MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A.l. Memo No. 732 December 1983

PARTS OF RECOGNITION’

D.D. Hoffman and Whitman Richards

Abstract. A complete theory of object recognition is an impossibility -—— not simply. because
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Figure 1 Some objects identifiable entirely from their profiles.

1.0 Introduction

Any time you view a statue, or a simple line drawing, you effortlessly perform a visual
feat far beyond the capability of the most sophisticated computers today, though well within
the capacity of a kindergartner. That feat is shape recognition, the visual identification of
an object using only its shape. Figure 1 offers an opportunity to exercise this ability and
to make several observations. Note first that, indeed, shape alone is sufficient to recognize
the objects; visual cues such as shading, motion, color, and texture are not present in the
figure. Note also that you could not reasonably predict the contents of the figure before
looking at it, yet you recognized the objects. Clearly your visual system is equipped to
describe the shape of an object and to guess what the object is from the outline. This
guess may just be a first guess, perhaps best thought of as a first index into a memory of
shapes, and might not be exactly correct; it may simply narrow the potential matches and
trigger visual computations designed to narrow them further.

This first guess is more precisely described as an inference, one the truth of whose
premises — the descriptions of shape — does not logically guarantee the truth of its
conclusion — the identity of the object. Because the truth of the conclusion does not follow
logically from the truth of the premises, the strength of the inference must derive from some
other source. That source, we claim, is the regularity of nature, its uniformities and general
laws. The design of the visual system exploits regularities of nature in two ways: they
underly the mental categories used to represent the world and they permit inferences from




Parts of Recognition Hoffman & Richards

impoverished visual data to descriptions of the world.

Regularities of nature play both roles in the visual task of shape recognition, and
both roles will be examined. We will argue that, just as syntactic analysis decomposes a
sentence into its constituent structure, so the visual system decomposes a shape into a
hierarchy of parts.. Parts are not chosen arbitrarily; the mental category “‘part”’ of shapes
is based upon a regularity of nature discovered by differential topologists — trénsversality.
Although any division of objects into parts occurs in three dimensions, the eye delivers
only a two-dimensional projection. In consequence the three-dimensional parts must be
inferred from their two-dimensional projections. We propose that this inference is licensed
by another regularity, this time from the field of projective differential geometry.

2.0 Why Parts?

Before examining a part definition and its underlying regularity, we should ask: Given
that one wants to recognize an object from its shape, why partition the shape at all? Could
template matching or Fourier descriptors rise to the occasion? Possibly. What follows is
not so much intended to deny this as to indicate the usefulness of parts.

To begin‘, then, an articulation of shapes into parts is useful because one never sees
an entire shape in one glance. Clearly the back side is never visible (barring transparent
objects), but even the front side is often partially occluded by objects interposed between
the shape and the observer. A proponent of templates must, presumably, propose processes
for erasing temporarily just the right portions of a stored template in order to achieve a
match under these conditions — an unenviable task. The part theorist, on the other hand,
can plausibly claim that the parts delivered by early vision correspond to the parts stored in
the shape memory (after all, the contents of the shape memory were once just the products
of early visual processing), and that the shape memory is organized such that any shape
can be addressed by an inexhaustive list of its parts. Then recognition can proceed using
ihe unoccluded parts.

Parts are also advantageous for representing objects which are not entirely rigid, such
as the human hand. A template of an outstretched hand would correlate poorly with a
clenched fist, or a hand giving a victory sign, etc. The proliferation of templates to handle
the many possible configurations of the hand, or of any articulated object, is unparsimonious
and an unseemly waste of memory. If the part theorist, on the other hand, picks his parts
prudently (criteria for prudence will soon be forthcoming), and if he introduces the notion
of spatial relations among parts, he can decouple configural properties from the shape of
an object, thereby avoiding the proliferation of redundant mental models.
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Figure 2 The cosine surface at first appears to be organized into concentric' rings, one ring
terminating and the next beginning approximately where the dashed circular contours are drawn. But
this organization changes when the figure is turned upside down.

The final argument for parts to be considered here is phenomenological: we see them
when we look at shapes. Figure 2, for instance, presents a cosine surface, which observers
almost uniformly see organized into ring-like parts. One bart stops and another begins
roughly where the dotted circular contours are drawn. But if the figure is turned upside
down the organization changes such thai each dotted circular contour, which before lay
between parts, now lies in the middle of a part. Why the parts change will be explained
by the partitioning rule to be proposed shortly; the point of interest here is simply that our
visual systems do in fact cut surfaces into parts.

3.0 Parts and Uniformities of Nature

Any proper subset of a surface is a part of that surface. This definition of part, however,
is of little use for the task of shape recognition. And although the task of shape recognition
constrains the class of suitable part definitions (see Section 5), it by no means forces a
unique choice. To avoid an ad hoc choice, and to allow a useful correspondence between
the world and mental representations of shape, the definition of part should be motivated
by a uniformity of nature.!

One place not to look for a defining regularity is in the shapes of a part. One could
say that all parts are cylinders, or cones, or spheres, or polyhedra, or some combination

'Unearthing an appropriate uniformity is the most creative, and often most difficult, step in devising an
explanatory theory for a visual task. Other things being equal, one wants the most general uniformity
of nature possible, as this grants the theory and the visual task the broadest possible scope.
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Figure 3 An illustration of the transversality regularity. When any two surfaces interpenetrate at
random they always meet in concave discontinuities, as indicated by the dashed contours.

of these; but this is legislating a definition, not discovering a relevant regularity. And
such a definition would have but limited applicability, for certainly not all shapes can be
decomposed into just cylinders, cones, spheres, and polyhedra.

If a defining regularity is not to be found in part shapes, then the next place to look is
part intersections. Because the parts of shapes are made of surfaces, we seek a rule that
tells us when one surface has intersected another. Fortunately, differential topologists have
already looked carefully at such intersections of a variety of surfaces and found a general
regularity they call transversality (Guillemin and Pollack, 1974). A restricted version of this
regularity serves our purpose nicely.

o Transversality Regularity: When two arbitrarily shaped surfaces are made to inter-
penetrate they always®? meet in a concave contour of discontinuity of their tangent
planes.

These concave contours of discontinuity of the tangent plane will be the basis for a
partitioning rule in the next section. But three observations are in order.

First, though it may sound esoteric, transversality is a familiar part of our everyday
experience. A straw in a soft drink forms a circular concave discontinuity where it meets
the surface of the drink. So too does a candle in a birthday cake. The tines of a fork in a
piece of steak, a cigarette in a mouth, all are examples of this ubiquitous regularity.

*The word always is best interpreted “with probability one assuming the surfaces interpenetrate at
random®.
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Second, transversality does not double as a theory of part growth or part formation
(D'Arcy Thompson, 1968). We are not claiming that a nose was once physically separated
from the face and then got attached by interpenetration. We simply note that when two
spatially separated shapes are interpenetrated, their intersection is transversal. Later we
will see how this regularity underlies the visual definition of separate parts of any composite
shape, including the “nose” on the face.

Finally, transversality does encompass movable parts. As mentioned earlier, one
attraction of parts is that, properly chosen, they make possible a decoupling of configuration A
and shape in descriptions of articulated objects. But to do this the parts must cut an object
at its articulations; a thumb-wrist part on the hand, for instance, would be powerless to
capture the various spatial relations that can exist between the thumb and the wrist. Now
the parts motivated by transversality will be the movable units, fundamentally because a
transversal intersection of two surfaces remains transversal for small perturbations of their
positions. This can be appreciated by reviewing Fig. 3. Clearly the intersection of two
surfaces remains a concave contour of discontinuity even as the two surfaces undergo
separate rotations and translations.

4.0 Partitioning: The Minima Rule

On the basis of the transversality regularity we can propose a first rule for dividing a
surface into parts: Divide a surface into parts along all contours of concave discontinuity
of the tangent plane. Now this rule cannot help us with the cosine surface because this
surface is entirely smooth. The rule must be generalized somewhat, as will be done shortly.
But in its present form the rule can provide insight into several well known perceptual
demonstrations.

4.1 Blocks World

We begin by considering first shapes constructed from polygons. Examine the staircase
of Fig. 4. The rule predicts that the natural parts are the steps, and not the faces of the steps.
Each step becomes a “part”’ because it is bounded by two lines of concave discontinuity
in the staircase. (A face is bounded by a concave and a convex discontinuity.) But the
rule also makes a less obvious prediction. If the staircase undergoes a perceptual reversal,
such that the “figure” side of the staircase becomes ‘“ground” and vice-versa, then the
step boundaries must change. This follows because only concave discontinuities define
step boundaries. And what looks like a concavity from one side of a surface must look
like a convexity from the other. Thus, when the staircase reverses, convex and concave
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Figure 4 The Schroder staircase, published by H. Schroder in 1858,‘ shows that part boundaries
change when figure and ground reverse. The two dots which at first appear to lie on one step
suddenly seem to lie on two adjacent steps when the staircase reverses.

discontinuities must reverse roles, leading to new step boundaries. You can test this
prediction yourself by looking at the step having a dot on each of its two faces. When the
staircase appears to reverse note that the two dots no longer lie on a single step, but lie on
two adjacent steps.

Similar predictions from the rule can also be confirmed with more complicated demonstra-
tions such as the stacked cubes demonstration shown in Fig. 5. The three dots which at
first appear to lie on one cube, lie on three different cubes when the figure reverses.

Still another quite different prediction follows from our simple partitioning rule. If the
rule does not define a unique partition of some surface, then the divisions of that surface
into parts should be perceptually ambiguous (unless, of course, there are additional rules
which can eliminate the ambiguity). An elbow shaped block provides clear confirmation of
this prediction (see Fig. 6). The only concave discontinuity is the vertical line in the crook
of the elbow; in consequence, the rule does not define a unique partition of the block.
Perceptually, there are three plausible ways to cut the block into parts (also shown in Fig.
6). All three use the contour defined by the partitioning rule, but complete it along different
paths. ‘

4.2 Generalization to Smooth Surfaces

The simple partitioning rule directly motivated by transversality leads to interesting
insights into our perception of the parts of polygonal objects. But how can the rule
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Figure 5 Stacked cubes also show that parts change when figure énd ground reverse. Three dots
"~ which sometimes lie on one cube will lie on three different cubes when the figure reverses.

Figure 6 Elbow shaped blocks show that a rule partitioning shapes at concave discontinuities is
appropriately conservative. The rule does not give a closed contour on the top block, and for good
reason. Perceptually, three different partitions seem reasonable, as illustrated by the bottom three

blocks.

be generalized to handle smooth surfaces, such as the cosine surface? To grasp the
generalization, we must briefly digress into the differential geometry of surfaces in order
to understand three important concepts: surface normal, principal curvature, and line of
curvature. Fortunately, although these concepts are quite technical, they can be understood

intuitively.
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The surface normal at a point on a surface can be thought of as a unit length needle
sticking straight out of (orthogonal to) the surface at that point, much like the spineé on
a sea urchin. All the surface normals at all points on a surface are together called a field
of surface normals. Usually there are two possible fields of surface normals on a surface
— either outward pointing or inward pointing. A sphere, for instance, can either have the
surface normals all pointing out like spines, or all pointing to its center. Let us adopt the
convention that the field of surface normals is always chosen to point into the figure (i.e.,
into the object.) Thus a baseball has inward normals whereas a bubble under water, if the
water is considered figure, has outward normals. Reversing the choice of figure and ground
on a surface implies a concomitant change in the choice of the field of surface normals.
And, as will be discussed shortly, a reversal of the field of surface normais induces a change
in sign of each principal curvature at every point on the surface.

It is often important to know not just the surface normal at a point but also how the
surface is curving at the point. The Swiss mathematician Leonhard Euler discovered around
1760 that at any point on any surface there is always a direction in which the surface
curves least and a second direction, always orthogonal to the first, in which the surface
curves most. (Spheres and planes are trivial cases since the surface curvature is identical
in all directions at every point). These two directions are called principal directions and
the corresponding surface curvatures principal curvatures. Now by starting at some point
and always movihg in the direction of the greatest principal curvature one traces out a line
of greatest curvature. By moving instead in the direction of the least principal curvature
one traces out a line of least curvature. On a drinking glass the family of lines of greatest
curvature is a set of circles around the glass. The lines of least curvature are straight lines
running the length of the glass (see Fig. 7).

With these concepts in hand we can extend the partitioning rule to smooth surfaces.
Suppose that wherever a surface has a concave discontinuity we smooth the discontinuity
somewhat, perhaps by stretching a taut skin over it. Then a concave discontinuity becomes a
concave contour where, locally, the surface has greatest negative curvature. In consequence
we obtain the following generalized partitioning rule for surfaces.

e  Minima Rule: Divide a surface into parts at loci of negative minima of each principal
curvature along its associated family of lines of curvature,

The minima rule is applied to two surfaces in Fig. 8. The solid contours indicate
members of one family of lines of curvature, and the dotted contours are the part boundaries
defined by the minima rule. The bent sheet of paper on the right of Fig. 8 is particularly
informative. Thé lines of curvature shown for this surface are sinusoidal, whereas the family
of lines not shown are perfectly straight and thus have zero principal curvature (and no
associated minima). In consequence, the product of the two principal curvatures at each
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Figure 7 Lines of curvature are easily depicted on a drinking glass. Lines of greatest curvature are
circles. Lines of least curvature are straight lines.

Figure 8 Part boundaries, as defined by the smooth surface partitioning rule, are indicated by
dashed lines on several different surfaces. The families of solid lines are the lines of curvature whose
minima give rise to the dashed partitioning contour.

point, called the Gaussian curvature, is always zero for this surface. Now if the Gaussian
curvature is always zero on this surface, then the Gaussian curvature cannot be used to
divide the surface into parts. But we see parts on this surface. Therefore whatever rule
our visual systems use to partition surfaces cannot be stated entirely in terms of Gaussian
curvature. In particular, the visual system cannot be dividing surfaces into parts at loci of
zero Gaussian curvature (parabolic points) as has been proposed by Koenderink and Van
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Doorn (1982b).

The minima rule partitions the cosine surface approximately along the circular dotted
contours shown in Fig. 2. It also explains why the parts differ when figure and ground are
reversed. For when the page is turned upside down the visual system reverses its assignment .
of figure and ground on the surface (perhaps due to a preference for an interpretation which
places the object below rather than overhead). When figure and ground reverse so does the
field of surface normals, in accordance with the convention mentioned earlier. But simple
calculations show that when the normals reverse so too does the sign of the principal
curvatures. Consequently minima of the principal curvatures must become maxima and
vice-versa. Since minima of the principal curvatures are used for part boundaries, it follows
that these part boundaries must also move. In sum, parts appear to change because the
partitioning rule, motivated by the transversality regularity, uses minima of the principal
curvatures, and because these minima relocate on the surface when figure and ground
reverse. A more rigorous treatment of the partitioning rule is provided in the first appendix.

5.0 Parts: Constraints from Recognition

The task of visual recognition constrains one's choice of parts and part descriptions.
We evaluate the part scheme proposed here against three such constraints — reliability,
versatility, and computability — and then note a non-constraint, information preservation.

Reliability

Recognition is fundamentally a process-of matching descriptions of what one sees with
descriptions already in memory. Imagine the demands on memory and on the matching
process if every time one looked at an object one saw different parts. A face, for example,
which at one instant appeared to be composed of eyes, ears, a nose, and a mouth, might at
a later instant metamorphose into a potpourri of eye-cheek, nose-chin, and mouth-ear parts
— a gruesome and unprofitable transmutation. Since no advantage accrues for allowing
such repartitions, in fact since they are uniformly deleterious to the task of recognition, it
is reasonable to disallow them and to require that the articulation of a shape into parts be
invariant over time and over change in viewing geometry. This is the constraint of reliabiliiy
(see Marr, 1982; Nishihara, 1981; Marr and Nishihara, 1978; Sutherland, 1968); the parts Qf a
shape should be related reliably to the shape. A similar constraint governs the identification
of linguistic units in a speech stream (Liberman et al., 1967; Fodor, 1983). Apparently the
shortest identiﬁéble unit is the syllable; shorter units like phones are not related reliably to
linguistic values. '

10
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The minima rule satisfies this reliability constraint because it uses only surface properties,
such as extrema of the principal curvatures, which are independent (up to a change in sign)
of the coordinate system chosen to parameterize the surface (Do Carmo, 1976). Therefore
the part boundaries do not change when the viewing geometry changes. (The part bound-
aries do change when figure and ground reverse, however.)

Versatility

Not all possible schemes for defining parts of surfaces are sufficiently versatile to
handle the infinite variety in shape that objects can exhibit. Other things being equal, if
one of two partitioning schemes is more versatile than another, in the sense that the class
of objects in its scope properly contains the class of objects in the scope of the other
scheme, the more versatile scheme is to be preferred. A partitioning scheme which can be
applied to any shape whatsoever is most preferable, again other things being equal. This
versatility constraint can help choose between two major classes of partitioning schemes:
boundary-based and primitive-based. A boundary-based approach defines parts by their
contours of intersection, not by their shapes. A primitive-based approach defines parts by
their shapes, not by their contours of intersection (or other geometric invariants, such as
singular points).

Shape primitives currently being discussed in the shape representation literature include
spheres (Badler and Bajcsy, 1978; O'Rourke and Badier, 1979), generalized cylinders
(Binford, 1971; Brooks et al., 1979; Marr and Nishihara, 1978; Soroka, 1979), and polyhedra
(Baumgart, 1972; Mackworth, 1973; Guzman, 1969; Huffman, 1971; Clowes, 1971; Waltz,
1975), to name a few (see Ballard and Brown, 1982). The point of interest here is that,
for all the interesting work and conceptual advances it has fostered, the primitive-based
approach has quite limited versatility. Generalized cylinders, for instance, do justice to
animal limbs, but are clearly inappropriate for faces, cars, shoes,... the list continues. A
similar criticism can be levelled against each proposed shape primitive, or any conjunction
of shape primitives. Perhaps a large enough conjunction of primitives could handle most
“ shapes we do in fact encounter, but the resulting proposal would more resemble a restaurant
menu than a theory of shape representation.

A boundary-based scheme on the other hand, if its rules use only the geometry
(differential or global) of surfaces, can appfy to any object whose bounding surface is
amenable to the tools of geometry — a not too severe restriction.® Boundary rules simply
tell one where to draw contours on a surface, as if with a felt marker. A boundary-based

éShapes outside the purviéw of traditional geometric tools might well be represented by fradtal-based
schemes (Mandelbrot, 1982; Pentland, 1983). Possible candidates are trees, shrubs, clouds — in
short, objects with highly crenulate or ili-defined surfaces.

11
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scheme, then, is to be preferred over a primitive-based scheme because of its greater

versatility.

The advantage of a boundary-based scheme over a primitive-based scheme can also be
put this way: using a boundary-based scheme one can locate the parts of an object without
having any idea of what the parts look like. This is not possible with the primitive-based
scheme. Of course one will want descriptions of the parts one finds using a boundary-based
scheme, and one may (or may not) be forced to a menu of shapes at this point. Regardless,
a menu of part shapes is not necessary for the task of locating parts. In fact a menu-driven
approach restricts the class of shapes for which parts can be located. Our minima rule,
because it is boundary-based and uses only the differential geometry of surfaces, satisfies
the versatility constraint — all geometric surfaces are within its scope.*

Computability

The partitioning scheme should in principle be computable using only information
available in retinal images. Otherwise it is surely worthless. This is the constraint of
computability. Computability is not to be confused with efficiency. Efficiency measures
how quickly and inexpensively something can be computed, and is a dubious criterion
because it depends not only on the task, but also on the available hardware and algorithms.
Computability, on the other hand, states simply that the scheme must in principle be
realizable, that it use only information available from images.

We have not yet shown that our parts are computable from retinal images. And
indeed, since minima of curvature are third derivative entities, and since taking derivatives
exaggerates noise, one might legitimately question whether our part boundaries are not
computable. [Fortunately, current algorithms using stereopsis and shading are promising
(Grimson, 1983; Horn and lkeuchi, 1983)]. However, this concern for computability brings
up an important distinction noted by Marr and Poggio (1977), the distinction between theory
and algorithm. A theory in vision states what is being computed and why; an algorithm tells
how. Our partitioning rule is a theoretical statement of what the part boundaries should be,
and the preliminary discussion is intended to say why. The rule is not intended to double as
an algorithm, so the question of computability is in fact still open. Some recent resuits by
Yuille (1983) are very encouraging though. He has found that directional zero-crossings in
the shading of a surface are often located on or very near extrema of one of the principal

“One must, however, discover the appropriate scales for a natural surface (Hoffman, 1983; Witkin,
1983). The locations of the part boundaries depend, in general, on the scale of resolution at which
the surface is examined. In consequence an object will not receive a single partitioning based on the
minima rule, but will instead receive a nested hierarchy of partitions, with parts lower in the hierarchy
being much smaller than parts higher in the hierarchy. For instance, at one level in the hierarchy for
a face one part might be a nose. At the next lower level one might find a wart on the nose. The issue
of scale is quite difficult and beyond the scope of this paper.

12
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curvatures along its associated lines of curvature. So it might be possible to read the part
boundaries directly from the pattern of shading in an image, avoiding the noise problems
associated with taking derivatives (see also Koenderink and Van Doorn, 1980. 1982a). It is
also possible to determine the presence of part boundaries directly frdm occluding contours
in an image (see appendix 2).

Information Preservation: a Non-constraint

Not just any constraints will do. The constraints must follow from the visual task:
otherwise the constraints may be irrelevant and the resulting part definitions and part
descriptions inappropriate. Because the task of recognition involves classification, namely
the assignment of an individual to a class or a token to a type, not all the information available
about the object is required. Indeed, in contrast to some possible needs for machine vision
(Brady, 1982b, 1982c), we stress that a description of a shape for recognition should not
be information preserving, for the goal is not to reconstruct the image. Rather it is to make
explicit just what is key to the recognition process. Thus, what is critical is the form of the
representation, what it makes explicit, how well it is tailored to the needs of recognition.
Raw depth maps contain all shape information of the visible surfaces, but no one proposes
them as representations for recognition because they are simply not tailored for the task.

6.0 Projection and Parts

We have now shown how “parts” of shapes may be defined in the three-dimensional
world. However the eye sees only a two-dimensional projection. How then can parts be
inferred from images? Again, we proceed by seeking a regularity of nature. As was noted
earlier, the design of the visual system exploits regularities of nature in two ways: they
underly the mental categories used to represent the world and they license inferences from
impoverished visual data to descriptions of the world. The role of transversality in the design
of the mental category “part” of shape is an example of the first case. In this section we
study an example of the second case. We find that lawful properties of the singularities
of the retinal projection permit an inference from retinal images to three-dimensional part
boundaries. For simplicity we restrict attention to the problem of inferring part boundaries
from silhouettes.

Consider first a discontinuous part boundary (i.e., having infinite negative curvature)
on a surface embedded in three dimensions (Fig. 3). Such a contour, when imaged on the -
retina, induces a concave discontinuity in the resulting silhouette (notice the concave cusps
" in the silhouette of Fig. 3). Smooth part boundaries defined by the minima partitioning rule
also provide image cups, as it does in the profiles of Fig. 1. It would be convenient to be able

13
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Figure 9 A torus can have concave discontinuities (indicated by the arrows) which do not correspond
to part boundaries.

to infer the presence of smooth and discontinuous part boundaries in three dimensions from
concave discontinuities in the two-dimensional silhouette, but unfortunately other surface
events can give rise to these discontinuities as well. A torus (doughnut), for instance,
can have two concave discontinuities in its sithouette which do not fall at part boundaries
defined by the minima rule (see Fig. 9).

Fortunately, it is rare that a concave discontinuity in the silhouette of an object does not
indicate a part boundary, and when it does not this can be detected from the image data. So
one can, in general, correctly infer the presence or absence of part boundaries from these
concave discontinuities. The proof of this useful result (which is banished to the second
appendix) exploits regularities of the singularities of smooth maps between two-dimensional
manifolds. We have seen how a regularity of nature underlies a mental category, viz., “part”
of shape; here we see that another regularity (e.g., a singularity regularity) licenses an
inference from the retinal image to an instance of this category.

The singularity regularity, together with transversality, motivates a first partitioning rule
for plane curves: Divide a plane curve into parts at concave cusps. Here the word concave
means concave with respect to the silhouette (figure) side of the plane curve. A concavity
in the figure is, of course, a convexity in the ground.

This simple partitioning rule can explain some interesting perceptual effects. In Fig.
10, for instance, the same wiggly contour can look either like a valley in a mountain range
(or Pac-Man?) or, for the reversed figure-ground assignment, like a large, twin-peaked
mountain dominating a chain of smaller peaks. The contour is carved into parts differently

14
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Figure 10 A reversing figure, similar to Attneave (1974),‘ appears either as an élternatihg chain of
tall and short mountains or as a chain of tall mountains with twin peaks.

when figure and ground reverse because the partitioning rule uses only concave cusps for
part boundaries. And what is a concave cusp if one side of the contour is figure must
become a convex cusp when the other side is figure, and vice-versa. There is an obvious
parallel between this example and the reversible staircase discussed earlier.

6.1 Geometry of plane curves

Before generalizing the rule to smooth contours we must briefly review two concepts
from the differential geometry of plane curves: principal normal and curvature. The principal
normal at a point on a curve can be thought of as a unit length needle sticking straight out
of (orthogonal to) the curve at that point, much like a tooth on a comb. All the principal
normals at all points on a curve together form a field of principal normals. Usually there are
two possible fields of principal normals — either leftward pointing or rightward pointing. Let
us adopt the convention that the field of principal normals is always chosen to point into
the figure side of the curve. Reversing the choice of figure and ground on a curve implies
a concomitant change in the choice of the field of principal normals.

Curvature is a well known concept. Straight lines have no curvature, circles have
constant curvature, and smaller circles have higher curvature than larger circles. What is
important to note is that, because of the convention forcing the principal normals to point
into the figure, concave portions of a smooth curve have negative curvature and convex
portions have positive curvature.

15
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Figure 11 Attneave’s reversing figure, constructed by scribbling a line down a circle. The apparent
shape of a contour depends on which side is perceived as figure.

6.2 Parts of smooth curves

It is an easy matter now to generalize the partitioning rule. Suppose that wherever a
curve has a concave cusp we smooth the curve a bit. Then a concave cusp becomes a point
of negative curvature having, locally, the greatest absolute value of curvature. This leads
to the following generalized partitioning rule: Divide a plane curve into parts at negative

minima of curvature.®

Several more perceptual effects can be explained using this generalized partitioning
rule. A good example is the reversing figure devised by Attneave (see Fig. 11). He found
that by simply scribbling a line through a circle and separating the two halves one can
create two very different looking contours. As Attneave (1974) points out, the appearance
of the contour depends upon which side is taken to be part of the figure, and does not
depend upon any prior familiarity with the contour.

Now we can explain why the two halves of Attneave’s circle look so different. For when
figure and ground reverse, the field of principal normals also reverses in accordance with
the convention. And when the principal normals reverse, the curvature at every point on
the curve must change Sign. In particular, minima of curvature must become maxima and

*Transversality directly motivates using concave cusps as part boundaries. Only by smoothing do
we include minima as well (both in the case of silhouette curves and in the case of part boundaries
in three-dimensions). Since the magnitude of the curvature at minima decreases with increased
smoothing, it is useful to introduce the notion of the strength or goodness of a part boundary. The
strength of a part boundary is higher the more negative the curvature of the minimum. Positive
minima have the least strength, and deserve to be considered separately from the negative minima, a
possibility suggested to us by Shimon Uliman.
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Figure 12 The reversing goblet devised by Edgar Rubin can be seen as a goblet or a pair of facial
profiles. Defining part boundaries by minima of curvature divides the face into a forehead, nose, upper
lip, lower lip, and chin. Minima divide the goblet into a base, a couple parts of the stem, a bowl, and
a lip on the bowl.

vice-versa. This repositioning of the minima of curvature leads to a new partitioning of the
curve by the partitioning rule. In short, the curve looks different because it is organized into
fundamentally different units or chunks. Note that if we chose to define part boundaries by
inflections (see Hollerbach, 1975; Marr, 1977), or by both maxima and minima of curvature
(see Brady, 1982a; Duda and Hart, 1973), or by all tangent and curvature discontinuities
(Binford, 1981), then the chunks would not change when figure and ground reverse.

A clear example of two very different chunkings for one curve can be seen in the
famous face-goblet illusion published by Turton in 1819. If a face is taken to be figure, then
the minima of curvature divide the curve into chunks corresponding to a forehead, nose,
upper lip, lower lip, and chin. If instead the goblet is taken to be figure then the minima
reposition, dividing the curve into new chunks corresponding to a base, a couple parts of
the stem, a bowl, and a lip on the bowl. It is probably no accident that the parts defined by
minima are often easily assigned verbal labels.

Demonstrations have been devised which, like the face-goblet illusion, allow more
than one interpretation of a single contour but which, unlike the face-goblet illusion, do not
involve a figure-ground reversal. Two popular examples are the rabbit-duck and hawk-goose
illusions (see Fig. 13). Because these illusions do not involve a figure-ground reversal, and
because in consequence the minima of curvature never change position, the partitioning
rule must predict that the part boundaries are identical for both interpretations of each
of these contours. This prediction is easily confirmed. What is an ear on the rabbit, for
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Figure 13 Some ambiguous shapes do not involve a reversal of figure and ground. Consequently, the
part boundaries defined by minima of curvature do not move when these figures change interpretations.
In this illustration, for instance, a rabbit’s ear turns into a duck’s bill without moving, and a hawk’s
head turns into a goose’s tail, again without moving. '

instance, becomes an upper bill on the duck.

If the minima rule for partitioning curves is really used by our visual systems, one
should expect it to predict some judgments of shape similarity. One case in which its
prediction is counterintuitive can be seen in Fig. 14. Look briefly at the single half-moon on
the right of the figure. Then look quickly at the two half-moons on the left and decide which
seems more similar to the first (go ahead). In an experiment performed on several similar
figures, we found that nearly all subjects chose the bottom half-moon as more similar. Yet
if you look again you will find that the bounding contour for the top half-moon is identical
to that of the right half-moon, only figure-ground reversed. The bounding contour of the
bottom half-moon has been mirror reversed, and two parts defined by minima of curvature
have been swapped. Why does the bottom one still look more similar? The minima rule
gives a simple answer. The bottom contour, which is not figure-ground reversed from the
original contour, has the same part boundaries. The top contour, which is figure-ground
reversed from the original, has entirely different part boundaries.

7.0 Holes: A Second Type of Part

The minima rule for partitioning surfaces is motivated by a fact about generic intersec-
tions of surfaces: surfaces intersect transversally. As Fig. 3 illustrates, this implies that if two
surfaces are interpenetrated and left together to form a composite object then the contour
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Figure 14 A demonstration that some judgrﬁenté of shape similarity can be predicted by the minima
partitioning rule. In a quick look, the bottom left half-moon appears more similar to the right half-moon
than does the top left one. However the the bounding contour of the top left half-moon is identical
to that of the right half-moon, whereas the bounding contour of the bottom left half-moon has been
mirror reversed and has had two parts interchanged.

of their intersection is a contour of concave discontinuity on the composite surface. Now
suppose instead that after the two surfaces are interpenetrated one surface is pulled out of
the other, leaving behind a hole, and then discarded. The hole created in this manner has
just as much motivation for being a “part” on the basis of transversality as the parts we
have discussed up to this point.

As can be seen by examining the right side of Fig. 3, the contour that divides one part
from the other on the composite object is precisely the same contour that will delimit the
hole created by pulling out the penetrating part. But whereas in the case of the composite
object this contour is a contour of concave discontinuity, in the case of the hole this contour
is a contour of convex discontinuity. And smoothing this contour, which leads to negative
extrema of a principal curvature for the case of a hole. We are led to conclude that a shape
can have at least two kinds of parts — “positive parts” which are bounded by negative
extrema of a principal curvature, and “negative parts” (holes) bounded by positive extrema
of a principal curvature.

This result presents us with the task of finding a set of rules that determine when to use
positive extrema or negative extrema as part boundaries. We do not have these rules yet,
but here is an example of what such rules might look like: If a contour of negative extrema
of a principal curvature is not a closed contour, and if it is immediately surrounded (i.e., no
intervening extrema) by a closed contour of positive extrema of a principal curvature, then
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then take the contour of positive extrema as the boundary of a (negative) part.

Note in any case that what we will not have are single parts bounded by both negative

and positive extrema of a principal curvature.

8.0 Perception and Induction

Inferences and regularities of nature have cropped up many times in the theory and
discussions presented here. It is time to explore their significance more fully.

Perceptual systems inform the perceiver about properties of the world she needs to
know. The need might be to avoid being eaten, to find what is edible, to avoid unceremonious
collisions, or whatever. The relevant knowledge might be the three-dimensional layout of
the immediate surrounds, or that ahead lies a massive tree loaded with luscious fruit, or
that crouched in the tree is an unfriendly feline whose perceptual systems are also at work
reporting the edible properties of the world. Regardless of the details, what makes the
perceptual task tricky is that the data available to a sensorium invariably underdetermine
the properties of the world that need to be known. That is, in general there are infinitely
many states of the world which are consistent with the available sense data. Perhaps the
best known example is that although the world is three-dimensional, and we perceive it as
such, each retina is only two-dimensional. Since the mapping from the world to the retina
is many-to-one, the possible states of the world consistent with the one retinal image, or
any series of retinal images, are many. The upshot of all this is that knowledge of the world
is inferred. Inference lies at the heart of perception (Marr, 1982; Fodor and Pylyshyn, 1981;
Gregory, 1970; Helmholtz, 1962, Hoffman 1983b).

An inference, reduced to essentials, is simply a list of premises and a conclusion. An
inference is said to be deductively valid if and only if the conclusion is logically guaranteed
to be true given that the premises are true. So, for example, the following inference, which
has three premises and one conclusion, is deductively valid: “A mapping from 3-D to 2-D
is many-to-one. The world is 3-D. A retinal image is 2-D. Therefore a mapping from the
world to a retinal image is many-to-one.” An inference is said to be inductively strong if
and only if it is unlikely that the conclusion is false while its premises are true, and it is
not deductively valid (see Skyrms, 1975).¢ So the following inference is inductively strong:
“The retinal disparities across my visual field are highly irregular. Therefore whatever | am

®The distinction between deductively valid and inductively strong inferences is not mere pedantry; the

distinction has important consequences for perception, but is often misunderstood. Gregory (1970, p.
160), for instance, realizes the distinction is important for theories of perception, but then claims that
“Inductions are generalizations of instances.” This is but partly true. Inductive inferences may proceed
from general premises to general conclusions, from general premises to particular conclusions, as well
as from particular premises to general conclusions (Skyrms, 1975). The distinction between inductive
and deductive inferences lies in the evidential relation between premises and conclusions.
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looking at is not flat.” Though this inference is inductively strong. it can prove false, as is

in fact the case whenever one views a random dot stereogram.

In perceptual inferences the sensory data play the role of the premises, and the
assertions about the state of the world are the conclusions. Since the state of the world
is not logically entailed by the sensory data. perceptual inferences are not of the deductive
variety — therefore they are inductive.

This is not good news. Whereas deductive inference is well understood, inductive
inference is almost not understood at all. Induction involves a morass of unresolved issues,
such as projectibility (Goodman, 1955), abduction (Peirce, 1931; Levi, 1980). and simplicity
metrics (Fodor, 1975). These problems, though beyond the scope of this paper, apply with
unmitigated force to perceptual inferences and are thus of interest to students of perception
(Nicod, 1968).

But, despite these difficulties, consider the following question: If the premises of
perceptual inferences are the sensory data and the conclusion is an assertion about the state
of the world, what is the evidential relation between perceptual premises and conclusions?
Or to put it differently, how is it possible that perceptual interpretations of sensory data
bear a nonarbitrary (and even useful) relation to the state of the world? Or to put it still
differently, why are perceptual inferences inductively strong?

Surely the answer must be, at least in part, that since the conclusion of a perceptual
inference is a statement about the world, such an inference can be inductively strong only if
it is motivated by laws, regularities, or uniformities of nature. To see this in a more familiar
context, consider the following inductively strong inference about the world: “If | release
this egg, it will fall’’. The inference here is inductively strong because it is motivated by a
law of nature — gravity. Skeptics, if there are any, will end up with egg on their feet.

Laws, regularities, and uniformities in the world, then, are crucial for the construction
of perceptual inferences which have respectable inductive strength. Only by exploiting the
uniformities of nature can a perceptual system overcome the paucity of its sensory data and
come to useful conclusions about the state of the world.

If this is the case, it has an obvious implication for perceptual research: identifying the
regularities in nature which motivate a particular perceptual inference is not only a good
thing to do, but a sine qua non for explanatory theories of perception. An explanatory
theory must state not only the premises and conclusion of a particular perceptual inference,
but also the lawful properties of the world which license the move from the former to the
latter. Without all three of these ingredients a proposed theory is incomplete.

[More precisely, at least two conditions need to be true of a regularity, such as rigidity, for
it to be useful: 1) It should in fact be a regularity. If there were no rigid objects in the world,
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rigidity would be useless. 2) It should allow inductively strong inferences from images to
the world, by making the “deception probability”, to be defined shortly. very close to zero.
For instance, let w (world) stand for the following assertion about four points in the world:
“are in rigid motion in 3-D". Let i (image) stand for the following assertion about the retinal
images of the same four points: “have 2-D positions and motions consistent with being the
projections of rigid motion in 3-D". Then what is the probability of w given i? The simple fact
that the world contains rigid objects does not in itself make this conditional probability high.
Using Bayes' theorem we find that P(w | 1) = P(w)-P(i | w)/|P(w)-P(i | w) + P(=w)-P(i | ~w)).
Since the numerator and the first term of the denominator are identical. this conditional
probability is near one only if P(w) - P(i | w) > P(~w)-P(i | ~w). And since P( w). though
unknown is certainly much greater than zero, P(w | ¢) is near one only il P(i | ~w) — let's
call this the “deception probability” — is near zero. Only if the deception probability is
near zero can the inference from the image to the world be inductively strong. The major
goal of “structure from motion’" proofs (Ullman, 1979; Longuet-Higgins and Prazdny, 1981;
Hoffman and Flinchbaugh, 1982; Bobick, 1983; Richards et al., 1983) is to determine under
what conditions this deception probability is near zero. Using an assumption of the rigidity
regularity, for instance, Ullman has found that with three views of three points the deception

probability is one, but with three views of four points it is near zero.]

9.0 The Designer

How can we claim that early perceptual processes perform inductive inferences
and exploit uniformities of nature? Isn't early perceptual processing more akin to a
(computational) reflex — a mechanistic response to the sensory inputs?

That early perception is mechanistic and reflexive seems undeniable. Nonetheless,
viewed from a different stance, inductive inferences play an important role. A metaphor
may clarify this (see also Dennett’'s 1978 discussion of the “intentional” stance). Consider
an artificial intelligence researcher who has designed and built, using VLSI technology, an
early vision processor. His hardware might, for instance, take digitized camera inputs and,
using only motion information, determine the three-dimensional structure of all the visible
objects. Now clearly the processor, viewed as a piece of hardware, is entirely mechanistic.
However, this is not the only valid view to take. From another point of view the processor is
a physical instantiation of the designer’s solution to a problem, viz., the problem of inferring
the correct three-dimensional structure from only two-dimensional motions. The designer,
in solving this problem in inductive inference, has reviewed his stock of knowledge and
found the stochastically relevant facts, such as that the world contains rigid objects, or that
the axis and speed of rotation of an object remain unchanged unless an external torque is
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applied (conservation of angular momentum). That is, his solution makes appeal, inter alia,

to laws and uniformities in nature.

Thus a part of the vision processor is an instantiation of the designer's induction. The
processor does not really “"know" about the uniformities in nature that make plausible the
induction it is instantiating. The inferences are made unconsciously (Helmholtz, 1962).

At least three components. then, are involved in an inferential account of early
perception: the perceptual hardware, the world. and the designer who establishes the
correlation between them (Schaeffer, 1972, p. 69). Failure to include one or another
component can lead to paradoxes and false problems. Ignoring the designer, for instance,
can lead to the problem of trying to distinguish between transduction and induction in early
perception. In this vein, Fodor and Pylyshyn (1981, p. 155) claim

" ...even theories that hold that the perception of many properties is
inferentially mediated must assume that the detection of some properties
is direct (in the sense of not inferentially mediated). Fundamentally, this
is because inferences are processes in which one belief causes another.
Unless some beliefs are fixed in some way other than by inference, it is
hard to see how the inferential processes could get started. Inferences
need premises.”

True, but the uninferred premises need not, indeed should not, be localized in the
perceptual hardware; if they must be reified at all, it is in the head of the designer. There is
simply no principled distinction to be drawn between, e.g., visual receptors and the visual
hardware responsible for stereo: both instantiate inductive inferences whose genesis lies
in the system designer. The receptors infer one property of the world — the pattern of
light projected at the retina. The stereo hardware infers another property of the world —
the three-dimensional shapes of visible objects. Both inferences can go wrong: electrical
or mechanical stimulation of the retina can pass as light (Helmholtz, 1962, p. 2, 13), and
stereograms can pass as three-dimensional shapes.

Some deny induction any role in perception on the grounds that perceptual hardware
simply shunts symbols around in an entirely rule-governed fashion, much like a Turing
machine. Such a rule-governed system is patently deductive, not inductive. But such
an argument, if it applies at all, applies not only to perceptual systems but also to all of
cognition. For thoroughgoing cognitive psychologists claim that all of cognition is to be
understood by analogy with Turing machines, in effect as a complicated system of rules
for shunting around symbols. In this respect there is no qualitative distinction to be made
between perception and cognition at large.” So if being rule governed is sufficient grounds

"One might argue there is a distinction: the rules for transforming cognitive symbols, unlike those
for perceptual symbols, respect the semantic content of the symbols. But even if true, this distinction
would not do. For to say that the rules for transforming cognitive symbols respect semantic content
does not deny that the rules are rules; it is simply a short way to say that the rules are complicated and
cleverly designed to do the right things. They are more versatile, perhaps, but they are mechanistic
rules nonetheless.
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for denying induction to perception, it is also sufficient grounds for denying induction to

cognition at large, certainly a reductio ad absurdum.

10.0 Conclusion

The design of the visual system exploits regularities of nature in two ways: they
underly the mental categories used to represent the world and they license inferences from
incomplete visual data to valid descriptions of the world. Two examples show both uses of
regularities, each underlying the solution to a problem in shape recognition. Transversality
underlies the mental category ‘‘part” of shape; projection of singularities underlies the
inference from images to parts in the world.

Viewed charitably, the partitioning rules presented in this paper are attractive because
(1) they satisfy several constraints imposed by the task of shape recognition, (2) they are
motivated by a regularity of nature, (3) the resulting partitions look intuitive, and (4) the rules
explain and unify several well known visual illusions. That's progress.

Remaining, however, is a long list of questions left to be answered before a com-
prehensive, explanatory theory of shape recognition is forthcoming. A partial list includes
the following: How are the partitioning contours on surfaces to be recovered from two-
dimensional images? How should the surface parts be described? All we have so far is a
rule for cutting out parts. But what qualitative and metrical descriptions should be applied to
the resulting parts? Can the answer to this question be motivated by appeal to uniformities
and regularities in the world? What spatial relations need to be computed between parts?
Although the part definitions don't depend upon the viewing geometry, is it possible or even
necessary that the predicates of spatial relation do (Yin, 1970)? How is the shape memory
organized? What is the first index into this memory?

The task of vision is to infer useful descriptions of the world from changing patterns
of light falling on the eye. The descriptions can be reliable only to the extent that the
inferential processes which build them exploit regularities in the visual world, regularities
such as rigidity and transversality. The discovery of such regularities, and the mathematical
investigation of their power in guiding particular visual inferences, are promising directions
for the researcher seeking a rigorous understanding of human vision.
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Appendix 1. Surface partitioning in detail

This appendix applies the surface partitioning rule to a particular class of surfaces:
surfaces of revolution. The intent is to convey a more rigorous understanding of the rule
and the partitions it yields. Since this section is quite mathematical, some readers might
prefer to look at the results in Fig. 16 and skip the rest.

Notation

Tensor notation is adopted in this section because it allows concise expression of
surface concepts, (see Dodson and Poston, 1979; Lipschutz, 1969: Hoffman, 1983a). A
vector in R* is x = («', 2%, ). A point in the parameter plane is («', v*). A surface

patch is x = x(u', u?) = (x'(u!, u?), «*(u', u?), #*(u', w*)). Partial derivatives are denoted

by subscripts:

ox X 9%x

Xy = 7, Xo= 713, Xi2= 573
oul’ outou?’

; etc.
Ou?’

A tangent vector is dx = X,du' + xydu® = x;du’ where the Einstein summation
convention is used. The first fundamental form is

| = dx -dx = X; - XJAduiduj = g;j(iuiduj

where the g;; are the first fundamental coefficients and ¢, j =1, 2.

The differential of the normal vector is the vector dN = N;du' and the second

fundamental form is

Il = d?x - N = x;; - Ndu'dw? = b;;du’du’

where the b;; are the second fundamental coefficients and ¢, j = 1, 2.

A plane passing through a surface S orthogonal to the tangent plane of S at some
point P and in a direction du':du’ with respect to the tangent plane intersects the surface
in a curve whose curvature at P is the normal curvature of S at P in the direction du‘:du’.
The normal curvature in a direction du:du’ is k, = Il/l. The two perpendicular directions
for which the values of k, take on maximum and minimum values are called the principal
directions, and the corresponding curvatures, k, and k., are called the principal curvatures.
The Gaussian curvature at P is K = kky. A line of curvature is a curve on a surface whose
tangent at each point is along a principal direction.
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Figure 15 Surface of revolution.

Partitions of a surface of revolution

A suiface of revolution is a set § C R* obtained by rotating a regular plane curve a
about an axis in the plane which does not meet the curve. Let the z'z? plane be the plane

of o and the #* axis the rotation axis. Let

ofu') = (z(u'), 2(u!)), e <u' <b 2u!')>0

Let 4? be the rotation angle about the z? axis. Then we obtain a map

x(u!, u?) = (z(u') cos(«?), z(u')sin(u?), 2(u'))

from the open set U = {(u!, u?) € %0 < v? < 2x, a < u! < b} into S (Fig. 15). The curve
a is called the generating curve of 8, and the z® axis is the rotation axis of S. The circles
swept out by the points of o are called the parallels of S, and the various placements of «

on S are called the meridians of S.

Let cos(u?) be abbreviated as ¢ and sin(u?) as s. Then x; = (z1¢, 718, z1) and x; =
(—zs, z¢, 0). The first fundamental coefficients are then

z? + 23 0)

g-'j=xi-xj==(
0 z?

The surface normal is
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- o

Figure 16 Partitions on several surfaces of revolution.

X; X Xg - (z,c, Z18, —'(El)

N = —
[x1 X Xz| Vz} + 2}

If we let u! be arc length along o then /2% + 2% =1 == g;; and

N = (z1¢, z18, —z)
The second fundamental coefficients are

T1121 — T1211 0 )

bis = X;; N =
? ! ( 0 -T2z

Since g1 = by = 0 the principal curvatures of a surface of revolution are

ky =bi1/g11 = 21121 — T1211
ko = bog/g2s = —2z1/z

The expression for k; is identical to the expression for the curvature along «. In fact
the meridians (the various positions of « on S) are lines of curvature, as are the parallels.
The curvature along the meridians is given by the expression for k; and the curvature along
the parallels is given by the expression for k. The expression for k. is simply the curvature
of a circle of radius z multiplied by the cosine of the angle that the tangent to « makes with

the axis of rotation.
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Observe that the expressions for &, and k. depend only upon the parameter «', not u>.
In particular, since k. is independent of «* there are no extrema or inflections of the normal
curvature aiong the paraliels. The parallels are circles. Consequently no segmentation
contours arise from the lines of curvature associated with k.. Only the minima of 4, along
the meridians are used for segmentation. Figure 16 shows several surfaces of revolution with
the minima of curvature along the meridians marked. The resulting segmentation contours

appear quite natural to human observers.

As a surface of revolution is flattened along one axis. the partitioning contours which
are at first circles become, in general, more elliptical and bow slightly up or down.
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Figure 17 Singularities of the retinal projection.

Appendix 2. Inferring part boundaries from image singularities

In general, a concave discontinuity in a silhouette indicates a part boundary (as defined
by the minima rule) on the imaged surface. This appendix makes this statement more precise
and then proves a special case.

Only two types of singularity can arise in the projection from the world to the retina
(Whitney, 1955). These two types are folds and spines (see Fig. 17). Intuitively, folds are
the contours on a surface where the viewer’s line of sight would just graze the surface, and
a spine separates the visible portion of a fold from the invisible. A contour on the retina
corresponding to a fold on a surface is called an outline (Koenderink and Van Doorn, 1976,
1982b). A termination is a point on the retina corresponding to a spine on a surface. A
T-junction (see Fig. 17) occurs where two outlines cut each other.

We wish to determine the conditions in which a T-junction indicates the presence of
a part boundary. Two results are useful here. First, the sign of curvature of a point on
an outline (projection of a fold) is the sign of the Gaussian curvature at the corresponding
surface point (Koenderink and Van Doorn, 1976, 1982b). Convex portions of the outline
indicate positive Gaussian curvature, concave portions indicate negative Gaussian curvature,
and inflections indicate zero Gaussian curvature. Second, the spine always occurs at a
point of negative Gaussian curvature. That is, the visible portion of a fold always ends in a
segment whose projected image is concave (Koenderink and Van Doorn, 1982b).
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The scheme of the proof is the following. Suppose that the folds on both sides of
a T-junction have convex regions, as shown in Fig. 17. Then the sign of the Gaussian
curvature is positive, and in fact both principal curvatures are positive, in these two regions.
Now the presence of a spine indicates that these regions of positive Gaussian curvature
are separated by a region of negative Gaussian curvature. This implies that the principal
curvature associated with one family of lines of curvature is negative in this region. But
then the principal curvature along this family of lines of curvature must go from positive to
negative and back to positive as the lines of curvature go from one hill into the valley and
back up the other hill. If this is true, then in the generic case the principal curvature will go
through a negative minimum somewhere in the valley — and we have a part boundary.

There are two cases to consider. In the first the loci where one principal curvature
goes from positive to negative (parabolic curves) surround each hill. In the second case
the parabolic curve surrounds the valley between the two hills. We consider only the first
case, the second being quite similar.

In the first case there are two ways that the lines of curvature entering the valley
from one parabolic curve might fail to connect smoothly with lines of curvature entering
the valley from the other parabolic curve: they might intersect orthogonally or not at all.
If they intersect orthogonally then the two principal curvatures must both be negative, and
the Gaussian curvature, which is the product of the two principal curvatures, must be
positive. But the valley between the parabolic contours has negative Gaussian curvature, a
contradiction.

If the lines of curvature fail to intersect then there must be a singularity in the lines of
curvature somewhere in the region having negative Gaussian curvature. However, “The net
of lines of curvature may have singular properties at umbilical points, and at them only.”
(Hilbert and Cohn-Vossen, 1952, p. 187). Umbilical points, points where the two principal
curvatures are equal, can only occur in regions of positive Gaussian curvature — again a
contradiction. (Here we assume the surface is smooth. A singularity could occur if the
surface were not smooth at one point in the valley. But in the generic case part boundaries
would still occur.)

This proof requires that the two folds of a T-junction each have a convex region. The
two folds of T-junctions on a torus do not satisfy this condition — they are always concave.
Thus it is a simple matter to determine from an image when a T-junction warrants the
inference of a part boundary.

The proof stated here is a special case. A general proof is needed which specifies
when a concave cusp in a silhouette indicates the presence of a part boundary or two
different objects. The more general proof would not use the relation between spine points
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and Gaussian curvature. The proof might run roughly as follows: a concave cusp is a
double point in the projection. A line connecting the two points on the surface which
project to the cusp necessarily lies outside the surface between the two points. But then
the surface is not convex everywhere between these two points. Consequently there is a
concave discontinuity (part boundary) between the points or the Gaussian curvature must
go negative. If the Gaussian curvature goes from positive (convex) to negative and then
back to positive (convex), one of the principal curvatures must also. But this implies it has
a negative minimum, in the general case, and so we have a smooth part boundary.

31




| Parts of Recognition Hoffman & Richards

REFERENCES

Badler, N. and Bajcsy. R. (1978) Three-dimensional representations for computer graphics

and computer vision. Computer Graphics, 12:153-160.
Ballard, D. and Brown, C. (1982) Computer Vision, New Jersey, Prentice-Hall.

Baumgart, B. (1972) Winged Edge Polyhedron Representation. STAN-CS-320, AIM-179,
Stanford Al Lab.

Binford, T. (1971) Visual Perception by Computer. /EEE Conf. on Systems and Control,
Miami.
Binford, T. (1981) Inferring Surfaces from Images. Artificial Intelligence, 17:205~244.

Bobick, A. (1983) A Hybrid Approach to Structure-from-Motion. Association for Computing
Machinery Workshop on Motion: Representation and Perception.

Brady, J.M. (1982a) Parts description and acquisition using vision. Proceedings of the
Society of Photo-optical and Instrumentation Engineers.

Brady, M. (1982b) Criteria for Representations of Shape. In: Human and Machine Vision, A.
Rosenfeld and J. Beck (Eds).

Brady, M. (1982c) Describing Visible Surfaces. In: Computer Vision Systems, A. Hanson
and E. Riseman (Eds).

Brooks, R., Greiner Russell, and Binford, T. (1979) The ACRONYM Model Based Vision
System. Proc. Int. Joint Conft. Artificial Intelligence, 6:105-113.

Clowes, M. (1971) On Seeing Things. Artificial Intelligence, 2:79-116.
Dennett, D. (1978) Intentional Systems. In: Brainstorms, Montgomery, Vermont, Bradford.

Do Carmo, M. (1976) Differential Geometry of Curves and Surfaces, New Jersey, Prentice-
Hall.

Dodson, D. and Poston, T. (1977) Tensor Geometry, London, Pitman.
Duda, R. and Hart, P. (1973) Pattern Classification and Scene Analysis, New York, Wiley.
Fodor, J. (1983) The Modularity of Mind, Cambridge, MIT Press.

Fodor, J. and Pylyshyn, Z. (1981) How Direct is Visual Perception?: Some Reflections on
Gibson’s “Ecological Approach’. Cognition, 9:139-196.

Gregory, R. (1970) The inteliigent Eye, New York, McGraw-Hill.

32




Parts of Recognition Hoffman & Richards

Guillemin, V. and Pollack, A. (1974) Differential Topology, New Jersey. Prentice-Hall.

Guzman, A. (1969) Decomposition of a Visual Scene into Three-Dimensional Bodies. In:
Automatic Interpretation and Classification of Images, A. Grasseli (Ed), New York,
Academic Press.

Helmholtz, H. (1962) Treatise on Physiological Optics, Volume 3, Dover reprint.

Hilbert, D. and Cohn-Vossen, S. (1952) Geometry and the Imagination, New York, Chelsea.
Hoffman, D. (1983a) Representing Shapes for Visual Recognition, MIT Ph.D. Thesis.
Hoffman, D. (1983b) The Interpretation of Visual lllusions, Scientific American, 249:154-162.

Hoffman, D. and Richards, W. (1982) Representing Smooth Plane Curves for Visual Recog-
nition: Implications for Figure-Ground Reversal. Proceedings of the American Association
for Artificial Intelligence, 5-8.

Hollerbach, J. (1975) Hierarchical Shape Description of Objects by Selection and Modification
of Prototypes, MIT Al-TR-346.

Huffman, D. (1971) Impossible Objects as Nonsense Sentences. Machine Intelligence 6.

Koenderink, J. and van Doorn, A. (1976) The Singularities of the Visual Mapping. Biological
Cybernetics, 24:51-59.

Koenderink, J. and van Doorn, A. (1979) The Internal Representation of Solid Shape with
Respect to Vision. Biological Cybernetics, 32:211-216.

Koenderink, J. and van Doorn, A. (1980) Photometric Invariants Related to Solid Shape.
Optica Acta, 7:981-996.

Koenderink, J. and van Doorn, A. (1982a) Perception of Solid Shape and Spatial Lay-Out
Through Photometric Invariants. In: Cybernetics and Systems Research, R. Trappl
(Ed), North-Holland Publishing Co.

Koenderink, J. and van Doorn, A. (1982b) The Shape of Smooth Objects and the Way
Contours End. Perception, 11:129-137.

Levi, I. (1980) The Enterprise of Knowledge, Cambridge, MIT Press.

Liberman, A., Cooper, F., Shankweiler, D., and Studdert-Kennedy, M. (1967) The Perception
of the Speech Code. Psychological Review, 74:431-461.

Lipschutz, M. (1969) Differential Geometry, (Schaum’s Outline), New York, McGraw-Hill.

Mackworth, A. (1973) Interpreting pictures of polyhedral scenes. Artificial Intelligence,
4:121-137.




Parts of Recognition Hoffman & Richards

Marr, D. (1977) Analysis of Occluding Contour. Proc. R. Soc. Lond. B,-197:441-475,
Marr, D. (1982) Vision, San Francisco, Freeman.

Marr, D. and Nishihara, H.K. (1978) Representation and Recognition of the Spatial Organization
of Three-Dimensional Shapes. Proc. R. Soc. Lond. B., 200:269-294.

Nicod, J. (1968) Geometry and Induction, Berkeley, University of California Press.

Nishihara, H.K. (1981) Intensity, Visible-Surface, and Volumetric Representations. Artificial
Intelligence, 17:265-284.

O'Rourke, J. and Badler, N. (1979) Decomposition of Three-Dimensional Objects into
Spheres. /IEEE Transactions on Pattern Analysis and Machine Intelligence 1.

Pentland, A. (1983) Fractal-Based Description. Proc. Int. Joint Coni. Artificial Intelligence.
Peirce, C. (1931) Collected Papers, Cambridge, Harvard University Press.

Richards, W., Rubin, J.M. and Hoffman, D.D. (1982) Equation counting and the interpretation
of sensory data. Perception, 11, 557 -576, and MIT Al Memo 618 (1981).

Schaeffer, F. (1972) He Is There and He Is Not Silent, Wheaton, lllinois, Tyndale House.
Skyrms, B. (1975) Choice and Chance, Belmont, Wadsworth Publishing Co.

Soroka, B. (1979) Generalized Cylinders from Parallel Slices. Proc. Pattern Recognition and
Image Processing:421-426.

Spivak, M. (1970) Differential Geometry, Volume 2, Berkeley, Publish or Perish.

Sutherland, N.S. (1968) Outlines of a Theory of Visual Pattern Recognition in Animals and
Man. Proc. R. Soc. Lond. B, 171:297 -317.

Thompson, D’Arcy (1968) On Growth and Form, Cambridge, University Press of Cambridge.

Turton, W. (1819) A Conchological Dictionary of the British Islands, (frontispsiece), printed
for John Booth, London. [This early reference was kindly pointed out to us by J.F.W.
McOmie.]

Waltz D. (1975) Understanding Line Drawings of Scenes with Shadows. In: The Psychology
of Computer Vision P. Winston (Ed), New York, McGraw-Hill.

Whitney, H. (1955) On Singularities of Mappings of Euclidean Spaces. |. Mappings of the
Plane into the Plane. Ann. Math., 62: 374-410.

Witkin, A.P. (1983) Scale-Space Filtering. Proc. Int. Joint Conf. Artificial Intelligence.

Yin, R. (1970) Face Recognition by Brain-Injured Patients: A Dissociable Ability? Neuro-
psychologia, 8:395-402.

Yuille, A. (1983) Zero-crossings on Lines of Curvature. MIT Al Memo 711.

34




