MASSACHUSETTS INSTITUTE OF TECHNOLOGY
ARTIFICIAL INTELLIGENCE LABORATORY

A. I. Memo No. 736 June, 1983

Hypothesizing Channels Through Free-Space
In Solving the Findpath Problem

Bruce R. Donald

Abstract. Given a polyhedral environment, a technique is presented for hypothesizing
a channel volume through the free space containing a class of successful ccllision-free
paths. A set of geometric constructions between obstacle faces is proposed, and
we define a mapping from a field of view analysis to a direct local construction of
free space. The algorithm has the control structure of a search which propagates
construction of a connected channel towards a goal along a frontier of exterior free
faces. Thus a channel volume starts out by surrounding the moving object in the
initial configuration and “grows” towards the goal. Finally, we show techniques for
analyzing the channel decomposition of free space and suggesting a path.

Acknowledgements. This report describes research done at the Artificial
Intelligence Laboratory of the Massachusetts Institute of Technology. Support for
the Laboratory’s Artificial Intelligence research is provided in part by the System
Development Foundation, in part by the Office of Naval Resecarch under Office of
Naval Research contract N00014~81—»K—0494hand in part by the Advanced Research
Projects Agency under Office of Naval Research contracts N00014-80-C-0505 and
NO0014--82-K-0334.

© Massachusetts Institute of Technology, 1982.




1. Introduction

Channels are an encoding of free-space corresponding to the classes of paths
within an environment. An implementation exploiting this global model of the
connectivity of free-space has been able to solve 2-dimensional find-path problems
in several minutes which formerly took many hours. Our algorithm is essentially a

problem-solving strategy using a homeomorphic reduction of the search space.

Given a polyhedral environment, a technique is presented for hypothesizing a
channel volume through the free space containing a class of successful collision-free
paths. A set of geometric constructions between obstacle faces is proposed, and
we define a mapping from a field of view analysis to a direct local construction of
free space. The algorithm has the control structure of a search which propagates
construction of a connected channel towards a goal along a frontier of exterior free
faces. Thus a channel volume starts out by surrounding the moving object in the
initial configuration and “grows” towards the goal. Finally, we show techniques for

analyzing the channel decomposition of free space and suggesting a path.

This paper addresses issues in the find-path or ptano mover’s problem in
robotics and spatial planning: the problem involves finding a path for a solid object
in an environment containing obstacles. In robotics we are typically interested in
motion plahning for a mobile robot or manipluator. In Computer-Aided Design
(CAD), the problem of automated structural design for n structural members is also
an instance of the most general form of the mover’s problem. A survey of robotics
issues in robot motion planning can be found in Brady, et al. [3]. For related work
on the mover’s problem, see Brooks, [4], Lozano-Pérez [13, 14], Lozano-Pérez and
Wesley, [15], Brocks and Lozano-Pérez [5], Schwartz and Sharir [23], Reif [21],
Moravec, [16a], and Udupa, [26]. Some issues in automated structural design are
addressed in Donald, [8]. For a review of geometric modeling techniques, see Baer,

Eastman, et al. [1] and Requicha, [22].

1.1. Motivation

The primary motivation for this paper lies in the difficulty of the Find-Path,

or “Piano Mover’s” problem. In its most general form, with arbitrary degrees




of freedom, the problem has been shown to be P-Space hard.! (Reif [21]) With
fixed degrees of freedom the problem is tractable but proposed algorithms have
a high polynomial time complexity (Schwartz and Sharir [23], Reif [21]) and an
implemented general path-finder for the 2-D mover’s problem with rotations is

quite slow (Brooks and Lozano-Pérez [5]).

Our observation has been that in general, local algorithms can get lost examining
irrelevant local constraints. In particular, without adequate global knowledge of
the connectivity of a workspace and the classes of paths it contains, such methods
may choose impossible or ill-advised candidate paths. Thus channel hypothesis and
path suggestion can serve as guidance for a more detailed method: we believe that
the connectivity of configuration space may be inferred from the connectivity of

real space.

The channel algorithm constructs a cell decomposition of free-space, which is
then analyzed to determine the structure of the workspace and classes of paths it
contains. We attempted to devise a method which formalizes previous approaches
and generalizes to 3-dimensional workspaces. This paper repfesents a progress
report on this work and a 2-dimensional implementation which illustrates many of
the interesting general issues that arise in 3 dimensions. We will present techniques
for constructing channel volumes and suggesting paths within them. We will also
show in what way the find-path problem is “easier” in the transformed domain.
An implementation of the algorithm for the two-dimensional mover’s problem is

described, and the results are discussed.

2. An Overview of the Algorithm

2.1. Criteria and Representations of Channels

Our idea is to transform the find-path problem from the domain of a

multiply-connected free-space to the find-path-containment problem within a

IThis is of more than theoretical interest. The CAD problem (above) for structural patterns
or transformations requiring the movement or placemsant of n structural members is exactly this
case.




simply-connected channel volume. Thus at one level the channel construction is a
technique for characterizing the connectivity of the free-space; at another it is a

geometric model for identifying classes of successful paths.

Let us begin by defining the criteria for channel volumes. A channel volume
through an n-dimensional workspace embedded in ™ should have the following

characteristics:

(a) The channel volume should be simply-connected (whereas the free-space of

the initial workspace is typically not).

(b) The channel volume should contain the ®" projections of a class of successful
paths. This formalizes the intuitive notion that a channel should “contain” a class
of successful paths. Later in the paper we will formalize this criterion using aspects

of homotopy theory.

(c) The constraints on motion within the channel should be stmpler. Constraints
on motion arise (in two dimensions) from vertices and edges on obstacles. However, it
can be shown (Brooks and Lozano-Pérez [5], Lozano-Pérez [14]) that the constraints
arising from concave vertices are subsumed by the neighboring edge constraints.
Thus let us define the constraint cemplexity of a workspace as the total number of
edges and convex vertices. Convex vertices generate the most complex constraints
on motion. One competence measure for the channel approach to the mover’s

problem is reduction in convex vertex constraints in the transformed workspace.

Intuitively, these criteria make the transformed problem easier by providing

an tightly-constrained “idea” of where to search within a complex workspace.

While we can take measures to ensure (a) and (b), it is possibly to construct
cases where (c) will not hold. However, it should be clear that in complex workspaces
simply-connected channel volumes can have far fewer edges and vertices than the

initial environment.

3. The Channel Algorithm

Before we sketch out the algorithm, we need to have an intuitive idea of

the channel constructor. Given two faces A and B on two obstacles, we wish to




Figure 1. The channel K constructed as the convex hull between faces A and B.

Figure 2. A channel composed of the union of two wedges between A and B, K = wy |J ws.

construct the region between them. We can think of this region as a “passageway”
in free-space. First, a field of view analysis is performed to ensure that A has
a clear view of B (or to determine what portion of B A can “see”, and thus
construct to). Next we perform a direct, local construction of free-space between
the faces. The local constructions are used in a search expansion that propagates

a cell-decomposition? towards the goal.

The direct, local construction of free-space is based on convex hull techniques

and is performed by the channel constructor. Thus in two dimensions the region

2A cell-decomposition divides the space into a set of non-overlapping cells. We do not use cells
of uniform size or shape, but instcad employ convex regions constructed between faces.




Figure §. A channel where A and B share a vertex.

between A and B would typically be a convex quadrilateral, constructed by taking
the convex hull of the faces.> We call this region a channel between A and B; our
constructions will result in a cell-decomposition of part of free space, where each
cell is a channel between two faces. The final simply-connected channel volume will

be a contiguous path of these constructed cells.

Constructing such a channel introduces up to two free faces (see Forbus, [11])
into the environment,* and removes A and B from the environment as candidates
for construction. Obstacle faces bound obstacle polyhedra, and free faces may have

vertices on obstacles but do not bound obstacles.

The free faces, which are constructed as channel boundaries, may be interior or
extertor to the entire channel decomposition. Thus an interior free face bounds two
channel regions and an exterior free face bounds a channel region and “unknown”,

unexplored free-space.

During the construction, the outer boundary of the cell decomposition will
contain both obstacle faces and exterior free faces. In a bounded, connected
workspace, it is possible to construct a complete cell decomposition by searching

until there are no more exterior free faces. In this case the union of the cells is

3This technique does not handle several important and common singular cases. We presént a
complete definition later.

‘In the 3-dimensional case, each free face is triangular, and the number of free faces is the
number of unshared edges on A and B.
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Figure 4. A workspace before channel construction.

equivalent to the initial workspace. Such a multiply-connected decomposition can

always be searched for a singly connected cell path.

We are now ready to describe the algorithm: The Frontier of exterior free faces
denotes the exterior free faces of the aggregate channel. The Face Environment
contains all faces that bound only one region. (In our taxonomy, there are only two
kinds of regions: free regions, and obstacle regions). Thus the Frontier contains
candidates for direct, local constructions of free-space using the channel constructor,

and the Face Environment is used as the input to the field of view computation.
The algorithm has the structure of a search which propagates construction of a
connected channel towards a goal along a frontier of exterior free faces. Thus

a channel volume starts out by surrounding the moving object in the initial




Figure 5. The visible surfaces in the workspace from construction edge A.

configuration® and “grows” towards the goal.

For each expansion in the search we examine the frontier of the channel
decomposition and choose the “best” free face to construct from. Next we determine
what faces or portions of faces in the face environment it can construct to, and
choose the best region. We construct a channel, add it to the channel decomposition,
and update the frontier and face environment appropriately. The construction halts
when the moving object in the goal configuration is contained in the channel

decomposition.

Our intuitive development of the channel constructor used examples of channel

construction between obstacle faces. Note that although this is possible, in the

5 The configuration of a rigid polyhedral object (see Lozano-Pefez, [13]) is a set of parameters
representing the combined translation and orientation of the object. Thus for example the
configuration of a polygonal object with two translational and one rotational degrees of freedom
is typically represented by the parameters (z,y,8). A path for the polygon is a sequence of such
configurations.




[\

Figure 6. The union of all candidate channel regions that can be constructed from A.

search formulation above we actually construct channels between a free face on the

Frontier and a (free or obstacle) face in the Face Environment.

3.1. The Algorithm in more detail

Phase I: Channel Construction

(1) We construct a polyhedron P around the “piano” (or moving object) in the
start configuration. The channel decomposition (set of all channels) is initialized to
be this polyhedron, and the frontier of free faces is initialized to be its faces. The
Face Environment is initialized to contain all obstacle faces in the initial workspace

plus the faces of P.

(2) Select the best face A on the frontier. (H1)®

6 Heuristic selection criteria are required in the algorithm, and are denoted by (H1), (H2), etc.
The implementation of these criteria is discussed later.




Figure 7. The best channel is chosen.

(3) Perform a field of view analysis from A to determine the set of visible
regions in the face environment. These are the candidate construction regions, and
correspond intuitively to all the faces or portions of faces that “A has a clear view

of.” Out of these select B, the best construction region. (H2)
(4) Construct a channel K between A and B.

(5) Update the search frontier and face environment. This is done as follows:
The boundary of K contains A, B, and a set of free faces I/ (in the two dimensional
case, F" contains one or two faces). The frontier may only contain ezterior free faces
of the channel decomposition, and the free faces F might not be exterior to the
channel if they are shared by a previously constructed region. However, it is easy to
distinguish the interior free faces by examining their coboundary. The coboundary
of an n-cell « (Giblin, [12a])) consists of the set of (n-1)-cells it bounds, and is
denoted Cof(k). We can keep track of the coboundary of each face by recording

what solids it is used to construct. The cardinality of the coboundary of interior




Figure 8. A Workspace showing a channel decomposition containing the moving object in start
and goal configurations

free faces is 2 (since they bound two constructed regions) whereas the cardinality

of an exterior free face’s coboundary is 1. Thus our update is very simple:

Let Env denote the Face Environment and Front the Frontier of exterior free

faces.
Delete A from the Front and Env.
Delete B from Env. If B € F'ront, delete B from Front.

For each face f in F' (recall that F" is the set of free faces of K ): if f is exterior
(i.e., if |CoB(f)| = 1) then add f to F'ront and Env. Otherwise, f was an
exterior free face prior to the construction of K , and is now interior to the
channel decomposition and no longer on the frontier: delete f from Front andv

Env.

(6) If the channel K or the union of all channels contains the moving object in

the goal configuration, stop. Otherwise repeat steps (2-6).

10
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Figure 9. The outer union of the channel volume from figure 8. Note the reduction in constraint
complexity.

Phase II: Path Analysis

(1) Phase I has constructed a decomposition of the workspace into a connected
set of non-overlapping cells. This decomposition may be multiply-connected. Thus

we search the cell decomposition for the best cell-path. (H3)

(2) The cell path is now our simply-connected channel volume. Identify and

label the constraints to motion imposed by the channel.
(3) Suggest a configuration path through the cells. (H4)

(4) The configuration path consists of a sequence of configuration points within
the channel. Verify each configuration on the path to see whether it is legal. If
the configuration is blocked, attempt to rectify it through small corrections in

orientation. Interpolate between verified configurations to a given resolution.

The effect of step (4) is a partitioning of the resulting find-path problem within

the hypothesized channel into simpler subproblems along a visibility graph.

11
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4, The Channel Constructor

In this section we formalize the concept of the channel constructor, which is
used to build a local channel region between two faces. Note that in the algorithm
above, at least one of these faces is always an exterior free face on the channel

frontier.

To construct the region between two faces, we will use the convex hull
(Griinbaum [12b]) of the vertices of the faces. This works well when the region
between two faces is convex: but for arbitrarily positioned faces this is not always
the case, and the convex hull can intersect the interior of the obstacles. (See Fig.
2). Thus we adopt a recursive definition in which we try to construct a convex hull
between cells of maximum dimensionality. For example, if the region between two
n-faces” is non-convex, then we can model it as the union of two wedges between

n- and (n-1)-cells.

We define the following geometric constructions in order to model the region
between faces embedded in n-space, where n is 2 or 3. The pyramid constructor
constructs the region between a face and a point. A wedge is identical to a pyramid
in two dimensions, but in three dimensions is used to model the region between a
2-face and an edge (1-face). We first give a generalized definition for 3 dimensions,

and then interpret it for the both the two and three dimensional case.

4.1. Conventions

Let us adopt the following notational conventions: ¢(X) denotes the interior of
a set X and B(X) its boundary. conv(X) is the convez hull of a set X . vert(X) is
the set of vertices of a polyhedron X.

4.2. The Definitions for 3 Dimensions

Def: The pyramid constructor P(f,v) == conv(vert(f)U{v}) where f is an

(n-1)-face and v is a vertex in general position embedded in n-space.

Tn is the dimensionality of the workspace, and a point is a O-cell, a line a 1-cell, etc.

12




Now, let A, B be convex (n-1)-faces of the n-polyhedra P,, P;, embedded in
n-space. Assume that neither face lies entirely behind the plane of the other. (See
section 5). Let e4, €, be (n-2)-faces of P,, P, such that e, € B(A) and ¢, € B(B).

Def: The wedge constructor W(A, e;), where AN ey = 0, is defined as follows:

Let w = conv(vert(A)Uvert(e)). If wNe(Ps) == @ then W = w. Otherwise
W = P(A,vp) where vy is the closest vertex in vert(ep) to A. This can only

occur in 3-dimensional (or higher) space.
Def: The channel constructor K(A, B) is defined as follows:

Let kK = conv(vert(A)Uvert(B)). If kNi(P,) = ® and xNi(P) = 0 then
K = k. Otherwise K = W(A, e;) U W(B, e,) for some appropriately chosen e,

and ep.

4.3. The Definitions for 2 Dimensions

In two dimensions, A and B are edges bounding polygons, and e, and e are

vertices. Hence:
In two dimensions, a pyramid is simply a triangle.

In two dimensions a wedge is exactly a pyramid. We use wedges to partition

non-convex regions between faces.

4.4, Interpretation of the Channel Constructor

We interpret the channel constructor as follows: consider the two dimensional
case first. If the region between A and B is convex, then we construct it directly.
If it is non-convex, (i.e., if the convex hull intersects the interior of the regions A
or B bounds), then we construct a region by building a wedge from A to a vertex
((n-2)-cell) on B and a wedge “back from” B to a vertex on A. In two dimensions
the selection of e, and e, is trivial since each edge contains only two vertices.
In three dimensions e, may be chosen arbitrarily. However, we can heuristically
choose a large edge on B to maximize the size of the construction (see appendix
I). The construction of the first wedge makes the choice of e, deterministic and

the wedge union may be performed using combinatorial techniques requiring no

13




geometric intersection. Wedge construction in three-dimensions is briefly addressed
in an appendix. Examples of 3-dimensional channel constructions are shown in

figures 28 and 29.

Since all of the points in the hull set are initially embedded in faces and
edges, it is possible to construct all of these convex hulls in O(n) time for n edges
(Preparata and Hong, [20]). Of course in two dimensions, the construction time is

constant because there are only 2 vertices per edge.

4.5. A Constant-Time Constructor for the 2-Dimensional Case

The chaﬁnel constructor can be expressed as a very simple algorithm in two
dimensions. We can construct the region between A and B directly, check it
for convexity, and partition it into two triangles if necessary. The construction
amounts to determining the free faces from two choice sets on the graph of vertex
connections, which can be done by simply minimizing the sum of their lengths.
In the case of non-convexity, the resulting quadrilateral can be partitioned into
wedges by constructing an edge from the concave “notch” (Chazelle, [7]) to the

opposite vertex.

Finally, to construct a channel region between two faces that share a vertex,

we simply build a triangle after introducing one free edge.

5. Field of View Analysis

In this section we address the field of view analysis performed in the
construction-propagating search. We perform the field of view computation as

a stght-line analysis to determine what surfaces a frontier face can construct to.

The field of view analysis contains two components: a visible-surface
computation te determine candidate construction regions for a frontier face, and a
heuristic selection from candidates in the image-plane. The heuristic selection of a

candidate region is based on geometric criteria.

A number of different mechanisms (for example, plane sweep algorithms; see

Nievergelt and Preparata, [16b]) could have been used to determine constructible

14




regions from a frontier face. The field of view techniques were adopted for the

following reasons:

(1) They were extensible to three dimensions, where the problems are well
understood and efficient algorithms abound. Plane sweep algorithms are difficult
to extend to three dimensions, especially for general polyhedra. Three-dimensional
retraction algorithms (See O’Dinlaing and Yap, (18], O’Dtnlaing, Sharir and Yap
[19]) have not yet come into existence, and present other problems which we discuss
in section (10.1). In particular we should note that field of view algorithms are
relatively insensitive to minor geometric variations (unlike Voronoi diagrams, for

example).

(2) The field of view method allows an implementation of selection criteria to
operate almost exclusively in a lower dimension (the image plane). This allows us to

abstract out qualitative geometric characteristics with less computational overhead.

(3) A fundamental step in the channel method involves the partitioning of
the resulting find-path pfoblem within the hypothesized channel into simpler
subproblems along a visibility graph. A field of view computation seems a natural
means of enforcing the visibility graph constraints on the construction of a channel
around a suggested path. In particular, the initial nodes along the visibility graph of
suggested configurations can be located on the centroids of mutually visible interior

channel faces.

(4) The field of view algorithm allows local constraints to be captured in the
construction of a global decomposition of free-space. The channel method is a
construction of a new constraint space; in this new workspace we wish to minimize
the total number of constraints and introduce as few artificial constraints (exterior
free faces) as possible. This means that constraints from local obstacle surfaces
must be incorporated into the channel boundary. Our implementation of selection
criterion (H2) allows local constraints to be captured through anti-fragmentation

heuristics (See Section (6.1)).

(5) Finally, field of view analysis is a good technique for ensuring the local

15




convexity® of the decomposition. The sight-line criterion (that a surface must be
visible from the frontier) in conjunction with the channel constructor enforce this

constraint on the local constructions of free space.

Once more, we will begin with a general discussion of 3-dimensional field of

view analysis, and return to describe the two-dimensional implementation.

5.1. Visible Surface Algorithms

Visible surface algorithms are ubiquitous in the computer graphics literature.
(See, for example, Sutherland, Sproull, et al. [25], Foley and van Dam, [10]). We
perform a visible surface computation with the vantage-point “on” or slightly inside
a frontier face A of the aggregate channel to determine a “scene” or view of obstacle
faces and exterior channel faces in the Face Environment. Given the “image” or
representation of the field of view from A we then want to heuristically select the
best construction region (which will be the projection of a face or portion of a
face B), invert the projection to find the world coordinates of the region B, and

construct the channel K(A, B).

It is crucial to realize that we select the construction region based on its image
in the picture plane, and then invert the perspective transformation to compute

the corresponding region in the workspace.

There are two special criteria for the visible surface computation: it must be
reconstructive and automorphic.® A reconstructive algorithm computes coherent,
(n-1)-dimensional regions (polyhedra) that are visible in an n-dimensional scene.
Thus scan-line and “painters” algorithms are not reconstructive. The algorithms of
Sechrest and Greenberg, [24] and Wittram, [27], for example, are reconstructive in

that they compute a list of visible polygons for a 3-dimensional scene.

The perspective transformation, since it is a projection, is not naturally

invertible. We need an invertible transformation in order to map back to the

8Many problems in geometric modeling are much easier for convex or locally convex objects. In
particular, the find-path problem is easier within a locally convex volume.

9 Automorphism in geometric modeling is a common information-preserving technique. For one of
the more elegant introductions to algorithms involving automorphic transformations, see Kalay,
[12d]. ’
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Frigure 9a. WPartiaIly obscured surfaces may be fragmented by construction to the visible portion.

workspace from the field of view. Thus we make the reconstructive algorithm
automorphic by maintaining in parallel the generator or 1nterpolated position for

each projected vertex or edge intersection.

For the two-dimensional case the visible surface algorithm is much less complex,
and amounts to computing one “scan-line” of visible edges. However, reconstructive
3-dimensional visible-polygon techniques such as that of Sechrest and Greenberg,

[24] are well understood.

5.2. Fragmentation

The surfaces visible in the field of view will be portions of surfaces in the
workspace. Objects are partially visible when they are obscured by other objects,
too large to fit into the field of view, or partially behind the picture plane. If
we construct to one of these regions we fragment the containing region in the
workspace. Fragmentation is not difficult to deal with in the 2-dimensional case since
construction to a visible region can (1) consume all of an edge, (2) consume “one
end” of an edge, leaving behind the other, unconstructed end, or (3) consume the
“middle” of an edge, splitting the edge into two unconstructed segments separated

by an obstacle face of the channel. We call cases (2) and (3) fragmentation of the

17




workspace surfaces, and in fact our selection heuristics on visible regions in the

field of view attempt to avoid fragmentation whenever possible.

In the 3-dimensional case fragmentation will be more of a problem. In particular
we note that the construction regions A and B must always be convex; but even
if all workspace faces are convex, the visible regions may be non-convex due
to obscuration. Similarly, even if a visible construction region is convex, when
constructed to it may well leave a “hole” or a non-convex “notch” in the containing
region. In principle these issues can be dealt with through arbitrary triangulation
of visible faces. A better solution will involve optimal or near-optimal convex
decompositions such as those proposed by Chazelle, [7], and a set of heuristic
preference criteria over a taxonomy of fragmentation-producing constructions. For
example, three-dimensional anti-fragmentation heuristics would typically prefer
convex constructions that partitioned containing regions convexly. A complete
taxonomy is beyond the scope of this paper, but the geometric tools for convex
decomposition exist and it can be shown that the anti-fragmentation preference

criteria contain at most 16 equivalence classes.

5.3. Implementation

In the two-dimensional implementation, we perform a visible-surface analysis
from each vertex of the Frontier edge, and then intersect the visibility constraints to
determine the constructible field of view. A subsumption criterion whichk compares
edge visibility constraints is also employed to detect when regions are visible from

the vertices but not from the interior of the segment.

6. Searching Strategies

The control strategy for channel construction has the structure of a search. In
this section we discuss characteristics of the search and of the heuristic selection
criteria employed. These criteria, (He) are implemented as evaluation functions

which define a partial order on the candidates.

The search has several stages:

18




Frgure 10. Another channel decomposition for a different find-path problem.

Construction propagates as a best-first search (Nilsson, [17]) along a frontier
of exterior free faces, and each channel construction adds and deletes surfaces
from the Frontier (Front) and Face Environment (Env). (H1) is used to select the
best face A on the frontier for the next local channel expansion. When the visible
surface computation is completed, heuristic (H2) is used as an evaluation function
on the surfaces in the field of view to select the best “matching” construction
region B. Finally, at the end of all construction, the cell decomposition is searched
(again using a best-first techniques) for the a cell path. (This cell path is called
the channel path). (H3) is used as an evaluation function for the cell path search.
Note that it would also be possible to use an A” search, (Nilsson, [17]) using these

heuristic notions of optimality over the channel path.

6.1. Heuristic Selection Criteria

In general the selection criteria prefer “large channel constructions that make

progress towards the goal.” The heuristics structure the representation of free-
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:s of the Agaregate Channel Volume.

Figure 11. The outer union of the decomposition of figure 10.

space. For example, in choosing goal-facing construction surfaces, the heuristics

can identify channels containing paths in the right direction.

(H1) is the evaluation function which selects the best construction face on
Front using the criteria of progress and face-size. The exterior free faces are
classified by goal-proximity!? into neighborhoods. Within the closest neighborhood
the largest face is selected. If no suitably large face exists in the neighborhood
the next closest neighborhood is examined until a construction face is found. In
addition, (H1) prefers frontier surfaces that face the goal. Thresholding is used
in metric comparisons so that minor variations in size or goal-proximity are not

over-weighted.

(H2) defines a partial order on visible face regions in the field of view. Since
the visible surface computation is automorphic, (H2) has access to the workspace

attributes of these (n-1)-dimensional polyhedra. The progress and size criteria of

0For distance to the goal we use Euclidean distance from the (z,y) projection of the goal
configuration.

20




Figure 12. A path suggested through the channel.

(H1) are used; in addition (H2) attempts to minimize fragmentation. Recall that A
is the selected face on F'ront. (H2) prefers faces which are not split by extensions |
of A (i.e., faces not intersecting the plane of A). (H2) also minimizes construction
fragmentation, preferring construction to entire faces if possible. If an edge must

be split, then (H2) favors fragmentation into one split edge over two.

The anti-fragmentation heuristics have the following effects: At each stage of
construction, we expand the channel to the unfragmented face that makes the most
progress towards the goal. Instead of constructing long, narrow channels making a
lot of metric progress towards the goal, the search is attracted by local faces which
are entirely visible. Thus there is a tendency to maximize the breadth of the channel
towards the containing obstacle surfaces. The aggregate channel boundary tends to
incorporate these local obstacle surfaces instead of building exterior free faces that
“skim” the obstacles. This helps avoid artificially narrow channels. (H2) is designed

to cause the channel constraints to be inherited from the original workspace (and
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Figure 19. This example shows a multiply-connected channel decomposition.

not artificially introduced), and to maximize the locally available free space within

a channel.

6.1.1. Backtracking and Thresholding

The search control maintains a simple library of cross-sections of the moving
object, and uses these as a threshold for channel construction. Thus if the field of
view analysis can only find extremely small channels visible from a frontier surface,
then the search is aborted and a new frontier face is found. Thus not only does

the search attempt to maximize the size of the channel interfaces, but heuristically

detects when these interfaces are singular or too small.

6.1.2. Searching the Channel Decomposition

The Structure of the Channel Decomposition

The channel decomposition is a connected set of polyhedral channel regions.

These channel regions adjoin along interior free faces (the interfaces). A start and
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[he Channel Path_.

Fz'gufe 14. The coverage is searched for a channel path.

goal channel are designated as follows: the start channel is the bounding polyhedron
P, built around the moving object in the initial configuration.!! The goal channel
is defined to be the union of all channels containing some part of the object in the

goal configuration.

(H3) is the evaluation function for the final search through the cell decomposition
for a simply-connected channel path. It guides the search by attempting to maximize
the size of the interface, thus choosing for search expansion the channel with the

largest connecting interior face.

7. Path Analysis

In the Path Analysis phase of the algorithm we analyze the simply-connected

channel volume and identify and label zll constraints to motion. Next, a path

1In our implementation, we construct P to be slightly larger than the object, thus constructing
some mancuvring room near the initial configuration.




Figure 15. The suggested route through the channel in relation to the outer union of entire
- decomposition. This case demonstrates the necessity of the post-construction search for a cell
path.

is suggested through the channel cells. We employ configuration space (C-Space)
techniques (Lozano-Pérez [13, 14], Lozano-Pérez and Wesley, [15], Brooks and
Lozano-Pérez [5]) to verify the suggested path and to rectify nodes on the path
which cause collisions. Finally, the path is interpolated to a given fine-grain

resolution.

7.1. Suggesting a Path through the Decomposition

To suggest a path through the simply-connected channel volume we place the
reference point at the centroid of the moving object and attempt to move it through
the centroids of shared interior faces. In two dimensions we adopt the following

sub-path techniques:

Moving between two contiguous edges: For a triangular channel, suggest a
sub-path through the midpoints of the edges. In a quadrilateral, choose a via
point on the midpoint of the shared diagonal.




showing start and goal configurations.

Figure 16. Another find-path problem.

Moving between two disjoint edges of a quadrilateral: Suggest a sub-path

through the midpoints of the edges and the centroid of the quadrilateral.

This is a simplified subset of the sub-path heuristics ((H4)). The implementation

also considers interfaces of two contiguous edges and certain singular cases.

7.2. Suggesting Rotations Along the Path

More complex path-suggesting techniques are possible. For example, it is
possible to compare the interfaces to a library of cross-sections of the moving
object, and select an orientation that will “fit.” This is of course complicated by
the changing orientations of the interfaces along the channel path. Such techniques
have not been implemented, partially because one of our goals was to show that even
very crude path suggestion is useful in solving the mover’s problem. Our emphasis
here is on the channel itself: Given the constructed channel volume containing a

class of paths, it should not be hard to refine the path suggestion techniques.
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Figure 17. A channel is hypothesized.

7.3. Verifying a Path Using Cenfiguration Space Techniques

The initial suggested path is a coarse-grained sequence of configurations within
the channel volume. The next stage of the algorithm verifies these path nodes using
configuration space techniques. Other path-verification techniques would also be

possible.

Configuration Space as described by Lozano-Pérez [13, 14], Lozano-Pérez
and Wesley, [15], represents the set of configurations an object can assume
under translation and rotation. Thus for the two-dimensional mover’s problem,
configuration space is the Cartesian product of the two-dimensional plane R2 with
the one-dimensional sphere. Configurations that cause collisions with obstacles
are configuration obstacles and form unreachable regions in the space. Thus in
configuration space the obstacles are in effect expanded to fill the unreachable

regions while the moving object is shrunk to a point.

To verify a configuration point along a suggested path, we must determine
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Figure 18. A path is suggested through the channel.

whether or not it is within a Configuration Space obstacle. To do this we use

a module of the C-Space planner described and implemented by Brooks and

Lozano-Pérez [5].

First, we identify all constraints on motion for the C-Space planner. In the
C-Space method in two dimensions, only edges and convex vertices can generate
motion constraints. Thus, our task amounts to taking the taking the outer union!?
of the channel volume and identifying all edges and convex vertices. In the C-Space
literature these edges and vertices generate constraints on motion termed “type
(b)” and “type (a)” respectively. Of these the type (a) vertex constraints are
more complicated. The greatest reduction in constraint complexity in the channel
transformation comes from the reduced number of convex vertices: this also

coincides with our intuitive notion of a smooth, simply-connected channel volume.

12This is an easy operation since the channel path defines 2 non-overlapping partition of free
space.
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Figure 19. The path is verified using C-Space techniques.

Thus, we present the C-Space planner with a simplified workspace containing
fewer geometric entities and generating fewer motion constraints. C-Space

constraints are constructed only for those entities labeled as (a) or (b) generators.

7.4. Path Rectification and Interpelation

When a suggested configuration point along the path is found to be within a
C-Space obstacle, it is frequently the case that the suggested node is valid within
some other orientation with (z,y) held constant. Thus the channel path verifier
attempts to “wriggle” in the 0 dimension of configuration space. (It would also be
possible to search in z and y). If no successful orientation can be found then the path
node is abandoned. Otherwise, the new configuration with the rectified orientation
is set up as a sub-goal, and backtracking occurs: two new subproblems are created

in getting from the contiguous path nodes to the corrected configuration.

Once a suggested path is verified at the nodes, several successive grains of
?

interpolation may be performed between verified configurations. The interpolation
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Frigure 20. A previously intractable problem that could be solved using channel construction
with path hypothesis.

suggests a sequence of configurations along a sub-path which is in turn verified at the
nodes. Again, orientation rectification results in backtracking and reinterpolation
from the preceding and subsequent configuration points. This interpolation can

produce a smooth suggested path at any desired resolution.

7.5. Path Analysis and Homotopies: Introduction

Within a channel we hypothesize a paradigm path along centroids of volumes
and free faces in the decomposition of free-space. This paradigm path is the axis of
the homotopy cylinder for the path bundle. Corresponding to the union of channels
there is the composition of homotopies:

K1 U Ks (Channel Union)
S—T+—R (Homotopy Composition)

Further discussion of homotopies and channels can be found in section 8 and

appendix II.




Figure 21. Shows the multiply-connected channel decomposition from the constructive search,
and a crude suggested path.

8. Transformation to the Channel Domain

Our observation has been that in general, local algorithms can get lost
examining irrelevant local constraints. A path planning algorithm starts with an
hypothesis about a candidate path which is subsequently refined. Frequently this
hypothesis is only implicit, for example, as a straight line connecting start and
goal configurations or a search metric on the workspace. Without adequate global
knowledge of the connectivity of the workspace and the classes of paths it contains,
such methods may choose impossible or ill-advised candidate paths. In this section
we present an intuitive analysis of how these paths may be “wrong” and why

the mover’s problem is easier in the channel domain. A more formal presentation
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Frgure 22. W‘Shows}rl;e"(;nv;:x"m boun‘darly of the chan‘nel path.

using homotopy theory (Hocking and Young, [12c]) can be found in an appendix.
The formalization relies on the concept of equivalence classes of paths within the
workspace. Intuitively, we say that there exists a continuous deformation between
any two paths in the same equivalence class, and that the deformation does not

leave the free-space.

8.1. Find-Path Subproblems and Straight-Line Approximations

Consider a successful path P in a workspace. For example, P might be an
hypothesized path which is absolutely correct. Now consider a find-path subproblem
E on P, that is, the problem of getting from s to ¢ where s and g are configurations
on P. The better the straight-line approximation to each subproblem B, the easier

the global find-path problem.

P belongs to an equivalence class of paths which we denote by [P]. The
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Figure 28a. The nodes on the suggested path are rectified.

-
\

workspace will also contain!® classes of curves [CO] entirely within obstacles. Finally,
a multiply-connected workspace will contain a set of incorrect or inconsistent paths
[©] . An incorrect class does not provide a path from the start to the goal. An
inconsistent path is a member of an incompatible class which cannot be transformed
into any path in [P] without leaving the free-space. These path (and obstacle) classes
induce an equivalence relation on configuration space. A straight-line approximation

to any subproblem 5 may contain configuration points in all three of these classes.!4

[CO] points lie within configuration obstacles and can be detected by the
methods of Brooks and Lozano-Pérez [5]. The problem is that both [P] points
and [p]| points are in free-space and look the same to local methods. Within

neighborhoods of [p] points local progress may be made towards the goal. However,

13In this discussion we informally speak of a workspace or channel as “containing” a class of
paths. In the appendix we will become more rigorous and deal with the space of functions whose
images lie in a configuration space generated by the workspace obstacles.

140f the classes in the taxonomy, only [P] is an equivalence class. The other classes are more
properly denoted by [COJ* and [p]*.




Figure 29b. The result for a different rectification strategy.

these candidate paths will eventually be blocked since the space of [p] configurations

is disconnected from the correct class of paths by configuration obstacles.

8.2. The Channel Transformation: Eliminating [p]

[p] points are the most troublesome, since they lie within free space and can be
confused with path-correct [P] points. The effect of the channel transformation is
to rule out inconsistent or incorrect path classes within the transformed workspace,
such that the straight-line approximation for any subproblem & will contain only
[P] and [CO] points. Within any such restricted subproblem, the [CO] points may
be detected and the path locally deformed into [P].

This transformation is accomplished first through the construction of a simply-
connected volume which can contain only one class of paths. If this volume is
convex then the straight-line approximation for any subproblem will contain no [p]
points. In general the channel volume will not be convex, and thus the suggested

path should form a visibility graph within the channel volume. That is, it should
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Figure 24. A detail of path interpolation.

partition the mover’s problem into a set of subproblems in which (1) the start and
goal configurations are known to be free and (2) the projections of the start and
goal are mutually visible in the workspace. The subproblems in this partition are
much easier find-path problems; a primary function of the path interpolation and

field of view analysis is to ensure the visibility graph constraints.

8.3. What is a Reasonable Class of Paths?

The path equivalence classes admit paths which while topologically equivalent
are clearly undesirable. These paths are those which are very long and stray very
far from the set of minimal paths in the homotopy class. We can extend the above
discussions to deal with reasonable and unreasonable paths in the same manner that
we dealt with incorrect and inconsistent paths: consider a channel K containing
a class of paths [Px]. Suppose that to wander outside of K means to take an
unreasonable path. We thus wish to construct the subclass [P¢] C [P] to which we

restrict all path hypotheses. The path class [P] must be partitioned into the classes
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Figure 25. A detail of path interpolation at a finer grain.

[P¢] and [P] — [Px], the latter corresponding to the unreasonable classes outside
of K which will be placed in [p]. However, to enforce the partition of [P] we must
erect a barrier between [Pk] and [P] — [Px]. This barrier is generated precisely by
the boundary of K. The reader is referred to the appendix for further details.

9. Future Research: Extensions to Higher Dimensions

We have attempted a general formulation of the channel transformation, while
describing a two-dimensional implementation. Channel and path hypothesizing
appear attractive as a technique for making the high-dimensional mover’s problem
more tractable. While much of the algorithm will extend directly for this future
research, there are nevertheless unexplored areas and several major issues that

must be addressed. These considerations include the following:

The geometric complexity will obviously be higher in three dimensions. The

individual channel constructions can be performed in linear time. The convex hull
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Figure 26. The final path,

and wedge construction operations have been implemented for the three-dimensional
case (See figs. 28 and 29). The 3-dimensional visible-surface computation should be
performed with the vantage point inside the frontier face, using a bounding rectangle
around the face as the image plane. However, the visible surface calculation will
be more complex, and in the current formulation must be performed from each

- frontier face prior to local construction. If the visible surface calculations contain
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Figure 27. A candidate path for a subproblem which crosses several path classes.

steps of complexity O(nlogn) (expected) to O(n?) (worst case), then the entire
construction may be of O(n?logn) to O(n3). These are very rough estimates, since
it is hard to obtain expected time estimates for algorithms which are sensitive to

the particular workspace.

Fragmentation from partial construction will be more troublesome, as pointed
out above. This requires that the field of view heuristics for selecting construction
regions be more complicated. Construction must partition non-convex visible
regions while minimizing fragmentation of containing regions. If fragmentation is

unavoidable, then the resulting fragments should be convex if possible.

Finally, new motion constraint and path analysis techniques must be developed.
Many of the same cross-section and size-thresholding methods may prove useful in
path suggestion, but we ultimately need methods as strong as the C-Space verifier

in higher dimensions.
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Figure 28. Two obstacle faces viewed in perspective (a) and a channel K = coﬁv(vert(A) U veri(B))
constructed between them (b), (c).

10. Experiments and Results

The algorithm described here has been implemented for the two-dimensional
case. The channel construction for complex workspaces takes on the order of a
minute of “real” time as implemented on MIT and Symbolics Lisp Machines. Some

of the hypothesized channels and paths are shown in figures (10-27).
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Figure 29a. Two obstacle faces A and B viewed in perspective.

The time for verification of a path using modules of the C-Space planner
depends on the resolution and length of the path. The channel volume tends
to have a constraint complexity which varies with the length of the path and
which is relatively independent of the initial workspace. In addition, the constraint
complexity tends to be significantly lower than in the initial workspace. The greatest

reduction occurs in the number of type (a) constraints from convex vertices.

Although the channel path analysis can interpolate and verify a path to a
given resolution, it cannot actually ensure that a free path exists between verified
configurations. Of course for a fine-grained interpolation it is very unlikely that no

path exists between the closely spaced “islands” along the path.

Since a chief deficiency of the C-Space cut-and-search algorithm lies in its
“blindness,” or inability to hypothesize reasonable paths and to set up good subgoals
in complex workspaces, Brooks and Lozano-Pérez [5] suggest a hybrid approach

whereby a likely path is suggested and the C-Space cut-and-search algorithm used
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Figure 29b. A wedge between A and an edge on B, showing back faces of the polyhedron.

to verify and refine that path. Such an approach has the advantage that it is fully
general in the sense that a path for an arbitrary object can be hypothesized and
verified beyond any doubt. We have run experiments employing this method. The
channel module constructed a channel volume of reduced geometric and motion
constraint complexity. A path was suggested and interpolated at coarse-grained
resolutions and the mover’s problem partitioned into a sequence of subproblems in

a visibility graph.

The transformed problem (the labeled channel volume) was “handed off” as
a workspace to the C-Space cut-and-search planner. Finally, instead of allowing
a “blind search” within the channel workspace, the C-Space planner was forced
‘to use the interpolated and verified configuration path as a sequence of planning
islands —in other words, to solve all the subproblems in the visibility graph

partition of the global mover’s problem.

We then compared the performance of the hybrid integrated channel and
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C-Space system with that of the C-Space planner alone. The channel module
constructed a channel workspace, hypothesized a path and partitioned the resulting
find-path problem, and the C-Space module solved the sequence of simpler problems
along the visibility graph partition. The result was a dramatic improvement in
running times. In moderately complex workspaces the search was between two
to ten times faster. More significant, however, is the fact that some previously
intractable!® problems for the C-Space planner can now be solved in total running
times between 15 and 20 minutes. Figure (20) is such a case. This example was
still not solved after 17 hours of running time by the C-Space planner alone; we
estimate that even given unbounded resources a solution could not be found in
under 48 hours. If a channel volume is hypothesized and the C-Space planner
simply “turned loose” in the channel without path suggestion, a path was found in
7-plus hours. When the suggested path is partitioned into a visibility graph and the
C-Space planner forced to solve the sequence of simpler find-path problems within
the channel, the initial search for a path took 9 minutes and a final smoothing

search took 5 more.

10.1. Related Approaches

The channel approach is an intuitive notion that has been appealed to in the
literature: for example, Reif [21] uses the term channel to denote a slot through
which an arm of a hinged body may slide. The method we have described is
closely allied with Brooks’ (Brooks, [4]) algorithm for “natural freeway” recognition
using generalized cones (Binford, [2]) to represent the entire free space. Within
each cone conétraints on motion are derived. A path with rotations is found by
intersecting constraints when transferring between cones. However it is not at all
clear how to extend this technique to higher dimensions. An attempt has been
made here to introduce a general channel formulation which can be extended to a

three dimensional implementation.

" The generalized cone find-path algorithm is sensitive to the geometric

complexity of the environment, and less successful in workspaces littered with

15We use the term intractable in an empirical, and not a complexity-theoretic sense, to describe
problems that take on the order of days to solve.
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Figure 29c.  The implemented 3-D wedge constructor replaces the interior faces of the second
wedge with those of the first wedge. S I ‘ '

many obstacles. The channel approach has not demonstrated this sensitivity since
it attempts construction of a simplified environment of more or less uniform

geometric and constraint complexity along a class of paths.

Cell decompositions have been used in other theories and implementations of
spatial reasoning techniques. For example, see Forbus, [11], Lozano-Pérez [14], and
Chatila, [6]. Freeway and channel partitions for characterizing the connectivity
of free space are also related to Vorono: diagrams (Drysdale, [9]) which can be
analyzed to find classes of paths (O’Dl’m]aing and Yap, [18], O’Dinlaing, Sharir and
Yap [19]). However, Voronoi diagrams are difficult to construct in three dimensions.
It has also been claimed that they exhibit extreme sensitivity to geometric variation;

however, see Brady, [3a].

10.2. Improvements on the Method

It is possible for the heuristics to fail and for the hypothesized channel to be
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too narrow. To avoid this situation, we have adopted the heuristic of expanding
the moving object slightly and then hypothesizing a channel for the “inflated
piano.” In addition some local expansion (construction) is performed near the start
channel, since this region tends to be artificially narrow. The channel hypothesis
is very conservative because of the cross-section thresholding: thus the homotopy
of paths hypothesized is in no way the minimum class, but merely the “easiest”.
In a workspace where all path classes are extremely tight, the hypothesis is more

susceptible to error.

Nevertheless, we have found that in general the channel volume is a good
hypothesis for which a path-solution exists. The path suggestion heuristics are
not as robust: there are cases where the path analysis can suggest difficult or
unreasonable paths through legitimate channels. These typically arise for large,
non-convex moving objects. The path suggestion heuristics currently employed are
quite crude, and can be refined considerably. For example, “tight spots” within the
channel could be identified by examining all interior free faces between obstacle
surfaces. A narrow channel could be abandoned and a new channel path found or
constructed, or the free space around tight spots could then be developed through
local expansions. It is also possible to develop a more complicated constraint
taxonomy, whereby constraints generated by obstacle faces and vertices would be
given more weight than the artificial constraints from exterior free faces. There
are a number of methodological and technical problems to be solved before this

approach is feasible.

Alternatively, a measure of path-correctness could be calculated in the path
verification stage. A poor measure of path-correctness could trigger backtracking
and local constructive expansions around identified tight spots. Both the interior
face analysis (above) and the location of failed path nodes could dictate the
neighborhood of expansion. Workspaces and problems with poor path-correctness
seem the best candidates for the hybrid channel and C-Space search method. For
problems with a high measure of path-correctness at a fine-grain resolution the
interpolated path should probably be taken as the final solution and the hybrid

search forgone.
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Perhaps the most encouraging result of this research is the dramatic reduction
in the difficulty of the subproblems within the channel space. We believe that
transformations of geometrically complex workspaces into simpler domains and
partitions of spatial planning tasks into easier subproblems will play a key role in

the future of geometric modeling for spatial reasoning.
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Appendix I

In this appendix we present an algorithm for channel construction using
wedges in 3-dimensions. Channel construction using pyramids is not addressed
here, although the techniques are similar.

Let A, B, eq, €5, and W be as in section (4.1). Assume that the wedges W(A, es)
and W(B,e,) are both defined when we construct them. Our problem is (1) to
construct the first wedge (2) to choose e, correctly, (3) construct the second wedge
(4) construct the outer union of the wedge complex. The outer union is computed by
removing the wedge faces interior to the union and constructing a new polyhedron
from the resulting face ring.

Let ny denote the outward normal of a face f. We define the function Fint(w, B)
which computes which faces of the wedge w = W(A, es) will be interior to the
channel polyhedron we construct as the union of two wedges. (There are two such
interior faces). Fj,; uses the reference face B to make this determination, choosing
{ f1, f2 } on the boundary of w such that ng -np and ny, - ny are minimized.

To construct K = W(A, e,) U W(B, e,):

(1) Choose any e, € 3(B).18

(2) Construct wy = W(A, ep).

(3) Compute the interior faces { Iy, I } = Fips(wy, B).
)

(4) Select e, as follows:

eo = {e|e€ () JB(L)
and ¢ € B(A) }

(5) Construct wy = W(B, eq).
(6) Construct the channel polyhedron K :

K={K|B(K)=Bw)UBws)
S {1, I }J Fins(we, A) }

16Typically the largest edge should be chosen.
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Appendix II
Transformation to the Channel Domain

In this appendix we formalize the intuitive analysis of path classes presented in
section (8). Our observation has been that in general, local algorithms can get lost
examining local constraints. In particular, without adequate global knowledge of
the connectivity of a workspace and the classes of paths it contains, such methods
may choose impossible or ill-advised candidate paths. Here we examine in what
way these paths may be “wrong,” and how the mover’s problem is easier in the

transformed domain of the channel space.

11.3. Partitioning the Mover’s Problem into Subproblems

Visibility Graph Constraints

The suggested path should form a visibility graph in the channel volume; that
is, it should partition the mover’s problem into a set of subproblems in which (1)
the start and goal configurations are known to be free and (2) the R? projections
of the start and goal are mutually visible in the workspace. The subproblems in
this partition are much easier find-path problems; a primary function of the path

interpolation and field of view analysis is to ensure the visibility graph constraints.

11.4. Channels and Homotopies

11.4.1. A Review of Elementary Homotopy Theory

There is a correspondence between channels and homotopies (see Hocking and
Young, [12¢] for a review). Let I! denote the unit interval. A parameterized family
of mappings from a space X into a space Y is a continuous function b : X X I' = Y.
Consider the mappings f and g from X to Y: we say that h is a homotopy between
f and g if for each point z in X,

h(z,0) = f(z) and h(z,1) = ¢(z).

Intuitively the existence of A implies that f can be cdntinuously deformed into ¢

without leaving Y.

49




The homotopy relation between mappings from X into Y is an equivalence
relation on the function space YX. Hence the homotopy relation partitions YX |
into disjoint equivalence classes, which are called homotopy classes. We write the
homotopy relation as f =~ g. These homotopy classes capture our intuitive notion
of classes of paths. The homotopy classes of Y% can be shown to be precisely the

arcwise-connected components of Y¥ (Hocking and Young, [12¢] ).

To take a concrete example, consider configuration space for the two-dimensional
mover’s problem to be the product space of the 2-dimensional Euclidean plane %2
and the one-dimensional sphere S! to obtain %% X S1, and denote the configuration
obstacles as CO C R? x S!. Now two paths f and ¢ in the same equivalence class

must belong to a parameterized family of mappings such that:

h: X XI' R x ST—CoO.

and h(z,0) = f(z), h(z,1) = g(z) as before.
11.4.2. The Connecti?ity of Configuration Space

The configuration spaces ®? X St (for the two-dimensional mover’s problem)
and 3 X S3 (for the general three-dimensional case) are not simply-connected,
since 8™ is not simply-connected. The function space (R™ X S™)¥ contains several
homotopy classes. For example, (% X SI)X may be envisioned as a cylinder on

which there are clearly two classes of paths: those that bound a 2-dimensional

region and are contractable to a point, and those that go around the cylinder.

We would like to generate a configuration space which is simply-connected.
Since this is not possible for the general product space :&™ X S™ we will instead
consider the product space of R” with the open intervals [ — 7, 7] C S1. Thus for

~ the two-dimensional mover’s problem we consider the product space
C=RX[—m,ml
In three dimensions this of course becomes ®2 X II® where

" =[—m7] X - X [—mn] (tom)
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IT™ is homeomorphic to the interior of the m-cube. This new product space C is
simply a restricted configuration space where the piano is not allowed to spin around
wildly. Our motivation for constructing C is to show how channel constructions help
transform problems in ¢ — CO (which may be multiply-connected) into problems
in a simply-connected C-Space containing one equivalence class of paths. In section
(11.6.3) we sketch generalizations of these discussions to product spaceé involving

S™ in place of II™.
11.5. The Relation between Channels and Homotopies

A channel represents an hypothesis about a homotopy class. Consider

h:XXI'—Y

Let [f] be a homotopy class in Y. Thus [f] is in the quotient space of YX
induced by the homotopy equivalence relation: [f] € ¥ /==. We now induce an
equivalence relation upon Y. Consider fo, fi € [f], and their images on Y, the
curves Cp = fo(X) and Cy = f1(X). Knowing that homotopy is an equivalence
relation on the function space YX, we can decompose Y into equivalence classes
that correspond to the images of the functions in the equivalence classes on YX.

Thus Cy =~' C; if, and only if fo =~ fi.

Now let Y be ®2 X II! — CO = C — CO. Then [f] is a path-correct homotopy
| class in that for all functions f € f] the image of f in C, f(X), lies entirely outside
the configuration obstacles (entirely within ¢ — C'O). Without loss of generality,
assume that the start and goal configuration are contained in each curve.l” Also
without loss of generality, assume that the reference point is contained within the
moving object. (Any C-Space problem can be transformed so that this is the case.
The reader will do best to imagine the reference point at the object’s centroid for

this discussion.)

"To insist that the start and goal configurations (s and g) are contained by all functions in an
equivalence class is to consider homotopic equivalences modulo s|Jg, and the argument will be
the same.
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Now consider )([f]’ the union of the image on Y of all functions f; € [f]:
i =UfX) fielf]
1

This is the region in Y which is covered by the class of paths [f], and is the
“maximal channel” in which every configuration point lies on a path in the same
equivalence class. Note that since h is a continuous mapping, the equivalence class
[f] is uncountable and thus }([ ] is of course a union over an infinite number of
paths. The fundamental correctness criterion for an hypothesized channel volume
K is that it contain a projection into R2 of a slice of correct paths in C. This slice
is parameterized by I' C I, I’ £ 8, and we consider a subset of the parameterized
family of mappings h' : X X I' — Y. We denote this slice of paths as [f]I', and

hence the criterion is:

= ‘g' £i(X), fi € [f]
Projzs(¥jur) C K. M

(1) is a necessary but not sufficient condition for channel-correctness, since
while the projection of a configuration may be contained in the channel, we have not
guaranteed that the object is contained in the channel at the required orientation.
Assume a configuration has been found which was legal in the initial workspace
but forbidden in the channel workspace. The only way this can happen is through
the introduction of additional, artificial constraints (free faces). Thus the second
fundamental criterion for channel-correctness ensures that the path class in the
new domain is a subset of the initial path-correct homotopy class, [f]. K is the
hypothesized channel in %2, {(K) its interior, and ,B(K) its boundary. Let COpx)
denote the set of configuration space obstacles generated by the channel boundary,

and Clyx) € C — CO the set of conﬁgurations for which the piano is entirely

within the channel. Now consider:
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R X XTI Clik)-

If h'! exists, then the function space C’If((K) contains exactly one equivalence

class, [fk]. Thus the second fundamental correctness criterion for channels is:

I X X I Cli),
[fk] C [/]
Projmz()-([h]) C Proj;,gz(}([f]). (2)

11.6. Homotopies, Channels, and Hardness

How is the mover’s problem easier in the channel domain? In this section we
address this issue by classifying the configurations on the straight-line approximation
to the solution for a find-path subproblem. We first consider homotopy classes in
channel space. Next we extend the discussion to general C-Space; and finally we

discuss what it means to consider a “reasonable” class of paths.

11.6.1. Homotopy Classes in Channel Space

In this section we discuss in what way the mover’s problem is easier in the
channel domain. To facilitate this discussion we will speak of channels in the
workspace as corresponding to homotopy classes in configuration space. Formally
this implies the existence of a bijection between K and [fx] where [f], K, and [fx]
satisfy (1) and (2) above. To see the correspondence, consider a complete partition

of the workspace and the set of simply-connected channel paths.

We wish to consider three homotopy classes in channel space. The first is [fx],
the class of paths in CI;(x) that corresponds to the paths within the channel. Now, |
consider set of curves lying within configuration obstacles bounding the channel
in C, that is, the homotopies h : X X I! - COp(x)- COg(x) is homeomorphic to
S?% and the function space CO‘;((K] contains one equivalence class, [CO]. [CO] is

the second homotopy class. The third class contains paths incorrect or inconsistent

with [fx]. An incorrect path does not provide a path from the start to the goal.

53




An inconsistent path is a member of an incompatible homotopy class such that no
| path in [fx] may be deformed into it without leaving the space C — CO. We denote
this last class by [p]. There is actually a fourth class of curves (those lying entirely
within configuration obstacles not bounding the channel). Since these are clearly

unreachable, we will classify them in [p] also.

h1: X X I'e Cly [£x]
hy: X X1~ OO,B(K) [CO]
hs : X XI—C— C'Oﬁ()() — CI,‘(K). [P]

Now: consider pairwise unions of these classes. Paths in [CO] can be continuously
deformed into [fx] in the function space (CLyx) + COp(x))¥, and into [p] in the
function space (C — CIi(K))X . In each case the union function space is simply
the union of the component spaces; the resulting union space contains one arcwise-
connected component and hence one equivalence class.!® However, the union of
[fk] and [p] is disjoint, since the function space union (C — COﬂ(K))X contains
two disjoint components separated by C’Og(( K)- Hence the resulting union function
space (C — C’Oﬁ(K))X contains two homotopy classes: no homotopy spans CLx)

and (C — COp(x) — CIz-(K))X since they are disconnected by C‘O%‘EK).

A subproblem on a path P is a find-path problem 5 from configuration s to
g where s and ¢ lie on P. Consider a successful path P in a complex workspace:
for example, P might be an absolutely correct hypothesis about a path. Now for
a subproblem &, choosing s and g arbitrarily on P, there exists a path from the
equivalence class [fx]. However, consider the straight line connecting s and g. All
points on the line lie on the image of functions in one of the three disjoint homotopy
classes [fx], [CO), or [p]. It is possible to formulate a dual taxonomy using )([fx]’
%[CO]’ and }([p] for points s’ and ¢’ in the initial workspace, which considers points
in the correct channel, points on the obstacles bordering the channel, and points in
an incorrect, inconsistent, or unreachable channels.

18Note that the function space (C — CI; K))X is not simply-connected, and is homeomorphic to
a filled 2-sphere with an internal cavity. However it is arcwise-connected, unlike (¢ — COﬁ(K))X
which contains two disjoint components.
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e The transformation to the channel domain essentially entails the elimination
of case [p] within each subproblem along the visibility graph of the suggested
path. This is ensured by the simple-connectedness of the channel volume in
the transformed workspace, and the visibility graph constraints on the local

constructions and partitioning of the suggested path.

Paths containing configurations of types [fx] and [CO] but not of type [p] may
be continuously deformed into the homotopy class [fx] in the simply-connected
(union) function space (COp(x) + C’Ii(K))X whose image in C is homeomorphic to
the closure of a filled 2-sphere. This deformation if “off the obstacle and into the
channel.” However, no such continuous deformation exists in the function space
for paths containing configurations of type [p], which would require a deformation
“out of the ‘wrong’ channel, through the obstacle, and into the ‘right’ channel.”
It should be intuitively clear that the latter rectification requires much greater
topological changes in the path, and is thus much harder to effect. In particular, [p]
points are misleading: like [fx] points they lie in free-space and thus purely local
methods cannot differentiate between path-correct and incorrect configurations. It
is possible to make local progress in [p] regions, yet these paths will eventually
be found blocked by the disconnecting [CO] region. We may think of type [CO]
configurations as neighboring the correct path class; the rectification of these
collision points corresponds exactly to a continuous, local deformation of the path
into [fx]. Paths containing [p] points cannot be so rectified since functions in
incorrect or inconsistent homotopy class [p] cannot be deformed into [fx]. Thus we
make the mover’s problem easier by ruling out classes of topological impossibilities;
this is done by ensuring that all intervening configuraticns in a éubprob]em lie

either in the correct homotopy class or in the containing obstacle region.

11.6.2. Homotopy Classes in General C-Space

We now ext;end the abeve discussion to consider homotopy classes in general
C-Space (®? X ') with no channel and no visibility graph constraints on the
partition of the mover’s problem into subproblems. The basic result of this section
will be that a subproblem 7 is harder in this general C-Space since the straight-line

approximation to the solution contains [p] points. The previous argument was
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more intuitive, since the class [p] was disconnected from the [fx] by an arcwise-
connected space homeomorphic to the 2-sphere. Here the analysis is somewhat
more difficult, since while the equivalence class of correct paths is still disconnected
from the incorrect or inconsistent classes, the disconnecting region is no longer

arcwise-connected (i.e., it may consist of several disjoint components).

Consider an equivalence class of correct paths [f] in the function space
(C — COYX. Let COpx 7 denote the set of configuration obstacles bounding }(M.
COy( ;([
the function space C’Oﬂ(y[j])x into distinct equivalence classes, [COJ*. In addition,

"

it to have several homotopic equivalence classes of incorrect or inconsistent paths

]) may be a disconnected set, and thus the homotopy relation decomposes
s

we do not assume that (C — N[f] — COp(x is arcwise connected, and allow

which we denote by [p]*.

h1:X><I1r—+)([f] [f]
hy: X X I' cop(;,[f]) [co*
hg: X XI'— C— }([f] — COﬁ(;([f]). (0]*

Now, consider subproblems such as & in C-Space without a channel. With no
visibility constraints on 5, configurations on the line (s, ¢) lie on images of functions
in the distinct homotopy classes [f], [CO]*, or [p]*. The crucial point is that path
approximations containing [p]* configurations are disconnected from the correct
homotopy class [f] by some component of [COJ*, and cannot be continuously

deformed into [f] in the function space union of J(MX and (C — }([f] — C’Oﬂ(;([ ]))X.
:

11.6.3. The Product Space ®? X S!

It is instructive to explore the complications introduced by the use of S™ in
place of II™ in construction of the product space. The effect is that more homotopy
classes are formed in the function space. In this case channel construction can
provide a reduction in the number of disjoint equivalence classes of paths, but not

a reduction to a single class.
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If we consider the configuration space %2 X S! instead of C then we know
that %2 X S! is multiply-connected and the function space (%2 X S1)X contains
two homotopy classes. Then CI;k) is now homeomorphic to the interior of the
solid torus and COpk) to its boundary. OIf((K) contains two homotopy classes
and CO%((K) three. These classes must be considered even in channel space, since
any region in ®% X S! contains at least two path classes. The additional classes
introduced by S! (or S™) can be handled by again considering the equivalence
classes [COJ* and factoring out homotopy classes of [fi]* or [f]* not homotopic

to a constant mapping ¢(X) = yg, where yg is some fixed point in R? x S1,

11.6.4. What is the Class cf Reasonable Paths?

The homotopy equivalence classes admit paths which while topologically
equivalent are clearly undesirable. These paths are those which are very long and
stray very far from the set of minimal paths in the homotopy class. We can extend
the above discussions to deal with reasonable and unreasonable paths in the same

manner that we dealt with incorrect and inconsistent paths:

Note that [fx] C [f] corresponds to the paths within the channel K. Suppose
that to wander outside of K means to take an unreasonable path. Then [fx]
corresponds to the reasonable, or shorter paths in [f] that get to the goal via K.
By replacing [f] by [fx] in section (11.6.2) we can begin to talk about reasonable
paths in the set [f]. This involves partitioning [f] into the class of functions within
the channel, [fx] and the unreasonable class(es) [f] — [fx], and placing [f] — [fk]
in [p]*. However to enforce the partition of [f] we must erect a barrier between
[f1—1[fx] and [fx] . This barrier is precisely C’O%‘EK), and is constructed by building

the channel K in the workspace.




