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1. Introduction

[n most physical phenomena, changes in spatial or temporal structure occur over
a wide range of scales. Images are no exception: changes in light intensity reflect
the many spatial scales at which visible surfaces are organized. It seems intuitive
that a great deal of information can be gained by an analysis of the changes in
a signal at different scales. For instance, graphs of one-dimensional functions are
a very effective tool for describing complex systems. An important rcason is that
they allow direct visual access to important properties of the data, chiefly to their
changes over different scales.

The idea of scale is critical for a symbolic description of the significant changes
in images or other types of signals. Changes must be detected at different levels
of dctail and over different extents. In general different physical processes may
be associated with a characteristic behaviour across different scales. In an image,
changes of intensity take place at many spatial scales depending on their physical
origin. A multiscale analysis, tracing the behaviour of some feature of the signal
~across scales, can reveal precious information about the nature of the underlying
physical process. In images, for instance, spatial coincidence at all scales of zero-
crossings in the Laplacian of the intensity values filtered with a gaussian mask,
signals a physical “edge”, distinct from surface markings or shadows. Not only
is it necessary to detect and describe changes in a signal at different scales, but
in addition, much useful information can be obtained by combining descriptions
across scales.

The importance of this idea has been clearly realized in the field of vision. One
of the main contributions of visual psychophysics in the last 10 years was indeed
to show that visual information is processed in parallel by a number (perhaps a
continuum) of spatial-frequency-tuned channels (Campbell & Robson, 1968). The
bulk of the data demonstrates that the visual system analyses the image at different
resolutions. Physiological experiments are consistent with the psychophysics. They
suggest that in the visual pathway spatial filters of different size operate at the same
lccation. Furthermore, psychophysics, physiology and anatomy all show that the
spatial grain of analysis continuously changes from foveal to peripheral locations.
Receptive and dendritic field sizes of both retinal and cortical neurons increases
monotonically with eccentricity, in agreement with the dependency on eccentricity
of the psychophysical channels.

In the field of computer vision, Rosenfeld was one of the first to propose explicitly
an edge detection scheme-based on multiscale analysis performed with filters of
different sizes (Rasenfeld and Thurston, 1971). A similar algorithm was suggested
by Marr (1976) though with different goals and motivations. More recently, he
has strongly advocated the use of derivatives of gaussian-shaped filters of different
sizes with the goal of detecting changes in intensity at different scales (Marr, 1982).
The idea was first proposed in the context of a theory of stereoratching (Marr
and Poggio, 1979). In that scheme, analysis at the different scales was effectively
kept separate. Later. Marr and Hildreth (1980) proposed some heuristical rules to



combine information from the different channels. However, the important problem
of how to combine effectively the different scales of analysis at thisn carly level has
remained open , although recent work by D. Terzopoulos (1982) has successfully
applied multi-level algorithms to the problem of reconstructing visual surfaces (see
also the work by Richards et al., 1982 and by Canny, 1983 on cdge detection). In
a recent conference (Cold Spring Harbour, April 1983) we learned from A. Witkin
a new way of describing zero-crossings across scale.!

A 1-dimensional signal is smoothed by convolution with a small (large) gaussian
filtter and the zeros of the second derivative are localized and followed as the
size of the filter increases (decreases). This procedure originates a plot of the
zero contours in the z — ¢ plane (where o measures the size of the gaussian
filter).2 In this way, Witkin was able to classify and label zero-crossings achieving
an effective description of a signal for purposes of recognition and registration.
This is possible mainly because the geometry of the zero contours is surprisingly
simple. Zero-contours are cither lines from small to very large scale or closed,
bowl-like shapes. Zero-crossings are never created as the scale increases. Witkin
mentioned the striking result (obtained by J. Babaud) that the gaussian filter is
the only filter with this remarkable property in 1-D (at the same conference J.
Koenderink told us that he has obtained similar results exploiting properties of
the diffusion equation).3

We have now succeded in obtaining a proof of this result in 2D (and in fact
any number of dimensions). We have also obtained related results for zero- and
level-crossings of other differential operators, in particular for ridges and ravines
in the image intensity.

The 2-D result seems important because it:

(a) lays the necessary mathematical foundation for using multiresolution labels for
classifying zero-crossings for a symbolic description of intensity changes.

(b) justifies the use of gaussian filters and an associated linear derivative because
of their “nice" properties under changes in scale.

In this paper, we will first state and prove the one-dimensional result. We will then
show that only a specific 2-D extension is valid. Zero-crossing of linear derivatives
have the "nice scaling behaviour" if and only if the image is filtered by a 2-D
rotationally symmetric gaussian. In particular, the laplacian-of- a-gaussian filter
suggested by Marr and Hildreth has nice scaling behaviour. The second directional
derivative along the gradient, however, does not: no filter exists that can ensure a
nice scaling behaviour of the zeros of this derivative. We have then, the following
resufts:

1 Witkin’s prize-winning paper will appear in the 1983 IJCAI Proceedings (Witkin, 1983). We
received a preprint after this memo went to press.

2. Stansficld first described — for analysing commaoditics trends (Stansficld, 1980) — the idea of
plotting zero-crossings over scale, but did not develop it.

3 After completion of this memo we were informed that a technical report containing the 1D proof
is now ready, with the title “Uniquencss of the gaussian kernel for scale-space filtering,” by J.
Babaud, A. Witkin and R. Duda, Fairchild TR 645, Flair 22).



(a) for lincar derivative opcrations—in particular, for the laplacian—the gaussian
is the only filter with a nice scaling behaviour.

() for the nonlinear directional derivative, no filter will give nice scaling behaviour.
2. Assumptions and results

We will consider filtering the image [ with a suitable filter 7 and then consider
the behaviour of the zero crossings as we change the scale of the filter. We make
five assumptions about the filter, and impose them as boundary conditions.

(1) Filtering is shift-invariant and, hence, a convolution. We write this as

i) = [ Fla—9s)ds.

(2) The filter has no preferred scale length. In two dimensions standard results
of dimensional analysis (Bridgman, 1922) give F(z,0) == J:. (%), where o is the

scale of the filter. The factor J; ensures that the filter is properly normalized at
all scales.

(3) The filter recovers the whole image at sufficiently small scales. This is expressed
by Lime.g, I'(z, 0) = §(z), where §(z) denotes the Dirac delta function.

(4) The position of the centre of the filter is independent of o. Otherwise, zero
crossings of a step edge would change their position with change of scale.

(5) The filter goes to zera as |z| ++ oo and as o — oo.

As will become apparent, our results are independent of scaling the z axis. We
usually require that we scale this axis so that the filter is radially symmetric, and
state theorems with respect to such axes. However, we can refax this requircment
by rescaling the axes.

Figure (1) shows the typical scaling behaviour of zero crossings in one dimension
observed by Witkin. Figure (2) shows possible behaviour of zero crossings which
is never empirically observed when the filter is a Gaussian. The generic properties
of the zero-crossings curves in the z,0 plane can be derived from the Implicit
Function Theorem. To yield a C” curve the theorem requires that the Laplacian of
the filtered image is €7, Therefore the filter must be reasonably smooth. Observe
that filtering with a gaussian will ensure a ¢ output for all images, because of
the equivalence with the Cauchy problem for the diffusion equation. The Implicit
Function Theorem may break down at degenerate critical points when all first
derivatives of the filtered image vanish together with the Hessian.® These points
are non-generic in the sense that a small perturbation will destroy them. Observe
that "true” zero-crossings can only disappear in pairs in the z, o plane. Only trivial
seros that do not cross zero can disappear by themselves. They are, however, non
generic.

In one-dimension, the zero crossings obey

1 7eros of the Hessian correspond o zeros of the gaussian curvature.
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Figure 1 See text.
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Figure 2 See text. X



0= /jooo f"(f_";?:)](g)dg. (2.1)

This equation gives z as an implicit function of g, i.e., z = z(o). 1f we vary z and
o so that (2.1) is still satisfied, we obtain

dr 1% ()" (7)IG)de
fo = (I

So the tangent to the curve is uniquely defined at a point, as are all the higher
order derivatives. This prevents the behaviour shown in Figures 2b, 2c with the
possible exception of the nongeneric cases, when the Implicit Function Theorem
breaks down.

(2.2)

The curve in Figure 2(a) is more interesting because it corresponds to a pair
of zero crossings being “created” as the scale increases. The Implicit Function
Theorem does not rule out this case. It therefore secms natural to require a filter
such that this never occurs. In the following three sections, we will prove some
theorems showing that such a filter can only be a gaussian and, moreover, that not
all differential zero-crossings operators can obey this property. More precisely, we
prove:

Theorem 1. In one-dimension, with the second derivative, the gaussian is the only
filter—obeying our five boundary conditions—which never creates zero crossings
as the scale increases.

Theorem 2. In two-dimensions, with the laplacian operator, the gaussian is the
only filter obeying the boundary conditions which never create zero crossings as
the scale increases.

Theorem 3. In two-dimensions, with the directional derivative along the gradient,
there is no filter obeying the boundary conditions which never creates zero crossing
as the scale increases.

In section (5), we show that results similar to Theorems 1 and 2 can be extended to
all lincar differential operators (in particular, directional derivatives) and therefore
to other features of the image, such as ravines and ridges (but not peaks) in the
image intensity. These theorems can be extended to any dimension, but we will
not give these extensions here. |

It should be emphasized that, although zero crossings can only annihilate themselves
in pairs, the intensity change corresponding 10 a zero Crossing could become
arbitrarily smaller as sigma increases. The zero crossing would then become so
weak that for practical purposes the curve may terminate.

3. The 1-D case

Let the image be I and the filter be F. We consider the zero crossings in the
fiitered image.
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6. Directional operator
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) = e (6.15)
Tyy(aBry) - -- ' —£2
\To(aﬁv) e ) ' 1

It folla w$ from| Appendix (2) that no solution exists if there is a A = (A1, A2, X3, A4, A5, \6)

such that

XIT(aﬁT) + XDTx(a:B’Y) + )\aTy(aﬁ’Y) + )\4Tm(aﬂ'y)
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T(afy) patisfips the generalized Diffusion Equation.
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d hence (6.15) if we can satisfy

PopyAaApAy =0
QaprAadpdy =0
TapyAaApAy = 0. (6.22)
XapyAaApAy =0
Yop AaApAy = 0.

These ar¢ a sfstem of five simultaneous cubic equations in n variables. If we take
n sufficiently farge, it will always be possible to solve them (Yuille, in preparation).
Thus, uffless ['(8v) obeys the generalized Diffusion Equation, it will always be
possible[to canstruct a counter-example.
We now|show that no reasonable filter will satisfy these requirements.
First supposejwe have a gaussian filter G(z, o)
Oz, 0) = Lezp{ =2} (6.23)
LO)= omtTPV g5 '
where m is jl arbitrary number.
Then wg| fin
—(z— )i —(z—g)?, .
Gilo) = — " eap{— 7} (6.24)
-6 . (z— ¢a)? (z — g (2 50)] (z—¢,)
Gq\(a == “mexp{'—‘ 202 omta exTp 202a } (625)
So we Obtain{
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T(aB7) = 2ex

202 202 202
1
o R I R Rt MRl ot ORC
(F— s2)*(z — $8) (2 — )z — %)
+ et & —5)
k—5p)%(z— )
T o2 £ 57—)}
(6.26)
As shownl in Appendix (2), the general Diffusion Equation can be written
b b d
—alT:, + -UET,J + 1T + 2Ty = =T (6.27)

If we sulpstitufe (6.26) into (6.27) we see that ¢, Tyz -+ c2Tyy contains a term

4=

|te,,, @-sf G5 @)
gAmte PV T g0 207 207

} (6.28)

All othe;[ terths in (6.27) will be of this form multiplied by powers of (z—¢ ) (z—

¢;) and

z— :7). From (6.17), ¢y and ¢ have the same sign and so it is impossible

for Z ta|be Tro and, hence, (6.27) cannot be satisfied if the filter is a gaussian.
S

Now suppo

we have a filter which satisfies this requirement. Set ¢ = ¢, + ¢4

and integratd T(eB) with respect to ¢ and ¢,. We find

[ [lpte

Hence,|ith

¢ )Pz — )iz + (5, + ))ds ds g = Fix Iy + Fiy(3z) (6-29)
K, =< + $pr WE have

[ [ Tiapr)ds ds, = Fi s Fy x Fi(32) (6.30)

This will sti[Il satisfy the generalized Diffusion Equation since T(afv) obeys this

equatign fo
generalized

We haye

all values of Swr$p and S From Appendix (2), the solution to the
Diffusion Equation is P x f(z), where f is an arbitrary function and

(c+bo)dy o (WAbofdy

6.31
202 ¢ 202 ¢ (6:31)

1
P(z,0) = —G-Eexp{—

17




F; x Fj * Fi;(3z) —Px f(z) (6.32)

The bountary]condition (4) means that b; = by = 0 and we can scale the z and
y axes to|mak¢ P a gaussian. Thus

F‘i * F]' X F,-J-(Sg) =G * f(g) (6.33)

We Fourier ‘ulmsform this equation denoting the fourier transform of a function
g(z) by Tlg(w)

TFy(w)T Fy(w) T Fij(w) = TG(3w)T f(3w) (6.34)
But we Have
TF(w) = —iwi TF(w) (6.35)
and
TG(3w) = exp{—;Z:)2} (6.36)
Hence,
MTF@Y = eap{ e} T 1(3) (637
and
() = (L0 erp (222 (6.39)

Thus F i thd convolution of a function with a gaussian and obeys the Diffusion
Equatio B:If as shown in Appendix 2, the only such filter which satisfies the
boundary| conflitions is a gaussian.

So a filtdf whih obeys the conditions (6.16) and (6.17) must be a gaussian, and yet
a gaussiah caifnot satisfy these conditions. Therefore, for this directional operator,
it is impbssible to satisfy our requirement. Notice that if the gradient direction
does notlkhange rapidly the second directional derivative along the gradient can be
approxitjated]by the second derivative along the z axis, where the z axis is chosen
in the difectign of the gradient. The arguments of section 5 then show that no
zero-croggingdare created if, and only if, the filter is gaussian. If these assumptions
are satisfied 4t one scale, they may break down at larger scales because of the
influencg| of gther parts of the image. We therefore expect that at large scales

18




zero-ckoséﬁngs may be created even for gaussian filters, unless the image is very
simple (fiir indtance an isolated straight step-edge).

7. Conclusions

The behgvior pf the zero- (or level-) crossings is more complex in two dimensions
than in fne ¢imension. In the 2-D case, two zero crossing contours can merge
into {pne closkd contour as the scale increases. The zero-crossing surface has
a one-dihenslonal crossection (for given y, say) that corresponds to an allowed
onejim siofal case. In 2-D, however, the “complementary" situation can also
occur: alflosddl zero-crossing contour can split into two as the scale increases, just
as the tiink Bf a tree may split into two branches. This occurs at saddle points
of thi 2¢fo-cibssing surface. This case would correspond in 1-D to the “creation”
of a zergrcroging (imagine a one-dimensional section of the zero-crossing surface)
which id||forbjdden. In 2-D, however, no new zero crossing is created, since the
correspdfiding surface is continuous down to zero scale. We have constructed
two-dimx al examples of both these two cases, using the gaussian filters. Both
examplgg wogld also work for all other filters.

14

Several gther] functions have been proposed for filtering images. We expect that
,|' givk a nice scaling behavior for values of o for which they approximate
ion df the diffusion equation. The DOG (difference of gaussians) does not
!: diffusion equation, but is a good approximation except when o is very
Mne-dimensional real Gabor functions (the product of a gaussian and a
I costne) approximate the solution of the diffusion equation only for large
h o. lour conditions are violated even more by the sinc function which
sfieslthe diffusion equation at best in a weak asymptotic sense. Figure

slan dxample of the zero-crossings generated by the gaussian and the sinc

satisﬁy
small.
sine or

erestfng that our proof implies that the difference equation is the only
; uatitn that has, with suitable boundary conditions, a nice scaling behavior
}:utio s. This may have some implications in physics.

nary] we have shown that the gaussian is the only filter that guarantees a
ling §ehavior of the zero- and level-crossings of linear differential operators.
hat fthe gaussian need not be symmetric: elongated directional filters,
obtaindd byl stretching the axes, also have a nice scaling behaviour. We are
st ying the practical use of the scaling diagrams (in 2-D) for a symbolic
tatidn of images, as suggested by Witkin, and, in particular, for solving the
ndagce problem in stereo. In this context, the robustness of the “scaling
tatidn" under small perturbations of the image is clearly critical and has
to be cgrefully studied.

nice sc




OUT res:l min:8 max:1

Figure 3 Examples of the zero-crossings of the secor
(a) and of the sinc filter (b) for the same input functi
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1f we hayg a

the necessary

Appendix 1

nfatrix equation

Bz=a (1)

dnd sufficient condition for a solution is that

b11 PN bln b11 ‘e bln ai
rank{ . ... . |=rankl . ... . (2)
bm1 . bma bmi ... bmn Om

Hence a hecefsary and sufficient condition for the non-existence of a solution is
that we can fipd a vector A = (A1,..., Am), such that

but that

M(b11,- - b1n) + - -+ Am(bm1, -+, bmn) = 0 (3)
)\1a1+...+)\mam7£0. (4)
Appendix 2

Suppos¢ |we Have a generalized Diffusion Equation of form

We can(iemo
terms

We write

F bF. dF,
a_2'+-’£+Csz= A
o (2

(1)

e the first term by the scaling F — o~ (/9 F. Consider the remaining

QE?‘—'}—CFQ;:;: ng (2)
o
1 .
F(z,0) = — [ f(w,0)e *“Fdw (3)
\/27r /

where f‘w,ilis the Fourier transform of F(z,o0) with respect to z. Combining

(3) and {2) We obtain

b(——iw) ’ (2 _fl@i

g o) = o (4)
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We integ

where ¢

Hence, su

Note th
is well

where ME;

'luzﬂ

=

d

ate §nd get

bsti

we

rfine

) is

{6 —‘i;'ﬁﬂ

Thus th

We now
Xz, 0) i
filter do
Write

and con

where §|
will eith
Moreve

:

s

——t —

—iwbe —cw?

f(w,0) = g(w)fe ===} (5)

1) is E function of integration independent of o.

ting (5) into (3) gives us

! / W)= = F Yo iun gy (6)

re considering equations for which ¢/d is positive and so the integral
. We now apply the convolution theorem to (6) and get

o) = —\/—12:7r / Mz — ¢, 0)u(s)d¢ (M)

he fourier transform of g(w) and \(z, ¢) is the fourier transform of
. We calculate

)\(x’o) —_ \/E_l_ez 4 (z+bo)? (8)

co

gengral solution to (1) is of form

a g

% o

der

r be
sub

1 a__ d —d — %3 2
F(z,0) = —‘2‘0(‘1 1)\/g/em( S0 () d (9)
V4T

ssian with centre z = —bo. The requirement that the centre of the
move implies that b = 0.

imqjse the boundary conditions stated in section (1). First, note that

F(z,0) —ad/ \'/—J—e,’2al(fc g)z (¢)ds - (10)
V2r

he limit as ¢ tends to 0. Now,

L'imaHO ‘—1‘“ é le 2;(1 (z~§)

Ve = §(z —<) (11)

dengges the Dirac delta function. If (4) is non-zero the limits of F(z, o)

undefined or zero. Hence our boundary condition (3) forces a = 0.
tituting into (10) we obtain
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substitutjng
conditiph is

This anplysis

Equatig

1

Limg o F (2, 0) = p(z) (12)

is back into (10) the only solutions of (1) which satisfies our boundary
he gaussian

and conditiT (3) means that u(z) must be the delta function. Hence, on

Glz,0) = ——1| 2 1ca5 (13)
\/Zl: co

can be extended to the two dimensional generalized Diffusion

+ by '
by F 2y d
—E o+ —— taFa oy = ~Fo (14)

al’
_.2-+
o o

A similar arrilment shows that the only solution obeying the boundary condition

in a twordi

We usd

We can

and

respective

scalé

nsional space is

) 1 d [d 1 —gz2 —as?
G(z,y,0) = S T zeTr ot

— 15
Var Ve cy0? (15)

the dymmetry requirement of section (1) to set ¢; = ¢3. Then we obtain

G(z,y,0) = —— €% o7 (16)

G(z,0) = J—leﬁﬁ' (17)

G(z,y,0) = ——e 2?2 (18)

. [This ensures that o is the standard deviation of the function.
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