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Abstract.

We prove that the scale map of the zero-crossings of almost all signals filtered by the second
derivative of a gaussian of variable size determines the signal uniquely, up to a constant
scaling and a harmonic function. Our proof provides & method for reconstructing almost
ail signals from knowledge of how the zero-crossing contours of the signai, fiitered by a
gaussian filter, change with the size of the filter. The proof assumes that the filtered signal
can be represented as a polynomial of finite, albeit possibly very high, order. An argument
suggests that this restriction is not essential. Stability of the reconstruction scheme is briefly
discussed. The result applies to zero- and levei-crossings of linear differential operators
of gaussian filters. The theorem is extended to two dimensions, that is to images. These
results are reminiscent of Logan’s theorem. They imply that extrema of derivatives at
different scales are a compiete representation of a signal.

*

© Massachusetts Institute of Technology, 1983

This report describes research done at the Artificial intelligence Laboratory of the Massachusetts
Institute of Technology Supgort for the laboratory’s artificial intelligence research is provided

in part by the Advanced Research Projects Agency of the Department of Defense under
Ctfice of Naval Research contract NGO014-80-C-0505.




1. Introduction

Images are often described in terms of “edges", that are usually associated with the zeros
of some differential operator. For instance, zero-crossings in images convolved with the
laplacian of a gaussian have been extensively used as the basis representation for later
processes such as stereopsis and motion (Marr, 1982). In a similar way, sophisticated
processing of 1-D signals requires that a symbolic description must first be obtained, in
terms of changes in the signal. These descriptions must be concise and, at the same time,
they must capture the meaningful information contained in the signal.

It is clearly important, therefore, to characterize in which sense the information in an image
or a signal is captured by extrema of derivatives.

Ideally, one would like to establish a unique correspondence between the changes of
intensity in the image and the physical surfaces and edges which generate them through
the imaging process. This goal is extremely difficult to achieve in general, although it
remains one of the primary objectives of a comprehensive theory of early visual processing.

A more restricted class of results, that does not exploit the constraints dictated by the signal
or image generation process, has been suggested by work on zero-crossings of images
filtered with the laplacian of a gaussian. Logan (1977) had shown that the zero-crossings of
a 1-D signal ideally bandpass with a bandwidth of less than an octave determine uniquely
the filtered signal (up to scaling). The theorem has been extended—only in the special case

of oriented bandpass filters—to 2-D images (Poggio, et al., 1982; Marr, et al., 1979) but it ‘

cannot be used for gaussian filtered signals or images, since they are not ideally bandpass.
Nevertheless, Marr et al. (1979) conjectured that the zero-crossings maps, obtained by
fitering the image with the second derivative of gaussians of variable size, are very rich in
information about the signal itself (see also Grimson, 1981; Marr and Hildreth, 1980; Marr,
1982; for multiscale representations see also Crowley, 1982 and Rosenfeld, 1982 also for
more references).

More recently, Witkin (1983) (see also Stansfield, 1980) introduced a scale-space description
of zero-crossings, which gives the position of the zero-crossing across a continuum of scales,
i.e., sizes of the gaussian filter (parametrized by the o of the gaussian). The signal—or the .
result of appiying to the signal a linear (differential) operator—is convolved with a gaussian -
filter over a continuum of sizes of the filter. Zero- or level- crossings of the filtered signal are
contours on the z— o plane (and surfaces in the z,y, o space). The appearance of the scale
map of the zero-crossing—an example is shown in Figure 1—is suggestive of a fingerprint,
Witkin has proposed that this concise map can be effectively used to obtain a rich and
qualitative description of the signal. Furthermore, it has been proved in 1-D (Babaud et al,
1983; Yuille and Poggio, 1983) and 2-D (Yuille and Poggio, 1983) that the gaussian filter is
the only filter with a “nice” scaling behavior, i.e., a simple behavior of zero-crossing across
scales, with several attractive properties for further processing. In this paper, we prove a
stronger completeness property: the map of the zero-crossing across scales determines the
signal uniquely for almost all signals (in the absence of noise). The scale maps obtained
by gaussian fiiters are true fingerprints of the signal. Our proof is constructive. It shows
how the original signal can be reconstructed by information from the zero-crossing contours
across scales. It is important to emphasize that our result applies to level-crossings of any
arbitrary linear (differential) operator of the gaussian, since it applies to functions that obey
the diffusion equation.

Our fingerprints theorems can be regardad as an extension of Logan’s result to gaussian
filtered, nonbandpass signals and 2-D images. There are, however, some important
differences between Logan’'s Theorem and the fingerprints theorems. Logan uses a
bandpass filter, at one scale only, and shows that the zero-crossings determine the filtered
signal. His proof is non-constructive and only applies in 1-D (2-D generalizations exist
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Figure 1 The scale map of the zero-crossings of the second derivative of a signal (a 1-D
slice of a natural image). The z axis is the abscissa; the scale, i.e. o, increases from the
bottom to the top. Our theorem states that this map is a true fingerprint since it determines
uniquely the signal (modulus the null space of the operator).

[Poggio et al,1982] but none are fully satisfactory). The fingerprints theorems determine
the original image from the zero-crossings of the image filtered at different scales. The
proof is constructive and applies in both 1-D and 2-D. Reconstruction of the signal is of
course not the goal of early signal processing: Symbolic primitives must be extracted from
the signals and used for later processing. Our results imply that scale-space fingerprints
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are complete primitives, that capture the whole information in the signal and characterize it
uniquely. Subsequent processes can therefore work on this more compact representation
instead of the original signal.

Our results have theoretical interest in that they answer the question as to what information
is conveyed by the zero- and level-crossings of multiscale gaussian filtered signals. From
a point of view of applications, the results in themselves do not justify the use of the
fingerprint representation. Completeness of a representation (connected with Nishihara’s
sensitivity) is not sufficient (Nishihara, 1981). A good representation must, in addition, be
robust (i.e. stable in Nishihara's terms) against photometric and geometric distortions (the
general point of view argument). It should also possibly be compact for the given class of
signals. Most importantly it should make explicit the information that is required by later
processes. Fingerprints of images may have these additional properties. Their compactness
property, for instance, can be defended with the same type of heuristic arguments used to
justify edge detection.!

2. Assumptions and results

We consider the zero-crossings of a signal I(z), space-scale filtered with the second
derivative of a gaussian, as a function of z, 0. Let F and E be defined by

d2

E(z,0) = :gz-[* G

d? 1d® =t
E(m,a):I(z)*,a—-x—z[G(z,a)] = /I(g);a—z—zexp 223 de. [2.1]

Notice that E(z, o) obeys the diffusion equation in z and o:

O°E _10E [2.2]

We restrict ourselves to images, or signals, P such that E can be expressed as a finite
Tayior series of arbitrarily high order. Observe that any filtered image can be approximated
arbitrarily well in this way.

We will show that the local behavior of the zero-crossing curves (defined by E(z,0) = 0) on
the z — o plane determines the image up to an harmonic? function (z), such that ;i%:—ago = 0.
The proof of this result will then be generalized to 2-D. We will also discuss its (obvious)
extension to zero- and level-crossings of linear (differential) operators. More precisely we
will prove the following theorem:

Theorem 1: The derivatives (including the zero-order derivative) of the zero-crossings
contours defined by E(z,c) = 0, at two distinct points at the same scale, determine uniquely

! Clearly, the scale map fingerprint cannot alwavs be a more concise description of the signal than
the signal itself, unless the signal is redundant in precisely the way that the fingerprint representation
can exploit. We expect this to be the case for images, if an appropriate differential operator is
used, because images are not a purely random array of numbers. Usually images consist of rather
homogeneous regions that do not change much over significant scale intervals.

*This indeterminancy is not a problem. It has long been known thal the human visual system is rather
insensitive to linear illumination gradients. Our reconstruction scheme provides the Laplacian of the
image I in terms of Hermite polynomials. it is easy o integrate a function of this type o obtain I.

(p
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a signal of class P up to an harmonic function of x and constant scaling (except on a set
of measure zero).?

Note that the theorem does not apply to signals that do not have at least two distinct
zero-crossings contours. Another remark is relevant here: the gaussian filter seems critical
for our proof, but we cannot show that it is the only filter with this property. In section 4
we will extend Theorem 1 to the two dimensional case:

Theorem 2: Derivatives of the zero-crossings contours, defined by E(z,y,0) = 0, at two
distinct points at the same scale, uniquely determine an image of class P up to an harmonic
function of z,y and a scaling factor (except on a set of measure zero).

if the signal is not a polynomial, a similar weaker result can be proved.* A best solution

can always be found but it may not be unique. These theorems break down when all the ~ -

zero-crossing contours are independent of scale (i.e. the contours go straight up in the
scale-space fingerprint). This is a rare, though interesting, special case and is discussed

in detail in a future paper [Yuille and Poggio 1983, in preparation]. It can only occur for ‘

functions which cannot be represented as finite polynomials.

The theorems do not directly address the stability of this reconstruction scheme. The first'r

question concerns stability of the reconstruction of the filtered function E(z,0) at the o
where the derivatives are taken. Note that our result relies only on two points on the
zero-crossing contours. Exploitation of the whole zero-crossings contours should make
the reconstruction considerably robust. The second question is about the stability of the
recovery of the unfiltered signal V2I(z) from E(z,o0). This is equivalent to inverting the
diffusion equation, which is numerically unstable. Reconstruction is, however, possible wsth
an error depending on the signal to noise behavnour (see later).’

2.1. Outline of the 1-D Proof

We summarize here the 1-D proof from a slightly different point of view that clarifies its bare
structure.

The proof starts by taking derivatives along the zero crossing contours at a certain point.
Such derivatives split into combinations of z and ¢ derivatives (where t = ¢2/2). Because
the filter is assumed to be gaussian, however, derivatives can be expressed in terms of z

derivatives. This is a key point: since the filtered signal E(z, t) satisfies the diffusion equation,
the t derivatives can be expressed in terms of the z derivatives simply by E;, = E,,. The next -

stage is to find the z derivatives of E(z,t) up to an arbitrary degree n from such derivatives
along the zero crossing contours in the z — ¢t plane. We show that this can be done by
using 2 points on 2 contours. (It is possible that one point is sufficient, but we are as yet
unable to prove this.) Since E(z,t) is entire analytic, because of the gaussian filtering (see
Appendix 2), it can be represented by a Taylor series expansion in z. Since we know the
values of the n derivatives of E(z,t) with respect to z, we know its Tavlor series expansion
and hence E(z,t). The unfiltered signal F(z), (E(z,t) = F(z) * G(z,t)) can then be recovered

® For a general operator the reconstruction is modulus the null space of the operator. Harmomc
functions are the null space of the Laplacian.

1 In this case, the signal is determined by the zero-crossing contours in the L% sense only. This
means that the signal may not be determined correctly on a set of measure zero. However, if the
image is assumed to be an analytic entire function (see Appendix 2), section 3.4 implies that it can be
determined exactly everywhere. Since imeges - like any physical signa! - are effectively bandlimited by

the measurement (or imaging) process, they can he considered as restrictions to the reals of analytic

entire functions (see Appendix 2).

*If E(z,0) is obtained at all o - this can be done by applying the reconstruction scheme at two
points at each ¢ - robust reconstruction of I(z) can be achieved in the following way (Hummel and
Zucker, in prep.). Since [ E(z,t)dt = [(I+G)..dt = [(I +G)dt = E(z,0) with the integration between
0 and oo, I(z) can be reconstructed by integrating E(z, o) across o (with ¢ = ¢°/2 the diffusion
squation is E,z = E.). In practice, the limits of nn‘egrc.kron will be finite, originating small errors in the
reconstruction.

[
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in the ideal noiseless case by deblurring the gaussian. A particularly simple way of doing
this is provided by a property of the function ¢, in which we will expand the function F: the
coefficients of an expansion of F(z) in terms of ¢, are equal to the coefficients of the Taylor
series expansion of E(z,t). In the presence of noise, the recovery of F(z) from E(z,t) is
obviously unstable. It is limited by S/N ratio since high spatial frequencies in the signal are
masked by the noise for increasing ¢. (For instance, if F(z) = }_ a,e'?, the filtered signal
is E(z,t) = T a,e**e~#’1) Note that since the zero-crossing contours are available at all
scales a reconstruction scheme that exploits more than 2 points will be significantly more
robust. As one would expect, the reconstruction of the unfiltered signal is therefore affected
by noise. The reconstruction of the filtered signal E(z,t) is likely to be considerably more
robust. We plan to study theoretically and with computer simulations the noise sensitivity of
the reconstruction scheme.

3. Proof of the Theorem in 1-D

We divide our proof into three main steps. In the first we show that derivatives at a point on
a zero-crossing contour put strong constraints on the "moments" of the Fourier tranform
of E(z,0) (see eq. 3.1.4). The second section relates the "moments" to the coefficients of
the expansion of F(z) = E(z,0) in functions related to the Hermite polynomial. in the third
section we show that the "moments" can be uniquely determined by the derivatives on a
second point of a different zero-crossing contour.

3.1. The "moments" of the signal are constrained by the zero-crossing contours

—2

Let the Fourier tranform of the signal I(z) be I(w) and the gaussian filter be G(z,0) = LeFe?
- 2,2
with Fourier transform G(w) = =™,

The zero crossings are given by solutions of E(z,t) = 0. Using the convolution theorem we
can express E(z,t) as

E(z,t) = / e %02 [(w)dw. [3.1.1]

and t = 02?/2. The Implicit Function theorem gives curves z(t) which are C* (this is a
property of the gaussian filter and of the diffusion equation, see Appendix 2 and Yuille and
Poggio, 1983). Let ¢ be a parameter of the zero crossing curve. Then

d dz o dt 0
On the zero-crossing surface, E = 0 and f;"—E‘ = 0 for all integers n. Knowledge of the
zero crossing curve is equivalent to knowledge of ail the derivatives of z and ¢ with respect
to ¢.

We compute the derivatives of E with respect to ¢ at (z,,¢,). The first derivative is :

;—E(x, t) = %{/e_”zte‘“z(z’w)w“’j(;)dw

3 ] [3.1.3]
_(E
d¢

+ /e—w"t(_w2)eiwzw2j(w)dw

and is expressed in terms of the first and second moments of the function e=*"te™%w?I(w).
The moment of order n is defined by:

(4]
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oo
M, =/ (iw)”e‘“’ztei“”‘wzf(w)dw. [3.1.4]
—00

The second derivative is

2 d2 . 3
R B O (Y
2 ; T
T R O
dz \? 2 i I
+ (Z“) /e——w tezwx(_wz)wQI(w)dw [315]
)

di 2 —wity 4y —i 27
+ & e H(wh)e T w? I(w)dw.

Since the parametric derivatives along the zero crossing curve are zero, equation [3.1.3]isa
homcgeneous linear equation in the first two moments. Similarly, [3.1.5] is a homogeneous
linear equation in the first four moments. In general, the n'* equation, f;",—,E(z,t) == 0,
is @ homogeneous equation in the first 2n moments. We choose our axes such that
g, = 0. The next section shows that the moments of e=“"'w,2I(w) are the coefficients a,
in the expression of the function F(z) in Hermite polynomials. So we have n equations
in the first 2n coefficients a,. To determine the a, uniquely, we need n additional and
independent equations which, as we will show in section 3.3, can be provided by considering
a neighboring zero crossing curve at (z,,1,).

3.2. The "moments” are the coefficients of the expansion of F(z)

In this section we show that the moments defined by [3.1.4] can be related to the coefficients
of the expansion of F(z) in functions related to the Hermite polynomials. We expand

d2
= — 2.1
F(z) o I(z) [3.2.1]
in terms of the functions ¢, (z, o) related to the Hermite polynomials H,(z) (see Appendix 1)
by

gt
on(z,0) = (_l)n(\/g)n+1‘/,-;H"( \/;o) [3.2.2]
F(z) = nz_:o ax(0)pn(z,0) [3.2.3]
The coefficients a,,(c) of the expansion are given by
an(0) = (wi(z, o), F(3)) [3.2.4]

where (,) denotes inner product in L? and {w,(z,0)} is the set of functions biorthogonal to
{on(z,0)}. The {p.(z,0)} are given explicitly by

g2n—1 _;_?_i dr ;2

©on(z,0) = ———€1c7 ——¢207 [3.2.5]
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and the w,(z, o) by

w,(z,0) = (—1)"2;;&%’ [3.2.6]
Since
F(z)= —I——/ei“mwzj(w)dw ' [3.2.7]
Var
the a, are given by
1 n dr =at iwzy, 27
an(0) = —(—1)" [ { e e (w)dw [3.2.8]

Var

The inner product in [3.2.8] is just the inverse Fourier transform of wy(z). Therefore,

an(o) = /(iw)"e:_w;'dwzf(w)dw [3.2.9]

which is equal to M, modulus a factor e“=. We will need to consider the derivatives along

the zero-crossing contours at two points. We can choose cocrdinates so that these points

are (0, 0q) and (z;, o). )
Therefore knowledge of the image is equivalent to knowing the a,.
3.3. Combining information from two contours

The derivatives at (zy,t,) give us n equations in the first 2n moments of e RO ()
We can relate them to the expansion coefficients of the function

Flz+z,)= ‘/eiwe"“”‘w2j(w)dw [3.3.1] =
in terms of the o, functions.
We write
2n
F(z 4 21) =Y bupn(z) 3.3.2]
0 N

We have n equations for the 2n unknowns b,,. Now observe that

2n 2n
Z b'n‘pn(-"?) = E an‘Pn(x + 931) [333]
0 0 .

Any ©,(z + z,) can be expressed as a linear combination of ¢,,(z) with m < n, as we will
show in section 3.3.1.

Thus we express each b,'s in terms of a,’s and then we combine the equations from two
points to obtain 2n equations for the 2n ceefficients a,. Thus with the results of the next
two sections the proof will be complete.
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3.3.1. Change of basis

For a given o, the functions ¢,, are given in terms of Hermite polynomials (see eq. 3.2.2).
We show how we can express Hermite polynomials with origin at z = 0 in terms of Hermite
polynomials with origin at z = —z; and hence perform a change of basis.

We show that H,(z — z,) can be expressed as a linear combination of H,(z) with m < n.
Let us consider the generating function e—? +2r= which defines the Hermite polynomials as

oo
= 3 Hn('x)pn [3.3.1.1]
n—0 n:

Equation [3.3.1.1] gives at z + z;

[>=]

7 trrte—e) = 3 a2 = 21) 3.3.1.2]

|
n—0 ni

The left hand side of equation [3.3.1.2] can be expanded as

o] Hn ot . m,m
P e = 3 _;(!Elpn ™ L.?%.L (3.3.1.3]

n=0 m==0
Term by term comparison of equation [3.3.1.2] and [3.3.1.3] gives

n

Holz —21) = E_:o ( ;)Hm(:c)(——%l)""m [3.3.1.4]

The series obtained by substituting equation [3.3.1.4] into

f(!L‘) = Z b'an(z - Z]) [3315]
n==0
is a series of the form
Y duHo(z) [3.3.1.6]
n==()

that converges to f(z) as the following argument demonstrates. If f(z) is in L2 it can be
- expanded in terms of the H,. Similarly, g(z) = f(z — z,) is also in L* and can be expanded
as ~

(>~}

g9(z) = E cnHyp(z) [3.3.1.7]

n=0

Thus, f(z — ;) can be expressed as a linear combination of H,(z) and this series coincides
with eq.(3.3.1.6) because of the uniqueness of the expansion. In particular, we obtain for
the p, ~

on(z — z1,t) == on(z,t) + z10n—1(z,t) + ... [3.3.1.8]

where the remaining terms are functions ¢,,(z,t), with m < n— 1, multiplied by polynomials
in z;.
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Observe that if we restrict ourselves to polynomial functions of z a change of basis will
correspond to transtormating an n-th order polynomial in z into an n-th order polynomial
in z — z1. This argument suffices for our theorems which are restricted to finite polynomial
functiocns of class P. For the sake of completeness, however, Appendix 3 deals with the
general case.

3.4. Independence of the equations

We have to show that information from 2 points yield a unique solution. The first n equations
in the 2n first moments from a point can be written as

(i g 0 0 0 ..0 f{ﬁg;
(%:-; £+ (5) 2% (3) o .. o) .| =0 (3:41)

Mo ()

The matrix of the coefficients is a nx2n matrix. Note that its rows are linearly independent
(since the coefficients of the rt* row vector are zero after the 2r** component).

- The next n equations are given by the matrix of the derivatives at a second point, z;, that
have the same form as eq. (3.4.1), multiplied by the moments at (z 4+ z,).

_ - M(z + z4)

%‘r% g—} 0 0 0 ... 0 My(z + ki) .
ez ¢ (@) i (a4 : =0. (3.4.2)
23 ¢F+(%) 224 () o .. 0 :

vee M2n(z+$1)

The moments at (z -+ z;) can be expressed in terms of the moments at z by the following
transformation (see section 3.3).

1 z '_7;2_?_ %;- e -’.'-:—gl—’;" M](.T) MI(Z—\L.'EI)\
0 1 Z1 MQ(.’ZJ) 1M2(SL' + 221)
00 1 gz .= : (3.4.3)

1 Mz;;(z) M2n(x.+ 1)

Equation (3.4.3) substituted into (3.4.2) gives, together with equation 3.4.1, the full set of 2n
equations in the 2n unknowns M,(z). The 2n x 2n matrix of the coefficients can be thought
of as originating from the first point (the top half) and from the second point (the bottom
halfy on the zero-crossing curves.

In general, the determinant of this matrix is non-zero. Intuitively, if the filtered signal has
nonzero moments of order higher than 2n, the system of 2n equations would not have a
solution. A proof for this claim is given in Appendix 4. The argument is based on the fact
that the determinant of the coefficients is a polynomial in z;. If this vanishes, then z; can
be expressed in terms of the first n derivatives at the two points. We show, however, that
in general it is possible to change z continuously without altering the first n derivatives.
This implies that the determinant is almost always different from zero. The argument breaks
down if the filtered signal is a polynomial of degree 2n or less.

In this case, the determinant must be zero, since the homogeneous set of equations has
at least one solution. At this point, we have to show that the solution is unique. We first
observe that the determinant of the coefficients of the 2a x 21 system of equations is a
polynomial in z;. This polynomial is nontrivial® since the first n and the second » equations

5 This argument cannot be applied when all zero-crossing contours aie vertical straigvht fines: in this
case it is impossible to reconstruct the signal [Yuille and Poggio 1883, in preparation)
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separately are independent. It follows that the determinant vanishes at a finite number (at
most 2n) of values of z;.

Suppose the determinant is zero. Observe that z; is known from the position of the zero-
crossing curves (z, is the distance between the two points at which derivatives are taken).
Typically the roots of the polynomial in z, will be distinct and there will be a unique zero
eigenvector of the matrix. Thus we have proved that n derivatives at two points determine
uniquely (moduius a common scaling factor) the 2n moments of a polynomial of degree 2n.
The case of multiple zero eigenvectors is nongeneric, i.e., an arbitrarily small perturbation
in the “image" would annihilate eventual multiple zero eigenvectors. Furthermore, multiple
zero eigenvectors of the matrix of degree 2n must also be multiple zero eigenvectors of all
higher order matrices which is even more unlikely (except on a set of measure zero).

Our proof is limited to filtered function of the polynomial type (albeit of very high degree).
- We now stretch an argument suggesting that the result holds also for most filtered functions
E(z,y) which are not polynomials.

Consider the homogeneous system of equations obtained from two points up to the moment '
M,,. Denote with A’ the matrix of the coefficients. Let A be the matrix of the coefficients of

the inhomogeneous system of equations obtained by dividing all unknowns M; to Myn by
the first moment. The system, AM' = Z, where Z is the first column of A’ divided by M;,
does not in general have solutions as we have shown (see Appendix 4). Furthermore, A
has no null vector (if it has, then A’ must also have a null vector, which is impossible since
detA’ £ 0.). Then there is a unique least square solution of the equation [|[AM’ — Z|| =0
given by M’ = A~ Z, where AT is the pseudoinverse of A [see Albert, 1972]. Thus for every

finite M there is a unique least square solution to the system of equations AM’ = A but no -

exact solution. As n goes to infinity, however, at least one exact solution must appear.

To summarize, in section 3.1 we show that the moments of the signal are constrained by the
derivatives of the zero-crossing contours at one point. Section 3.2 shows that the moments
are equal to the coefficients of the expansion of the unfiltered signal F(z) in our Hermite-like
expansion (and also equal the coefficients of the Taylor expansion of the fiitered signal
E(z,t)). In section 3.3 we show how we can combine constraints from two different points
on the zero-crossing contours at the same scale. Finally, section 3.4 demonstrates that the

equations obtained in this way from two points determine a unique solution. The stability of

the solution was briefly discussed in section 2.
4. The Extension to Two Dimensions
The function

Pla) = Bl 0) = [ 2t e Wy

can be expanded in terms of the p,(z,t) and p,(y,t) as

F(Zi) = E anm(t)“’n(x: t)ﬂom(y’ t) (4‘2)

n,m

with the coefficients given by

o 8) = (Pl 3o, s 8 = [ ) (i) ) (4.3

We define T'(w) as

10

i
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and

Bt = [T (45)
We now take derivatives of E(z,t) on the zero-crossing surface. Thus with

d dz 8 dy 0 dt 8 :
& %o "oy Taa (46)

the first equation

dF
% =0 (4.7)

gives, where w = (w;,w,) = (w1, ws) and w? = w,? + w2,

d d dt
—&-’; / weT(w)dw + -d—;’ / oy T(w)de + 2 / w2 T(w)dw = 0 (4.8)

and the second equation

d*E
gives
dzxi d2t/ 2
—Jg—{ w,-T(g)_)dg + &F w T(Q)dg)_
. dz;
d¢ d¢
it do / ] (4.10)
0t 3T
4 2d§ de W wy (ﬁ)dﬁ

+ (%)2 / W*T(w)dw == 0

where we use the summation convention over 1, j.

These equations, and the higher order ones that can be obtained in the same way, are
equations in the moments S,.,, where

Simpq = /wzmw’z’ng(g)d_q. (4.11)

The n-th order equation will consist of terms of the type Spg With m +p 4 ¢ < n. We will
show that, using different curves on the zero-crossing surface through (%0, ¥0,t0), We can
produce one equation for each pair of mements with m +p4 ¢ = = in terms of the moments
with m 4 p+ ¢ < n. As in the 1-D case we have half the equations we need to solve for
the moments. Again we can consider a second point on ancther zero-crossing contour (at
the same scale). Combining the equations from two points, after a change of basis, yields
enough information to determine the image.

11
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There are an infinite number of curves on the zero-crossing surface which pass through
any given point (zg,y0,%0). Since the surface is two-dimensional, the tangents to these
curves form a two-dimensional vector space. Each curve will give different equations for
the moments. We will show that by taking different curves through the same point (zy, yo, to)
we can nearly obtain enough linearly independent equations to determine the moments.
As in the one-dimensional, case we show that we can obtain the remaining information by °
considering the behaviour at a second point on the zero-crossing surfaces.

We first consider the lowest order equation (4.8). As we mentioned above there are two
linearly independent tangents to the zero-crossing surface at (zo,yo,t0). Thus we have
two linearly independent vectors (4%, 5‘%, g‘%) and (a%: a% 4) where we use ¢; and ¢, to
denote the parameters on the two curves. We can substitute tﬂese vectors into equation(4.8)
and obtain two equations for three unknowns (the three moments with n = 1). These are
sufficient to determine the moments up to a scaling factor. This factor corresponds to

scaling the image I and cannot be determined from the zero-crossings.

We now consider the n-th order equations and show that there is one equation for each pair
of moments with p 4 ¢ +m = n in terms of the moments with p 4 ¢+ m < n. The moments
we need to solve for are the S,,,, with m + p 4 ¢ = n. Fix m and consider the moments
as p and ¢ vary. There are n — m + 1 possible moments, however we will show that only 2
of them are independent. The moments are given in equation (4.11). Adding the moments
Sinpyg @Nd Spn pioq—o gives us the moment Spmy1,p,—2. Now, since m + p4- ¢ = n, we find
(m+1)+p+(¢g—2)=n—1and so the moment S, 41,2 is of order n —1 . Thus if
we know S, ,, we also know S, ,42,—2. We can repeat this argument adding 2 to p and
subtracting 2 from ¢ or vice versa. Thus if we know the moments S, o,n—m and Sm 1,n—m—1
we can use this argument to find the other moments. Hence for each value of m there are
only 2 independent moments. The case m = n is special and only has one term. m can
vary from 0 to n and so there are a total of 2n -- 1 independent moments with m+p+ ¢ = n.
We show that for each m it is possible to get one equation for the two moments.

The coefficients of the unknowns will be A,,, where

‘ nl (dt\"(dz\" [ dy\’ ’
qum———m!p!q,(d—g) ('zz) (zz) (412)

evaluated at z,,yo,to and thus the expansion containing the unknowns is of the form

E AmpgSmpq (4.13)

m,p,q

We consider now the terms for a fixed n. Since we can take the derivatives along arbitrary
directions on the surtace, the terms dz/d¢ and dy/d¢ take independent values (while dt/d¢
is constrained since the curve must lie on the zero-crossing surface). We will show that it
is possible to eliminate all the new moments (those with m + p + ¢ == n) with m > 0 and
obtain one equation for the two independent moments with m = 0. In a similar way we
can get one equation for the two independent moments with m = 1 and so on. First we
gliminate the moment with m = n. We consider N curves with parameters (¢i, ¢2,...¢n). We
normalize the curves by requiring

dt
—_=1r=12... .
a 1,1=1,2,...N (4.14)

This is always possible unless we are at an extrema of the zero-creossing surface. Suppose

we write down the n-th order equations corresponding to two difterent curves. From
equations (4.12) and (4.13) the coefficients of S, 0,0 are unity in both cases. Thus we can

12
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subtract one equation from the other and obtain a linear equation for the new moments with
m < n.

Now we show we can eliminate the m = n and m = n — 1 moments simultaneously. We
take three curves with parameters ¢y, ¢o, ¢3 and add the three resulting n-th order equations
multiplying the first by \ the second by u and the third by . Comparing coefficients of
810,00 Sn—1,1,0 @and S,__1,0,1 gives us three simultaneous equations

i

Nt ptv=0, (4.15)
dz
g — =0, 4. T
ds‘l +yd§2 +yd§a (4.16)
— ——-=—0 4.17
. auy

~ These can always be solved since the tangent vectors (i.e the vectors (1, g%, 5;’7)) form a two ’

dimensional vector space and hence any three vectors in this space are linearly dependent
and satisfy equations (4.15), (4.16) and (4.17). Note that if two curves are the same we
can satisfy these equations but the resulting equation for the moments will vanish. Let
the normal to the zero-crossing surface be (nl,nz,n3) Then the curves must satisfy the
equation

n1+no-——+ 3———0 (4.18). .

dgs

So we can only vary one of gg and - independently.

Now we try to eliminate the moments wnth m=n, m=n—1and m=n—2. We combine
the n-th order equations from curves with parameters ¢; multiplying the equations by X\;
and taking the sum. The coefficients of the moments S, 0,0, Sn—1,1,0, Sn—1,0,1, Sn—2,2,0 and
Sn—2,1,1 (USING Sr—2,0,2 = Sn—1,0,0— Sn—2,2,0, Where S,_1 0,0 is a lower order moment) form
a vector {;

S
P

%Lg
o

) (4.19)
& -3
ik

where, for simplicity, we have incorporated the factors of n into the moments. To eliminate
the moments with m > n — 2 we must solve v

AY
Y il =0. (4.20)

f==1

Because of equation (4.18) there are only three linearly independent vectors which can be
formed by varying the ‘71} and taking linear combinations. Thus if N = 4 we can solve
the equations (4.20) and eliminate moments with m > n — 2. By increasing the number
of curves by 1 each time we decrease m by 1 we can eliminate all the moments with
m > 1. We are left with one equation in the two unknown moments with m = 0. In a
similar way we can eliminate all the moments except the two with m = 1 and obtain one

equation for these two moments. We repeat this process for the higher order moments.

13
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Thus the n-th order equations give us one equation for each pair of independent moments
with p -+ ¢ + m = n. If we consider all the equations as »n varies we find that, as in the 1-D
case, at each point on a zero-crossing contour we have only half the number of equations
needed to solve for the moments. As in the one-dimensional case we now consider a
second zero-crossing surface at the same value of ¢ and repeat the argument. We change
the basis of the Hermite polynomials as in section 3.3 and obtain enough equations to solve
for the moments. Substituting these into the equation (4.2) for F(z) completes the proof of
Theorem 2. '

5. Examples

We now illustrate the theorems by considering some special cases. If the signal is a low
order polynomial in X, it is possible to obtain the zero crossing curves explicitly. We then
use the derivatives of these curves to reconstruct the image, as in the theorem. These
examples also suggest that the derivatives of the curves at a single point will usually give
sufficient information to reconstruct the signal.

Suppose the signal F(X) is a second order polynomial in X.

F(X)=1+ AX + BX? (5.1)

where A and B are arbitrary coefficients. All the moments of the signal are zero except for
the first two. We convolve this signal with a gaussian at scale ¢ and obtain

E(X,0) =1+ AX + BX? 4+ Bo?* (5.2)
We consider the curves given by
E(X,0)=0 (5.3)
We write these in the form
o+ {X*+(A4/B)X +1/B} =0 (5.4)
and see that they correspond to circles in the (X, o) plane. Define X; and X, by

X;X, =1/B

—(X1 + Xp) = A/B 55)

Then we can rewrite the equations as
X+ (xX—-x)\
o? + {X — (——————2 )} = (»—-—2 ) (5.6)

Thus the zero crossing curve corresponds to a semi-circle which intersects the X-axis at
X and X, (see figure 2). .

We now parameterize the curve by an angle 6 so that

X(6) = (X‘ * Xg) + (X2 - X‘)cosa

2 2

o(6) = (Ez_; Xx) cind (5.7)

14
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 J

Figure 2 See text.

We calculate the derivatives

g = _(M)s,‘ng

dd 2
de _ X2 -_ X1
B ( 3 )coaﬂ

Recalling that ¢ = ¢2/2, we combine (5.7) and (5.8) to obtain

i (Xo—X1\? .
Pl Bt St 0
T ( 5 ) sinfcos

We differentiate again to obtain

X (X—X)
g2 2

£ (T

2
Froi 5 ) {cos?9 — sin?6}

We set X13%1 = j, Then we write the first two equations at 6 = 6, as

156

(5.9)

(5.10)
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| | M, | —
—bsind, b’sind;cosf; 0 : 0 My| (0) (5.11)
—bcosh; b%cos?8, —2b%sin%6,cos8; b sin0,cos?0, )| M3 ] \0 '
M,

We pick another point on the curve with the same value of ¢. This point has parameter
6y = 7 —6; (with 0 < 6, < 7/2). This gives us a second equation

- 1 x; Xox3/3\ (M
—bsind; —b2sinbycosl; 0 0 01 X5 X2/|lMe 2(0), -
beosf, 2c0826, 2b331n20,c0s%0;  b*sin?;cos?8, 0 0 1 X, M, o/ _
00 0 1 M, =
(5.12)

Now we consider the equation for the first two moments obtained by taking the first derivative = -
at both points. From (5.11) and (5.12), this becomes

—bsin; b%sinb;cosd; M) _ (o0 '

(—-—bsin01 —b2sinbycos; — X1bsind, J\ M (0) (5.13)
The condition for there to be a solution of (5.13) is that the determinant of the matrix
vanishes. This occurs at

X; = —2bcosb, (5.14)

From (5.7), we see that this is indeed the distance between the two points and so we can
solve for M; and M,. We cbtain:

M, = bcosf; My (5.15)

Substituting for bcosd; from (5.7) yields

M= (X" - {&;ﬁ})Mz (5.16)

where X, is the position of the first point. The reconstructed function is

F(X) = —Mip1(X — X,,01) + Mapo(X — X,,0) (5.17)

Without loss of generality set X, = 0. Then up to a scale factor

(XX} X 1 X2 |
F(X)= —_ —_ 5.18
0 =2 \%]Jrzm{ o+ X (5.18)

Now o, lies on the circle

el - e

at the point where X =: 0. Hence

ol = —X1 X, (5.20)
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Note that X; and X, have opposite signs if X = 0 lies on the circle. Substltutmg (5 20) mto
(5.18) gives

FX)= ——M—{X1 X, — (X1 + X)X + X2 5.21
)= e ! (¥ + X)X + X?) (5.21)

From (5.1) and (5.5), we see that this is indeed the original function up to a scaling factor.
Thus we have demonstrated how to reconstruct the signal.

We should check that X; = —2bcosf; remains a root of the determinant for the higher order
determinants. We will calculate the result for the case n = 2. From (5.11) and (5.12), the
determinant equation becomes (in unconventional notation)

( —bsind; b%sinf;cosfy ‘ 0 » 0 \

—bcosh; b2cos?8, —2b351n20; cosh b4s1n26, cos?6,

—bsing; —X;bsinf; — b%sin%6;cosh,; :i)f—ibzsinﬁl cos; — X,b2sinb; cosf, C
\ beost; X1bcosh;, + b%cos?6, X2/2lbcos; + X1 b cos?6; + 2b%sin26,cos?6; B )
v [5 22]

where C = —;—Lbsmol b stnfycos; and B = ——;Lbcosel + v,y,lcoszﬁl + X, 2b351n2%6, cos?8; +
b4szn201cos201 Dividing the matrix by factors common to rows, this becomes

—1 bcosb, ' 0o 0

—1 bcosd, —2b2sin20, b3 3in26, cosh
—1 —X; —bcosy —X?%/2! — X bcosh, —X3/3! — X2 /2lbcosb;

1 X -+ bcost, X3/2! + X bcosb; + 2b%sin?61cos6; V. (5.3

whereV = %{.i -+ Zf;;bcosﬂl + X 2b%51n2%0; cos; + b2sin?8; cosf;. By adding and subtracting
- rows, this reduces to

—1  bcosb, 0 0
0 0 —2b%5in2%0, b3sin29, cosb, —0 (5.24)
0 —X;—2bcost -—-X32/2!— X1bcoshy —X3/3!— X3%/2bcosh; | '
0 0 2b%sin26, cosb, S
where § = X;2b%sin20,cosf; + b*sin?0;cos6;. Thus, the equation becomes (removing
common factors)
—1
(X + 2bcosty) o 2X1 + b' =0 (5.25)
and can be expressed as -
(X1 + 2bcos: (2K, + b+ beosd;) =0 (5.26)

Hence, X; = —2bcos8, remains a root for the n = 2 case.

We turn now to another example and an alternative approach to the problem of determining
the image from the zero-crossings across scales. Let the signal be a third order polynomial.

17
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F(X)=A+BX 4+0x?4Xx°® (5.27)
If we know that the signal is a third order polynomial we can determine its coefficients by

derivatives of the zero-crossing contours at a single point. It is straightforward to show that
this gives '

E(X,t)=A+BX +CX*+ X4+ 2(C+ 3X) (5.28)
The zero crossmgs curves are given by

A+ BX +OX? 4+ X% 4 2(C +3X)t =0 (5.29)

We will show that by taking a sufficient number of derivatives at one point it is possible to
reconstruct the signal. From (5.29), we calculate

B+20X 4+ 3X%46t42(C+ 3X)§£ = (5.30)
. ,
20 46X + z(o -+ 3X)—‘-i¥—t- + 12§f =0 (5.31)
dz
6+ 18 + AC+3X) ¢ t =0 (5.32)

At a point X t,4t, £t &t are known. We write (5.29), (5.30), (5.31) as equations in the
unknowns A, B, C

1 X X242 \/4 —X% —6Xt |
0 1 2X+424 (B)_—: —3X?—6t (5.33)
00 2+2% \o/ \—ex—124

It will be possible to solve these equations uniquely for A, B, and C, provided the determinant

of the matrix on the left hand size is nonzero. But the matrix is the Wronskian of the functions

1, X, X2 4 2t. Except for a set of measure zero, which we discard, it will only vanish if

the functions 1, X, X? + 2¢ are linearly dependent. But from (5.29) we see this can only

happen if the function (C + 3X) divides the function (A + BX + CX? 4 X3). Apart from

this special case, the determinant of the matrix will be non-zero and it is possible to soive
for A, Band C.

We now consider the special case. The condition that (C-+3X) divides (A+BX +CX?*+X?)
is

B="-4 = (5.34)

and the result is

——+-29£+ +0*=0 (5.35)

Note firstly that although for the general third order polynomial (5.29) there are usually three
zero crossing curves, there are now only two. Secondly, this equation is of similar form to
equation {5.4) for the second order polynomial but the relative coefficients of ¢2 and X? are
different, so the two cases can be distinguished.

18
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We can differentiate (5.35) and show that the coefficients A and C can be determined at a
single point.

It seems likely that this result will apply to all polynomials functions F(X). Hence knowledge
of the degree of the polynomial signal allows reconstruction from derivatives at a single
point. It is furthermore likely that the degree of the image could be determined by the shape
of the zero-crossing contours. If this conjecture is true this would represent an alternative
constructive proof of Theorem 1. ‘

6. Conclusions

We conclude with a brief discussion of a few issues that are raised by this paper and that

will require further work.

a)Stability of the reconstruction. Although we have not yet rigorously addressed the question
of numerical stability of the whole reconstruction scheme, there seem to be various ways for
designing a robust reconstruction scheme. The first step to consider is the reconstruction

of the filtered signal E(z,t). One could exploit the derivatives at n points - at the given o ~
and then solve the resulting highly constrained linear equations with least squares methods.
Alternatively, it may be possible to fit a smooth curve through several points on one contour,
and then cbtain the derivatives there in terms of this interpolated curve. The same process
must be performed on a second separate zero-crossing contour. This scheme provides a
rigorous way of proving that instead of derivatives at two points, the location of the whole

zero-crossing contour across scales can be used directly to reconstruct the signal (since .

the Implicit Function theorem shows that the zero-crossing curve is C*).

The second step involves the reconstruction of the unfiltered signal I(z). We have
constructed VI explicitly. The construction is in terms of Hermite polynomials which
can be integrated up straightforwardly to give us 7 (up to a function ¢ such that V2¢ = 0).
Alternatively we can censider F'(z) to be the second moment of I(z) (see equation (3.2.7))
and then use the moment equations to determine the second and higher order moments of

I(z) leaving the first two moments undetermined. This reconstruction step is unstable, as

we discussed earlier, if only one scale is used. I(z) can of course be reconstructed only

modulus the null space of the (differential) operator. When the differential operator is the -
Laplacian and E(z,t) is available for all ¢, then the representation is invertible and I(z) can -

be recovered.”®

b) Degenerate fingerprints. Our uniqueness result applies to almost all signal: a restricted
but well known class of signals, with vertical zero-crossings in the scale-space diagram,
correspond to nonunique fingerprints. These signals, which will be discussed in a forthcom-
ing paper [Yuille and Poggio 1983, in preparation], do not belong to the class P introduced
in Theorem 1 and 2. Interestingly, level-crossings (with a level different from zero) can
distinguish between elements of this class. Note that there is a further, obvious constraint
on the reconstruction: the original signal I(z) can be reconstructed modulus the null space
of the (differential) filter.

¢) Extensions. Our main results are not restricted to second derivatives. They apply to zero-
and level- crossings of a signal filtered by a gaussian filter of variable size. They also apply

™ This reconstruction scheme may play a role in the computaticn of lightness in the vertebrate visual
system, (Poggio, possibly in preparation). '

8Notice that it may often be possible to assume that the image is an analytic entire function, i.e., a
distribution already “‘diffused" by the imaging procass. In this case, the Hermite expansion converges
analytically everywhere and so does-the associated Taylor expansion. If the convergence, however,
can only be ensured in L? (i.e., the image is not analytic) there may be some parts of the image where
the series expansion is not a faithful representation. We conjecture that it should usually be possible
to infer the presence of such an anomalous region from the behavior of the derivatives of the image.
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to transformations of a signal under a linear space-invariant operator - in particular they
apply to the linear derivatives of a signal and to linear combinations of them. In both 1-D
and 2-D, local information at just two points is sufficient. In practice, since many derivatives
are needed at each point, information about the whole contour, to which the point belongs,
is in fact exploited.

d) Are the fingerprints redundant? The proof of our theorem implies that two points on
the fingerprint contours are sufficient. As we mentioned earlier, several points are probably
required to make the reconstruction robust. We conjecture, however, that the fingerprints
are redundant and that appropriate constraints derived from the process underlying signal
generation (the imaging process in the case of images) should be used to characterize how
to collapse the fingerprints into more compact representations. Witkin made already this
point and discussed various heuristic ways to achieve this goal.

e) Implications of the results. As we discussed in the introduction, our results imply that
the fingerprint representation is a complete representation of a signal or an image. Zero-
and level-crossings across scales of a filtered signal capture full information about it. These
results also suggest a central role for the gaussian in multiscale filtering that assure that
zero- and level-crossing indeed contain full information. Note, however, that the fingerprint
theorems do not constrain or characterize in any way the differential filter that has to
be used. The filter may be just the identity operator, provided of course that enough
zero-crossings contours exist. Independent arguments, based on the constraints of the
signal formation process, must be exploited to characterize a suitable filter for each class
of signals. For images, second derivative operators such as the Laplacian are suggested by
work that takes into account the physical properties of objects and of the imaging process
(Grimson, 1982; Poggio and Torre,in preparation; Yuille, 1983). We plan to explore this
approach in the near future.

Acknowledgements We are grateful to E. Grimson, M. Kass, C. Koch, K. Nishihara and
D. Terzopoulos for useful discussions and suggestions. Carol Bonomo worked on what text
there was and the equations (of which there were too many).
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Appendix 1

Properties of Hermite polynomials and truncation of the expansion
The set of Hermite functions is defined by

2
e~ H,(z
Yola) = (=) &)
2nnly/T
where H, are the Hermite polynomials.
. 2 n
Hole) = (—1)e” e’ 2

The Hermite functions are an orthonormal basis of functions which is complete for L?
functions. The completeness is expressed by

> al@)nls) = 6(z — ¢) [3]

and the orthonormality by

[ apnte)iz = b 4

In general, the Hermite expansion of a L? function does not converge uniformly, but only in
the L% norm. The series will converge to the function except at a set of point of measure
zero. At any point, the series can be truncated at a term of order N such that the remainder
of the series is arbitrarily small. |f we only consider a finite number of points where the.
series converges, the series can be truncated and the function approximated arbitrarily well
by a finite number of Hermite components. ’

The Hermite polynomials defined in equation [2] and the set of function w,(z) defined as
(see equation 3.2.6):

1 dr
wp(z) = 2nn!\/7_r25;¢ (5]
are biorthogonal sets of functions, i.e.,
/ Ho(z)wm(z)dz = bum : [6]
They also obey a completeness property . |

nm

and therefore a L? function f(z) can be expanded in either set of functions as
f(@) =" aH.(z)
f(@) =3 baws(2)
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with

Qn = (f; wn)

Appendix 2

Analytic properties of solutions of the diffusion equation

For completeness we provide results about the analytic properties of functions convolved
with the gaussian, i.e. solutions of the heat equation with the Huygens property (see later). -

-

t
f

B

Notice that images can be considered to have undergone already a "diffusion", since the = °

imaging process has the effect of convolving the light distribution with a point spread
function, usually very close to a gaussian.

Lemma: The solutions of the diffusion equations u(z,t) as functions of z for a given ¢ are
restrictions to reals of functions which are entire functions of the complex variable (Widder,
1975, page 64).°

This result is noteworthy. The condition thét uz. = u; automatically brings with it ¢* for

u(z, t) and even analyticity for the space variable z. Considered as a function of ¢, u(z,t) can -

be extended analytically into the complex plane, although it will not generally be analytic
(see Widder, 1975, page 65).

o) = Z an(z,0)vn(z, o)

The heat polynomials v, are defined as the coefficients of ; in the expansion of

n

e=2+t1’r= - i v (z t)i_. [1]
) AR

n=0
where t = -0.} v, is @ polynomial of degree n and is given by

[n/2] th gn—2k

vn(z,t) = nl e e 2]
:é__:o k! (n — 2k)!
They are related to the Hermite polynomials H,, by
vn(z,t) = (—t)"/an( z ) : [3]
v—4t

The heat polynomials are solutions of the diffusion equation. Among other nice properties,
they obey the following theorem [Widder, 1975].

Theorem: Any function u(z,t) which obeys the diffusion equation and has the Huygens
property can be expanded in a series of heat polynomials which converges uniformly in

(z,1).

9 Entire functions are functions which are analytic everywhere.‘
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A solution u(z,t) of the diffusion equation is said to have the Huygens property if it can be
expressed as the convolution of the Gaussian with its initial value at ¢t = 0. Filtered images
satisfy this requirement by definition. ' '

This theorem is important since it ensures that the expansion converges not only in the
square integrable norm, as is usually the case, but also uniformaliy (i.e., at each point). This
ensures that undesirable behavior, like the Gibbs phenomenon, does not end.

Appendix 3

Convergence of change of basis
We can write F(z) in terms of the b,'s as

= Y ba(t)pnlz + 21, 1). (1)

n=0

This series converges in the L? sense: given an ¢ > 0, however small, it is possible to find
an N; such that

2
/(F(m) Z bu(t)on(z + 71, )) dr < e. ()
n==0
Using (1) we can write equation (2) as |
oo 2
/( Z bu(t)pn(z + a:l,t)) dz < €. (3)
n=N,; 1

Similarly for the expansion of F(z) in terms of a,’s we can find an N, such that

/(F(I)— Z bu(t)on(z, t) dz < e (4)

n=0

Set N = max(N;, N,). If we can cut off the series for F(z) at N then we can change the
basis, as in subsection 3.3.1., equate coefficients of the v,(z,t)’'s and hence relate the a,,s
to the b,’s. We would then have N equations for the first N moments. We now show that
cutting off the series is permissible: if we choose ¢ sufficiently small we can make the error
involved as small as we like.

The a,’s are related to the b,'s by

a,(t) = <Z ba(t)e(z + 74, ) wn(a: t)> (5)

n=0

This can be written as

<Zb z+x1,)un(a:t> <Z ba(t)p x+z1,)wn(zt)> (6)

n==0 n=N-}-1

Leve o
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The second term is called @, and is neglected when we cut off the series at N. We must
now show that this is justified. We can write its square as

a(t) = (/( i ba(t)e(z + zl,t))wn(:c, t)da:)2. (7N |

n=N-+1

Using the Cauchy-Schwarz inequality we obtain

(/( Z br( I+$1,t))wn(ﬂ? t)dz )2 < /wn(z,t)2dz /( i bn(t)go(z—l-zl,t))zdx.

n=N+1 n=N-1
(8)
The first term on the right hand side of (6) is
N
ap — By = <Z ba(t)p(z + z1,t), wu(z, t)> (9)
n=0

Hence, using (8) and (3), we have

a2 < e / (wn(x, t))zd:c. | (10)

Thus if we make ¢ very small the errors a,’s will be negligible (we can scale wy(z,t) and
2

pn(z,t) by functions of n so that [{ w.(z,t)) dz tends to a finite limit as n tends to oo;

alternatively, note that both @,(z,t) and a, — @, depend linearly on w,(z,t) and so scaling
it will not alter their relative sizes).

The errors involved in terminating the series can be made arbitrarily small by making the
cutoff N sufficiently large. Thus we can change the basis and obtain N equations for the
first N moments. We solve these equations and obtain the first N terms in the expansion
of F(z) in terms of the p,(z,t). Taking the limit as N tends to co we reconstruct the image
(in the L? sense).

Appendix 4

We will show that the 2n** order determinant is generally non-zero. Recall that the
determinant is a polynomial in z; (of degree at most 2n) with the coefficients being functions
of the first n derivation of the curves at the two points. If this determinant always vanished,
it would mean that the distance between any two curves with prescribed values of their first
n derivation could only take a finite set of values (at most 2n) whatever the values of the
hngher order derivation of the curves. We will show that, by changing the values of the
higher order derivatives, it is possible to alter the value of X7 continuously while keeping
the first n derivation of the curves constant. ,
We take two points (0, t;) and (z;, t;) lying on zero-crossing curves. At these points,
we assume we know the derivatives $E, 2, 2B .. up to order n. (This means we
can reconstruct 4,..., £ from the implicit function theorem.) We can use the diffusion

equation to write these as 4%, &%, ..., 83%,
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So we have
E(0,t;)=0
oF
—(0,t1) =K
5z i) =Ki (1)
omg
m(o,tl) = Kon
and
E(Il,tl) =0
oF .
—(z1,t))="C :
oz (371 1) 1 (2)
82" | v
5;@;(-'51, t1) = Can

where K,,..., Ky, and Cy,...,C,, are specified. Now we will try to alter the value of 2

while keeping Ki,..., Ko, and Ci,. .., Co, constant.
We have

E(z,1) =/eiwze_wathl(¢)dw (3)
Introduce a “deformation" parameter \ and a function Y(w,)\) where

Y(w,0) = w?I(w) @

and z; = z;(\).
Let

E(z,t,\) = / e Y (w, \)dw )

Allow z;()\) to vary while maintaining equations (1) and (2). For the first point this gives

/ e—w"—a—Y(w, Ndw = 0
(6
—w?t 211 aY ( )
e Y —(w, )\)dw =0

For the second point we obtain

‘% / e e~ (W)Y (w, N)dw + f e‘“’“le‘“’fiY(w, \)dw = 0
...... ' (7)
%1/ w1 g i)Y (w, N -+ | em1e=v "t 2 FnY @, \)dw =0

We want to solve equations (6) and (7) tor 2X(w, ) in terms of 4%, Then the result follows.

Equation (6) implies that the first on moments of g¥(w,)) are zero. Equation (7) means that
the first 2n moments of e 29X (w,)) take prescnbnd values. (We assume Y(w, ) is known
but not &Y (w,)).)
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Expanding ei“*: as a Taylor series (and using equation (6)), we write equation (7) as

/{ Yo (W) ”11' }c““’ *—‘%Y(w, >\)dw=—%%1 %1 e (§W)Y (w, \)dw

m==2n--1
. (8).
/ w)m B bane—tt Oy \dw = — B2 [ giom = (i)"Y (w, \)dw
"gl(“") m [ ° % ) ’
The moments of &Y(w,)) are
W = / ="t 0 ¥ (0, Nwmdw (9)
m ax B
and define
—dz; Wy —w3tf, P
A, = oy e e (iw)wPY (w, \)dw (10)
Using (9) and (10) we rewrite equations (8) as
et Y
E (111? Wm=A1
m=2n41 m:
...... (11)

S .
(le)m—-?n
Z mwm = Agn+1
m=2n-1

It will always be possible to solve these equations for W,,, and there will be infinitely many
solutions. To see this, we set

Wy =0 ,m>4dn+1 (12)

and write equation (11) as
txy iz, )4nt1
my e |(Wen (Al )
"f" S L—L,—i1‘2;n+l Win4a A

it is possi?le to solve (13) if the determinant is non-zero. The determinant is of form
Az;)#"+1)° (This follows directly from the form of the matrix) and so is either zero
for all 'z, or else never zero. The determinant is also the Wronskian of the function

: 2n41 in . f . R H
(e 7 ,‘Z(j;lLl) and as these functions are linearly independent, it cannot vanish
everywhere Hence the determinant never vanishes and we can solve for the W,,'s in terms

of the A,’s. Relaxing the condition (12) gives us infinitely many solutions.

Thus, we have shown that it is possible to alter z; continuousily without changing the values
of the first n derivatives at both points. This means that the determinant of the 2n-order
matrix in the moments will in general be non-zero; it can only be zero for a finite set of =,
and there are an infinite set of possible values for z; compatible with the first n derivatives
at the points. .

(13)

2n-1
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