
briefly described. This mechanical spring-model (which bears some similarity to
Julesz’ spring-dipole model of stereopsis (Julesz, 1971)) can help to visualize the
computation performed at each step by the incremental rigidity scheme, and can
be helpful in suggesting parallel distributed computations for maximizing rigidity.

The mechanical spring model is illustrated in figure*2 for a three-element
object. As before, let (2;, z;) denote the image coordinates of the ith point, and y; be
the unknown depth coordinates that must be recovered. This situation is modeled
in figure 2 by a set of rigid rods, each one connected to one of the viewed points,
and extending perpendicular to the image plane. The 7** point is constrained to
lie along the " rod, but its position along this rod (i.e., its depth value) is still
undetermined. The points are now connected by a set of springs. The resting length
of the spring connecting points ¢ and j is L;j, their distance in the internal model
prior to the introduction of the new frame, and k;; is the spring constant. The
points will now slide along the rods, stretching some of the springs and compressing
others, until a minimum energy configuration is reached. If /;; denotes the distance
between points (7, 5) in the final configuration, then the total energy of the system
would be § ¥, ; kij(Lij — liy)?. :

To mimic the computation described in the preceding section, the spring
constants k;; should be smaller for longer springs (it can also be assumed that each
point is connected only to a number of its nearest neighbors).

The “computation” of the most rigid transformation is performed in this
mechanical system in a parallel distributed manner. It can be used, therefore, to
illustrate the possibility of maximizing rigidity in the observed transformation using
a parallel network of simple interacting computing elements.

This mechanical analogue illustrates the computation for the case of or-
thographic projection. For perspective projection, only a slight modification is
required: the rods should converge to a common point rather than be perpendicular
to the image plane. Continuous versions of this scheme, in which the rods move
continuously and the springs’ lengths and constants are also modified continuously
are possible, but they will not be discussed further here.

3. Recovery of the 3-D structure by the incremental rigidity scheme

8.1 Rigid motion _

Typical results showing the incremental rigidity scheme in operation are
illustrated in figure 3. The object in this example is shown in figure 3a. It contains
six points: the vertices of the outlined pentagon, and a sixth point at the origin
(marked by the unfilled circle). The object is shown from a top view, i.e. as projected
on the X — Y plane. The input to the incremental rigidity program consisted of
the projection of the object on the X — Z image plane. That is, only the (z;, 2;)
coordinates for 2 = 0,...,5 were given. This projection on the X — Z image plane



Figure 2 A spring model for the distributed computation of the most rigid
interpretation. Each of the viewed points (three in this example) is constrained to
move along one of the rigid rods along, and its position along the rod represents
its depth value. The connecting springs represent the distances between points in
the current internal model. The points would slide along the rods until a minimum
energy configuration is reached. The final configuration represents the modified
internal model.

at time ¢ = 0 is shown in figure 4. The unknown depth values y; were assumed
initially to be constant, y; = 0 for z =0, ...,5. That is, no depth was assumed, and
the initial internal model consisted of a planar object, lying parallel to the image
plane. (The dashed line in 3a illustrates the projection of the internal model onto
the X — Y plane.)

The object was then rotated by 10° at a time, and the internal model was
modified according to the scheme described in section 2.1. The rotations were
around the vertical Z axis. Any other axis in space can be used instead, however,
and the axis may also change over time. To illustrate the behavior of the scheme,
the error between the internal model and the object’s correct 3—-D structure was
computed at the end of each step. This error was measured as (3; ;(dij — Li;)?)?
where d;; is the correct 3-D distance between points ¢ and j in the object, and
L;; is the corresponding distance in the internal model. When the internal model is
completely accurate, Li; = d;; for all 7, 7 and the total error vanishes. The initial
error was normalized to 1.0 at 0° rotation. Its development as a function of the
rotation angle is shown in figure 5 (dotted curve). It declines to about 0.3 after the
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Figure 3 The incremental rigidity scheme applied to a six-point rigid object
(the solid outlined pentagon and unfilled dot at the center). The internal model
(dashed curves and filled dot near the center) is compared to the correct structure
following (a) O rotation, (b) 90°, (c) 1809, (d) 3607, (e) 2 rotations, (f) 4 rotations.
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Figure 4 The initial projection of the 6-point object on the image (x-z) plane.

first 180%f rotation, {note in fig. 3c that this error already yields an approximation
to the actual structure) and then continues to decline to about 2 — 5% . Figure 3
shows the development of the internal model. It starts as entirely flat (3a). After 90°
of rotation it acquires some depth, but it is still too flat, and the shape is inaccurate
(3b). After the first 180° of rotation the internal model is already similar in overall
shape to the correct structure (3c). The internal model continues to improve (fig.
3d,e) until it becomes virtually indistinguishable from the correct 3-D structure
(3f).

A more rapid approximation to the correct 3-D structure can be obtained by
using the flexible medel scheme described in section 2.2. The continuous curve in
figure 5 illustrates the error measure as a function of rotation angle for the flexible
model scheme. It can be seen that the approximation improves rapidly over the first
1800 of rotation, but it remains somewhat more oscillatory than the basic scheme.

The results of applying the incremental rigidity scheme to various objects in
motion show that for most of the rotation time the internal model approximates
the actual 3-D structure. The model does not converge, however, to the precise
solution, but often wobbles somewhat around the correct solution to the 3-D
structure. In both the basic and the flexible model schemes the approximation to
the correct solution does not improve monotonically as a function of rotation angle.
The residual non-rigid deformations often increase and then decrease again. The
lack of monotonicity in the overall convergence to the computed 3-D structure
suggests that an analytic mathematical treatment of the convergence properties of
the incremental rigidity scheme is probably difficult to obtain.
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Figure 5 The error of the internal model as a function of rotation angle over
10 revolutions. The initial error for the basic scheme (dots) and flexible model (solid
curve) is normalized to 1. The error is shown every 30° for the first revolution, and
every 90¢  afterwards.

During these oscillations of the error function, the correct structure is
occasionally lost temporarily and then recovered. In the course of such a phase, when
the structure is lost and recaptured, a spontaneous depth reversal may occur. That
is, the internal model converges not to the original 3-D structure, but to its mirror
image, reflected about the image plane. The convergence to the reflected rather than
to the correct structure is a "legal” solution under orthographic projection, since,
as noted in section 1.2, the two are indistinguishable under orthographic projection.
(This point of depth reversals under orthographic and perspective projections is
discussed further in section 4.1).
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Figure 6 shows the development of the internal model for a five point object,
similar to the six point object examined before, but without the point at the
origin. Figures 6a,b, and ¢ compare the internal model (dashed line) with the
actual structure (solid lines) following 0, 90, and 180° respectively. Towards the
end of the second revolution the structure was temporarily lost, and then recovered
successfully. During this phase, a depth reversal occurred. That is, the internal
model later converged not to the correct 3-D structure, but to its mirror image,
reflected about the image plane. The approximation to the reflected structure
eventually becomes quite accurate. Figure 6d shows the correct structure together
with the best approximation obtained within the first five revolutions. Figure 6e
is similar to 6d, but the correct structure has been reflected about the image
plane. It can be seen that the internal model provides a good approximation to the
reflected structure. The best approximation obtained within the first ten revolutions
is compared in figure 6f against the correct (but reflected) structure. That the
structure is recaptured following a total loss, together with the initial convergence
from a totally flat internal model, indicates that almost irrespective of the initial
conditions the scheme eventually converges, in the sense that it spends most of its
time near the correct solution.

In the examples above the objects have been rotated 10° between successive
views. It might have been expected that if a sequence of frames is taken, say, every
50 of rotation instead of the 10 used above, the recovery of the structure would
require a smaller overall rotation, since the deviation from rigidity at each step
is smaller. In fact, when smaller angular separations between views are used, the
convergence becomes somewhat slower. Figure 7 compares the decline of the error
function over the first five rotations for 10° (dotted curve) and 5° (continuous curve)
rotations between successive views. This difference in convergence rate suggests that
the incremental rigidity scheme performs better when successive views of the object
differ significantly. This preference may be related to the findings of Petersik (1980)
who compared the contribution of the short- and long-range motion processes
(Braddick 1974) to the recovery of structure from motion. The long-range process,
which operates over relatively large spatial and temporal separations, was found in
this study to be the main contributor to the structure from motion process.

Finally, comparisons were made with the type of to—and-fro motion used in
the original kinetic depth experiments by Wallach & O’Connell. In the examples
examined above, the objects rotated continuously in one direction for several
rotations. In contrast, the objects in Wallach & O’Connell’s experiments were
rotated to—and—fro through a limited angular excursion. Under this condition, the
observers did not have the benefit of viewing the object from all directions, but
they were nevertheless able to recover the correct 3-D structure of the moving
objects. A simulation of this condition, in which the objects were rotated by only
40° in each direction, revealed that the incremental rigidity scheme manifests a
similar capacity. As the object rotated to-and-fro, the internal model continued to
improve until the correct 3-D structure was recovered, in a manner analogous to
the recovery of the 3-D structure of continuously rotating objects.
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Figure 6 The internal model (dashed figures) is compared to the correct
structure (solid pentagons) following (a) 0°, (b) 902, (c) 180°, (d-e) 5 revolutions,
(f) 10 revolutions. Towards the end of the second revolution, the structure was
temporarily lost. During this phase, a depth reversal occurred (d). Figures (e) and
(f) compare the internal model to the correct 3-D structure reflected about the
image plane.

In summary, when applied to rigid objects in motion, the incremental rigidity
scheme exhibits the following properties. (1) Veridicality: for most of the time a
reasonable approximation of the correct 3-D structure is maintained. (2) Temporal
extension: the time (number of frames) required for an approximation to be obtained
is longer than the theoretical minimum required for the recovery of structure from
motion (Ullman 1979, Longuet-Higgins & Pradzny 1980, Tsai & Huang 1982).
(3) Residual non-rigidity: although the changing image is induced in this case by
completely rigid objects in motion, the computed 3-D structure included residual
non-rigidity. (4) Non-monotonicity: Starting from a flat internal model, the solution
generally improves with time. This improvement is, however, non-monotonic. The
error often increases and then decreases again. (5) Depth reversals: occasionally the
increased error is associated with a spontaneous depth reversal. The flexible model
scheme is less susceptible to such reversals.

Similar general properties are also manifested in the perception of structure
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Figure 7 The decline of the error function for a rotatlon rigid object when
successive frames are separated by 50 (sohd) and 10° (dashed curve) of rotation.
The convergence is faster when successive views of the object differ significantly.

from motion by human observers. The perceived 3-D structure is usually similar
to the correct 3-D structure. It improves with time, but it is usually not entirely
accurate (Wallach & O’Connell 1953, White & Mueser 1960). The perception is often
of a stable 3-D configuration accompanied by some residual elastic deformations,
particularly when the number of participating elements is small.

8.2 Non-rigid motion
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In this scection the capacity of the incremental rigidity scheme to cope with
deviations from rigidity will be examined. Unlike the previous section where the
viewed objects were assumed to be entirely rigid, in this section they are allowed
to deform while they move.

An example of the scheme applied to non-rigid motion is shown in figure 8.
At time t = 0 the object was identical in shape to the five point object examined
under rigid motion in the previous section. A non-rigid transformation was now
added to the rotation of the object. The non-rigid distortion was quite significant,
as can be seen in figure 8a. The shape of the object following two revolutions is
compared in the figure with its original shape. The incremental rigidity scheme
copes successfully with such deviation from rigidity. The internal model by the
end of the second revolution is shown in fig. 8b and compared with the correct
structure.

Figure 9 illustrates the results of applying the same scheme to an object
distorting twice as fast. That is, the distortion of the object after one revolution
is identical to the distortion spread in the previous example over two revolutions.
The figure compares the actual object with its internal model after 180 (a), 360 (b),
450 (c, where the error is relatively low) and 720° of rotation (d, where the error is
relatively high again). The internal model becomes less accurate compared to the
lower distortion rate, but the 3-D structure is still essentially recovered.

When the rate of distortion was doubled again, the incremental rigidity scheme
could no longer cope with the rate of deviation from rigidity. Before the end of
the second revolution the structure was lost entirely. The distortion was evidently
developing too fast to allow the scheme to recover from this loss. This limitation
held for both the basic and the flexible model schemes. In contrast with previous
cases, the error measure in this case tends to grow without bounds.

Different objects under different distortions were also examined, with similar
results. For moderate distortions the incremental rigidity scheme can cope
successfully with non-rigid motion. The amount of distortion that can be tolerated
is difficult to quantify, but as illustrated in figures 8 and 9 it can be substantial.

As noted in section 1.3, the human visual system can also cope to some
degree with kinetic depth effects that are not entirely rigid. Although no systematic
studies of this capacity have been reported, the human visual system is probably
susceptible to similar difficulties with non-rigid motion. That is, it is expected
to fail under pure kinetic depth conditions (i.e., when no other sources of 3-D
information are available) when the deviation from rigidity becomes excessive (c.f.
Lappin et al 1980). It may be of interest to investigate further the performance of
the human visual system under non-rigid conditions and compare the results with
the performance of the incremental rigidity scheme.

4. Additional properties of the incremental rigidity scheme

This section discusses four additional topics pertaining to the incremental .

17




Figure 8 The recovery of non-rigid shape. A pentagon distorts while it moves.
(a) Its shape following 2 revolutions (solid) is compared with its original shape
(dashed lines). (b) The internal model by the end of the second revolution (dashed)
is compared with the correct 3-D structure seen from a top view (solid lines).

rigidity scheme under both rigid and non-rigid motion. Within each topic, the
scheme is compared to previous mathematical models and to human perception of
structure from motion.

4.1 Orthographic and perspective projections

The computations described above used orthographic projection. As noted in section
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Figure 9 An object distorting twice as fast as that in Figure 8. The internal
model (dashed line) is compared to the correct structure following (a) 1809, (b)
3609, (c) 4500, (d) 720° of rotation. When the rate of distortion increases further,
its structure can no longer be recovered by the incremental rigidity scheme.

2.3, a similar scheme can also be adapted for perspective projection. For small
objects (compared to the overall viewing distance) the two projections are similar.
If the interpretation is applied locally, it is not crucial which projection is assumed,
since the perspective effects would be too small to be used reliably. For the human
visual system, Johansson (1978) reports that for objects subtending up to about
159 of visual angle perspectivity has a very limited effect. Under such conditions
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Figure 10 The incremental rigidity scheme applied to a 3-point object. The
internal model (dashed lines) is compared to the correct structure (solid lines) as
seen from a top view, following (a) 90°, (b) 180°, (c) 360° and (d) 720° of motion.
Three points are sufficient for the recovery of structure from motion.
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orthographic projection can be viewed as slightly distorted perspective projection,
and since the recovery scheme should be insensitive to small distortions, it should be
able to cope with both types of projection. In fact, the capacity to deal successfully
with both types of projection can be used as a test for the scheme’s robustness. A
scheme that can recover the structure under perspective projection but fails under
orthographic projection cannot be robust when applied locally. This comment is
relevant in particular to schemes that rely exclusively on the instantaneous velocity
field, since such schemes fail under orthographic projection.

For larger objects, perspective and orthographic projections differ. It is still possible,
however, to use a parallel scheme (Ullman 1979) in which the interpretation is
performed locally (and therefore it is immaterial whether orthographic of perspective
projections are employed), and the local results are then combined in a second stage.
For sufficiently large objects this integration stage will eliminate the ambiguity
inherent in orthographic projection regarding direction of rotation and reflection
about the image plane. In summary, for small objects or surface patches it is
immaterial which of the two projection types is employed, and a robust recovery
method should be able to cope with both. For larger objects it is still theoretically
possible to use either type, and either one can be incorporated in the incremental
rigidity scheme.

4.2 The effect of number of points

In this section the effect of the number of moving feature points will be
discussed by comparing its application to two, three, four, and many points in
motion. :

Two points in motion: For two points the 3-D structure is not determined
uniquely by any number of views. The structure imposed by the incremental rigidity
scheme would be of a rigid rod rotating in depth, and the view where the rod’s length
is maximal would be taken as lying in the frontal plane. This 3-D interpretation
is in agreement with human perception of two-dot configurations (Johansson &
Jansson 1968).

Three points: This configuration has not been analyzed mathematically in
the past. It is known that four points in three views determine the 3-D structure
uniquely if the structure is assumed to be rigid. Three points in three views do not
always guarantee uniqueness, but it is still possible that with additional views the
3-D structure is determined uniquely by three points alone. The results of applying
the incremental rigidity scheme support this possibility, since the 3-D structure of
three-point configurations can be successfully recovered.

The recovery of the 3-D structure of three moving points is shown in figure 10a.
As before, the initial model was taken as entirely flat. The evolving internal model
(dashed line) is compared in the figure with the actual 3-D structure following 90,
180, 360 and 7200 of rotation. The figure shows that a fast and accurate recovery
can be obtained for only three points in motion. :
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Figure 11 The recovery of the 3-D structure of 4 points arranged in a square
when seen from a top view. The initial model was entirely flat. The model (dashed)
is compared to the actual structure following (a) 90°, (b) 180 9, (c) 360°, and (d)
720° of rotation. The recovery takes longer than the known minimum of 3 views,
but the correct structure is eventually recovered and maintained.

2




Four points: Three views are theoretically sufficient for recovering the structure
of four (non-coplanar) points (assuming rigidity). The incremental rigidity scheme
can recover the structuse of four-point objects, but three views are insufficient for
an accurate recovery.

The recovery of the 3-D structure of four points arranged in a square when
viewed from a top view is shown in figure 11. The initial model was taken again
as entirely flat. The internal model (dashed line) following 90, 180, 360 and 720° of
rotation is compared to the actual 3-D structure. It can be seen that the model is
initially inaccurate, but that the correct 3-D structure is eventually recovered and
retained with only miner residual deviations from rigidity.

Additional points: The effect of additional points on the incremental rigidity
scheme would depend on the method of applying the scheme to large collections
of elements. There are two possible methods of applying the scheme to such large
collections. The first is a single-stage scheme, in which the computation described in
section 2 is simply applied simultaneously to all of the elements in view. The second
possibility is a two-stage scheme (similar to the polar-parallel scheme described.
in Ullman 1979a). In the first stage the incremental rigidity scheme is applied
independently to small subcollections of elements. In the second stage the local
results are combined. It is expected that for the two-stage scheme there would be
a more noticeable improvement with the number of elements (c.f. Braunstein 1962,
Johansson 1978).

The effects of numerosity would also depend on the function D, used in
measuring the deviation from rigidity (section 2). If it falls off rapidly as a function
of spatial distance, only the nearest neighbors would make substantial contribution
to the computation, and the effect of numerosity would be more restricted compared
to a function that falls off more gradually with distance.

4.8 On multiple objects

One possible method of dealing with multiple independently moving objects, is
to segregate the scene into objects (e.g. on the basis of distance, 2-D common motion
characteristics, etc.) before applying the rigidity-based interpretation scheme to
each object separately. An interesting alternative is that object segregation may
not be required as a separate stage, but may be a by-product of the interpretation
process. Similar to the previous section, two methods for achieving such segregation
seem possible. First, the segregation may be accomplished in a single stage process
by the appropriate choice of the deviation measure D. The suggestion is that
D would prefer “partial rigidity” in the following sense. Suppose that no rigid
transformation of the internal model can account for the incoming input. The model
must then be modified non-rigidly. For simplicity, assume that only two different
modifications of the model are possible. In the first all the internal distances
are changed somewhat. The second maintains partial rigidity: some distances
change more than in the first deformation, but others remain completely rigid.
We would want the measure of deviation from rigidity to be lower for this second,
partially rigid, transformation. For two independently moving objects, a scheme
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that maximizes rigidity would then prefer the solution in which the scene contains
two rigid substructures. In this manner, the appropriate choice of D may endow
the incremental rigidity scheme with the capacity to divide the scene into its rigid
components.

A second possibility for dealing with multiple objects is within the framework of
the two-stage process mentioned above. The general suggestion is that substructures
that share similar motion parameters (e.g., same axis of rotation) in the first stage,
will be grouped together in the second stage. This method is similar to the one
described in (Ullman 1979b) for completely rigid objects, in that it places the
burden of the segregation process on the integration stage.

4.4 Convergence to the local minimum

The schemes described in sections 2.2 and 2.3 seek the local minimum in the
measure of deviation from rigidity. As illustrated by the examples examined in
section 3, this convergence to the local minimum is usually sufficient to recover the
correct 3—-D structure. Under certain conditions, however, the incremental rigidity
scheme may converge to a local minimum which is not the most rigid structure
possible. Similar behavior is also exhibited by the human perception of structure
from motion. Under certain conditions human observers perceive non-rigid structure
in motion when an entirely rigid solution is also possible. A well known example of
this phenomenon is the Mach illusion. (Mach originally described a static version
of this illusion. The dynamic version is described in Eden 1962, Lindsay & Norman
1972.) This illusion can be created by folding a sheet of paper to create a vertical
V-shaped figure. Under monocular viewing, this shape is ambiguous and can reverse
in depth. To observe the dynamic illusion the observer waits for a depth reversal to
occur, and then moves his head in different directions. Under these conditions the
object is seen to move whenever the observer’s head moves. The illusory motion
arises despite the observer’s knowledge of the correct 3-D configuration, and it often
contradicts shading clues, stability criteria, and touch cues (Eden 1962). When the
object is close to the observer’s eye, its motion is no longer rigid, but appears to
distort considerably while it moves.

The incremental rigidity scheme would also be susceptible to this illusion. The
reason lies in the initial internal model. Unlike the pure kinetic depth situation, a
3-D structure is perceived from the static view. Because of the depth reversal, the
initial internal model resembles the reflection of the 3-D structure about the image
plane. It subsequently converges not to the correct 3-D structure, but to its mirror
image which, under perspective projection, can be considerably less rigid than the
correct structure.

Sperling et al (1983) have shown that when one face of a rotating wire cube
is increased in brightness, the cube is often perceived as non-rigid. This behavior
is consistent with the incremental rigidity scheme. The brighter face is usually
perceived as closer to the observer even when in fact it may be the farther. This
bias of the internal model will cause the incremental rigidity scheme to converge to
the reflected structure and miss the correct, entirely rigid, solution. ‘
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5. Summary

A new scheme was suggested for the recovery of 3-D structure from rigid and
non-rigid motion. According to this scheme an internal model representing the
3-D structure of the viewed object is maintained and modified as the object moves
with respect to the viewer, or changes its structure. The transformations in the
internal model thus mirror the changes in the environment, similar to the manner
suggested by Shepard {Shepard & Metzler 1971, Shepard & Cooper 1982). The
internal model resists changes in its shape as much as possible. Consequently, of all
the modifications of the model that may account for the observed transformation,
the most rigid one is preferred.

This method of recovering 3-D structure from motion shares a number of
properties with the perception of kinetic depth displays by human observers.
The internal model is initially inaccurate and improves with time (successive
approximation). In the lack of static 3-D information the model prior to the
beginning of the motion may initially be entirely flat. As the object starts to move,
the model begins to acquire depth, and eventually it reaches a configuration that
approximates the actual 3-D structure (convergence). If the initial view does convey
3-D information, this information may affect the structure of the internal model
(integrating sources of information). The recovery process eventually integrates
information from different views of the object (temporal extension). The entire
history of the process is summarized, however, in the structure of the internal model,
the scheme does not operate on long sequences of views or stored trajectories.

The proposed incremental rigidity approach raised two main questions: (1) its
convergence to the correct 3-D structure, (2) its capacity to cope with deviations
from rigidity. The computer simulations have demonstrated that the use of the
instantaneous model alone, coupled with a principle of maximizing rigidity, is
sufficient for the recovery of 3-D structure from motion. The resulting scheme
has an inherent preference for rigid transformations, but it can also cope with
considerable deviations from rigidity.

The simulations also revealed the main advantages and disadvantages of the
incremental rigidity scheme. Compared with previous approaches, one limitation
of the scheme is that the resulting 3-D structure is usually not entirely accurate
(although it often approximates the correct structure quite closely). Even for
strictly rigid objects, the computed 3-D solution usually contains residual non-rigid
distortions. On the other hand, two advantages of the incremental rigidity scheme
make it an attractive approach to the recovery of structure from motion. The first is
its capacity to cope with non-rigid motion: the 3-D structure can be approximated
in the face of substantial deviations from rigidity. The second is its robustness:
errors in the measured velocity and in the computations employed do not result in
complete failure, but in some additional non-rigid distortions superimposed on the
correct 3-D structure.

A number of problems remain open for further studies. Mathematically, it
would be of interest to analyze the convergence properties of the incremental rigidity
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scheme. As noted in section 3.1, one complicating factor is the lack of monotonicity
in the decline of the residual error.

The error function has been defined as a root mean square measure, using the
differences in the internal distances in the correct 3-D structure and the internal
model. It remains possible that a different error measure would prove more amenable
to analytic treatment.

From a psychological point of view, there is a qualitative similarity between the
perception of structure from motion by humans, and the behavior of the incremental
rigidity scheme. Quantitative data regarding the perception of structure from
motion under deviations from rigidity are, however, scant. It would be of interest -
to investigate further this capacity of the human visual system, and compare the
empirical results with the behavior of the incremental rigidity scheme.
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