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ABSTRACT: The organization of movement in the changing retinal image provides a valuable
source of information for analyzing the environment in terms of objects, their motion in space,
and their three-dimensional structure. A description of this movement is not provided to our visual
system directly, however; it must be inferred from the pattern of changing intensity that reaches
the eye. This paper examines the problem of motion measurement, which we formulate as the
computation of an instantanecous two-dimensional velocity field from the changing image. Initial
measurements of motion take place at the location of significant intensity changes, as suggested by
Marr and Ullman (1981). These measurements provide only one component of local velocity, and
must be integrated to compute the two-dimensional velocity ficld. A fundamental problem for this
integration stage is that the velocity field is not determined uniquely from information available
in the changing image. We formulate an additional constraint of smoothness of the velocity field,
based on the physical assumption that surfaces are generally smooth, which allows the computation
of a unique velocity field. A theoretical analysis of the conditions under which this computation
yields the correct velocity field suggests that the solution is physically plausible. Empirical studies
show the predictions of this computation to be consistent with human motion perception.
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1. INTRODUCTION

The organization of movement in the changing retinal image provides a valuable source
of information for analyzing the environment in terms of objects, their motion in space, and
their three-dimensional structure. A description of this movement is not provided to our visual
system directly, however; it must be inferred from the pattern of changing intensity that reaches
the eye. This paper presents a computational study of early motion analysis, whose focus is the
measurement of motion in the changing image. The motivation of this work is to understand the

nature of the computations that underly motion measurement in the human visual system.

The changing retinal image may be represented by a two-dimensional array of time-dependent
light intensities, I(z, y,t). Motion in the image may be described by a two-dimensional vector field
V(z,y,t) that specifies the direction and magnitude of velocity at points with coordinates (z,y) at
time ¢. The measurcment of visual motion may then be formulated as the computation of V(z, y,t)
from I(z,y,t). For some visual tasks, it may be sufficient to compute only certain properties of the
velocity field; for example, to respond quickly to a moving object, motion must be detected, but
not necessarily measured. Other tasks, such as the recovery of three-dimensional structure, require
a more complete and accurate computation of the velocity field (Ullman 1980, 1983a,b; Prazdny
1980; Clocksin 1980; Longuct-Higgins and Prazdny 1981; Longuct-Higgins 1981).

The measurecment of motion poses significant theoretical problems for a computational study.
First, local motion measurements, obtained directly from the changing image, in general only
provide one component of local velocity. This is a consequence of the aperture problem, illustrated
in Figure la (Wallach 1976; Fennema and Thompson 1979; Marr and Ullman 1981; Horn and
Schunck 1981, Adelson and Movshon 1982). If the motion of the edge E is to be measured by a
local motion detector that examines only an area A that is small compared to the overall extent of
the edge, the only motion that can be extracted is the component ¢ in the direction perpendicular
to the local orientation of the edge. A local detector cannot distinguish between motions in the
directions b, ¢ and d in Figure la. In Figures 1b and lc, a circle and square undergo pure
translation in the directions given by the vectors at the center of the figures. The vectors along the
contours represent the local perpendicular components of velocity that can be obtained directly
from the changing image. To compute the true motion of the figure, a sccond stage of analysis is

required, that combines these local measurcments.

This combination stage faces a deeper theoretical problem, however; the movement of
clements in the image is not determined uniquely by the pattern of changing intensitics. Thus,

the true velocity field is not determined uniquely from the initial local motion measurements.




Figure 1. The Aperture Problem. (a) An operation that views the moving edge E through the local
aperture A can compute only the component of motion ¢ in the direction perpendicular to the edge.
The true motion of the edge is ambiguous. (b) and (c¢) The perpendicular components of velocity for a
translating circlé and square. .

Two factors contribute to this ambiguity of motion. The first is the loss of information due to
the projection of the three-dimensional world onto a two-dimensional image; multiple surfaces,
undergoing different motions in space, may project to the same two-dimensional image. The
second factor is the loss of information due to the projection into a pattern of changing intensity.
The image that a surface projects onto the cye may not be sufficient to determine its movement
in space. As an extreme example, a matte white sphere, rotating about a central axis, cannot be

determined as such, on the basis of its projected image.

Figure 2 preséms two simple examples that illustrate the ambiguity of the velocity field. In
~ Figure 2a. the solid and dotted lines represent the image of a moving circle, at different instants

of time. In the first frame (solid line), the circle lics parallel to the image plane, while in the
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Figure 2. Ambiguity of the Velocity Field. (a) The arrows represent two possible velocity fields that
are consistent with the changing image. (b) The curve C: rotates, translates and deforms over time to yield
the curve C.. The velocity of the point p is ambiguous.

second frame (dotted line), the circle is slanted in depth. One velocity field that is consistent with
the two frames is derived from pure rotation of the circle about the central vertical axis, as shown
to the left in Figure 2a. (The arrows represent a sample of the local velocity vectors along the
circle.) There could also be a component of rotation in the plane of the circle, about its center, as
shown to the right in Figure 2a. In addition, this changing image might represent the projection
of a different three-dimensional curve that is dcformihg over time, giving rise to yet another
projected velocity field. This ambiguity is not peculiar to symmetric figures such as circles; it is
a fundamental problem that is always present. In Figure 2b, the curve C, rotates, translates and
deforms over time, to yield the curve C. The motion of points from C; to C, is again ambiguous
(consider, for example, different possible velocities for the point p). In general, there are infinitely

‘many two-dimensional velocity fields that are consistent with the changing image.

To compute motion unique1y, additicnal constraint is therefore required, in the form of basic
assumptions about the physical world that gencrally hold true. The main focus of this paper is
the derivation of a particular constraint, the smoothness constraint, that allows the computation
of a unique two-dimensional velocity ficld from the changing image of threc-dimensional surfaces
undergoing general motion in space. The constraint is developed formally in Scction 3. In Section
4, we briefly present a velocity field 'algorithm that embodies this constraint, and show some
results of the algorithm for a number of motion sequences. The predictions of the algorithm
on known perceptual demonstrations suggest that a constraint such as smoothness may underly

motion measurement in the human visual system.




2. BACKGROUND

In this section, we present some essential background material regarding three aspects of
motion mecasurement that are relevant to the present study: (1) the possible existence of short
range and long range motion processes in human vision, (2) the nature of the initial motion
measurements from the changing image, and (3) additional assumptions for motion measurement

that have been suggested previously.

2.1 Two Motion Processes in Human Vision

The computation of an instantaneous velocity field requires that movement in the image be
rdughly continuous. There are alternate representations of visual motion that are not so restricted.
For example, motion can be described by an explicit correspondence over time, between elements
in the image that represent the same physical feature under motion (Ullman 1979a). Motion
measurement in this case requires locating identifiable elements in the changing image, and
matching them over time. The input for a correspondence scheme may consist of a sct of discrete
frames, with large spatial scparations between corresponding elements. The perception of motion
by the human visual system also does not require that a stimulus move continuously across the
visual field. With appropriate spatial and temporal presentation parameters, a stimulus presented
sequentially can produce the impression of smooth, uninterrupted motion, as in motion pictures
(Wertheimer 1912). The visual system can "fill-in" the gaps in the discrete presentation even when
the stimuli are scparated by up to several degrees of visual arc (Zeeman and Roelofs 1953) and
by long temporal intervals (up to 400 milliseconds (Necuhaus 1930)). Why, then, have we chosen

a formulation of the motion mcasurement problem that relies on roughly continuous motion?

More recent psychophysical investigation has suggested that in the human visual system,
motion may be analyzed by two different systems, termed short range and long range processes
by Braddick (1974, 1980). It has bcen proposed that the short range process analyzes continuous
motion, or motion that is discrete, but with spatial displaccments at most 10’ — 15/ of visual
arc, and temporal intervals up to 60 — 100 milliscconds. The long range process would then
analyze motion over larger spatial and temporal intervals. The influence of spatial and temporal
paramcters on the smoothness of perceived motion was investigated by many researchers (for
example, Wertheimer 1912; Korte 1915; Holvand 1935; Neff 1936; Corbin 1942; Graham 1965;
Kahneman and Wolman 1970; Kolers 1972; Attncave and Block 1973). A distinction was made
between the analysis of short range and long range motion because there exists visual patterns that
yicld qualitatively different perceptions of motion, depending on the range of spatial and temporal

~ displacements between frames, Examples include the Ternus configuration (Ternus 1926; Pantle
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Figure 3. Initial Processing of an Image. (a) The original image, containing 320 X 320 picture elements.
(b) The convolution of the image with a V%G operator. (c) The resulting zero-crossing contours.

and Picciano 1976), patterns yielding reversed phi (Anstis 1970, 1980; Anstis and Rogers 1975),
and dynamic random dot patterns (Regan and Spekreijse 1970; Julesz 1971; Braddick 1974).

The long range motion phenomena illustrate the ability of the human visual system to
derive a correspondence between elements in the changing image, over considerable distances and
temporal intervals. Under these conditions, there is no continuous motion of elements across the
image to be measured Ydircc_:tly. Thus, it is likely that a correspondence computation underlies
the long range process. Short range motion is roughly continuous, however; we propose that the
measurement of motion by the short range process may therefore be appropriately formulated as

the computation of an instantancous velocity field.

2.2 The Initial Motion Measurements

In order to detect movement in a changing image, there must be a variation of intensity
over space and time; the combination of the two variations can be used to measure the direction
and magnitude of velocity. The explicit comparison of spatial and temporal derivatives of intensity
forms the basis of a class of motion mecasurcment schemes referred -to as gradient schemes
(Fennema and Thompson 1979; Horn and Schunck 1981; Marr and Ullman 1981). Other examples
of motion detection mechanisms that utilize spatial a.nd temporal intensity changes include those
suggested by Hassenstein and Reichardt (1956) and Barlow and Levick (1965).

[n principle. motion measurcments may be obtained wherever there is a variation of intensity
over space und time. Marr and Ullman (1981) proposed, however, that initial motion mcasurcments
in the human system arc made only at the locations of significant intensity changes. To detect

these intensity changes, Marr and Hildreth (1980) proposed that a powerful operator for the.




initiél filtering of an imagé is the Laplacian of a Gaussian, V*G (approximated in shape by
the difference of two Gaussian functions). The elements in the output of an image convolved
with V2@, which correspond to the locations of intensity changes, arc the zero-crossings (Marr
and Poggio 1979). Figure 3 shows an image that has been convolved with a V2G operator,
and the resulting zero-crossing contours. Marr and Ullman (1981) proposed that initial motion
measurements take place at the locations of these zero-crossings, using a mechanism that combines
spatial and temporal gradients of the filtered image (a second mechanism was proposed by Poggio
(1983)).

From a computational standpoint, restricting the measurement of motion to the location

of signiﬁéant intensity changes, that give rise to zero-crossings in the filtered image, has two
advantages over schemes that base the initial measurements of motion on variations in the original
image intensities, wherever the image intensity gradient is nonzero. First, motion measurements are
more reliable where the intensity gradient is steeper. The zero-crossings of V2G*I correspond to
points in the image at which the intensity gradient is locally maximum, yielding the most reliable
local velocity measurements. Second, the zero-crossings are tied more closely to physical features;
if they move, it is more likely to be the conscquence of movement of an underlying physical
surface. There are confounding factors, such as changing illumination, that cause intehsity to
" change locally. A scheme that infers motion directly from changing intensity is'clearly susceptible
to incorrectly inferring motion from changes caused 'by these confounding factors. While the
zero-crossing contours may also be influenced by factors such as changing illumination, their

positions are generally more stable.

In two dimensions, the initial measurements face the aperture problem. For the case of
contours, local motion mcasurem‘ents provide only the component of motion in the direction
perpendicular to the orientation of the contour. The component of velocity along the contour
remains undectected. More formally, the two-dimensional velocity field along a contour may be
described by the vector function V(s), where s denotes arclength. V(s) can be decomposed into
components tangent and perpendicular to the contour, as illustrated in Figure 4. uT(s) and u-L(s)
arc unit vectors in the directions tangent and perpendicular to the curve, and v (s) and v-(s)

denote the two components:
V(s) = v T (s)uT(s) + vLt(s)ul(s)
" The component v--(s), and direction vectors uT(s) and uL(s), are given dircctly by the initial

measurements from the changing image. The component v T (s) is not. and must be recovered,

to compute V(s). Intuitively, the set of measurements given by v-l(s) over an extended contour




Figure 4. Decomposition of Velocity. The local velocity vector V(s) is decomposed into components
perpendicular and tangent to the curve. u-(s) and u (s) are unit direction vectors, and v-1(s) and v T (s)
are the two velocity components.

should provide considerable constraint on the motion of the contour. Additional constrairit is still
required, however, to determine this motion uniquely. Thus the corriputation of V(s) requires
the integration of the constraints provided by v--(s) along the contour, together with additional

constraints necessary to compute V(s) uniquely.
2.3 Additional Assumptions for Motion Measurement

Much of the previous work in motion analysis assumes pure translation of objects in the
image plane. Most gradient schemes, for éxample, assume that velocity is constant over an area
of the image (Fennema and Thompson 1979; Marr and Ullman 1981). For gradient schemes, the
constraint on velocity imposed by a single measurement of v-L(s) can be illustrated graphically in
velocity space, in which the z and y axes represent the z and y components of velocity, which
we denote by V. and V,, shown in Figure 5. When mapped to velocity space, the velocity
vector at a point on the contour must terminate along the line ! perpendicular to the vector
v-l(s)ut(s); examples arc shown by the dotted arrows. For the case of uniform translation, the
lines of constraint formed by the measurement of v-L(s) along a contour intersect at a single point
in velocity space. Some schemes for motion measurcment make explicit use of this intersection
point (Fennema and Thompson 1979; Thompson and Barnard 1981; Adclson and Movshon 1982).
Marr and Ullman (1981) proposcd‘ a zero-crossing based scheme, in which cach local motion
measurement restricts the true direction of velocity of a patch to lie within a 180° range of
directions to one side of the zero-crossing contour. A set of measurcments taken at different
orientations along the contour further restrict the allowable velocity directions, until a single

direction is obtained, which is consistent with all the local measurements.
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Figure 5. Velocity Constraints in Velocity Space. The z and y axes represent the z and y components
of velocity, V. and V,. v-1(s) is the perpendicular component of velocity, and u-(s) is the unit perpendicular
direction vector, at a point p on the image curve. The velocity vector at p must project to the line [;
examples are shown with dotted lines.

Motion measurement schemes based on the cross-correlation of intensity, used both in
computer vision (Smith and Phillips 1972; Leese, Novak and Taylor 1970; Lillestrand 1972;
Wolferts 1974) and in modelling biological vision systems (Reichardt 1961; Anstis 1970, 1980; Bell
and Lappin 1973; Lappin and Bell 1976; Pantle and Picciano 1976; Petersik, Hicks and Pantle
1978), also rely on pure translation. In addition, several correspondence schemes assume local

translation of features in the image (for example, Potter 1975, 1977; Lawton 1983).

Some motion measurement schemes allow objects to undergo rigid rotation and translation
in the image plane (for example, Davis, Wu and Sun 1982; Nagel 1982; Ullman and Hildreth
1983). For the case of contours moving rigidly in the image, if the dircction of velocity is known
- at two points on the contour, then the direction of velocity may be obtained everywhere, using a
simple geometric construction (Ullman and Hildreth 1983). If, in addition, vl (s) is known along

the contour, the full velocity ficld V(s) may be computed.

Mecthods for motion measurcment that assume rigid motion in the image plane may be
uscful for the initial detection and rough measurement of motion in the periphery, the analysis of
motion during smooth pursuit cye movements, or the recovery of observer motion from optical
flow (Prazdny 1980; Longuct-Higgins and Prazdny 1981: Bruss and Horn 1983; Lawton 1983).
Analysis of the projected motien of arbitrary surfaces undergoing rigid and nonrigid motion in

space requires a more general assumption.




3. THE SMOOTHNESS CONSTRAINT

In this section we derive a more general constraint on the velocity field, that allows the
computation of the projected motion of three-dimensional surfaces that move freely in space, and
deform over time. We rely on the physical assumption that the real world consists predominantly
of solid objects, whose surfaces are generally smooth compared with their distance from the viewer.
A smooth surface in motion usually generates a smoothly varying velocity field. Thus, intuitively,
we seek a velocity field that is consistent with the motion measurements derived from the changing
image, and which varies smoothly. Unfortunately, there is an infinity of velocity fields that satisfy
these two properties. Horn and Schunck (1981), in their work on the optical flow computation,
suggest that a single solution may be obtained by finding the velocity field that varies as little as
possible. In the remainder of this section, we show how this constraint may be formulated more
precisely, in a way that guarantees a velocity field solution that is mathematically unique and

physically plausible.
3.1 Measuring Variation in Velocity

To find the velocity field that varies the least, some means of measuring the variation in
velocity along a contour is required. This can be accomplished in many ways. For example, we
could measure the change in direction of velocity as we trace along the contour. Total variation in
velocity could then be defined as the total change in direction over the entire contour. A second
possibility is to measure the change in magnitude of velocity along the contour. Third, the change
in the full velocity vector could be measured, incorporating both the direction and magnitude of
velocity. Other measures are also pdssiblc. The goal of the computation is to find a velocity field
that is consistent with the changing image, and minimizes one of these measures of variation in

velocity.

A mecasure of variation may be described more formally by defining a mathematical functional,
©, which maps the space of all possible vector ficlds (along the contour), V, into the real numbers:
0:V — R. This functional should be such that the smaller the variation in the velocity field, the
smaller the rcal number assigned to it. Two candidate velocity ficlds may ihcn be compared,
by comparing their corresponding rcal numbers. This formulation allows the development of an

~cxplicit method for computing the velocity field of least variation.

A sct of functionals can now be derived, based on the measures of variation that were
previously mentioned informally: (1) variation in the full velocity vector, V(s). (2) variation in the

direction of velocity, and (3) variation in the magnitude of velocity, all with respect to the curve.




d .
S Vx
C
a Y
' b.
V4
a9 -
<5
e —
VX

4

C. d.

Figure 6. Measuring Variation in Velocity. (a) The velocity vectors V(s) are displayed at two nearby ,
points on the image curve C. (b) The velocity vectors drawn in velocity space, where % is indicated by
the dotted arrow. (c) The direction of velocity for points on the contour is represented by the angle . (d)
The velocity vectors of (c) are drawn in velocity space, where 42 is shown. ’

1. Variation in V(s)

The local variation of V(s) with respect to the contour is given by -33; A scalar measure may

aV
ds

image contour ¢ arc shown. The vectors are translated to a common origin in velocity space in

be obtained by taking its magnitude: . In Figure 6a, two necarby velocity vectors along the

Figurc 6b, where the vector —?% is shown as a dotted arrow. A measure of the total variation in the
velocity field over an entire contour may be derived by integrating this local measure, suggesting

a functional such asi
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o(V) = /

Variations on this functional may also be considered, involving higher order derivatives, or

ov

—|d.
ds g

higher powers, such as:

a2V

8

2
ds

ds or @(V):/l%\;

2. Variation in Direction

Let the direction of velocity be described by the angle ¢, measured in the counterclockwise
direction from the horizontal, as shown in Figure 6c. In Figure 6d, the local change in direction
for two nearby velocity vectors along the image contour, given by %%, is shown in velocity space.
Total variation in direction along the contour may again be obtained by integrating this local

measure, leading to functionals such as the following:

O
0= [|2¢s
o) = [ |%}es
or variations involving higher order derivatives, or higher powers.

3. Variation in Magnitude

Finally, the total change in magnitude of velocity alone could be measured, using functionals

such as:

o(V) = / ig-‘ds

Again, we could also consider variations on this measure.

The functional that is used to measure variation may also incorporate a measure of the
velocity field itself, rather than strictly utilizing changes in the velocity ficld along the contour,
by incorporating a term which is a function of |V|. This might be uscful if we sought a velocity
ficld that also exhibits the least total motion. In addition, the functional could become arbitrarily

. . . . AV A 5 7 . . .
complex in its combination of l%}!, 152 ,9];\;-1 or higher order derivatives.

Given that there are many possible measures of variation, what criteria can be used to choose
a single measure? First, from a mathematical point of view, there should exist a unique velocity ficld
that minimizes the particular measure of variation; this requirement imposcs a sct of mathematical

constraints on the functional. Second, the velocity field computation should yicld solutions that are
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physically plausible. Third, if we suggest that such a constraint underlics the motion computation
in the human visual system, the minimization of this measure of variation should yicld a velocity
field that is consistent with human motion perception. These three criteria are important for any

additional assumption that is proposed for the motion measurement computation.

3.2 Mathematical Uniqueness of the Velocity Field

An examination of these measures of variation from a mathematical viewpoint suggests that
a measure incorporating the change in the full velocity vector is necessary for the velocity field
computation. The use of functionals that incorporate only a measure of direction or magﬁitude of
velocity, for example, does not in general lead to a unique velocity field solution (Hildreth 1983).
It can be shown, however, that given a simple condition on the constraints that are derived from
the image, there exists a unique velocity field that satisfies these constraints, and minimizes the
particular measure of variation given by: [ |%¥[2ds. To obtain this result, we take advantage of
the analysis used by Grimson (1981) for evaluating possible functionals for performing surface
interpolation from sparse stereo data. The basic mathematical question is, what conditions on the
form of the functional, and the structure of the space of velocity fields, are needed to guarantee
the existence of a unique solution? These conditions are captured by the following thcorem from

functional analysis (see also (Rudin 1973)):

Theorem: Suppose there exists a complete semi-norm © on a space of functions H, and
that © satisfies the parallelogram law. Then, every nonempty closed convex set E C H
contains a unique element v of minimal norm, up to an element of the null space. Thus,
the family of minimal functions is

{v+s|seS}
where
S={w|v+weEINN
and N is the null space of the functional ‘

N = {u]| 6(u) = 0}.

In Appendix I, we first show that the functional @ = {f l%¥]2ds}% is a complete semi-norm that
satisfics the parallelogram law. Second, we show that the space of possible velocity fields that
satisfy the constraints derived from the changing image, is convex. It then follows from the above
theorem that this space contains a unique clement of minimal norm, up to possibly an clement

of the null space. The smoothness measure is non-negative, so that minimizing {f ]-ﬂi‘#]‘zds}% is

ds

ds

equivalent to minimizing J |2Y|2ds.
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Figure 7.-Uniqueness of the Velocity Field. (a) The constraint imposed by a single measurement of v—L(s) )

on the contour C. Oaly a uniform translation along the line L, can be added to the velocity field. (b) The
constraint imposed by two measurements. of v-(s) on C.

The null space in this casc is the set of constant velocity ficlds, because the condition that
1) [%‘}Fds = 0 implies that %—\5—7 = 0 everywhere, which implies that V(s) is constant. Suppose

there is a point (z(s;), y(s;)) on the contour, where v--(s;) is known. This measurement constrains

the velocity V(s;) to lie along the line L; parallel to the tangent of the contour at this point, as
shown in Figure 7a. Suppose there is a velocity field that is consistent with v-1(s;). A uniform
translation component can then be added only along the direction of Ly, in order to obtain another
velocity field that is still consistent with this local measure. If a second measurement v-L(s;) is
known at a pdint (z(s;), y(s;)), for which the direction of the tangent is different (see Figure 7b),
then a uniform translatioﬁ component can be added only along this second direction, in order to
obtain a velocity ficld that is still consistent with v-1(s,). A uniform translation cannot be added
to the entire velocity field, which is consistent with both local measurements. Thus, we conclude

the following:

If v-(s) is known everywhere along the contour, and there exists at least two poinis at
which the local orientation of the contour is different, then there exists a unique velocity
Jield that satisfies the known velocity constraints and minimizes [ ]%]ws.

An extended straight Tine does not yield measurements at two different orientaticns, but in - all

other cases, there is sufficient information along a contour to guarantee a unique velocity field
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solution. The smoothness constraint can be used to compute a projected two-dimensional velocity
ficld for any three-dimensional surface, whether rigid or nonrigid, undergoing general motion in
space. While it is not yet clear whether this general formulation of the smoothness constraint,
or the particular measure [ |%¥|2d8, is the most appropriate for the motion computation, it is
important that this measure satisfies certain essential mathematical requirements, that the other
measures do not. It is essential that the computation underlying the measurement of motion be

mathematically well-founded.

3.3 Physical Plausibility of the Velocity Field Solution

The second criterion for evaluating a particular measure of variation in velocity is the physical

plausibility of the resulting solution. One question that can be asked is, under what conditions
will the velocity field that minimizes [ l%lzds be the correct'physical velocity field? If we assume
orthographic projection of the scene onto the image, there are at least two classes of motion for
which this is true. The first consists of arbitrary rigid objects undergoing pure translation, In this
case, %‘s—{ = 0 everywhere along contours in the image, and hence [ ;%éi';zds = 0. Since zero is

- the smallest value that the measure can obtain, it follows that if there exists a valid solution that

is consistent with pure translation, then this solution minimizes [ l%—‘gPds. Consequently, motion
measurement schemes that rely on pure translation (such as Fennema and Thompson 1979; Marr
and Ullman 1981; Adelson and Movshon 1982) address a special case of this more general method.

The second class of motions includes rigid polyhedra, undergoing general motion in space.

In Appendix II, we show the following:

Suppose that a rigid three-dimensional object, consisting of straight lines intersecting
in space, projects onto the image plane, using orthographic projection, in such a way
that line intersections are preserved (that is, two lines intersect in the image if and
only if their generators intersect in space). Further, suppose that this object undergoes a
general displacement in_space. Then the two-dimensional velocity field that satisfies v-1(s)
measured along lines in the image, and minimizes [ |%—Y|2ds, is the correct projected
two-dimensional velocity field,

The proof of this result takes advantage of the fact that the velocity field varics linearly along a
straight line that is moving rigidly in space. The rigid motion of simple polygons in the image
plane is a special case of this class of motions, for which an algorithm that minimizes J }%¥|2ds

is guaranteed to compute the correct velocity ficld.

Recently, Yuille (1983) derived a general condition under which the velocity field that

minimizes f| ")‘7 |*ds is the correct velocity field. Let V/(s) denote the true projected two-dimensional
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velocity field for a curve in motion, and let T(s) denote the tangent vector along the curve. If the

following relationship holds at every point on the curve:

then the velocity field V(s) that satisfies the constraints imposed by v-(s) and minimizes [ |%¥[2ds
is the true velocity field V/(s). The two classes of motion mentioned above correspond to cases

for which %2—5\{—' = 0 along the curve, so that this general condition holds trivially.

For the class of smooth curves, moving arbitrarily in space, the velocity field of least variation
is, in general, not the physically correct one. Empirical studies suggest, however, that it is often
qualitatively similar (Hildreth 1983). Where the two velocity fields differ significantly, it appears
that the smoothest velocity field may be more consistent with human motion perception. This

claim is investigated further in the next section.

A possible constraint on the velocity field, that is not considered explicitly, is the rigidity
of the underlying surface. The computation of a smoorhest velocity field does not necessarily
seck a solution that corresponds to rigid motion, in either two or three dimensions. This may
at first scem physically implausible. When a three-dimensional curve rotates in space, however,
its two-dimensional projection may undergo significant distortion in the image. Without knowing
the three-dimensional structure of the curve, it is very difficult, if not impossible, to find a
two-dimensional velocity field that corresponds to a single rigid motion in three dimensions.
It is also the case that some of the motion that we encounter arises from surfaces that are
nonrigid. If the analysis of motion is a two-stage process, with the measurcment of two-dimensionai
motion preccding the derivation of three-dimensional structure from motion, a constraint such as
smoothness may be the most restrictive type of constraint that may be used, which yiclds a unique

solution, and still allows the analysis of general motion.
4. AN ALGORITHM AND EXAMPLES

The velocity ficld computation has been formulated as an optimization problem. We seck a
solution that satisfies the constraints imposed by v-L(s), and minimizes the measurc of variation
given by: [ |%¥|2ds. The computation may also be described as sccking a solution for which
neighboring velocity vectors are as similar as possible. To further test the adequacy of this approach.
it is nccessary to specify an algorithm, and cxamine its results for a number of motion sequences.
An important aspect of this formulation is that it lends itself naturally to algorithms that are

biologically feasible, in that they involve simple, local, parallel operations (Ullman 1979b; Grimson
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» Figure 8. Pure Translation. (a) and (c) The arrows represent a sampling of the true velocity field for
a translating polygon and ellipse. (b) and (d) The initial perpendicular velocity vectors.

1981; Marr 1982). To implement the computation, we chose a standard iterative algorithm from
mathematical programming, known as the conjugate gradient algorithm (Luenberger 1973). This
particular algorithm is certainly not appropriate as a model for human vision. Our aim is to test
the basic idea of computing the velocity field of least variation. If the results of the algorithm
support the feasibility of this idea, from a physical and perceptual viewpoint, we can then explore

alternative algorithms to implement the theory, that are more appropriate for the human system.

A detailed account of the application of the conjugate gradicnt algorithm to the velocity field
computation is given in Hildreth (1983). Because the image is discrete, an image contour consists
of a set of n discrete points. The input to the algorithm is the set of n perpendicular components
of velocity along the contour. The output of the algorithm is the sct of z and y components of
velocity at the n poihts. The algorithm computes the vclociiy componénts that minimize a discrete

correlate to the continuous functional, subject to the constraint imposed by v-t(s).
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Figure 9. Rotating Polygon. (a) The true velocity field for a polygon rotating rigidly in the image about the
point O. (b) The initial perpendicular velocity vectors. (c) The computed velocity field of least variation.

4.1 Idcal Smooth Curves

We begin with some simple curves, undergoing rigid motion. For this first set of examples,
the curves and their perpendicular cbmponents‘ of velocity were gencrated analytically from a
known velocity field, and therefore represent ideal input for the algorithm. Many of the examples
were chosen because perceptual studies indicate that human observers see motions that differ from

the true motion of the curves.

1. Rigid Translation in the Image Plane

In Figures 8a and 8c, a sampling of the true velocity ficld is shown for two curves, a polygon
and an cllipse, translating rigidly in the image plane. Figures 8b and 8d illustrate the perpendicular
velocity vectors v--(s)u-(s),- which form the input to the algorithm. In this case, the velocity ficlds

of least variation (not shown here) arc identical to the true velocity fields, as expected.
2. Polygon Rotating in the Iinage Plane

Figure 9 illustrates the true velocity field, initial perpendicular velocity vectors, and smoothest
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Figure 10. Rotating Ellipse. (a) The true velocity field for an ellipse rotating rigidly in the image about the
point O. (b) The initial perpendicular velocity vectors. (c) The computed velocity field of least variation.

velocity field for a polygon rotating rigidly in the image plane, about the point O. From the
theoretical results of Section 3.3 and Appendix II, we expect to obtain the correct velocity field in

this case. Figure 9¢ shows that the computed smoothest velocity field is in fact the correct one, -
3. Rotating Ellipse

Figure 10 illustrates the true velocity field, initial perpendicular velocity vectors, and smoothest
velocity field for an ellipse rotating rigidly in the image plane, about the point O. In this case, the
smoothest velocity field is quite different from the true velocity field. Therc. is a reduced rotational
component of velocity, and added radial component in the computed velocity field. The difference

in total variation is significant.

At first glance, one might not consider the smoothest velocity field in this casc to be a
plausible solution. In some carlicr perceptual experiments by Wallach, Weisz and Adams (1956),

however, they noted that a rigid ellipse does not appear rigid under rotation; it appears to

deform continuously. In their experiments, simple geometric figures were placed on a rotating

wurntable, and observers described the perceived motion of the figures while fixating the center of

the turntable (conditions of free and tracking cye movements were also used). Ellipses of various
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Figure 11. Rotating FEllipses of Different Aspect Ratios. (a) The true velocity field for a rotating
ellipse with aspect ratio 23:23.5. (b) The computed velocity field of least variation for the ellipse in (a). (c)
The true velocity field for a rotating ellipse with aspect ratio 5:1. (d) The computed velocity field of least
variation for the ellipse in (c).

aspect ratios were observed. Wallach, Weisz and Adams (1956) found that when an ellipse whose
- axes measured 25 and 23.5 cm was rotated about its center, it appeared to stand still while its
* contour bulsated. The largest effects were observed for an ellipse whose aspect ratio was 3:2; the
entire figure appeared fluid, undergoing a strong deformation, as well as a rotation. For some
-observers, the deformation was more restricted, and did not occur in the immediate vicinity of the
poles of the major axis of the ellipse. As the aspect ratio of the ellipse was increased, it appeared
more rigid. The perceived deformation of the cllipse was the same, regardless of whether it rotated

about its center, or was placed eccentrically on the turntable.

For the ellipse of Figurc 10, the aspect ratio is 2:1. The computed velocity field of least
variation clearly implics a significant distortion of the contour, in addition to a rotation. In the

~ immediate vicinity of the poles of the major axes, the smoothest velocity field -is very similar to
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Figure 12, Rotating Spiral. (a) The true velocity field for a logarithmic spiral rotating in the image about
the point O. (b) The initial perpendicular velocity vectors. (c) The computed velocity field of least variation.

the true velocity field. In Figure 11, the true and smoothest velocity fields are shown for rotating
cllipses whose aspect ratios are 25:23.5 and 5:1. When the ellipse is nearly circular, the smoothest
velocity field indicates a strong inward and outward pulsation of the contour (Figure 11b). The
smoothest velocity field for. the narrower ellipse, shown in Figure 11d, is closer to the true velocity
field than in the case of the ellipse with aspect ratio 2:1, implying less distortion of the contour.
Finally, the smoothest velocity ficld for an cccentrically rotated ellipse differs from that of the -
centrally rotated cllipse only by the addition of a uniform translation along the contour. Thus,
the same deformations of the ellipses is implied by the smoothest velocity field obtained for
eccentric rotations. We conclude that the perception of the movement of rotating ellipses is at_4

least qualitatively consistent with the computation of the velocity field of least variation.

4. Rotating Spiral

It is well known that a spiral appears to expand or contract, when it undergocs pﬁre rotation
about its center (Holland 1965). The perceived velocity ficld thus contains a large radiai component,
while the true velocity field contains only a rotational component of velocity. Figure 12 illustrates
the truc ?clocity ficld, initial perpendicular velocity vectors, and computed smoothest velocity

ficld, for a single arm of a rotating logarithmic spiral. The smoothest velocity ficld exhibits a large

20




i N\

Figure 13. The Deformed Circle. (a) The rotating deformed circle used by Wallach, Weisz and Adams. (b)
A deformed circle undergoes pure rotation in the image, about the point 0. (c) The true velocity field. (d)
The perpendicular velocity vectors. (¢) The computed velocity field of least variation. (f) and (g) A coarse
sampling of the true and computed velocity fields, without the underlying curve.

radial component of motion at the center of the spiral, which decreases toward the periphery.

The perception of the movement of the spiral is qualitatively more consistent with the smoothest

velocity field, than with either the true or initial velocity fields.




Figure 14. The Kinetic Depth Effect. (a) The three-dimensional wire-frame stimulus used by Wallach
and O'Connell, shown from three different viewpoints. (b) The true projected velocity field that results
from rotation of the figure about the central vertical axis. (c) The perpendicular components of velocity.
(d) The computed velocity field of least variation.

5. Deformed Circle in Rotation

Wallach, Weisz and Adams (1956) placed a deformed circle at the center of a turntable,
and observed its motion as the turntable rotated (Figure 13a). Again, the figure in rotation did
not appeaf rigid. Rather, a continuous deformation took place; the body of the circle appeared
to remain still while the deformation traveled about its perimeter. The rotating deformed circle
of Figure 13b is based on this demonstration. The true velocity ficld and perpendicular velocity
vectors are shown in Figures 13c and 13d. The perpendicular component of velocity is zero around
the circle, due to its symmetry. The computed smoothest velocity field is shown in Figure 13e.
To better illustrate the true and computed velocity ficlds, they are shown in Figures 13f and
13g, without the underlying contour (the velocity ficld is also more coarscly sampled here). The
directions of velocity are very similar for the two velocity ficlds, but the magnitudes are quite
different. In the smoothest solution, the magnitude of velocity decreases significantly as distance

from the arca of the bump increases, consistent with the perceptual studies.




Figure 15. The Barberpole Illusion. (a) A circular helix on an imaginary cylinder, rotating about the vertical
axis of the cylinder. (b) The two-dimensional projection of the helix and its velocity field. (c) The initial
perpendicular velocity vectors. (d) The computed velocity field of least variation.

6. The Kinetic Depth Effect

The ability of the human visual system to interpret the three-dimensional structure of objects
from their projected two-dimensional motion was first explored systcmétically by Wallach and
O’Connell (1953) in a study of what they termed the kinetic depth effect. In their experiments, an
unfamiliar wireframe object was rotated behind a translucent screen, and the shzidow of its parallel
projection was viewed from the other side of the screen. Given the projection of the wireframe
figure shown in Figure 14a, for example, obscrvers were able to give a correct description of the
hidden object’s three-dimensional structure. This particular figure is an example of an object for
which it can be proven that the true and smoothest velocity fields are equivalent; this equivalence
is demonstrated in Figures 14b and 14d. The perception of the correct three-dimensional structure

of this figure suggests that the human visual system also derives its correct two-dimensional motion.
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Figure 16. Smooth Curve in Rotation. (a) A circle, wrapped around a cylinder, rotating around the axis
n = [1,1,1]7. (b) The two-dimensional projection of the curve and its true velocity field. (¢) The initial
perpendicular velocity vectors. (d) The computed velocity field of least variation. '

7. The Barberpole Illusion

In Figure 15a, a circular helix on an imaginary cylinder is shown, rotating about its central
vertical axis. The projection of the curve onto the image plane, together with the resulting
two-dimensional velocity vectors, are shown in Figure 15b. Figures 15¢ and 15d show the initial
perpendicular velocity vectors, and computed velocity field. The true velocity vectors are strictly
horizontal, while those for the smoothest velocity ficld, which actually correspond to pure translation
of the curve, are strictly vertical. The motion of this curve is analogous to the moving stripes of

a barberpole, which appear to move downward as the pole rotates.
8 Smooth Curve in Rotation

In Figure 16, the initial contour is a circle that has been wrapped around the surface of an
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Figure 17. Smooth Curve in Rotation. The curve of Figure 16 is rotated 90° from its initial position,
and then undergoes an instantaneous rotation about the axis m = [1,1,1]7. (a) The two-dimensional
projection of the curve and its true velocity field. (b) The initial perpendicular velocity vectors. (c) The
computed velocity field of least variation.

imaginary cylinder. This contour is rotated rigidly about the axisn = [1,1, I]T, as shown in Figure
16a. The projected two-dimensional contour and its true velocity field are shown in Figure 16b.
The same contour, at different positions in its trajectory, is shown in Figures 17 and 18. (These
two contours are rotated 90° and 180° from the initial position shown in Figure 16.) The initial
perpendicular velocity vectors are shown in Figures 16c, 17b and 18b. The computed velocity
fields of least variation are shown in Figures 16d, 17¢c and 18c. At the initial position of the curve,
shown in Figure 16, the smoothest velocity field is significantly different from the true velocity
field, exhibiting a large translational component toward the upper right corner of the image. At
other positions of the curve, however, the true and smoothest velocity fields are qualitatively very
similar. The analysis of the predicted velocity fields for smooth curves such as this may be tisefu]
for the design of perceptual experiments that investigate whether a constraint such as smoothness

underlies motion measurement in the human visual system.

4.2 A Natural Motion Sequence

In this section, we present the results of the algorithm for the sequence of acrial photographsv
shown in Figure 19. When viewing the two images, alternated back and forth in rapid succession,
we observe first, that displacements increase in magnitudc from the top to the bottom of the
image, and second, that there is a rotation between the two frames, with displacements at the
top of the image having a larger horizontal component, and those toward the bottom having a
large vertical component. To compute the velocity ficld, the images were first convolved with a
V2G operator, and zero-crossings detected. At cach zero-crossing, v-L(s) was computed. using the
spatial and temporal gradient of the filtered image. The conjugate gradient algorithm was then

used to compute the velocity field along the zero-crossing contours. Because of the large error
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Figure 18. Smooth Curve in Rotation. The curve of Figure 16 is rotated 180° from its initial
position, and then undergoes an instantaneous rotation about the axis n = [1, 1, 1]7. (a) The two-dimensional
projection of the curve and its true velocity field. (b) The initial perpendicular velocity vectors. (¢) The
computed velocity field of least variation.

Figure 19. A Natural Image Sequence. (a) and (b) Two natural images, taken in sequence from an
airplane. The images contain 256 X 256 picture elements.

in the input that is typical of natural images, the velocity ficld solution was only required to
approximately satisfy the constraints imposed by v-L(s), rather than exactly satisfy these constraints.
(Details of this analysis are given in Hildreth (1983).) The results of the velocity field 'algorithni
are shown in Figurc 20. Velocity vectors at evenly spaced points are shown in black, superimposed
on the original image, shown with reduced contrast. The results compare well with the actual

displacements between the two frames.
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Figure 20. The Cofnputed Velocity Field. At evenly spaced points in the image, the computed velocity
vectors are shown in black. superimposed on the original image of Figure 19a, reduced in contrast.

5. SUMMARY AND CONCLUSIONS

We have presented a computational study of the measurement of visual motion. The problem
was formulated as the computation of an instantancous two-dimensional velocity ficld from the
changing retinal image. This formulation rests on the assumption that motion analysis may be
divided into two stages: the first is the measurement of projected two-dimensional motion, and
the second is the derivation of three-dimensional structure from motion. It was suggested that this

formulation may be appropriate for the short range motion process in human vision.

A computational theory for the derivation of the velocity ficld was proposed, with three
main components. First, initial measurements of motion in the image take place at the location
of signiﬁvcam ihtcnsity changes, which give rise to zero-crossings in the output of the convolution
of the image with a V2G opcrator, as suggested by Marr and Ullman (1981). These initial
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measurements provide only'the componcht of velocity in the direction pcrpendicular to the local
orientation of the contours. Second, these initial measurcments are integrated along contours to
compute the two-dimensional velocity field. A fundamental problem for this integration stage is
that the velocity field is not determined uniquely from information available in the changing
image. The third. component of the theory is then the formulation of the additional constraint
of smoothness of the velocity ficld, based on the physical assumption that surfaces are generally
smooth, which allows the computation of a unique velocity field. A theoretical analysis of the
conditions under which this computation yields the correct velocity field suggests that the solution
is physically plausible, Empirical studies show that in situations for which the true and smoothest
velocity fields differ, the smoothest velocity field may be more consistent with human motion
perception. It also appears that this formulation of the motion measurement problem may be
biologically feasible, in that it leads naturally to algorithms that involve simple, local, parallel

operations.

The various aspects of the computational theory are somewhat independent. For example,
the suggestion that initial motion measurements take place in the vicinity of significant intensity
changes does not rely on the use of zero-crossings; there may be other mechanisms by which
intensity changes are located. The need for a second stage of analysis that combines the initial
motion measurements is a consequence of the Jocal nature of these measurements. Motion detection
schemes that are based on more primitive measurements of changing intensity (such as those
suggested by Hassenstein and Reichardt (1956; Reichardt 1961), and Barlow and Levick (1965)),
as well as those based on more symbolic tokens (Ullman 1979a), also require this combination
stage. Finally, the need for additional constraint is fundamental to the analysis of visual motion.
The particular constraint of smoothness can be extended to other formulations of the motion

measurement problem.

There are many computational aspects of motion measurement that remain to be addressed.
For example, if two adjacent surfaces undergo different motions, they gencrally give rise to a
discontinuity in the velocity ficld along their boundary. Across such a boundary, the physical
assumption of surface smoothness is not valid, and may yicld error in the computed velocity field.
The explicit detection of motion discontinuities is important for the type of computation proposed
in this paper. A sccond arca for investigation is the use of multiple channcls, with differing spatial
and temporal frequency characteristics, in order to increase the range and resolution of velocitics
that may be analyzed rcliably. The present work only addresscs the type of analysis that may
take place within a singlc channel. The experiments of Adelson and Movshon (1982) suggest that

multiple channels may not be strongly coupled, for the mcasurement of motion. A third important
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aspect of motion measurement is the role of eye movements, both saccadic and smooth pursuit.

The analysis of the perceptual demonstrations in Section 4 assumed a fixed eye position.

A final aspect of motion measurement concerns the role of the short range and long range
processes in an integrated system. For some visual tasks, such as the detection of a sudden
movement, or object segmentation, rough and instantaneous motion measurements may be sufficient
(Marr and Ullman 1981). Computational studies of the recovery of three-dimensional structure
suggest that a more complete and accurate measurement of motion is required for this task (Ullnian
1980, 1983a,b; Prazdny 1980; Clocksin 1980; Longuet-Higgins and Prazdny 1981; Longuet-Higgins
1981). The work presented in this paper suggests that a computation based on short range motion
measurements can, in principle, yield a very precise local velocity field. The reliable derivation of
three-dimensional structure, however, requires that these measurements be integrated over a large
time frame (Ullman 1983b). The long range process may play a role in this integration process.
Studies by Petersik (1980) suggest that the long range process may be crucial to the recovery of
structure from motion in the human visual system. A second possible role for the long range
process is the maintenance of continuity of objects moving through a complex environment, in
which objects are sometimes occluded from view (Marr 1982; Braddick 1983), for example, when
an animal runs through a forest. This task could also be guided by information supplied by the
short range motion process. The general picture that emerges is one expressed by Ullman (1981);
that the short range and long range motion processes may interact in complementary ways to

produce a flexible and reliable system for motion measurement.
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APPENDIX 1

In this appendix, we use the following theorem to prove the uniqueness of the velocity field

solution, as formulated in Section 3:

Theorem: Suppose there exists a complete semi-norm © on a space of functions H, and
that © satisfies the parallelogram law. Then, every nonempty closed convex set E C H
contains a unique element v of minimal norm, up to an element of the null space. Thus,
the family of minimal functions is

{v+s]|s€eS}
where
S={w|v+weEINN

and N is the null space of the functional

N = {u] ©(u) = 0}.

Let V be the space of all real two-dimensional vector-valued functions along a curve that
are continuous, and have continuous first partial derivatives. We first show that the functional
ovV)={[ l%¥|2ds}% is a complete semi-norm on this space that satisfies the parallelogram law.
We then show that the subset W C V of vector functions that satisfy the image constraints is
convex. It then follows that there exists a unique element w € W of minimal norm, up to possibly

an element of the null space.

To show that this functional is a semi-norm that satisfies the parallelogram law, we take
advantage of the following: If u is a semi-inner product, defined on the space V, and v € V, then
O(v) = u(v,v)? is a semi-norm on the space. A semi-inner product is a function u:V X V - R
written u(v,w) satisfying the following (w,z,y,z € V):

L uly, z) = u(z,y)

2. Wz + vy, 2) = p(z,2) + pu(y, 2)

3. u(az,y) = au(s, y),_a ER

4. u(z,z) >0

The functional  p(v,w) = [(§¢ - 4¥)ds is a semi-inner product:

Louy,g)=J (g’—’ : -?;g)ds = ('J_ : gg)ds = u(z,v)
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We -ty )= (A ge)ds = f (% + 3¢) - Gads = [{(%2 - 32) + (B¢ 2 )yas
= u(z, 2) + u(y, 2).

3. ulaz,y) = f(a.a:) . g%)ds =af (%—§- . g%)ds = au(z,y).
4. u(z,z)= [ (% - %&)ds > 0.
If p(v,w) is a semi-inner product, then O(v) = u(v,v)t = {f(§¢- §)ds}? = {[|%|%ds}} is a

semi-norm. ©(v) also satisfies the parallelogram law:

00+ 0wl =

_/( (v + w) avatw)ds+/(a(v;w)'a(v;w))d’
(e (3 2

— 2[6(v)]? + 2(8(w)]?

It now remains to show that the semi-norm is complete. To do this, it must be shown that
every Cauchy sequence {Vn} where V,, € V, converges under this semi-norm. We begin with the
functional ©(V) = {[|&t [2ds}2 where ©:V — R. Let f(V) = 35, and define a new functional
o(f) = {[|f|2ds}?, with ®:0V ~ R, where 8V denotes the space of all partial derivatives of
elements of V. &(f) is an L? norm, and is therefore complete on V. Let {V,} be a Cauchy
sequence of two-dimensional vector functions in V', under the norm @; then the sequence { =}
is a Cauchy sequence in 8V, under the norm . Since @ is complete in 8V, then any Cauchy
sequence in 8V must converge under @; that is, there exists an element f € 8V such that:

lim @(a:" f) =0

n—co S

Now, let V = [fds. V contains only those vector functions along a curve that are continuous,
with continuous first partial derivatives; it follows that f and V are comiriuous, sothat Ve V. (V
may not be unique, but this is to be expected, because the functional © is only a semi-norm.) V
satisfies the following:

lim ©(V,—V)=0

= OO0
Therefore the Cauchy sequence {V.,,} converges, and our semi-norm is complete.
The second statement that we want to show is that the subset of velocity ficlds satisfying the

image constraints is convex. Let W C V be the subset of V' that satisfics the constraints derived

from the image. These constraints arc as follows:




1.v-L(s) is known everywhere along the curve.
2. There may exist a set of points {p;} for which v-L(s) and v (s) are known,

3. There may exist a set of points {p,;} for which the direction of velocity, and hence
L .
2+ is known,

If W is convex, it must be the case that:
tw; + (1 —t)wg € W, for all wy,we e W,and 0<t < 1

For convenience of notation, we write v+ and vT for v-1(s) and vT(s).

1. I}f wy, wy € W, then wi- |p,= wi" |,,= v |, hence:

[tw: + (1 — t)'w2]‘|' |p.~= twiL !p.- +(1— t)w.;L lp.-"‘—‘ vl |ps

2. Similarly, if wy,ws € W, then w{ [p,= wy |p;= v T |, hence:

[twl + (1 - t)W2}T 'P.‘= tw;r ipi +(1 - t)'w; IP-‘= vT |P-’

3. If the direction of velocity at point p; is the same for w; and w,, then any linear
combination of w; and w, yields a velocity vector at p; that is parallel to this direction.

Finally, if w; and w, are continuous, with continuous first partial derivatives, then this will also
be true of [tw; + (1 — t)wy]. Therefore, the subset W C V, which satisfies the image constraints,

is convex. This completes the proof.

35




APPENDIX 11
In this appendix, we show the following:

Proposition. Suppose that a rigid three-dimensional object, consisting of straight lines
intersecting in 'space, projects onto the image plane, using orthographic projection, in
such a way that line intersections are preserved (that is, two lines intersect in the image
if and only if their generators intersect in space). Further, suppose that this object
rotates in space with angular velocity w about a single axis n = [n:,ny,n,}T. Then the
two-dimensional velocity field that satisfies v--(s) measured along lines in the image and
minimizes [ |%¥l2d3, is the correct two-dimensional projected velocity field.

We divide our proof into two parts: the first shows that the constraint imposed by two lines
meeting at a vertex is sufficient to compute the correct two-dimensional velocity of the vertex; the
second shows that if a rigid line segment is moving in space, and the projected two-dimensional
velocity vectors at its endpoints are known, then the velocity field satisfying v-1(s) along the
projection of the line onto the image, which minimizes ]%—‘s-r]?ds, is the correct projected velocity
field. These results are extensions of some previous observations made by Alan Yuille (personal
communication). Throughout this appendix, the argument, s, to functions that vary along a curve,
has been omitted.

Proposition (a). Suppose that two lines |, and 1, in space, intersect at the point (z1,y1, z1),
and the configuration rotates rigidly with angular velocity w about a single axis in space,
given by n = [ng,ny,n,|". Assume that I, and Iy project onto lines I¥ and I3 in the
image plane, using orthographic projection, which have different orientations. Then the
constraint provided by v on I} and 1} is sufficient to compute the correct projected
two-dimensional velocity at (z1,y1, 21).

Proof. First, let o and 8 denote the orientations of /§ and !} in the image plane. The true velocity

field, V, is given by:

_—nz

V= wz[ "y ] + wnz[—-y]

T
We thercfore have V = (wzn, — wyn,, —wzn, +wzn.). Let uT and ul denote the unit tangent
and normal vectors, and v T and vl denote the tangential and normal components of velocity.

We then have:
V=vTul 4otul

For If, we have the following:
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ul = (cos @, sin @)

ul = (sin @, — cos )

v1 =V.uT = (wzn, — wyn,)cos a + (wzn, — wzn;)sin a
vl =V.ul = (wzn, — wyn,)sin @ — (wzn, — wzn,)cos a

For 1§, we have the following:

uT = (cos B,sin f)

u-l = (sin B, — cos )

vT =V.uT = (wzn, — wyn,)cos B + (wzn, — wzn,)sin g
vl =V.ul = (wzn, — wyn,)sin f — (wzn, — wzn,)cos B

It is assumed that v-L is known, and that the tangential component v 1 is unknown. The velocity
of the point (z,,y1,21) must satisfy constraints imposed by both lines i§ and 5. Let ¢; and ¢,
denote the unknown v T along the lines {§ and /5 at the point (zy,y1,2). We then have two
equations for the velocity at this point, in terms of the two unknowns c¢; and cy. From I§ we
have:

, sin o cos o
V = [(wz1ny — wyin;)sin a— (wz1n, — wz1nz)cos a]{_ cos a] + ¢ [sin a]

From 15:

V= [(wz1ny — wyin;)sin f — (wzin, — wz;n,)cos ﬂ][ sin 8 } n c2[«)3 ﬂ}

—cos B sin 8
These two equations are satisfied for:

c1 = (wziny — wyin;)cosa + (Wzin, — w2z n,)sin o

co = (w2z1ny — wyin,)cos f + (wrin, — wzing)sin f

¢, and ¢, are equivalent to the truc v 1 stated previously; therefore, we have obtained the correct

projected two-dimensional velocity at the point (zy,y;, 21).

Proposition (b). Suppose a line segment | in space rotates rigidly with angular velocity w
about a single axis, given by n = [ng, ny,nz]T. Let I denote the orthographic projection
of | onto the image plane. Further, suppose that the projected two-dimensional velocity
vectors at the endpoints, denoted by Vo and Vq, are known. Then the two-dimensional
velocity field that satisfies the constraint given by Vo, Vy and v along I, and minimizes
J ]%—glzds, is the correct projected two-dimensional velocity field.
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Proof. First, since uL and uT are constant along the line segment, we have:

Total variation of velocity along the segment is then given by:
] 2 s 2 2
! : Y[ Bvt avT
o=
'/;o ° o [( Os ) +( Os ) }d-’

where so and s; denote arclength at the two endpoints. Since Qg—j: is known, the above expression

av

ds

is minimized when the second term is minimized:
81 2
Sv T
/ (____v ) ds
So s
Let v;r and v,| denote the known tangential components of velocity at the endpoints of I. We
want to minimize the above functional, subject to these known velocities. We can formulate the

problem as an Isoperimetric problem, and use the Euler-Lagirange equations to solve it. The general

problem can be stated as follows:

81 T
minimize I = / F[UT, ov ,S]ds
So 63

S
. ! ovT
. subject to / @[vT, —?i—-,a]ds = ¢}
Sa

81 aUT 2
d
/s° (as) ’

S
e
'/s'o ( Be )ds=v;r—v(_,r
The general solution is given by the Euler-Lagrange cquation:

af_ov \_ov_,
ds\ p(21) ds

where ¥ = F 4 u®. u denotes the Lagrange multiplier. In this case:

T\?2 T
F=(8v ) q):__.av

In this case, we seek to minimize:

subject to the following constraint:

ds Os
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We therefore have the following differential equation:
d avT
(%) +4l=o

2, T
9%y -0
ds?

which leads to the equation:

The solution is therefore: vT = as + b. From the known tangential components of velocity at the

endpoints, we obtain the following solution:

T T

v, —v
vT =10 (6 gy) 4 vy
$1— 8o

Since the true vT and computed tangential components arc both linear functions that satisfy the
same endpoint velocities, they must be the same function. Therefore the smoothest velocity field

is the correct projected two-dimensional velocity field.

The original statement of the problem now follows straightforwardly from these two results. In

addition, we have the following corollary:

Corollary. Suppose a simple polygon is rotating rigidly in the image plane. Then the
two-dimensional velocity field that satisfies v-- measured along line segments in the image,
and minimizes [ l%¥l2ds, is the correct two-dimensional velocity field.

Finally, the above results also hold for an additional translation of the object in space.
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